
Development of optimization methods to
solve computationally expensive problems

Amitay Isaacs

A thesis submitted in fulfilment

of the requirements for the degree of

Doctor of Philosophy

MANU E T MEN
TE

SCIENTIA

School of Engineering and Information Technology

University College

University of New South Wales

Australian Defence Force Academy

31 August 2009

Copyright Statement

I hereby grant The University of New South Wales or its agents the right to

archive and to make available my thesis or dissertation in whole or part in the

University libraries in all forms of media, now or hereafter known, subject to

the provisions of the Copyright Act 1968. I retain all proprietary rights, such as

patent rights. I also retain the right to use in future works (such as articles or

books) all or part of this thesis or dissertation.

I also authorise University Microfilms to use the abstract of my thesis in

Dissertation Abstract International (this is applicable to doctoral thesis only).

I have either used no substantial portions of copyright material in my thesis

or I have obtained permission to use copyright material; where permission has

not been granted I have applied/will apply for a partial restriction of the digital

copy of my thesis or dissertation.

Date

Authenticity Statement

I certify that the Library deposit digital copy is a direct equivalent of the final

officially approved version of my thesis. No emendation of content has occurred

and if there are any minor variations in formatting, they are the result of the

conversion to digital format.

Date

w l'l f"r eq 1

a+1,,[*o?1

Originality Statement

I hereby declare that this submission is my own work and to the best of my

knowledge it contains no material previously published or written by another

person, or substantial portions of material which have been accepted for the

award of any other degree or diploma at UNSW or any other educational institute,

except where due acknowledgment is made in the thesis. Any contribution made

to the research by others, with whom I have worked at UNSW or elsewhere, is

explicitly acknowledged in the thesis. I also declare that the intellectual content

of this thesis is the product of my own work, except to the extent that assistance

from others in the project's design and conception or in style, presentation and

linguistic expression is acknowledged.

Signed

Date

Abstract

Evolutionary algorithms (EAs) are population based heuristic optimization meth-

ods used to solve single and multi-objective optimization problems. They can

simultaneously search multiple regions to find global optimum solutions. As EAs

do not require gradient information for the search, they can be applied to opti-

mization problems involving functions of real, integer, or discrete variables. One

of the drawbacks of EAs is that they require evaluations of numerous candidate

solutions for convergence.

Most real life engineering design optimization problems involve highly nonlin-

ear objective and constraint functions arising out of computationally expensive

simulations. For such problems, the computation cost of optimization using EAs

can become quite prohibitive. This has stimulated the research into improving

the efficiency of EAs reported herein.

In this thesis, two major improvements are suggested for EAs. The first

improvement is the use of spatial surrogate models to replace the expensive

simulations for the evaluation of candidate solutions, and other is a novel con-

straint handling technique. These modifications to EAs are tested on a number

of numerical benchmarks and engineering examples using a fixed number of

evaluations and the results are compared with basic EA. addition, the spatial

surrogates are used in the truss design application.

A generic framework for using spatial surrogate modeling, is proposed. Multi-

ple types of surrogate models are used for better approximation performance and

a prediction accuracy based validation is used to ensure that the approximations

do not misguide the evolutionary search. Two EAs are proposed using spatial

surrogate models for evaluation and evolution. For numerical benchmarks, the

spatial surrogate assisted EAs obtain significantly better (even orders of mag-

nitude better) results than EA and on an average 5–20% improvements in the

i

ii

objective value are observed for engineering examples.

Most EAs use constraint handling schemes that prefer feasible solutions over

infeasible solutions. In the proposed infeasibility driven evolutionary algorithm

(IDEA), a few infeasible solutions are maintained in the population to augment

the evolutionary search through the infeasible regions along with the feasible

regions to accelerate convergence. The studies on single and multi-objective test

problems demonstrate the faster convergence of IDEA over EA. In addition, the

infeasible solutions in the population can be used for trade-off studies.

Finally, discrete structures optimization (DSO) algorithm is proposed for

sizing and topology optimization of trusses. In DSO, topology optimization and

sizing optimization are separated to speed up the search for the optimum design.

The optimum topology is identified using strain energy based material removal

procedure. The topology optimization process correctly identifies the optimum

topology for 2-D and 3-D trusses using less than 200 function evaluations. The

sizing optimization is performed later to find the optimum cross-sectional areas

of structural elements. In surrogate assisted DSO (SDSO), spatial surrogates are

used to accelerate the sizing optimization. The truss designs obtained using SDSO

are very close (within 7% of the weight) to the best reported in the literature

using only a fraction of the function evaluations (less than 7%).

Acknowledgements

My research work would not have been possible without the help and the support

of the family and friends.

I thank Tapabrata Ray for his guidance throughout the course of my research.

He has been an excellent supervisor and mentor. Ray’s infectious enthusiasm and

constant encouragement have kept me motivated. Regular brainstorming sessions

with him have provided me with the necessary direction for my research. I am

indebted to him for his graciousness and generosity. I also thank his family, Jayati

and Pritika, for making me feel at home in a foreign country. I will cherish his

friendship forever.

I thank Warren Smith for his valuable suggestions and insights. His meticu-

lous proof-reading has been a tremendous help in improving my writing skills.

Many thanks to all my friends and colleagues at ADFA who made my stay

in Canberra and work at ADFA a memorable experience. Special thanks to my

officemates Mahendra, Khin, Sudantha, Abhi, Hemant, Ahmad and Vishal who

shared countless cups of tea with me and a regular dose of phdcomics. Thanks to

Roshan, Vishwas, Laxmikant and Arif for sharing their research and giving me a

chance to work with them. A special mention of Hemant for endless discussions

that resulted in many joint publications.

Thanks to Russell Boyce and Hideki Ogawa from the University of Queensland

for an opportunity to apply my research to a real-life engineering problem.

I dedicate this thesis to my lovely wife, Deanna. I would not have been

able to complete my research work without her encouragement. Deanna has

accompanied me on this journey every step of the way and helped me emotionally

and spiritually during difficult times. I thank our parents for their support and

blessings. Thank you Melroy for helping us set up a home away from home in

Canberra.

iii

List of Publications

Book Chapters

[1] T. Ray, H. K. Singh, A. Isaacs, and W. Smith. Infeasibility drive evolutionary
algorithm for constrained optimization. In Efren Mezura-Montes, editor,
Constraint Handling in Evolutionary Optimization, Studies in Computational
Intelligence, pages 147–167. Springer, 2009.

[2] A. Isaacs, T. Ray, and W. Smith. Set representation and multi-parent learning
within an evolutionary algorithm for optimal design of trusses. In Ying ping
Chen and Meng-Hiot Lim, editors, Linkage in Evolutionary Computation,
volume 157 of Studies in Computational Intelligence, pages 419–439. Springer,
2008.

[3] T. Ray, A. Isaacs, and W. Smith. A memetic algorithm for dynamic
multi-objective optimization. In C. K. Goh, C. K. Tan, and Y. S. Ong, editors,
Multi-objective Memetic Algorithms, Studies in Computational Intelligence.
Springer, 2008.

[4] T. Ray, A. Isaacs, and W. Smith. Multi-objective optimization using surrogate
assisted evolutionary algorithm. In G. P. Rangaiah, editor, Multi-objective
Optimization: Techniques and Applications in Chemical Engineering, pages
131–151. World Scientific, Singapore, 2008.

Journal Papers

[1] A. Isaacs, T. Ray, and W. Smith. Multiobjective design optimization using
multiple adaptive spatially distributed surrogates. International Journal of
Product Development, 9(1-3):188–217, 2009.

Conference Papers

[1] H. Ogawa, Y. Alazet, A. Pudsey, R. R. Boyce, A. Isaacs, and T. Ray.
Full-flow path optimization of axisymmetric scramjet engines. In Proceedings

v

vi LIST OF PUBLICATIONS

of the 48th AIAA Aerospace Sciences Meeting, Florida, January 2010.
Accepted.

[2] H. Ogawa, R. R. Boyce, A. Isaacs, and T. Ray. Multi-objective design
optimisation of inlet and combustor for axisymmetric scramjets. In
Proceedings of the Australian Combustion Symposium, December 2009.
Accepted.

[3] H. Ogawa, Y. Alazet, R. R. Boyce, A. Isaacs, and T. Ray. Design
optimisation of axisymmetric scramjets for access-to-space. In Proceedings
of the 9th Australian Space Science Conference, Sydney, September 2009.

[4] M. A. Ashraf, A. Isaacs, J. Young, J. C. S. Lai, and T. Ray. Numerical
simulation and multi-objective design of flow over oscillating airfoil for power
extraction. In Proceedings of Conference on modelling fluid flow (CMFF),
pages 221–228, Budapest, Hungary, September 2009.

[5] H. K. Singh, A. Isaacs, T. Ray, and W. Smith. An improved ranking for many
objective optimization problems. In Proceedings of Genetic and Evolutionary
Computation Conference (GECCO), Canada, 2009.

[6] H. K. Singh, A. Isaacs, T. T. Nguyen, T. Ray, and Xin Yao. Performance of
infeasibility driven evolutionary algorithm (IDEA) on constrained dynamic
single objective optimization problems. In Proceedings of the IEEE Congress
on Evolutionary Computation (CEC), pages 3127–3134, Norway, May 2009.

[7] A. Isaacs, T. Ray, and W. Smith. Memetic algorithm for dynamic
bi-objective optimization problems. In Proceedings of the IEEE Congress
on Evolutionary Computation 2009 (CEC’09), pages 1707–1713, Norway,
May 2009.

[8] H. K. Singh, A. Isaacs, T. Ray, and W. Smith. A study on the performance
of substitute distance based approaches for evolutionary many objective
optimization. In Simulated Evolution and Learning, 7th International
Conference SEAL 2008, Proceedings, volume 5361 of Lectures Notes in
Computer Science, pages 401–410, Melbourne, Australia, 2008. Springer.

[9] A. Isaacs, T. Ray, and W. Smith. An efficient hybrid algorithm for
optimization of discrete structures. In Simulated Evolution and Learning, 7th
International Conference SEAL 2008, Proceedings, volume 5361 of Lectures
Notes in Computer Science, pages 625–634, Melbourne, Australia, 2008.
Springer.

[10] H. K. Singh, A. Isaacs, T. Ray, and W. Smith. Infeasibility driven
evolutionary algorithm (IDEA) for engineering design optimization. In
AI2008: Advances in Artificial Intelligence, 21st Australasian Joint

LIST OF PUBLICATIONS vii

Conference on Artificial Intelligence, Proceedings, volume 5360 of Lecture
Notes in Artificial Intelligence, pages 104–115, Auckland, New Zealand,
2008. Springer.

[11] H. K. Singh, A. Isaacs, T. Ray, and W. Smith. A simulated annealing
algorithm for single objective trans-dimensional optimization problems.
In Proceedings of Eighth International Conference on Hybrid Intelligent
Systems (HIS-08), pages 19–24, Barcelona, Spain, 2008.

[12] H. K. Singh, A. Isaacs, T. Ray, and W. Smith. A simulated annealing
algorithm for constrained multi-objective optimization problems. In
Proceedings of the IEEE Congress of Evolutionary Computation (CEC),
pages 1655–1662, Hong Kong, 2008.

[13] A. Isaacs, T. Ray, and W. Smith. Blessings of maintaining infeasible solutions
for constrained multi-objective optimization problems. In Proceedings of
the IEEE Congress on Evolutionary Computation (CEC), pages 2780–2787,
Hong Kong, 2008.

[14] A. Isaacs, V. Puttige, T. Ray, W. Smith, and A. Sreenatha. A
development of memetic algorithm for dynamic multi-objective optimization
and its application to online system identification. In Proceedings of the
IEEE International Joint Conference on Neural Networks (IJCNN), pages
548–554, Hong Kong, 2008.

[15] A. Isaacs, T. Ray, and W. Smith. An evolutionary algorithm with spatially
distributed surrogates for multi-objective optimization. In Progress in
Artificial Life, Third Australasian Conference on Artificial Life (ACAL),
volume 4828 of Lecture Notes in Computer Science, pages 257–268, Gold
Coast, Australia, 2007. Springer.

[16] A. Isaacs, T. Ray, and W. Smith. A hybrid evolutionary algorithm with
simplex local search. In Proceedings of the IEEE Congress on Evolutionary
Computation (CEC), pages 1701–1708, Singapore, 2007.

[17] A. Isaacs, T. Ray, and W. Smith. Novel evolutionary algorithm with set
representation scheme for truss design. In Proceedings of the IEEE Congress
on Evolutionary Computation (CEC), pages 3902–3908, Singapore, 2007.

Contents

Abstract i

List of Publications v

List of Figures xiii

List of Tables xv

List of Algorithms xvii

List of Abbreviations xix

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 3
1.3 Scope of Research . 5
1.4 Contributions of Thesis . 7
1.5 Organization of Thesis . 8

2 Optimization and EA 13
2.1 Overview . 13
2.2 Optimization Problem . 14

2.2.1 Single Objective Optimization 15
2.2.2 Multi-objective Optimization 16

2.3 Numerical methods . 19
2.3.1 Disadvantages . 19

2.4 Heuristic methods . 21
2.4.1 Advantages . 22
2.4.2 Disadvantages . 24

2.5 Evolutionary Algorithm Framework 25
2.5.1 Initialization . 26
2.5.2 Evaluation . 26
2.5.3 Evolution . 27
2.5.4 Ranking . 29

ix

x CONTENTS

2.5.5 Reduction . 29
2.6 Performance Measurement . 30

2.6.1 Displacement . 30
2.7 Summary . 32

3 Approximations in EA 35
3.1 Overview . 35
3.2 Levels of Approximations . 36
3.3 Function Approximation . 37

3.3.1 Surrogate Modeling Techniques 38
3.3.2 Sampling Techniques . 43
3.3.3 Global and Local Surrogate Models 45
3.3.4 Surrogate Ensembles . 47
3.3.5 Surrogate training . 48

3.4 Informed Operators . 50
3.5 Memetic Algorithms . 51
3.6 Summary . 52

4 Surrogate Assisted EA 55
4.1 Overview . 55
4.2 Spatial Surrogate Models . 56

4.2.1 The Archive of Solutions 57
4.2.2 Surrogate Training . 58
4.2.3 Prediction . 61
4.2.4 Single Surrogate (SS) . 62
4.2.5 Multiple Surrogates (MS) 64
4.2.6 Multiple Adaptive Surrogates (MAS) 66

4.3 Spatial Surrogates in EA . 67
4.3.1 Surrogate Assisted Evaluation 68
4.3.2 Surrogate Assisted Recombination 70

4.4 Parameter Choice . 72
4.4.1 Choice of Surrogate Models 72
4.4.2 Maximum Number of Training Samples 74
4.4.3 Prediction Error Threshold 75

4.5 Results of Numerical Benchmarks 76
4.5.1 Experimental Setup . 76
4.5.2 Unconstrained Single Objective Optimization 78
4.5.3 Constrained Single Objective Optimization 82
4.5.4 Unconstrained Multi-objective Optimization 88
4.5.5 Constrained Multi-objective Optimization 89

4.6 Summary . 92

CONTENTS xi

5 Constraint Handling in EA 97
5.1 Overview . 97
5.2 Constraint Handling Methods . 98
5.3 Maintaining Infeasible Solutions 102
5.4 Infeasibility Driven EA (IDEA) 104

5.4.1 Constraint Violation Count 105
5.4.2 Constraint Relative Rank 109

5.5 Results of Numerical Benchmarks 111
5.5.1 Experimental Setup . 111
5.5.2 Single Objective Optimization 112
5.5.3 Multi-objective Optimization 115

5.6 Summary . 117

6 Engineering Examples 121
6.1 Overview . 121
6.2 Experimental Setup . 121
6.3 Belleville Spring Design . 122
6.4 Design of Coil Compression Spring 125
6.5 Speed Reducer Design . 128
6.6 Design of a Welded beam . 130
6.7 Design of a Pressure Vessel . 133
6.8 Airfoil Design . 135
6.9 Summary . 139

7 Truss Design 141
7.1 Overview . 141
7.2 Optimization Problem Statement 143
7.3 Topology Optimization Using EA 143
7.4 Discrete Structures Optimization 146

7.4.1 First Stage: Topology Optimization 147
7.4.2 Second Stage: Sizing Optimization 148
7.4.3 Surrogate assisted DSO . 149

7.5 Results of Truss Design . 149
7.5.1 Ten-bar 2D cantilever truss 150
7.5.2 Seventeen-bar 2-D cantilever truss 152
7.5.3 Twenty-two-bar space truss 154
7.5.4 Twenty-five-bar 3D transmission tower 157

7.6 Summary . 160

8 Conclusions 163
8.1 Research Summary and Outcomes 163
8.2 Achievements . 166
8.3 Future Areas of Research . 168

xii CONTENTS

References 171

A f-series problems 189
A.1 Sphere Model . 189
A.2 Schwefel’s Problem 2.22 . 189
A.3 Schwefel’s Problem 1.2 . 190
A.4 Schwefel’s Problem 2.21 . 190
A.5 Generalized Rosenbrock’s Function 190
A.6 Step Function . 190
A.7 Quartic Function with Noise . 190
A.8 Generalized Schwefel’s Problem 2.26 191
A.9 Generalized Rastrigin’s Function 191
A.10 Ackley’s Function . 191
A.11 Generalized Griewank Function 191
A.12 Generalized Penalized Functions 192

B g-series problems 193
B.1 g01 . 193
B.2 g02 . 194
B.3 g04 . 194
B.4 g06 . 195
B.5 g07 . 195
B.6 g08 . 196
B.7 g09 . 196
B.8 g10 . 197

C ZDT problems 199
C.1 ZDT1 . 199
C.2 ZDT2 . 200
C.3 ZDT3 . 201
C.4 ZDT4 . 202
C.5 ZDT6 . 203

D CTP problems 205

List of Figures

1.1 Computer evolved X-band Antenna for NASA’s ST5 mission (source:
http://amesnews.arc.nasa.gov/releases/2004/antenna/ antenna.html) 3

2.1 Illustration of local/global minimum and infeasible/feasible regions
for single objective optimization problem 16

2.2 Illustration of the Pareto optimal solutions for bi-objective opti-
mization problem . 18

2.3 Non-dominated solutions with equivalent displacement metric . . 32

4.1 Spatial Surrogate model built using initial population and the
archive after three generations . 63

4.2 Effect of the number of clusters on multiple spatially distributed
surrogates . 65

4.3 Surrogate training time (in seconds) for RSM, RBF and Kriging. . 73
4.4 Average convergence trend of EA, SAE-EA and SAR-EA for f-series

problems (f01–f03 and f05–f07) 83
4.5 Average convergence trends of EA, SAE-EA and SAR-EA for f-series

problems (f10–f13) . 84
4.6 Average convergence trends of EA, SAE-EA and SAR-EA for g-series

problems . 87
4.7 Non-dominated solutions obtained using EA, SAE-EA and SAR-EA

for ZDT problems . 90
4.8 Non-dominated solutions obtained using EA, SAE-EA and SAR-EA

for CTP problems . 93

5.1 Ranking procedure to retain infeasible solutions in the population 104
5.2 IDEA results for CTP2, CTP3 and CTP4 using constraint viola-

tion count measure. 107
5.3 IDEA results for CTP6, CTP7 and CTP8 using constraint viola-

tion count measure. 108
5.4 Average convergence trends of EA and IDEA for g-series problems

(g01, g02, g04 and g06) . 114

xiii

xiv LIST OF FIGURES

5.5 Average convergence trends of EA and IDEA for g-series problems
(g07–g10) . 115

5.6 Non-dominated solutions obtained using EA and IDEA for CTP
problems in a median run . 118

5.7 Evolution of Non-dominated solutions over generations for problem
CTP2 using EA and IDEA . 119

6.1 Belleville spring configuration (Source: Siddall (1982) [1]) 122
6.2 Average convergence of EA, SAE-EA and SAR-EA for Belleville

spring design . 125
6.3 Tension/Compression spring . 125
6.4 Average convergence of EA, SAE-EA and SAR-EA for compression

spring design . 128
6.5 Speed Reducer and typical gear (Source: Golinski (1970) [2]) . . . 129
6.6 Convergence plots for speed reducer design 131
6.7 Welded-Beam Problem Configuration 132
6.8 Optimization of welded beam . 133
6.9 Center and End section of the pressure vessel 134
6.10 PARSEC representation for 2-D airfoil 136
6.11 Convergence plots for airfoil design 138
6.12 Non-dominates solutions obtained for airfoil design using EA, SAE-EA,

SAR-EA and IDEA . 139

7.1 Ground structure for 6-Node, 10-Member 2-D Truss 151
7.2 Area and strain energy fraction variation with generations for

10-bar 2D truss (Case 1) . 151
7.3 Ground structure for 9-Node, 17-Member 2-D truss 154
7.4 Ground structure for 8-Node, 22-Member space truss 155
7.5 Ground structure for 10-Node, 25-Member 3-D Truss 158

C.1 Pareto optimal front for ZDT1 . 200
C.2 Pareto optimal front for ZDT2 . 201
C.3 Pareto optimal front for ZDT3 . 202
C.4 Pareto optimal front for ZDT4 . 203
C.5 Pareto optimal front for ZDT6 . 204

D.1 Pareto optimal fronts for CTP . 207

List of Tables

4.1 Parameters for evolutionary algorithm 77
4.2 Parameters for for SAE-EA and SAR-EA 78
4.3 Number of runs in which surrogate models were built using SAE-EA

and SAR-EA for f-series problems 79
4.4 Best objective values for f-series problems using EA, SAE-EA and

SAR-EA . 80
4.5 Average objective values for f-series problems using EA, SAE-EA

and SAR-EA . 81
4.6 Worst objective values for f-series problems using EA, SAE-EA

and SAR-EA . 82
4.7 Number of runs in which surrogate models were built using SAE-EA

and SAR-EA for g-series problems 85
4.8 Best objective values for g-series problems using EA, SAE-EA and

SAR-EA . 85
4.9 Average objective values for g-series problem using EA, SAE-EA

and SAR-EA . 86
4.10 Worst objective values for g-series problems using EA, SAE-EA

and SAR-EA . 86
4.11 The best displacement metric values for ZDT problems using EA,

SAE-EA and SAR-EA . 88
4.12 The average displacement metric values for ZDT problems using

EA, SAE-EA and SAR-EA . 89
4.13 The worst displacement metric values for ZDT problems using EA,

SAE-EA and SAR-EA . 89
4.14 The best displacement metric values for CTP problems using EA,

SAE-EA and SAR-EA . 91
4.15 The average displacement metric values for CTP problems using

EA, SAE-EA and SAR-EA . 92
4.16 The worst displacement metric values for CTP problems using EA,

SAE-EA and SAR-EA . 92

5.1 Calculation of constraint relative rank (CRR) 110
5.2 Best objective values for g-series problems using EA and IDEA . . 113

xv

xvi LIST OF TABLES

5.3 Average objective values for g-series problems using EA and IDEA 113
5.4 Worst objective values for g-series problems using EA and IDEA . 113
5.5 Marginally infeasible solutions obtained using IDEA for problem

g06 . 116
5.6 Summary of Displacement metric for CTP problems using EA and

IDEA . 116

6.1 Parameters for Belleville spring design 123
6.2 Results of Belleville spring design using EA, SAE-EA, SAR-EA

and IDEA . 124
6.3 Parameters for coil compression spring design 127
6.4 Results of compression spring design using EA, SAE-EA, SAR-EA

and IDEA . 127
6.5 Parameters for speed reducer design 130
6.6 Results of speed reducer design using EA, SAE-EA, SAR-EA and

IDEA . 131
6.7 Results of welded beam design using EA, SAE-EA, SAR-EA and

IDEA . 133
6.8 Results of pressure vessel design using EA, SAE-EA, SAR-EA and

IDEA . 135
6.9 Design variable limits for airfoil design problem 137
6.10 Results of airfoil design using EA, SAE-EA, SAR-EA and IDEA . 137
6.11 Summary of Displacement metric for airfoil design using EA, SAE-EA,

SAR-EA and IDEA . 138
6.12 Summary of algorithms with the best performance on engineering

problems . 140

7.1 Number of FEA for first stage of DSO and SDSO for 2D 10-bar
truss . 152

7.2 Summary of 2D 10-bar truss results using DSO and SDSO 153
7.3 Best design for 2D 10-bar cantilever truss using SDSO 153
7.4 Summary of 2D 17-member truss results using DSO and SDSO . . 154
7.5 Best design for 2D 17-bar cantilever truss using SDSO 155
7.6 Load cases for 22-bar space truss 156
7.7 Stress limitations for 22-bar space truss 156
7.8 Summary of 22-member space truss results using DSO and SDSO 157
7.9 Results of 22-member space truss using DSO 157
7.10 Load cases for 25-bar transmission tower 159
7.11 Member stress limitations for 25-bar transmission tower 159
7.12 Summary of 3-D transmission tower results using DSO and SDSO 160
7.13 Best designs for 3D transmission tower using DSO and SDSO . . 160

D.1 Parameters for the Test Problems CTP2 to CTP8 206

List of Algorithms

2.1 EA Framework . 25

4.1 k-Means Clustering Algorithm . 59
4.2 Building a spatial surrogate . 62
4.3 Building multiple spatial surrogates 66
4.4 Determination of Number of Partitions for MAS 67
4.5 Surrogate Assisted Evaluation in EA Framework 69
4.6 Surrogate Assisted Recombination in EA Framework 70

xvii

List of Abbreviations

ACO Ant Colony Optimization

ANN Artificial Neural Network

ASCHEA Adaptive Segregational Constraint Handling Evolutionary Algorithm

BLUP Best Linear Unbiased Prediction

CEM Computational Electro-Magnetics

CFD Computational Fluid Dynamics

COMOGA Constrained Optimization by Multi-Objective Genetic Algorithms

CONGA COnstraint based Numeric Genetic Algorithm

CRR Constraint Relative Rank

DACE Design and Analysis of Computer Experiments

DE Differential Evolution

DOE Design Of Experiments

DSO Discrete Structures Optimization

EA Evolutionary Algorithm

EGO Efficient Global Optimization

EP Evolutionary Programming

ES Evolution Strategy

ESO Evolutionary Structural Optimization

FEA Finite Element Analysis

FEM Finite Element Method

GA Genetic Algorithm

GD Generational Distance

IDEA Infeasibility Driven Evolutionary Algorithm

xix

xx LIST OF ABBREVIATIONS

LOOCV Leave-One-Out Cross Validation

MA Memetic Algorithm

MAS Multiple Adaptive Surrogates

MDO Multidisciplinary Design Optimization

MLE Maximum Likelihood Estimate

MLP Multi-Layer Perceptron

MS Multiple Surrogates

MSE Mean Squared Error

NN Neural Network

NPGA Niched Pareto Genetic Algorithm

NSGA-II Non-dominated Sorting Genetic Algorithm II

POF Pareto Optimal Front

PSO Particle Swarm Optimization

RBF Radial Basis Function

RMSE Root Mean Squared Error

RSM Response Surface Method

SA Simulated Annealing

SAE Surrogate Assisted Evaluation

SAR Surrogate Assisted Recombination

SBX Simulated Binary Crossover

SDSO Surrogate-assisted Discrete Structures Optimization

SMES Simple Multi-membered Evolution Strategy

SS Single Surrogate

TS Tabu Search

VGA Variable-string-length Genetic Algorithm

Chapter 1

Introduction

1.1 Background

Engineering involves the design and manufacture of complex products through the

structured and rational application of science and mathematics. An engineered

product aims to provide a benefit to mankind and where development is under-

taken, there is generally an endeavour to improve the product quality through

design improvement. A good design has to deliver the desired functionality (or

performance) at competitive cost and resource consumption. The best design

will win these comparisons. There is an increasing trend to use simulations to

predict a product’s performance even before it is manufactured and verify that

the design meets all the performance requirements. The simulations (also referred

to as numerical experiments) involve solving the mathematical model describing

the governing physics. The mathematical model can be represented as a set of

algebraic, ordinary or partial differential equations. These equations are solved

numerically using computers and the performance of a design is evaluated. For

various engineering disciplines sophisticated computer codes have been developed.

1

2 CHAPTER 1. INTRODUCTION

Examples of such codes include finite element methods (FEM), computational

fluid dynamics (CFD) and computational electro-magnetics (CEM). These simu-

lations can take just a few seconds to run for simple problems and hours or even

days to run for complex problems. Often the performance of engineering products

is governed by more than one engineering discipline and it is important to balance

the interactions between multiple disciplines. In such situations, evaluating

a single design involves iterative runs of different simulations, increasing the

computational cost even further.

In the design process several designs are typically evaluated before selecting

the better design for manufacture. Optimization methods provide a systematic

way of searching for better designs based on the performance criteria. They can

be applied to any design process as long as there is a way of comparing the

performance of two designs quantitatively. Evolutionary optimization methods

are inspired by the natural evolution process and can search throughout the design

space to find one or more designs that satisfy the performance requirements. Some

of the designs can be quite novel and lead to completely new concepts for the

product. Shown in Figure 1.1 is the X-band antenna designed for NASA’s ST5

mission using evolutionary algorithms. The designed antenna resulted in 93%

efficiency as compared to 38% efficiency of the traditional helix antenna. The

designed antenna required lower power and achieved high gain across a wider

range of elevation angles [3].

In the optimization process the value of the performance criterion (referred

to as the objective function) is optimized by varying the values of the design

variables. Some of the examples of performance criteria used in engineering

design are to minimize weight, to minimize cost, to maximize range, etc. In

addition, there are generally constraints on the design that must be met, e.g.

1.2. MOTIVATION 3

Figure 1.1: Computer evolved X-band Antenna for NASA’s ST5 mission (source:
http://amesnews.arc.nasa.gov/releases/2004/antenna/ antenna.html)

limits on stress for the structural elements. The objective and the constraint

functions are often non-linear and are evaluated using numerical simulations.

1.2 Motivation

Several optimization methods have been developed over the years to solve op-

timization problems efficiently. The most commonly used methods are the nu-

merical methods that use gradient information to find a search direction and

then search along that direction to improve the objective value. Gradient based

methods can only be applied to problems where the objective and the constraint

functions are smooth (i.e. the functions are continuous and the derivatives exist).

The gradients are usually calculated using the finite difference formulation and

several designs (as many as the number of design variables) need to be evaluated

to establish the gradient information at a single point. In cases with a large

number of design variables, the gradient calculation can become quite expensive.

In addition, the gradient based methods often require a feasible starting point

and they are limited to finding a local optimum.

Evolutionary algorithms (EAs) fall in into another class of optimization meth-

4 CHAPTER 1. INTRODUCTION

ods called heuristic methods. These methods do not require gradient information

and can be applied easily to optimization problems with non-smooth functions

and disjoint feasible spaces. Heuristic methods are global search methods and

can find the globally optimum solutions to optimization problems. Evolutionary

algorithms are population based methods that can search different regions of

the design space simultaneously. In addition, they can solve single as well as

multi-objective optimization problems. The early applications of evolutionary

algorithms in engineering design were in the area of structural design [4, 5, 6].

Since then they have been applied in various disciplines, for example, in the design

of composite laminates [7, 8] and composite panels [9, 10], aerodynamic design of

automobiles [11], compressor blade design [12] and aircraft wing design [13, 14].

Various applications of evolutionary algorithms in the area of structural optimiza-

tion can be found in the survey by Kicinger, Arciszewski and De Jong [15]. Evo-

lutionary algorithms are also being used in other engineering disciplines including

architecture, civil engineering, electrical and control engineering and computer

science [16, 17].

In evolutionary algorithms, a population of candidate solutions is evolved over

a number of generations to find the optimum solutions. Evolutionary algorithms

are known to require evaluations of large number of solutions. For the design

optimization problems requiring expensive simulations to evaluate the objective

and the constraint functions, the total cost of the optimization can become quite

prohibitive. Therefore, an important motivation exists to improve the efficiency

and the effectiveness of evolutionary algorithms to reduce the computational cost

of the optimization process.

One of the ways to reduce the computational cost of a simulation is the

use of approximations. Implied is that the objective and the constraint func-

1.3. SCOPE OF RESEARCH 5

tions are approximated using simpler functions. These replacement functions

are referred to as surrogate models or metamodels. These surrogate models are

computationally inexpensive to evaluate when compared to the simulations of the

mathematical models and can be used in place of the expensive simulations. Even

though surrogate models are being used in evolutionary algorithms to reduce the

computation cost, their use in evolutionary algorithms is not straightforward and

requires consideration of many issues – type of the surrogate model, selection of

the training data, global versus local models, and accuracy of the prediction – to

name a few.

Evolutionary algorithms do not have a native mechanism for constraint han-

dling. Different evolutionary algorithms use various schemes to weed out the

infeasible solutions and migrate the search to the feasible design space. The

performance of EA on constrained optimization problems is greatly dependent

on the constraint handling technique used. The common approach is to convert

the objectives and the constraints into a single fitness measure using a penalty

formulation, but this approach requires the specification of additional parameters

(weights) that are very much problem dependent.

1.3 Scope of Research

In this thesis, evolutionary algorithms are used as the underlying optimization

method. Although, an EA is well suited for the optimization in engineering

design, the use of computationally expensive simulations can offset the advantages

of EA as large numbers of evaluations cannot be afforded. The compromise is

to fix the number of simulations that can be performed and come up with the

best design possible using the fixed number of evaluations. In the engineering

6 CHAPTER 1. INTRODUCTION

disciplines often the “true” optimum solutions are not sought as it requires

significant investment in computational time. However, improvements in the

design at reduced computational effort are readily accepted. It follows that the

aim of this thesis is to answer the following questions:

• For a fixed number of function evaluations, how can the quality of the best

solutions obtained using evolutionary algorithms be improved?

– How can surrogate models be used to improve convergence?

– Can better constraint handling methods improve the convergence for

constrained optimization problems?

The objective of the thesis is realized through modifications and extensions to

EAs to improve their convergence. The extensions should be generic enough to be

implemented in any of the EAs, and should not be specific to a particular EA. It is

not the aim of the work reported in the thesis to build a black-box implementation

of an EA that can solve all the design problems. Rather it is to highlight, through

research, the areas in EA where improvements can be made. The benefits of the

proposed techniques are demonstrated using numerical benchmarks.

The research is divided in three main topics. The first topic is to augment

the EA framework with surrogate models to speed up convergence. As there is

no one type of surrogate model that is best suited for every problem, a generic

approach is developed using multiple types of surrogate models. The second

research topic is constraint handling. The main motivation is to question the

assumption – feasible solutions are better than infeasible solutions. The final

topic is the application of surrogate models in the design of discrete structures

like trusses.

1.4. CONTRIBUTIONS OF THESIS 7

1.4 Contributions of Thesis

Five significant contributions made in this thesis are as follows.

1. Spatial surrogate modeling, a generic framework for use of surrogate models

within evolutionary algorithms is formulated. Spatial surrogate modeling

uses multiple types of surrogate models for better approximation of func-

tions unlike the common practice of using a single type of surrogate model.

Multiple spatially distributed surrogate models can be built using spatial

surrogate models instead of a single global surrogate model for functions of

a large number of variables.

2. Two evolutionary algorithms are developed using spatial surrogate mod-

els, namely surrogate assisted evaluation (SAE-EA) and surrogate assisted

recombination (SAR-EA). Both of these algorithms are tested on a set

of benchmark problems and engineering examples. Significantly better

objective values are obtained for numerical benchmarks using SAE-EA and

SAR-EA as compared to EA for a fixed computational cost. For engineering

examples, 5–20% improvement in the objective values are obtained using

SAE-EA and SAR-EA.

3. A novel constraint handling method is proposed and implemented in the

infeasibility driven evolutionary algorithm (IDEA). Contrary to the com-

mon approach of almost blindly preferring feasible solutions over infeasible

solutions, a few infeasible solutions are retained and are ranked higher than

feasible solutions in IDEA. The performance of IDEA is substantially bet-

ter than EA for constrained optimization problems owing to simultaneous

search through the infeasible and the feasible regions focused near the con-

8 CHAPTER 1. INTRODUCTION

straint boundaries. The favourable performance of IDEA is demonstrated

on a number of single and multi-objective constrained test problems.

4. An evolutionary algorithm, discrete structures optimization (DSO), is pro-

posed and developed for the design of discrete structures. In DSO, topology

optimization and sizing optimization are performed in separate steps. Using

strain energy based material removal criterion, the optimum topology is

identified using very few evaluations. The sizing optimization is accelerated

using spatial surrogates in surrogate assisted discrete structures optimiza-

tion (SDSO). For the truss design problems studied, designs close to the best

designs (within 7% of the weight) as reported in the literature are obtained

with SDSO using significantly fewer function evaluations (less than 7%).

5. A set of baseline results of surrogate assisted EAs using 1,000 function

evaluations are presented across a range of benchmark problems for the

thesis. These systematically presented results would be useful to other

researchers attempting to further the development of surrogate models as-

sisted optimization algorithms. Similar results are presented for constraint

handling method using 4,000 function evaluations.

1.5 Organization of Thesis

The thesis is organized in eight chapters. In this chapter the aim and the

motivation of the research is established. Optimization has become an integral

part of the design process and performance evaluation using computationally

expensive simulations has become a norm. The performance of evolutionary

algorithms needs to be improved to make the cost of optimization affordable in

1.5. ORGANIZATION OF THESIS 9

the context of real engineering studies.

An overview of optimization and optimization methods is presented in Chapter

Two. It is provided for completeness and can be skipped by readers familiar

with optimization and evolutionary algorithms. Covered in the chapter are the

mathematical definition of an optimization problem, solutions of single- and

multi-objective optimization problems, and various optimization methods with

focus on evolutionary algorithms. The traditional numerical methods for opti-

mization are compared with the heuristic methods for optimization. A generic

framework for evolutionary algorithms is presented and explained with reference

to the most popular Non-dominated Sorting Genetic Algorithm II (NSGA-II) [18],

which is used as a canonical EA in this thesis. Finally, the performance metric

used in this study to compare the results of different algorithms is described.

A literature review on the approximation methods used in evolutionary al-

gorithms is presented in Chapter Three. Various techniques used by researchers

to embed different surrogate models in EAs are compared and the limitations of

the techniques are highlighted. The focus is on surrogate models in evolutionary

algorithms, even though they have been applied to other heuristic methods as

well. A discussion of memetic algorithms, which are heuristic methods with

embedded local search, is presented in the context of evolutionary algorithms,

that use surrogate models for local search.

A spatial surrogate modeling framework is proposed in Chapter Four. Spatial

surrogate models are built using multiple types of surrogate models and they use

explicit validation checks to ensure the prediction accuracy. Spatial surrogate

models are used in lieu of expensive simulations to evaluate the objectives and the

constraints in EAs. Two techniques of using spatial surrogate models in EAs are

proposed – surrogate assisted evaluation and surrogate assisted recombination.

10 CHAPTER 1. INTRODUCTION

The benefits of both the algorithms are highlighted using a number of benchmark

test problems.

A novel idea of maintaining infeasible solutions in the population to improve

the convergence is presented in Chapter Five. First, The existing methods of

constraint handling in EA are discussed. Then, the mechanism of retaining infea-

sible solutions in the population and the proposed constraint handling method in

IDEA are presented. In IDEA, the original optimization problem is reformulated

with an additional objective, which is the constraint violation measure. Two

constraint violation measures are proposed and the benefits are discussed. The

performance of IDEA is compared with EA on single and multi-objective test

problems to highlight the improvements in convergence achievable.

The advantages of the proposed surrogate assisted EAs (SAE-EA and SAR-EA)

and IDEA are highlighted using commonly used engineering design examples in

Chapter Six. The engineering design examples include spring design, pressure

vessel design, welded beam design and airfoil design. For all the engineering

examples a fixed number of evaluations is used in the design optimization.

In Chapter Seven, the design optimization of discrete structures is studied.

Various approaches using evolutionary method of structural design optimization

are compared. A new optimization method, discrete structures optimization

(DSO), is proposed for the design of truss structures. In DSO, topology optimiza-

tion is handled separately from sizing optimization. The topology optimization

uses strain energy based material removal for identification of optimum topology.

The sizing optimization using spatial surrogates is proposed in surrogate assisted

DSO (SDSO). The advantages of separating optimum topology identification and

sizing optimization are highlighted with 2-D and 3-D truss design examples.

A summary of the research outcomes and contributions are highlighted in the

1.5. ORGANIZATION OF THESIS 11

final chapter. Also, the areas of future research based on the proposed methods

are identified. The numerical benchmark optimization problems used in this

study are fully described in Appendix A–D.

Chapter 2

Optimization and EA

2.1 Overview

Any optimization method requires a formal statement of the optimization prob-

lem to be solved. A generic optimization problem statement is presented in

Section 2.2. A single objective optimization seeks a single solution – a local or

the global optimum. In case of multi-objective optimization there are multiple

equally good solutions called the Pareto optimal solutions. These solutions

are identified by the non-dominance relationship. The traditional numerical

optimization methods are limited to solving single objective optimization prob-

lems involving functions having certain properties. The limitations of numerical

optimization methods are highlighted in Section 2.3. Heuristic algorithms do not

have the same limitations and offer many advantages. A variety of heuristic

methods developed over the years are mentioned in Section 2.4. One class

of heuristic methods is evolutionary algorithms (EAs) which are used in this

study. A generic framework for an EA and the various elements of EA are

described in Section 2.5. The performance of two algorithms can be easily

13

14 CHAPTER 2. OPTIMIZATION AND EA

compared for single objective optimization based on the final solution, but it is

non-trivial for multi-objective optimization. A performance metric, displacement,

used to compare two non-dominated sets of solutions obtained using different

algorithms is described in Section 2.6. The summary of the chapter is presented

in Section 2.7.

2.2 Optimization Problem

An optimization problem is defined by the design variables, the objectives, and

the constraints. The first step in the optimization process is parametrizing the

design into a set of design variables. Different designs can then be obtained by

assigning different values to the design variables. In the optimization process the

values of the design variables are varied to search for the design that has the

best performance (the objective) and satisfies all the imposed requirements (the

constraints).

A multi-objective or multi-criteria constrained optimization problem (posed as

a minimization problem) can be written mathematically as shown in Equation 2.1.

Find x = (x1, . . . , xn)

To minimize f1(x), . . . , fk(x)

Subject to gi(x) ≥ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

(2.1)

where x1, . . . , xn are the design variables that can be integer or real, continuous

or discrete. The design variables are usually bounded by lower and upper limits

(also referred as bounds) to form the design space S. The objective functions

f1(x), . . . , fk(x) are simultaneously minimized while satisfying the inequality con-

2.2. OPTIMIZATION PROBLEM 15

straints gi(x) ≥ 0 and the equality constraints hj(x) = 0. A maximization prob-

lem can be easily converted into a minimization problem by multiplying the

objectives by -1. For optimization problems with constraints, the design space

is divided into feasible region(s), where all the constraints are satisfied; and

infeasible region(s), where one or more constraints are violated.

2.2.1 Single Objective Optimization

A single objective constrained optimization problem has a single objective func-

tion f(x) that is minimized while satisfying the constraints. The solution of

a single objective optimization problem is the global minimum. The global

minimum solution (x∗) has the least objective value as compared to any other

solution in the design domain and is mathematically defined as in Equation 2.2.

f(x∗) ≤ f(x) ∀x ∈ S (2.2)

Often another solution is accepted and that is the local minimum solution (xo)

as defined in Equation 2.3.

f(xo) ≤ f(x) ‖x− xo‖ < ǫ (2.3)

A local minimum is the best solution in the neighborhood of xo. The difference

between the global minimum and a local minimum is illustrated in Figure 2.1.

The solid line represents the objective function f(x) to be minimized subject

to the constraint g(x) ≥ 0 shown as the dashed line. The objective and the

constraint are the functions of a single variable x with the limits 0 ≤ x ≤ 5. For all

the values of x < 2.06 the constraint value is less than 0, indicating the infeasible

16 CHAPTER 2. OPTIMIZATION AND EA

region. For all values of x > 2.06 the constraint value is greater than 0, indicating

the feasible region. The solution marked with a square (corresponding to x = 2.8)

is the local minimum, as there is no better solution in the small neighborhood

around the solution. The solution marked with a circle (corresponding to x = 4.2)

is the global minimum, as it is the smallest possible value for the function in the

feasible region.

0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

Input (x)

R
es

po
ns

e

f(x)
g(x)

FeasibleInfeasible

Local minimum
Global minimum

Figure 2.1: Illustration of local/global minimum and infeasible/feasible regions for
single objective optimization problem

2.2.2 Multi-objective Optimization

In optimization problems with multiple objectives, the objectives are usually in

conflict and reducing the value of one objective results in the increase in the value

of one or more of the other objectives. In such cases, there is no single solution

that minimizes all the objectives. If there is no conflict among the objectives,

there exists a single solution that minimizes all the objectives simultaneously and

in such cases the multi-objective optimization problem can be reduced to a single

objective optimization problem by considering any one of the objectives. Even

with conflict among the objectives, multi-objective optimization problem can be

converted to a single objective optimization problem by assigning preferences (or

2.2. OPTIMIZATION PROBLEM 17

weights) to the objectives and considering a composite objective function. In

absence of any preferences for the objectives, the purpose of multi-objective op-

timization is to find a set of Pareto optimal solutions (also called non-dominated

solutions or trade-off solutions). All of the Pareto optimal solutions are equally

good solutions to a multi-objective optimization problem. The Pareto optimal

solutions are defined based on the dominance relationship between two solutions.

A solution x1 is dominated by another solution x2 if the values of all the objec-

tives corresponding to x2 are better than or equal to the values of the objectives

corresponding to x1 and at least one of the objective values corresponding to x2 is

strictly better than that of x1. The two conditions can be written in mathematical

form as follows:

1. The solution x2 is no worse than x1 in all objectives,

fi(x2) ≤ fi(x1), ∀ i = 1, . . . , k.

2. The solution x2 is strictly better than x1 in at least one objective,

fi(x2) < fi(x1), for at least one i ∈ 1, 2, . . . , k.

If solution x1 does not dominate solution x2 and vice versa, then the two solutions

are non-dominated with respect to each other. All the Pareto optimal solutions

are non-dominated solutions with respect to each other.

The dominance relationship and a set of Pareto optimal solutions for a bi-objective

optimization problem are shown in Figure 2.2. The functions f1(x) and f2(x)

to be minimized are represented by solid line and dashed line respectively in

Figure 2.2(a). The minimum value for f1(x) is 1 at x = 1 and for f2(x) is 1 at

x = 3. Few of the trade-off solutions (in the range 1 ≤ x ≤ 3) are marked with

circles. In Figure 2.2(b), the same trade-off solutions are plotted in the f -space

or the objective space. For the trade-off points, any decrease in one objective

18 CHAPTER 2. OPTIMIZATION AND EA

results in an increase in the other objective value and they are non-dominated

with respect to each other. The two solutions marked with a square and a triangle

are dominated solutions. The solution marked with a square is dominated by the

corner solution (1,5) marked by a pentagon and the solution marked with a

triangle is dominated by the other corner solution (7,1) marked with a hexagon

in Figure 2.2(b).

0 1 2 3 4 5
0

2

4

6

8

10

12

Input (x)

R
es

po
ns

e

f
1
(x)

f
2
(x)

(a) Design space

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

f
1
(x)

f 2(x
)

(b) Objective space

Figure 2.2: Illustration of the Pareto optimal solutions for bi-objective optimization
problem

For bi-objective optimization problems, the minimum values of the two ob-

jectives correspond to the corners of the Pareto optimal front. The minimum

values of objectives f1(x) and f2(x) are marked with a pentagon and a hexagon

respectively in Figure 2.2. A Pareto optimal front for a general multi-objective

optimization problem is the hyper-surface containing all the Pareto optimal so-

lutions. For bi-objective optimization, the Pareto optimal front is defined by a

curve, for three objective optimization problem it is defined by a surface and so

on.

2.3. NUMERICAL METHODS 19

2.3 Numerical methods

One of the first optimization methods developed was to find the zeros of a

real-valued function by Isaac Newton in 17th century AD. The history of formal

optimization methods (using gradient information) can be traced back to the

development of calculus. The mathematics for the calculus of variations by

Newton and Leibniz paved the way for the development of the gradient-based

optimization methods.

The numerical methods using gradient information are applicable to continu-

ous and differentiable real-valued functions. The methods for non-linear optimiza-

tion include first and second order methods. The first order methods such as trust

region method, step length method and quasi-newton method require first order

gradient information (i.e. derivative, gradient or Jacobian). The second order

methods such as newton method and sequential quadratic programming require

second order information (i.e. second derivative or Hessian) in addition to the

first order information. Detailed description of these optimization methods can be

found in the textbooks on numerical optimization [19, 20, 21]. There are special

methods to handle linear objectives and linear constraints (linear programming),

and quadratic objectives and linear constraints (quadratic programming).

2.3.1 Disadvantages

Even though the gradient based methods are very fast and quick to converge to

a local optimum, they suffer several limitations.

1. The gradient based methods are based on the assumption of smoothness of

the objective and the constraint functions. These assumptions are often not

valid in real-life optimization problems. In addition, disconnected design

20 CHAPTER 2. OPTIMIZATION AND EA

spaces and/or feasible regions are not handled in these methods.

2. The numerical methods require gradient information. This information

is often not available or is very difficult to compute. The simplest way of

calculating gradient information is based on finite difference. For a function

of n design variables, the gradient vector calculation at a point using

finite difference requires n+ 1 function evaluations and this corresponds to

evaluating n+ 1 designs in the neighborhood. This cost can be prohibitive

for computationally expensive simulations and in addition the accuracy of

the gradient is dependent on the accuracy of the simulation.

3. The numerical methods are essentially local search methods and can find

only local minima.

4. These methods are developed for single objective optimization methods and

do not handle multi-objective optimization problems.

5. None of the gradient methods can be used for integer or discrete design

variables.

6. All gradient based methods except exterior penalty function based methods

require a feasible starting point.

In addition to the gradient based methods, there are direct search methods

(also called derivative-free methods or zero-order methods) that do not use any

gradient information. These methods explore the local neighborhood to identify

the suitable direction for the search. These include Hooke and Jeeves patten

search [22] and Nelder-Mead simplex search [23]. These methods can be used for

problems where the gradients are not available, but essentially they are also local

search methods and solve only single-objective optimization problems.

2.4. HEURISTIC METHODS 21

2.4 Heuristic methods

Reeves and Beasly [24] defined a heuristic in the context of combinatorial opti-

mization in 1993 as follows –

“A heuristic is a technique which seeks good (i.e. near-optimal)

solutions at a reasonable computational cost without being able to

guarantee either feasibility or optimality or even in many cases to

state how close to optimality a particular feasible solution is.”

The definition is applicable to heuristic methods today, and the methods have

garnered enough respect to be applied to real-life problems. The main thrust of

heuristic methods is the ability to search for global optima.

The methods that specifically try to escape the local optimum include simu-

lated annealing and tabu search. Simulated annealing (SA) developed by Kirk-

patrick, Gelatt and Vecchi [25] was inspired from the heating and the controlled

cooling of metals to increase the crystal size and reduce defects. In SA, the

neighborhood is explored using random search moves. During the search, the

solutions that are worse off than the current best solution are accepted using

non-zero probability in the hope to find a better solution. A similar method

developed by Glover [26], Tabu Search (TS), tries to overcome the same limitation

by using a tabu list of solutions that are visited in the past and prohibits the

algorithm from searching near those solutions.

Another class of heuristic methods are the global search methods that can

search different parts of the design space simultaneously. Among the earliest

global search methods are genetic algorithms (GA) developed by Holland [27] and

later by Goldberg [28], evolutionary programming (EP) developed by Fogel [29],

and evolution strategy (ES) developed by Rechenberg and Schwefel [30]. Genetic

22 CHAPTER 2. OPTIMIZATION AND EA

algorithms mimic the natural evolution process. The candidate solutions are

encoded as bit-strings representing the genes. A population of these solutions

undergoes selection to choose the parents, and the parents undergo crossover and

mutation operations to create new candidate solutions as a offspring population.

Better solutions from the parent population and the offspring population are

retained to create ideally a superior population for the next generation. This

process is repeated over a number of generations resulting in a search through the

design space. The other methods, EP and ES, follow the evolution process using

only mutation. A method of differential evolution (DE) by Price and Storn [31]

uses differential mutation operation for the evolution. All these methods are

collectively identified as evolutionary algorithms (EAs).

Swarm intelligence methods on the other hand are modeled after the collec-

tion of individuals and their social behaviour. Ant colony optimization (ACO)

proposed by Dorigo [32] is based on the behavior of ants seeking a path between

the colony and the food source. Particle swarm optimization (PSO) developed

by Kennedy and Eberhart [33] tries to simulate social learning by exchange of

information between the swarm members or particles. Other swarm intelligence

methods include cultural algorithm [34], bacterial foraging [35] and harmony

search [36].

2.4.1 Advantages

Since the heuristic methods use only values of the objectives and the constraints

and do not need gradient information, they have the following advantages over

the numerical methods.

1. Heuristic methods can be used to solve optimization problems of non-smooth

2.4. HEURISTIC METHODS 23

(not continuous and/or not differentiable) functions and also handle prob-

lems with disjoint feasible solution spaces.

2. Optimization problems with discrete and integer design variables can be

handled using heuristic methods.

3. All the heuristic methods are global search methods and can find the global

optimum solutions.

In addition, evolutionary algorithms and swarm intelligence methods have the

following advantages.

1. These methods are population based methods and explore different regions

of the design space simultaneously with a population of solutions.

2. These methods can generate the Pareto optimal solutions for multi-objective

optimization problems in a single run.

3. These methods are inherently parallel and can be easily implemented on

parallel computing platforms for faster execution.

4. The starting solutions need not be feasible solutions to the optimization

problem. A variety of constraint handling methods are used to steer the

search towards the feasible region.

These advantages make heuristic methods ideal candidates for solving single

and multi-objective optimization problems. In this thesis evolutionary algorithms

are used solve optimization problems.

24 CHAPTER 2. OPTIMIZATION AND EA

2.4.2 Disadvantages

Most of the advantages of heuristic methods (like evolutionary algorithms and

swarm intelligence) are a direct consequences of using a population of candidate

solutions. The use of a population of solutions in evolutionary algorithms gives

rise to following issues.

1. In evolutionary algorithms, new candidate solutions are generated through

crossover and mutation operations. These stochastic recombination pro-

cesses do not always produce a better solution and worse solutions get

discarded every generation. As a result, the convergence of EAs is very

slow and they need to be run for large number of generations to find the

optimum solutions.

2. As evolutionary methods are population based and need to be evolved

for large number of generations, the total number of function evaluations

(to calculate the objective and the constraint values) can be very large.

This can be prohibitive for problems that require use of time-consuming

simulations.

These issues are further discussed in next chapter. Approximation model assisted

evolutionary algorithms are proposed in Chapter 4 and a novel constraint han-

dling method is proposed in Chapter 5 to overcome the limitations of evolutionary

algorithms. A general framework for evolutionary algorithms is introduced in

next section.

2.5. EVOLUTIONARY ALGORITHM FRAMEWORK 25

2.5 Evolutionary Algorithm Framework

A generic framework for an evolutionary algorithm is shown in Algorithm 2.1.

The algorithm starts with a population (P1) of N candidate solutions initialized

by random sampling from the design space. Each candidate solution of the

population is then evaluated to find the corresponding values of the objective

and the constraint functions. Then, the solutions in the population are ranked

based on the “fitness” value, which is a measure of how good a solution is and

is derived from the objective and the constraint values. The next few steps

(lines 5-8) are repeated for NG generations. An offspring population, Ci, is

evolved using recombination operation from the current (or parent) population

Pi−1. The new solutions in the offspring population are evaluated to calculate the

objective and the constraint function values. The combined solutions from both

the populations are then ranked using the fitness values. Based on the ranks, the

best solutions from the parent population Pi−1 and the offspring population Ci

are retained to form the population for the next generation Pi. As the processes

of evolution, evaluation, ranking and reduction are repeated, the population in

successive generations contains better and better solutions.

Algorithm 2.1 EA Framework

Require: NG > 1 {Number of Generations}
1: Initialize(P1)
2: Evaluate(P1)
3: Rank(P1)
4: for i = 2 to NG do
5: Ci = Evolve(Pi−1)
6: Evaluate(Ci)
7: Rank(Pi−1 + Ci)
8: Pi = Reduce(Pi−1 + Ci)
9: end for

Among various evolutionary algorithms available today, Non-dominated Sort-

26 CHAPTER 2. OPTIMIZATION AND EA

ing Genetic Algorithm II (NSGA-II) [18] is the most popular algorithm for

constrained multi-objective optimization. In this study, NSGA-II with real coding

of design variables is used as the canonical EA. The various steps of NSGA-II are

explained in the context of the EA framework in the following sections.

2.5.1 Initialization

All the individuals in the population are initialized by random sampling from the

design space. A value for each design variable is sampled uniformly between the

lower and the upper bound for the variable as given in Equation 2.4.

xi = xi + U [0, 1] (xi − xi) 1 ≤ i ≤ n (2.4)

where xi denotes the initialized variable, xi and xi are lower and upper bounds

for the variable, and U [0, 1] is an uniform random number lying between 0 and

1.

2.5.2 Evaluation

For each solution in the population, the values of the objective and the constraint

functions are evaluated using appropriate simulation or analysis. The fitness of a

solution is calculated based on the objective and the constraints values as follows:

1. For a feasible solution, the fitness corresponds to the objective value(s).

2. For an infeasible solution, the fitness corresponds to the largest constraint

violation value for constraints that are violated.

2.5. EVOLUTIONARY ALGORITHM FRAMEWORK 27

2.5.3 Evolution

In NSGA-II, an offspring population is evolved from the current population

using crossover and mutation operations. In crossover, two new solutions are

created from two parent solutions using crossover operator. In mutation, one

or more variables of a solution are perturbed. To select a parent, two solutions

are picked randomly from the current population and the solution with better

fitness is considered. This comparison between two solutions is referred as binary

tournament and is described below.

Selection

Binary tournament between two solutions x1 and x2 is performed as follows.

1. If x1 is feasible and x2 is infeasible, x1 is selected and vice versa.

2. If both x1 and x2 are infeasible, the one for which the value of the maximum

constraint violation is smaller is selected.

3. If both x1 and x2 are feasible and x1 dominates x2, x1 is selected and vice

versa.

4. If both x1 and x2 are feasible and neither dominate the other, one of x1

and x2 is selected at random.

Crossover

The crossover operation is performed using simulated binary crossover (SBX) [37].

Two offspring solutions y1 and y2 are created from parents x1 and x2 by operating

28 CHAPTER 2. OPTIMIZATION AND EA

on one variable at a time as shown in Equation 2.5.

y1
i = 0.5 [(1 + βqi

)x1
i + (1− βqi

)x2
i]

y2
i = 0.5 [(1− βqi

)x1
i + (1 + βqi

)x2
i]

(2.5)

where βqi
is calculated as,

βqi
=

(2ui)
1/ηc+1, if ui ≤ 0.5,

(

1
2(1−ui)

)1/ηc+1

if ui > 0.5.

(2.6)

and where ui is the uniform random number in the range [0, 1) and ηc is the user

defined parameter, Distribution Index for Crossover. Probability of crossover

(Pc) determines how often the crossover operation is performed.

Mutation

The polynomial mutation operator [38] is used for mutation. In the mutation

operation, the value of one or more variables is randomly perturbed as given in

Equation 2.7.

yi = xi + (xi − xi) δ̄i (2.7)

where δ̄i is calculated as,

δ̄i =

(2ri)
1/(ηm+1) − 1, if ri < 0.5,

1− [2(1− ri)]
1/(ηm+1), if ri ≥ 0.5.

(2.8)

and where ri is the uniform random number in the range [0, 1) and ηm is the user

defined parameter, Distribution Index for Mutation. The number of solutions

undergoing mutation operation are determined by probability of mutation (Pm).

2.5. EVOLUTIONARY ALGORITHM FRAMEWORK 29

2.5.4 Ranking

Individual solutions in a population are ranked based on their fitness value.

Feasible solutions are considered better than infeasible solutions and are ranked

higher. Feasible and infeasible solutions are ranked separately.

For single objective optimization, feasible solutions are sorted based on the ob-

jective value as the fitness. For multi-objective optimization the two solutions are

compared using dominance relationship as described in Section 2.2.2. NSGA-II

uses non-dominated sorting and crowding distance sorting procedure [18] to rank

feasible solutions with multiple objectives. In non-dominated sorting the solutions

are arranged in multiple non-dominated fronts. In each non-dominated front, the

solutions are non-dominated, whereas the solutions in one front dominate the

solutions from the other front. Within a non-dominated front, the solutions are

ranked based on a diversity measure, crowding distance [18].

For infeasible solutions the fitness corresponds to the maximum constraint

violation. If more than one constraints are violated for a solution, the largest

constraint violation value is the maximum constraint violation. Infeasible solu-

tions are sorted in the increasing order of maximum constraint violation value.

2.5.5 Reduction

The reduction process is used to retain N best solutions from a set of 2N solutions

(parent and offspring populations) for the next generation. It uses the fitness

values or ranks obtained in the ranking procedure.

1. If there are more than N feasible solutions,

• N feasible solutions are selected in the order of non-dominated fronts

and decreasing crowding distance in each front.

30 CHAPTER 2. OPTIMIZATION AND EA

2. If the feasible solutions are less than or equal to N ,

• all the feasible solutions are selected in the order of non-dominated

fronts and decreasing crowding distance in each front, and

• the remaining solutions are selected from infeasible solutions in the

order of minimum value of maximum constraint violation.

2.6 Performance Measurement

The performance of different optimization algorithms can be compared based on

the best solutions obtained by each algorithm. In the case of single objective opti-

mization, a better value of the objective indicates a better performing algorithm.

In the case of multi-objective optimization, two sets of non-dominated solutions

need to be compared. There are a number of metrics proposed in the literature

to judge the goodness of non-dominated sets. There are two types of metrics

– absolute and relative. Absolute metrics use the known Pareto optimal set to

compare the non-dominated solutions obtained from an optimization algorithm.

Relative metrics are used to compare the results from two optimization algorithms

in the absence of the Pareto optimal set of solutions. In this study, an absolute

metric, displacement metric is used to assess the performance of optimization

algorithms.

2.6.1 Displacement

Let the Pareto optimal front be denoted by F ∗ and the non-dominated solutions

obtained by an optimization algorithm is denoted by F .

The generational distance is the measure of the distance between the Pareto

2.6. PERFORMANCE MEASUREMENT 31

optimal front and the non-dominated solution set [39]. The definition of genera-

tional distance is given in Equation 2.9.

GD(F, F ∗) =
1

|F |

(

n
∑

i=1

(di)
p

) 1
p

, (2.9)

where di is the Euclidean distance between the ith non-dominated solution of F

and the nearest member of the Pareto front F ∗, and |F | is the number of elements

in the non-dominated set. Most often p = 2. The smaller the generational

distance, the closer the solutions are to the Pareto optimal front.

The displacement metric [40] is used as an indication of not only how close

the non-dominated solutions are to the Pareto optimal front, but also to measure

the distribution or the spread of the non-dominated solutions. The displacement

metric is defined as inverse generational distance as shown in Equation 2.10.

Displacement(F) = GD(F ∗, F) (2.10)

In the case of two non-dominated solution sets with the same generational dis-

tance, the set whose solutions are well distributed with respect to the Pareto op-

timal front will have smaller Displacement. The differences between generational

distance and displacement metric are illustrated in Figure 2.3. The figure shows

Pareto optimal front (POF) marked as solid line and three non-dominated sets of

solutions (ND1, ND2 and ND3). The solutions in ND1 and ND2 are equidistant

from the Pareto optimal front, so generational distance for ND1 and ND2 is the

same. The solutions in ND2 have better spread as compared to solutions in ND1

and the displacement value for ND2 is lower (better) than ND1. Solutions in

ND3 are further away from the Pareto optimal front than ND1 and ND2, but are

32 CHAPTER 2. OPTIMIZATION AND EA

well distributed as compared to ND1 and ND2. Subsequently, the generational

distance for ND3 is higher than ND1 and ND2. The displacement value for ND3

is the same as that of ND1. Although the distances between the POF solutions

covered by solutions in ND1 and the closest solutions (corresponding to each

solution in POF) in ND1 is very small, the distances between the other solutions

of POF (far away from ND1) and solutions in ND1 are quite large. The solutions

in ND3 are spread evenly along the POF and have the same average distance

between the POF solutions and corresponding closest solutions in ND3. The sets

ND1 and ND3 are equivalent according to the displacement metric.

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

f
1
(x)

f 2(x
)

POF
ND1
ND2
ND3

Figure 2.3: Non-dominated solutions with equivalent displacement metric

2.7 Summary

An overview of single and multi-objective optimization is presented. The solution

of a single objective optimization problem is the global optimum, whereas a

multi-objective optimization problem (with no preference for any of the objec-

tives) can have a large number of equally good solutions that form the Pareto

optimal front.

2.7. SUMMARY 33

Numerical optimization methods require gradient information to search for the

optimum solutions in the design space. The applicability of numerical methods

is limited to problems involving smooth functions. The calculation of gradient

information is often difficult and requires additional function evaluations (when

finite difference is used).

Evolutionary algorithms are heuristic methods that do not need gradient

information and can be easily applied to non-smooth functions involving dis-

crete, integer, real or mixed design variables. They can also find solutions

to a multi-objective optimization problem in a single run. However, EAs are

population based methods and require evaluation of large number of candidate

solutions. To improve the performance of EAs, spatial surrogates and constraint

handling methods are proposed in following chapters. The proposed algorithms

are based on a generic EA framework introduced in this chapter. The most

popular evolutionary algorithm, NSGA-II, is used in this study as the canonical

EA. The various components of EA are explained with reference to NSGA-II.

Chapter 3

Approximations in EA

3.1 Overview

Evolutionary algorithms are population based heuristic methods that can be

applied to solve constrained nonlinear optimization problems. They can handle

single and multi-objective optimization problems seamlessly. Since the ’80s,

EAs have been a common choice for multi-objective optimization problems as

they result in a set of non-dominated solutions in a single run. Evolutionary

algorithms require evaluations of numerous candidate solutions during the course

of the search. Such an approach turns out to be computationally prohibitive

for problems requiring computationally expensive analysis and there is a growing

interest in the use of approximations to reduce the total number of evaluations

using the expensive analysis.

The different ways in which approximations have been used to solve an op-

timization problem are presented in Section 3.2. One of the ways is function

approximation in which surrogate models are used to approximate the response

of the expensive functions is described in Section 3.3. This section is organized

35

36 CHAPTER 3. APPROXIMATIONS IN EA

in several topics – the sampling methods, surrogate modeling techniques, lo-

cal/global surrogate models and ensembles and surrogate training. In addition

to replacing the function evaluations, surrogate models can be used to improve

the performance of various operators in EA. The research done in the area of

informed operators is presented in Section 3.4. Researchers have used a local

search based on the surrogate models in memetic algorithms, details of which are

given in Section 3.5. The chapter concludes with the summary of the limitations

of various approaches using surrogate models in Section 3.6.

3.2 Levels of Approximations

Barthelemy [41] identified two ways of using approximations to solve an opti-

mization problem. They are:

1. Problem approximation, where the overall optimization problem is replaced

with a problem that is easier to solve and the solution to this simpler

problem approximates the solution to the original problem.

2. Function approximation, where the objective and constraint functions are

approximated using simpler and explicit functions.

Problem approximation is commonly used in CFD where Navier-Stokes equa-

tions governing the flow are reduced to Euler equations or potential flow equations

based on the certain assumptions of flow properties, or 3-D axi-symmetric flow

is solved as 2-D flow. For simulations requiring discretization, the problem

approximation can be in terms of the level of discretization. For example, FEM

model with millions of degrees of freedom can be solved using simpler elements

and fewer degrees of freedom or a CFD simulation is differentiated based on the

3.3. FUNCTION APPROXIMATION 37

mesh size.

In function approximation, surrogate models are built for each of the objective

and the constraint functions. This is the most common type of approximation

used as it does not depend upon the problem domain. In addition, significant

developments in the area of surrogate modeling techniques can be directly applied

to the problems at hand.

Another type of approximation has been identified in the context of EAs by

Jin [42] is evolutionary approximation. In this approach the fitness of an offspring

is derived from the fitness of the parent(s). In fitness inheritance, the objective

and the constraint values for a solution are derived as a weighted sum of the

respective objective and constraint values of the two parent solutions [43, 44, 45].

In fitness sharing, the fitness of similar solutions is degraded to improve the

diversity of the solutions in the population [46].

Problem approximation requires the specific disciplinary expertise to identify

replacement theories or simplifications that can be applied with valid assump-

tions. Evolutionary approximation, though generic in approach, requires specific

implementation of EA. On the other hand, functional approximation is the most

generic approximation technique and does not need specific disciplinary knowl-

edge.

3.3 Function Approximation

Function approximation involves building surrogate models that can approximate

the response for the functions and are computationally cheaper than the original

function evaluations. A generic function can be mathematically represented as

F (x, y) = 0, where x are m independent variables and y is the response. A surro-

38 CHAPTER 3. APPROXIMATIONS IN EA

gate model is trained using the responses y1, y2, . . . , yN to solutions x1,x2, . . . ,xN

sampled in the design space. The surrogate model is an explicit function of the

form y = f(x) that mimics the response y. The number of samples required to

train the surrogate model is often related to the complexity of the function being

approximated. The more complex the function, the more samples are required to

adequately represent the response. Since the number of samples dictates the num-

ber of actual function evaluations, it is essential to keep the number of samples

as low as possible for function evaluations requiring computationally expensive

simulations. For a given number of samples, various sampling techniques try to

position those samples in the design space to improve the quality of the surrogate

model built using those samples.

3.3.1 Surrogate Modeling Techniques

There are many different types of surrogate models including response surface

methods, artificial neural networks, Kriging, support vector machines.

Response Surface Method

Response surface method (RSM), also known as polynomial regression or linear

regression, uses first or second order polynomial models to fit the data [47]. A

second order quadratic polynomial model can be written as

y(x) = β0 +
m
∑

i=1

βi xi +
m
∑

i=1

βii x
2
i +

m−1
∑

i=1

m
∑

j=i+1

βij xi xj (3.1)

where β0, βi, βij are the unknown parameters of the model that are determined

from the observations. The same equation can be written in a vector form as

y(x) = fTb. The vector f contains all the terms of x1, x2, . . . , xm and vector b

3.3. FUNCTION APPROXIMATION 39

contains all the unknown coefficients. The least squares estimate of b is given by,

b̂ = (FTF)−1FTY, (3.2)

where F is a matrix containing N rows, each row is a vector fT evaluated at an

observations and Y are the observed responses.

Response surface method is the simplest of the surrogate models and has

been used by Wang [48, 49] as a surrogate model in EA, Lian and Liou [50]

for shape design with CFD, Rickards et al. [51] for composite shell design. The

main drawback of RSM is the large number of training solutions required. For

m-dimensional data, a quadratic RSM model has (m + 1)(m + 2)/2 unknown

coefficients that need to be determined and at least this number of solutions are

required for training. This corresponds to 66 points for 10-D data, 231 points for

20-D data and 496 points for 30-D data. Response surface methods can be used

very effectively in cases of a small number of design variables, but the number of

training samples rapidly increases for a large number of design variables rendering

it impractical.

Artificial Neural Network

Artificial Neural Networks (ANNs) (or Neural Networks as they are referred

in literature) are effective in modeling non-linear relationship between input

and output [52]. They have been used to model the functional relationships

when mathematical models do not exist [53] and also as surrogate models to

approximate nonlinear functions [54, 55, 56]. The two types of ANNs commonly

used are radial basis function networks and multilayer perceptrons.

Radial Basis Function (RBF) networks are a popular choice for interpolating

40 CHAPTER 3. APPROXIMATIONS IN EA

functions [57]. The model for the response y is given by

y(x) =
k
∑

i=1

wi φ(‖x− xi‖) (3.3)

where φ(·) are the radial basis functions, ‖ · ‖ is usually the Euclidean norm and

wi are the unknown weights. A radial basis function is symmetric around its

associated center, in this case xi. A common RBF is the Gaussian function with

the Euclidean norm.

φ(‖x− xi‖) = e−r2/σ2

where r is the Euclidean distance between x and xi, and σ is the scale or width

parameter. In the generalized RBF network, the number of centers (k) are

usually less than the number of observations (N). The unknown weights wi

are determined using least squares estimates.

Multi-layer perceptrons (MLP) also belong to the ANN class and consist of

one input layer, one output layer and one or more hidden layers of neurons.

Usually a single hidden layer of neurons is sufficient. The number of neurons

in the input and output layers correspond to the number of input variables and

responses respectively. The number of neurons in the hidden layer are determined

by experience and there is no theoretical basis for the choice of the number

of neurons. Often researchers do not specify the number of neurons or how

the number was arrived at [58, 59]. In addition, NNs often overfit the data

leading to very good prediction for seen data, but poor prediction on unseen

data [52]. To prevent over-fitting of data, techniques like regularization need

to be used [60]. Owing to these difficulties MLP cannot be used very easily as

a black-box surrogate model. On the other hand RBF network has been used

widely in engineering problems including airfoil design [61, 62], truss design [63],

3.3. FUNCTION APPROXIMATION 41

bulk carrier design [64].

Kriging

Kriging, also known as design and analysis of computer experiments (DACE) or

Gaussian process), is a spatial approximation technique with the form

y(x) = µ(x) + Z(x), (3.4)

where, µ(x) is a regression model and Z(x) is zero-mean random field with

unknown covariance structure V [65]. The regression model µ(x) can be of the

form as shown in Equation 3.1. The covariance function is given by

cov [Z(x1), Z(x2)] = σ2R(x1,x2),

where σ2 is the process variance and R(x1,x2) is the correlation between Z(x1)

and Z(x2). The correlation between any two observations is modeled with a

spatial correlation function. The Gaussian function, often used as a spatial

correlation function, is given by

R(xi,xj) = exp

(

−
m
∑

k=1

θi |xi,k − xj,k|p
)

where θi and p are the hyper-parameters of the correlation function which are

determined using maximum likelihood estimation (MLE). The regression function

can be represented in the vector form µ(x) = fT b. The value of b is determined

using the generalized least squares estimate as

b̂ = (FTV−1F)−1FTV−1Y,

42 CHAPTER 3. APPROXIMATIONS IN EA

and the best linear unbiased predictor (BLUP) for y is given by

ŷ(x) = fT b̂ + vT (x)V−1(Y − FT b̂),

where F is the matrix of N rows of vector fT evaluated at each observation and

v is the covariance between the design vector x and the observations x1, . . . ,xk

used for training. The value of the process variance using maximum likelihood

estimate (MLE) is

σ̂2 =
1

N
(Y − FT b̂)R−1(Y − FT b̂).

In ordinary Kriging, the regression function µ(x) is taken as a constant and

the corresponding value of that constant is

µ̂ = (1TV−11)−11TV−1Y,

and the BLUP for y(x) is given by

ŷ(x) = µ̂+ vT (x)V−1(Y − µ̂).

In the last decade Kriging has become quite popular due to the ability of

Kriging models to represent non-linear functions accurately. Kriging has been

used with EAs to speed up the convergence for numerical test problems [66,

67, 68, 69] and in engineering applications including satellite boom optimiza-

tion [70], piezoelectric actuator design [71], airfoil shape design [72], welded beam

design [73].

3.3. FUNCTION APPROXIMATION 43

In the kriging model, the error in prediction can be estimated as

MSE[ŷ(x)] = σ̂2

[

1− vT (x)V−1v(x) +
(1− FTV−1v(x))2

FTV−1F

]

. (3.5)

Jones et al. [74] treated this error estimate as the uncertainty in prediction and

developed an efficient global optimization (EGO) algorithm. In EGO, the uncer-

tainty in prediction is converted into a probability value of finding better solutions

(referred as expected improvement) and the design space is incrementally sampled

at the most probable locations. The EGO algorithm has been extended to solve

multi-objective optimization problems by Knowles as ParEGO [75].

Comparison

Many researchers have compared various surrogate modeling techniques to find

significant merits of using one type of surrogate model against the other. Carpen-

ter and Barthelemy [76] compared linear regression and ANN; Simpson et al. [77]

and Wilson et al. [71] compared RSM versus Kriging; Rasheed, Ni and Vat-

tam [78] compared RSM, RBF and NN. All the studies conclude that the perfor-

mance of multiple surrogate models used in EA is similar and there is no single

surrogate modeling technique better suited for all optimization problems.

3.3.2 Sampling Techniques

The statistical field of design of experiments (DOE) is devoted to locating the

samples in the design space [79]. The popular sampling techniques include

factorial design, central composite design and D-optimal designs. These sampling

methods when used for linear regression improve the quality of the surrogate

model by minimizing the variance of estimate error. The number of samples re-

44 CHAPTER 3. APPROXIMATIONS IN EA

quired for 2-level full factorial design and central composite design are 2m and 3m

respectively for m independent variables. Orthogonal arrays [80, 81] popularized

by Taguchi are fractional factorial designs and require a much smaller number of

samples. The number of samples is dictated by the number of independent factors

or variables, levels for each factor and specific 2-factor interactions to be studied.

Latin hypercube sampling by McKay [82] is a statistical method of sampling from

a multi-dimensional distribution. In this method N points are distributed in the

design space such that there is a single point in each of N (uniformly distributed)

planes normal to the coordinate axis. (In two-dimensions, it is similar to placing

eight queens on the 8× 8 chess board, such that along any row or column there

is only a single queen.) Any number of samples can be chosen independent of

the number of variables. Latin hypercube sampling can be based on orthogonal

arrays to distribute points evenly with equal density within subspaces [83].

Within EA, many of these techniques are used to sample the initial population

and train the surrogate model using those samples or use the off-line training

where the surrogate model building exercise is external to EA. Wilson et al. [71]

used central composite design and Latin hypercube sampling, Knowles used Latin

hypercube sampling in ParEGO [75] and Booker et al. [84] used orthogonal

array based Latin hypercube sampling. All the mentioned sampling methods

are equally good in locating samples in the design space. Researchers tend to use

a sampling technique based on personal preference.

The initial surrogate model trained with the limited number of training sam-

ples is often not good enough to accurately represent all the regions of the design

space. To overcome this limitation, the surrogate model is updated with new

samples or recreated during the optimization process. Then the question is

how to sample the training data using the new solutions. One approach is to

3.3. FUNCTION APPROXIMATION 45

discard the previous training data and replace it with the new samples from the

current population. The new samples are chosen from the current population

using k-Means clustering [63, 85, 86]. The other approach is to add new samples

to the existing training data. Nain and Deb [59] use actual evaluations from a few

generations as the new training data and update the ANN model for curve fitting

problem. Ratle [87] compared six different strategies for updating the training

samples for Kriging model. The strategies include replacing the existing training

data completely, replacing a few of the samples from the existing training data

and adding new samples to the training data. Ratle has also reported that adding

new samples to the training data produced better results.

3.3.3 Global and Local Surrogate Models

Theory of DOE and RSM is used to characterize a physical system through

careful experimentation and observation of responses [79]. The main purpose

of the exercise was to gain sufficient understanding of the physical system in

the form a surrogate model. The development of neural networks is similarly

motivated by the need to capture the input-output relationships of a non-linear

system [52]. The surrogate models built under these motivations are called

global surrogate models. These models usually predict the general (or global)

trends in the system response very well. The global surrogate models have been

successfully used in EAs for various design problems – with RSM for compressor

blade design [50]; with Kriging for beam design [88]; and with ANN for structural

shape optimization [89], and hydrofoil optimization [90]. If an accurate global

surrogate model can be built, it can drastically reduce the cost of the optimization

process. But, creating a global surrogate model that can accurately represent

the local variations along with the global trends is a challenging task. The

46 CHAPTER 3. APPROXIMATIONS IN EA

curse of dimensionality and the non-linearity in system response necessitate large

numbers of training samples to accurately represent the system response. It

is impractical to generate large numbers of training samples when expensive

experiments or simulations are required to observe the system response and

consequently, accurate global surrogate models cannot be built.

Local surrogate models, on the other hand, capture the system response in

a small region of the design space. A local surrogate model is built using the

training samples in the neighborhood of the current search location and is used

only within that small neighborhood. If the search moves outside this region, then

the current local surrogate model is discarded. Willmes et al. [91] used Kriging

based local surrogate models built with 10 solutions in the neighborhood; Regis

and Shoemaker [92] used (m+1)(m+2)/2 points to train a local surrogate using

ANN. These approaches are limited by the availability of a sufficient number of

solutions in the neighborhood where the surrogate model is built. An alternative

is to start with a complete design domain and progressively reduce the size of the

design domain. In the adaptive RSM approach Wang et al. [48] achieve space

reduction using cutting planes, and Wang and Simpson [49] use fuzzy clustering

to identify the region of interest.

Hierarchical Models

Hierarchical models are a combination of global and local surrogate models. A

global surrogate model is used to either identify interesting regions of design space

or to screen candidate solutions that are to be evaluated. Wang and Simpson [49]

have used RSM/Kriging to identify the promising region of the design space and

use Kriging as the local surrogate within that region. Zhou et al. [93, 94] have

used Kriging as a global surrogate to identify promising solutions in the popu-

3.3. FUNCTION APPROXIMATION 47

lation and those solutions are improved based on a RBF based local surrogate

model built using samples in the neighborhood. A similar approach using RBF

based global and local surrogate models is proposed by Tenne and Armfield [95].

Hierarchical models overcome the limitations of the global surrogate models using

local surrogate models to capture local variations, thus getting the best of global

and local models.

3.3.4 Surrogate Ensembles

To improve the prediction accuracy with limited training samples, multiple sur-

rogate models can be used in place of a single surrogate model. Common use

of multiple surrogates is in the form of surrogate ensembles, where a collection

of surrogate models are used. These surrogate models can be of the same type

or different types. Similar type of surrogate models are trained simultaneously

with varying model parameters, or using different subsets of training samples by

techniques such as bagging [96], boosting [97] and cross-validation. Abbass [98]

used a multi-objective formulation for ANN training and the Pareto optimal

ANNs to form an ensemble. Hamza and Saitou [99] have used RSM ensemble

built using different subsets of training samples.

To combine the predictions from individual surrogate models, a simple average

or a weighted average is used [86]. Zerpa et al. [100] and Goel et al. [101] have

used surrogate ensemble using RSM, RBF and Kriging. The predicted response

is a weighted average of the individual surrogate responses. The two approaches

differ in the way the weights for individual surrogate models are determined for

averaging. Zerpa et al. [100] calculate the weights based on prediction variance

minimization and Goel et al. [101] use goodness of data to propose three schemes

for global weights selection. Zhou et al. [102] reported the use of RSM and RBF

48 CHAPTER 3. APPROXIMATIONS IN EA

as local surrogate models and pick the best solution resulting from multiple local

searches (as many as number of surrogate models). They even propose using a

surrogate ensemble as one of the approximation models.

Zhao, Gao and Yang [103] have reported great improvement in the generaliza-

tion performance of a neural network ensemble in data classification application.

Lim et al. [104] reported that ensemble of surrogate models and multiple surro-

gate models yield improved solution quality for the same computational budget.

Goel et al. [101] concluded that the surrogate model that approximates a response

in the best way is dependent on the training data itself and an ensemble of

surrogates may be more robust approximation method.

3.3.5 Surrogate training

One of the concerns when training surrogate models is that the global optimum

of the surrogate model should coincide with the global optimum of the fitness

function and an EA should be able to converge to that solution. It is difficult

to build surrogate models that are accurate everywhere in the domain for func-

tions with a large number of variables and using limited training samples [42].

Consequently, the global surrogate models are often retrained using additional

training samples or multiple local surrogate models are trained with new training

samples. The process of building a series of surrogate models sequentially in the

optimization process is referred to as model management [84]. In the context of

EAs, the use of surrogate models along with the actual fitness evaluation is called

evolution control [105].

In fixed evolution control, the surrogate model is trained periodically every

few generations of EA and for rest of the generations the surrogate model is

used instead of actual evaluations. Jin et al. [106] identified two strategies for

3.3. FUNCTION APPROXIMATION 49

the surrogate training – individual based and generation based. In individual

based one or more solutions are evaluated using the actual analysis and used as

new training data, in generation based the entire population is evaluated using

the actual analysis and used as training data. Bull [107] evaluated the best

individual in the population using the actual analysis, replaced the worst solution

in the training data with it, and retrained the NN model every few generations.

D’Angelo and Minsci [108] distinguished between the choice of best individuals in

the population for training as best strategy and the random selection of individual

as random strategy. They use best strategy to update the Kriging surrogate

model. Nain and Deb [59] used the actual analysis for n generations and use the

solutions in those n generations as the training data. The next Q−n generations

use the trained ANN model instead of the actual analysis and the process is

repeated after Q generations. A similar method of using K generations with

actual analysis and S generations with trained RBF model has been used by Ray

and Smith [64].

As the surrogate model is updated using new training data in the evolutionary

search, the function landscape changes and gives rise to a dynamic optimization

problem [109]. The function values of solutions evaluated using the surrogate keep

changing as the surrogate models are updated, hence it is necessary to introduce

elitism to retain the true best solutions in the population. El-Beltagy et al. [88]

maintained truly evaluated solutions in the population and compared new solu-

tions using true analysis.

Surrogate Validation and Quality

Out of many approaches published in the literature for combining surrogate

models in EA, very few actually have looked at the quality of surrogate models

50 CHAPTER 3. APPROXIMATIONS IN EA

built. It is important to validate the surrogate models to ensure that the predic-

tion using the surrogate models approximately represents the function response.

Otherwise, it is possible to identify a solution A better than a solution B based

on the predicted fitness, but in reality it’s the other way round. This behavior

is known as ill-validation [110]. Wilson et al. [71] have used absolute error,

average error and R2 statistics [47] to measure the accuracy of RSM and Kriging

models and if the validation errors are very large, either additional training

samples are used or the size of the design space is reduced. Lim et al. [104]

used root mean square error (RMSE) and correlation coefficient to relate the

performance of surrogate assisted evolutionary algorithms to surrogate accuracy

using RSM, RBF, Kriging and ANN models. Based on the four benchmark

functions studied, they found that Kriging predictions had the least RMSE,

whereas RBF predictions had better correlation values. Although, RSM did

not exhibit good accuracy on both measures, the best solution quality was found

using RSM. Tenne and Armfield [111] compared the performance of different

accuracy assessment methods – holdout, 10-fold cross validation, leave-one-out

cross validation (LOOCV) and 0.632 bootstrap estimate using RSM, Kriging and

RBF surrogate models. They found that LOOCV lead to more accurate surrogate

models for up to ten dimensions, but no one method is better for surrogate models

of more than 10 variables.

3.4 Informed Operators

In addition to prediction of the fitness of the candidate solutions, surrogate models

are also used to improve the efficiency of sampling and evolution operations

(crossover and mutation) and such operators are referred to as informed op-

3.5. MEMETIC ALGORITHMS 51

erators. Rasheed and Hirsh [112] have identified four types of informed operators

– informed initialization, informed mutation, informed crossover and informed

guided crossover. In an informed operator, the operation is carried out multiple

types and the best candidate is selected according to the best fitness predicted

by the surrogate model. In informed mutation, multiple solutions are created

from the selected solution using mutation and the solution with the best fit-

ness as predicted by the surrogate model is chosen as the mutated solution.

Mutoh et al. [113] used crossover operator multiple times, predicted the fitness

based on ANN surrogate model and retained the best solution as the result of

the crossover operation. Kriging based surrogate model has been used to screen

the solution in sampling [114] and to select best offspring in crossover [115].

The other approach is to use the surrogate models to search for the best

candidate during the crossover or mutation operator. Anderson and Hsu [116]

used approximations within their crossover operator as follows. To create an

offspring solution from two parents, quadratic models for fitness are created

using each design variable and the locations of the minimum obtained from

each quadratic model are used as the coordinates of the offspring. In surrogate

deterministic mutation, Abboud and Schoenauer [117] select promising solutions

around the solution undergoing mutation, build a surrogate model using those

solutions, and use a gradient based search to find a solution with the best fitness

using the surrogate model.

3.5 Memetic Algorithms

In an attempt to improve the rate of convergence of evolutionary algorithms in

general, memetic algorithms (MAs) have been reported in literature [118, 119].

52 CHAPTER 3. APPROXIMATIONS IN EA

These are hybrid algorithms, which couple local search techniques with EA to

improve the efficiency of EA. To improve a solution, a local approximation model

is built around that solution and gradient or heuristic search is applied to improve

the solution using the approximation model. This is referred to as Lamarckian

evolution.

Liang et al. [120, 121] used a local search for multimodal functions to im-

prove the convergence in EA. Studies by Ku et al. [122] indicate that it may

be worthwhile to apply local search to all the individuals in the population

if the local search is computationally inexpensive. Ong et al. have obtained

faster convergence in MA using a trust-region framework for approximation and

gradient based search [123, 124]; and using RBF surrogate model and gradient

search [125]. However, it is imperative that the algorithms employing local search

strategies should have explicit means to maintain diversity to avoid premature

convergence.

One can combine the surrogate models in EA and local search to further

reduce the number of actual function evaluations. Zhou et al. [94] have used a

global Kriging model for the evolutionary search and a local RBF model for a

local search.

3.6 Summary

A review on the use of approximation models in evolutionary algorithms is

presented. Three types of surrogate models – RSM, RBF and Kriging are used

in this study. There are many issues which need to be addressed when using

surrogate models in EA. Some of the salient points highlighted in the literature

review are as follows.

3.6. SUMMARY 53

1. There is no single type of surrogate model suitable for all problems.

2. There are many well established sampling strategies for off-line training of

surrogate models, but not many for on-line training.

3. Constructing a global surrogate model is quite difficult for nonlinear func-

tions of many variables. A Kriging based surrogate model can be used as

a global model, but it is limited in the number of training samples due to

the high cost of training.

4. A local surrogate model is preferred to a global surrogate model. In the

context of EA, a single local surrogate model is not sufficient since the

region of the optimum solutions is not known a priori. Building multiple

local models might require lot of samples for training.

5. Using multiple surrogates of different types can improve the prediction

accuracy over a single type of surrogate model. When multiple surrogates

are used in ensembles, aggregating multiple predictions can be an issue.

6. It is important to validate the surrogate model to ensure that the search is

not misguided, but there is no way unique way of assessing the prediction

accuracy.

7. In addition to replacing expensive evaluations, surrogate models can also be

used in sampling and offspring creation to improve the quality of solutions.

8. Combining local search based on surrogate models can further improve the

convergence of EA.

In the next chapter, a spatial surrogate modeling technique using multiple

types of surrogate models is proposed. This approach tries to address the high-

54 CHAPTER 3. APPROXIMATIONS IN EA

lighted issues.

Chapter 4

Surrogate Assisted EA

4.1 Overview

For optimization problems involving computationally expensive simulations, the

number of function evaluations one can afford is limited. Evolutionary algorithms

(EAs) typically require large numbers of function evaluations to converge to

the optimum. In an attempt to keep the computational cost of optimization

affordable, surrogate models are used in lieu of the expensive analysis within

EAs. Surrogate models are computationally cheaper alternatives to expensive

simulations and approximate the responses of simulations. The use of surrogate

models in EAs is complicated due to a number of factors. These include the choice

of different types of surrogate models, sampling methods to generate the training

data, global versus local modeling, determining the accuracy of the prediction,

etc. Many approaches have been proposed in the literature to address one or

more of these issues, but there is no single best method to solve all classes of

optimization problems.

In this chapter, spatial surrogate modeling, a generic framework for surrogate

55

56 CHAPTER 4. SURROGATE ASSISTED EA

modeling within evolutionary algorithms, is proposed. Spatial surrogate models

(also referred to simply as spatial surrogates) make use of multiple types of

surrogate models for better approximation. Evolutionary algorithms generate

candidate solutions as part of the evolutionary search, and these solutions are

evaluated using the expensive simulations. These solutions are stored in an

archive and used to train spatial surrogates. Spatial surrogates as the name

suggests are located in the design space and their region of influence gets local-

ized based on the evolved population over generations. The details of spatial

surrogates are presented in Section 4.2. The solutions in the archive are used

to build either a single spatial surrogate model; or they are partitioned into

multiple clusters and a spatial surrogate model is built on each partition. Two

algorithms are proposed using spatial surrogate models in Section 4.3 – surrogate

assisted evaluation (SAE-EA) and surrogate assisted recombination (SAR-EA).

The parameters required for spatial surrogates are discussed in Section 4.4. The

performance of SAE-EA and SAR-EA are tested on a set of numerical test

problems and the results are presented in Section 4.5. The summary of the

findings is outlined in Section 4.6.

4.2 Spatial Surrogate Models

Spatial surrogate models are trained periodically during the course of an EA.

The candidate solutions evaluated using the expensive simulations are stored in

an archive and are used to train the surrogate models. These surrogate models

are then used to evaluate the candidate solutions. Every few generations a

population is evaluated using the expensive simulations. As the evolutionary

search progresses, the population moves towards the region(s) where the better

4.2. SPATIAL SURROGATE MODELS 57

solutions are located. Consequently, the archive gets more solutions from these

regions. Progressively more and more solutions from these regions contribute

to periodic retraining of spatial surrogates and the spatial surrogates get better

prediction capability in these regions. As the population moves through the

design space over generations, the regions where spatial surrogates predict better

also move with the population. Thus, the spatial surrogates are “located” in

specific regions of the design space. In case of multiple spatial surrogates, they

are distributed in the design space.

4.2.1 The Archive of Solutions

In evolutionary algorithms, an offspring population of candidate solutions is

generated from the parent population in each generation and the offspring pop-

ulation is evaluated using the actual analysis. The candidate solutions and their

respective objective and constraint values are stored in an archive. Over the

generations the archive size keeps on increasing. One of the uses of the archive

is to re-use the objective and the constraint values if a solution that is already

evaluated appears in the offspring generation. This prevents re-evaluation of the

same candidate solution across generations. Only unique solutions are stored in

the archive.

The main use of the archive is to train the spatial surrogate models. If

two solutions used for surrogate training are very close to each other, numerical

difficulties can arise in training due to ill-conditioning. To avoid such a pit-fall,

a new solution which is very close to any other solution in the archive is not

considered for surrogate training.

58 CHAPTER 4. SURROGATE ASSISTED EA

4.2.2 Surrogate Training

Spatial surrogates are trained using a fraction of the solutions in the archive to

prevent over-fitting [52], and the remaining solutions are used for validation. The

K-Means clustering [126] algorithm is used to identify the training solutions from

the archive.

K-Means Clustering

The K-Means clustering algorithm partitions given solutions in K clusters such

that the average Euclidean distance between the clusters is maximized and the

average Euclidean distance within the cluster is minimized. The K-means clus-

tering uses Lloyd’s algorithm as described in Algorithm 4.1. The algorithm starts

with a random assignment of solutions asK cluster centres (line 1). Each solution

is assigned to a cluster with the closest centre (lines 3-8). After assignment the

cluster centres are recomputed using the solutions assigned to each cluster (lines

9-13). The process of assignment and updating cluster centres is repeated till

the assignment of solutions becomes fixed. Thus, K-Means clustering algorithm

results in K cluster centres and assignment of solutions in each cluster.

Based on a predefined fraction value, the number of solutions (assumed K in

this case) from the archive to be used for surrogate training is decided. Using

K-Means clustering, the solutions in the archive are partitioned in K clusters.

For each cluster, a solution closest to the cluster centre is picked and the training

set of K solutions is formed.

Training and Validation

Once the training solutions are identified, the surrogate models are built for each

of the objective and the constraint functions. For each function, multiple types

4.2. SPATIAL SURROGATE MODELS 59

Algorithm 4.1 k-Means Clustering Algorithm

Require: {x1, . . . ,xn} {n data points}
Require: k > 0
1: C = {c1, . . . , ck} = {x1, . . . ,xk}
2: repeat
3: for i = 1 to n do
4: ψ(cj|xi) = 0, j = 1, . . . , k
5: l = arg minj ‖xi − cj‖2
6: ψ(cl|xi) = 1
7: w(xi) = 1
8: end for
9: for i = 1 to k do

10: A =
∑m

j=1 ψ(ci|xj)w(xj)x
j

11: B =
∑m

j=1 ψ(ci|xj)w(xj)
12: ci = A/B
13: end for
14: until ψ is constant

of surrogate models (e.g. RSM, RBF, Kriging) are constructed. The remaining

solutions in the archive are then used as a validation set of solutions to assess the

accuracy of each type of surrogate model. The best surrogate model is the one

with the smallest prediction error on the validation set. The process is repeated

for all the objectives and the constraints. These surrogate models are then used

in lieu of the simulations to evaluate new candidate solutions.

If the best type of surrogate model selected has a large prediction error, a

search based on a such a model is likely to be misguided and hence an additional

surrogate validity check is introduced. The best surrogate model (the best among

the various types of surrogate models) is considered valid only if the prediction

error on the validation set is less than a user defined threshold. The prediction

error used is the root mean squared error (RMSE) normalized by the range of

function values as given in Equation 4.1, where yi is the actual response and ŷi

is the predicted response. A prediction error threshold of 0.05 would correspond

60 CHAPTER 4. SURROGATE ASSISTED EA

to 5 percent error in the prediction on the validation set.

normal RMSE =
1

maxi(y)−mini(y)

√

√

√

√

1

n

n
∑

i=1

(yi − ŷi)
2 (4.1)

In the first few generations of EA, the solutions in the archive are distributed

throughout the design space and the spatial surrogate model trained using such

points would be a global surrogate model. As EA converges, more training and

validation solutions are available in the region of the optimum solutions. Then,

the prediction error is contributed predominantly from the validation solutions

in the region of the optimum as more number of validation solutions are from

that region. The errors in the prediction on fewer solutions away from the region

would get averaged by the total number of validation solutions. In this case, the

spatial surrogate model would behave more like a local surrogate model. Thus

the prediction accuracy of a spatial surrogate progressively increases in the region

of optimality with generations of EA.

For a zero prediction error threshold, the surrogate model is forced to be

accurate everywhere in the domain making it behave like a global surrogate

model. It is often not possible to satisfy the zero prediction error criterion for

nonlinear functions with high dimensionality using limited training data (which is

the reason why global surrogate models are not preferred). Therefore, very small

values of the prediction error threshold are avoided. When using a moderate

value for the prediction error threshold (e.g. 0.01 to 0.1 corresponding to 1 to

10 percent error), the focus is on capturing the overall trend. As the number of

training and validation samples in the region of optimum increases, the surrogate

model can capture the local trends accurately. Higher prediction errors on few

solutions outside the region of interest are not severely penalized due to the

4.2. SPATIAL SURROGATE MODELS 61

averaging.

Only if the spatial surrogates for all the objectives and the constraints are

valid, the spatial surrogates are used in lieu of the actual evaluation. If any of

the surrogate models is invalid, then the actual simulation is used to evaluate

new solutions and the results are added to the archive.

4.2.3 Prediction

The spatial surrogate models have a good prediction capability (within the pre-

diction error threshold) in the region covered by the training data. Outside of

this region, the prediction accuracy of the surrogate model cannot be ensured.

To prevent any extrapolation using the surrogate model outside this region,

it is essential to restrict the applicability of the surrogate model. Since the

spatial surrogate model is trained using all the solutions in the archive, the

potential region is the entire design space. As the EA converges, the spatial

surrogates are accurate in a smaller region. In that case, the applicability of the

surrogate model is restricted using a distance based criterion and identification

of the neighborhood of the training data. The neighborhood is defined using

the center of the training data (similar to the cluster centroid) and a radius of

neighborhood. The radius is defined in terms of the size of the design space

i.e. the percentage of the solid diagonal of the (normalized) design space. The

radius of the neighborhood is a user defined value. If a new solution is within

the neighborhood of the training data, the objectives and the constraint values

are predicted using the surrogate model (provided the surrogate model is valid),

otherwise actual analysis is used.

62 CHAPTER 4. SURROGATE ASSISTED EA

4.2.4 Single Surrogate (SS)

The steps involved in building a spatial surrogate are listed in Algorithm 4.2.

The surrogate models are built using the archive (A) of the solutions evaluated

using the simulation. The solutions in the archive are split into a training set of

solutions (Atrain) and a validation set (Avalidate) using K-Means clustering (line

1). The fraction of the solutions used as the training set are determined by a

user defined input parameter α. For each response (objectives and constraints),

multiple types of surrogate models are built and the prediction error is calculated

(lines 3-6). The best surrogate model is the one with the least prediction error

(line 7). The process is repeated for each function. The algorithm results in a

collection of surrogate models (S) and the overall error (E) for this collection is

the maximum prediction error across the individual surrogate models.

Algorithm 4.2 Building a spatial surrogate

Require: A {Archive of true evaluations}
Require: 0 < α < 1 {Fraction of archive solutions used for training}
Require: M {Surrogate model types}
Require: y1, . . . , yn {n responses to be approximated}
1: Atrain,Avalidate = Split(A, α)
2: for i = 1 to n do
3: for all M ∈M do
4: SM = SurrogateTrain(M, Atrain, yi)
5: eM = SurrogatePredict(M,SM ,Avalidate, yi)
6: end for
7: M∗ = arg minM eM {Best model for response yi}
8: Syi

= SM∗

9: eyi
= eM∗

10: end for
11: S = {Sy1 , . . . ,Syn

}
12: E = maxi eyi

{Surrogate accuracy}

The concept of a spatial surrogate is illustrated using a simple example.

Consider the minimization of a function f(x) of a single variable defined on

4.2. SPATIAL SURROGATE MODELS 63

the interval [-5,0].

f(x) = sin(x2)× (x2 + 0.01x3 + 5)

For a population size of eight, the initial population and the surrogate model built

using RBF are plotted in Figure 4.1(a). The archive consists of eight solutions.

The surrogate model is trained using six solutions (using 80% of solutions in the

archive for training and the rest for validation) and remaining two solutions are

used for validation. The surrogate model has very good accuracy in the range

[-3,-1] as there are sufficient points in the region to capture the behavior. After

three generations of EA, the archive consists of 14 solutions. The new solutions

close to the solutions in the archive are not added to the archive. The surrogate

model is retrained using eleven solutions (identified using K-Means clustering)

and the remaining three solutions are used for validation. The resulting surrogate

model is shown in Figure 4.1(b). The evolutionary search has found the region

of the minimum and subsequently the surrogate model has very good prediction

accuracy in the range [-5,-3]. Thus the surrogate model has migrated to the

region of the minimum based on the evolutionary search.

−5 −4 −3 −2 −1 0
−30

−20

−10

0

10

20

30
System Model

Input (x)

R
es

po
ns

e
(f

)

(a) Initial Population

−5 −4 −3 −2 −1 0
−30

−20

−10

0

10

20

30
System Model

Input (x)

R
es

po
ns

e
(f

)

(b) After three generations

Figure 4.1: Spatial Surrogate model built using initial population and the archive after
three generations

64 CHAPTER 4. SURROGATE ASSISTED EA

4.2.5 Multiple Surrogates (MS)

For highly nonlinear functions with multiple local minima, the evolutionary search

can be divided into multiple regions and each region gets explored through

the search. In such cases, a single surrogate model may not be adequate to

capture the response in different regions of the design space. Each region can be

approximated using a single surrogate model defined only on that region. Thus

multiple surrogate models are required to be built. Another advantage in using

multiple surrogates is that the nonlinear response is split into multiple regions

and it can be modeled with simple surrogate models in each region. This is

illustrated using a single variable function defined on the interval [-5,5] as shown

in Figure 4.2. Using the points in the archive (represented by circles) two to five

surrogate models are built. The points are partitioned using k-Means clustering

and a RSM based surrogate model is created using the points in each partition.

It is seen that by using four or five clusters, the entire function is very well

approximated by simple quadratic models.

The training and validation of the multiple surrogate models are exactly the

same as the single surrogate model. As shown in Algorithm 4.3, the solutions in

the archive are partitioned into K partitions (line 1). A single spatial surrogate

is built for each partition (line 3) using the Algorithm 4.2. In each partition,

the solutions are divided into a training set and a validation set. The surrogate

model on the partition is valid if it meets the prediction error threshold criterion,

otherwise the surrogate model defined on that partition is considered invalid. It is

possible that when using a large number of partitions, there may not be sufficient

solutions in each partition to build a surrogate model (e.g. when using RSM). In

that case no surrogate model is built for that partition.

To predict the response at a new point, the surrogate model built using the

4.2. SPATIAL SURROGATE MODELS 65

−5 0 5
−60

−40

−20

0

20

40

60
System Model

Input (x)

R
es

po
ns

e
(f

)

(a) 2 Clusters

−5 0 5
−60

−40

−20

0

20

40

60
System Model

Input (x)

R
es

po
ns

e
(f

)

(b) 3 Clusters

−5 0 5
−60

−40

−20

0

20

40

60
System Model

Input (x)

R
es

po
ns

e
(f

)

(c) 4 Clusters

−5 0 5
−60

−40

−20

0

20

40

60
System Model

Input (x)

R
es

po
ns

e
(f

)

(d) 5 Clusters

Figure 4.2: Effect of the number of clusters on multiple spatially distributed surrogates

cluster closest to the new point is used. The clustering algorithm identifies a clus-

ter centroid for each partition. For each cluster, the Euclidean distance between

the new point and the centroid is calculated and the partition corresponding to

the closest centroid is chosen. If the surrogate model corresponding to the closest

centroid is invalid or not built, then the solution is evaluated using actual analysis

instead. To prevent extrapolation using multiple surrogates, the neighborhood

criterion is used as described in Section 4.2.3.

The main drawback of multiple surrogates is the requirement to specify the

number of partitions. It is difficult to guess the appropriate number of partitions

to be used in any problem. For some of the problems there can be significant

66 CHAPTER 4. SURROGATE ASSISTED EA

Algorithm 4.3 Building multiple spatial surrogates

Require: A {Archive of true evaluations}
Require: K {Number of partitions}
Require: ǫ {Prediction accuracy threshold}
1: A1, . . . ,AK = K-Means(A, K)
2: for i = 1 to K do
3: Si, Ei = BuildSingleSurrogate(Ai)
4: if Ei < ǫ then
5: Si is valid
6: else
7: Si is invalid
8: end if
9: end for

benefit in choosing the correct number of partitions. For an optimization problem

with disjoint feasible regions, selecting the correct number of partitions can

capture the function response in each disjoint feasible region.

4.2.6 Multiple Adaptive Surrogates (MAS)

Multiple adaptive surrogates use adaptive partitioning based on prediction ac-

curacy to determine the number of partitions. The steps to find the number of

partitions are outlined in Algorithm 4.4. The algorithm iteratively builds multiple

spatial surrogates for partitions varying from one to Kmax. For each number

of partitions (K), Algorithm 4.3 is used to build multiple spatial surrogates

(line 2). If the surrogate models on each partition are valid then the prediction

error corresponding to the number of partitions (EK) is defined as the sum of

prediction errors on each partition. The number of partitions K that has the

least corresponding prediction error EK is chosen as the appropriate number of

partitions.

The maximum number of partitions is determined based on the number of

solutions in the archive N as given in Equation 4.2. The value is rounded to the

4.3. SPATIAL SURROGATES IN EA 67

Algorithm 4.4 Determination of Number of Partitions for MAS

Require: A {Archive of the truly evaluation solutions}
Require: Kmax {Upper limit on the number of partitions}
1: for K = 1 to Kmax do
2: S1, E1, . . . ,SK , EK = BuildMultipleSurrogates(A, K)
3: Sv = {Si; Si is valid, i ∈ [1, K]}
4: if |Sv| == K then
5: EK =

∑

iEi

6: end if
7: end for
8: K∗ = arg minK EK , K ∈ [1, Kmax]

nearest integer.

Kmax =

⌊

√

N/5

2

⌉

(4.2)

This corresponds to a maximum of two partitions for 100 points, five partitions

for 500 points and seven partitions for 1000 points.

4.3 Spatial Surrogates in EA

Using the spatial surrogate modeling technique, two surrogate assisted evolution-

ary algorithms are proposed. In the first algorithm, surrogate assisted evaluation,

spatial surrogates are used to replace the simulations with approximations in the

evaluation of objective and constraint functions. In the second algorithm, surro-

gate assisted recombination, spatial surrogates are used in the evolution process to

create an offspring population. Large numbers of solutions are generated during

the evolution process and the solutions with best fitness as predicted by the

spatial surrogates are selected as the offspring population.

68 CHAPTER 4. SURROGATE ASSISTED EA

4.3.1 Surrogate Assisted Evaluation

A framework for EA with surrogate assisted evaluation (SAE-EA) is shown in

Algorithm 4.5. The surrogate models are periodically trained using the solutions

in the archive and used in lieu of the actual analysis to evaluate the objectives

and the constraints. The major steps of the SAE-EA framework are the same

as the EA framework (Algorithm 2.1). The population in the first generation

is initialized randomly and evaluated. The steps of evolution of the offspring

population, evaluation of the offspring population and preservation of elite solu-

tions to form next generation population are repeated for a prescribed number

of generations. In SAE-EA, there are additional steps to update the archive of

solutions evaluated using actual analysis, to train the surrogate models using the

archive and to evaluate the offspring population using the surrogate models.

SAE-EA requires a parameter, the periodic train interval (Itrain), that controls

how often the surrogate models are trained and used (lines 6-8). For the first few

generations no surrogate model is built and used as there are too few solutions in

the archive. Only after the first Itrain generations, the training of the surrogate

model takes effect. Every Itrain generations, the offspring population is evaluated

using the actual analysis (line 11) and for the generations in between the trained

surrogate models are used for evaluating the objectives and the constraints (line

13). During this phase, it is possible that the new solutions are considered better

as per the surrogate evaluations and these replace the current best solutions. If

the new solutions are actually not better than the ones they replaced, then the

search will be misguided. To avoid promoting a worse solution, the best solutions

evaluated using the actual analysis are always retained in the population. The

number of solutions preserved across generations is decided by the retain count

(NRC). If a new solution is predicted to be better than any of the top ranking

4.3. SPATIAL SURROGATES IN EA 69

Algorithm 4.5 Surrogate Assisted Evaluation in EA Framework

Require: NG > 1 {Number of Generations}
Require: Itrain > 0 {Periodic Surrogate Training Interval}
Require: NRC > 1 {Number of truly evaluated solutions retained}
1: Initialize(P1)
2: Evaluate(P1)
3: Rank(P1)
4: A ← P1

5: for i = 2 to NG do
6: if i > Itrain and modulo(i, Itrain) == 0 then
7: do training = 1
8: end if
9: Ci = Evolve(Pi−1)

10: if do training == 1 then
11: Evaluate(Ci)
12: else
13: EvaluateSurrogate(Ci,S)
14: Rank(Ci)
15: for j = 1 to NRC do
16: if Solnrank=j(Ci) is better than Solnrank=1(Pi−1) then
17: Evaluate(Solnrank=j(Ci))
18: end if
19: end for
20: end if
21: A ← A

⋃

Ci

22: Rank(Pi−1 + Ci)
23: Pi = Reduce(Pi−1 + Ci)
24: if do training == 1 then
25: S = BuildSurrogate(A)
26: end if
27: end for

NRC solutions, that solution is evaluated using the actual analysis and verified

that it is indeed better (lines 16-18). Any new solutions evaluated using the

actual analysis (either the whole population or only a few select solutions) are

added to the archive (line 21). The surrogate models are trained every Itrain

generations using the solutions in the archive (line 25).

A single spatial surrogate model, multiple spatial surrogate models or multiple

70 CHAPTER 4. SURROGATE ASSISTED EA

adaptive spatial surrogate models can be used in this framework. The periodic

surrogate training interval is typically small, e.g. 3–5, to ensure that the evo-

lutionary search does not migrate the entire population to the region of local

optimum of the spatial surrogate. The primary focus is on the exploration of the

design space rather than the exploitation. The focus can be shifted to exploitation

by increasing the periodic training interval and letting the population converge to

the regions of optimum solutions of the surrogate models. This idea is explored

with the proposal of a surrogate assisted recombination algorithm.

4.3.2 Surrogate Assisted Recombination

The framework for surrogate assisted recombination in EA (SAR-EA) is presented

in Algorithm 4.6. The main difference between SAE-EA and SAR-EA is the use

of spatial surrogates for evaluation versus evolution. In SAR-EA, the solutions

are always evaluated using the actual analysis and not the surrogate models.

Also, the surrogate models are trained in every generation of SAR-EA and used

for recombination on the similar lines as informed operators.

Algorithm 4.6 Surrogate Assisted Recombination in EA Framework

Require: NG > 1 {Number of Generations}
1: Initialize(P1)
2: Evaluate(P1)
3: Rank(P1)
4: A ← P1

5: for i = 2 to NG do
6: S = BuildSurrogate(A)
7: Ci = EvolveSurrogate(Pi−1,S)
8: Evaluate(Ci)
9: A ← A⋃Ci−1

10: Rank(Pi−1 + Ci)
11: Pi = Reduce(Pi−1 + Ci)
12: end for

4.3. SPATIAL SURROGATES IN EA 71

The initial steps of SAR-EA are the exactly same as that of SAE-EA (lines

1-4). The next few steps (lines 6-11) are repeated for a prescribed number of

generations. These include training of the spatial surrogate models (line 6) and

evolving an offspring population based on these surrogate models (line 7). All

solutions in the offspring population are evaluated using the actual analysis (line

8) and are added to the archive (line 9).

The evolution process of SAR-EA uses embedded evolutionary algorithm

(referred to as Sub-EA). In SAE-EA, the evolution process uses crossover and

mutation operations to create an offspring population. However, in SAR-EA,

the evolution process creates an offspring population, evaluates using the spa-

tial surrogate models, and evolves them further using crossover and mutation.

Conceptually SAR-EA is similar to SAE-EA. A Sub-EA embedded in SAR-EA

does the evolutionary search similar to the generations in SAE-EA between two

surrogate training cycles, where the surrogate models are used to evaluate the

fitness of the solutions in lieu of the actual analysis.

Recombination using Sub-EA

In the Sub-EA evolution mechanism, the population of SAR-EA is allowed to

evolve using an embedded evolutionary algorithm with conventional crossover and

mutation operators as described in Section 2.5. The population size for sub-EA

can be larger than the population size in SAR-EA for better exploration. The

initial population of sub-EA is seeded from the parent population of SAR-EA.

Within a single generation of SAR-EA, Sub-EA population is evolved over a

number of generations. In the sub-EA, the objectives and the constraints are

evaluated using the spatial surrogate models only. No actual evaluations are

used in this process. The best solutions in the final population of Sub-EA are

72 CHAPTER 4. SURROGATE ASSISTED EA

taken as the offspring population in SAR-EA.

If any of the surrogate models are not valid (i.e. the prediction error over

the validation set is larger than the prescribed error threshold), the population

is evolved using the crossover and the mutation as in SAE-EA and no sub-EA

is used. When the surrogate models are valid, the sub-EA population converges

to the regions of optima of the surrogate models, thus exploiting the spatial

surrogate models to achieve faster convergence.

4.4 Parameter Choice

The proposed algorithms SAE-EA and SAR-EA require additional parameters for

spatial surrogate modeling. These include types of surrogate models, maximum

number of training samples and prediction error threshold.

4.4.1 Choice of Surrogate Models

The training process itself can be computationally expensive for certain types

of surrogate models. A comparison of the training times for RSM, RBF, and

Kriging are shown in Figure 4.3. The surrogate models are trained using five

scalable functions – quadratic model, quartic model, generalized Schwefel func-

tion, generalized Rosenbrock function and generalized Rastrigin function. (These

functions are described in Appendix A as f01, f07, f08, f05, and f09 respectively).

For each test function, design points are randomly sampled from the range [0,1]

and evaluated. The number of design variables used are 5, 10, 20, 30, and 40.

The number of training designs are varied from 100 to 1000 in steps of 100. The

surrogate models are implemented using Matlab R2008a.1 The surrogate training

1RSM is implemented using linear algebra functions. For RBF and MLP, neural network
toolbox functions newrbe and newff/train are used respectively. The Kriging toolbox for Matlab

4.4. PARAMETER CHOICE 73

is repeated 10 times for each function and the average of 50 training cycles are

used for comparison.

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Training Samples

T
ra

in
in

g
T

im
e

(s
)

5−D
10−D
20−D
30−D
40−D

(a) RSM

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Number of Training Samples

T
ra

in
in

g
T

im
e

(s
)

5−D
10−D
20−D
30−D
40−D

(b) RBF

100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

Number of Training Samples

T
ra

in
in

g
T

im
e

(s
)

5−D
10−D
20−D
30−D
40−D

(c) Kriging

0 200 400 600 800 1000
10

−2

10
−1

10
0

10
1

10
2

Number of Training Samples

T
ra

in
in

g
T

im
e

(s
)

RSM
RBF
Kriging

(d) 30-D

Figure 4.3: Surrogate training time (in seconds) for RSM, RBF and Kriging.

For RSM, the training time is proportional to the number of dimensions and

the number training designs. For 40 design variables, the average training time

for RSM is 0.6 seconds for 1000 training samples (Figure 4.3(a)). The training

time for RBF is dependent only on the number of training designs as shown in

Figure 4.3(b). RBF training using 1000 points for 40 design variables requires

around 1 second. The number of training designs are limited to 500 for Kriging

due to higher training time. Kriging is computationally the most expensive model

written by Hans Nielsen [127] is used for Kriging.

74 CHAPTER 4. SURROGATE ASSISTED EA

of the three types. It takes more than 120 seconds to train a Kriging model using

500 designs with 40 design variables. The training cost for Kriging is directly

proportional to the number of training designs and the number of design variables

(Figure 4.3(c)).

The benchmark test problems studied in this thesis have up to 30 design

variables, and 500 training solutions should be adequate to build the three types

of surrogate models. (RSM requires at least 496 points to train 30-D data.) The

comparison of the surrogate training cost for the three surrogate model types to

train 30-D data is shown in Figure 4.3(d) (The y-axis is in log scale). For 500

training solutions, the training costs of RSM and RBF are around 0.1 and 0.2

seconds, whereas for Kriging it is around 83 seconds. To keep the training cost

low, only RSM and RBF are used for numerical test problems.

4.4.2 Maximum Number of Training Samples

As seen from Figure 4.3, the training cost of surrogate models increases with

an increase in the number of training samples. In the proposed algorithms, the

number of solutions in the archive (i.e. the solutions evaluated using simulations)

gradually increase over the generations and so does the cost of surrogate training.

The maximum number of training samples are specified to limit the surrogate

training cost in the proposed algorithms. If there are more solutions in the

archive, then the latest additions to the archive are considered. This ensures

that the surrogate models are built on the interesting regions identified by the

evolutionary search.

A single spatial surrogate with no limit on the maximum number of training

samples, is almost equivalent to a global surrogate model. The difference is

that not all the solutions in the archive are used, but only a fraction. Even

4.4. PARAMETER CHOICE 75

then the solutions would be spread throughout the design space and the single

surrogate would be limited similarly as a global surrogate. On the other hand,

a single surrogate with smaller limit on the training samples would focus the

surrogate modeling effort solely to the region currently being explored by the

evolutionary search. The surrogate model is then equivalent to a local surrogate

model. Although a local surrogate model is preferred over a global model, the

evolutionary search can get stuck in a region of a local optimum and can never get

out. A moderate value for the maximum number of training samples will ensure

that all the solutions used for training are not restricted to a small region and

the evolutionary search can migrate to other regions if the current best solution

turns out to be a local minimum but not the global minimum.

4.4.3 Prediction Error Threshold

As described in Section 4.2.2, the prediction error threshold controls the accuracy

of the surrogate models. For a zero prediction error threshold, the predictions on

the validation set should exactly match the computed values of objectives and

constraints. This creates an interpolating fit for the validation data. A non-zero

value for prediction error threshold, on the other hand, would create a smoothing

fit as the predictions on the validation set need not match the computed values.

Although the smoothing fit is inaccurate for the solutions in the validation set, the

error in prediction is bounded by the error threshold. Also, an interpolating fit

can require a large number of training samples to capture the nonlinear response,

whereas a smoothing fit can do with a comparatively fewer number of training

samples.

76 CHAPTER 4. SURROGATE ASSISTED EA

4.5 Results of Numerical Benchmarks

The performance of the proposed algorithms is studied for unconstrained and

constrained, single and multi-objective optimization test problems. For single

objective optimization, unconstrained f-series problems (refer to Appendix A for

details) and constrained g-series problems (refer to Appendix B for details) are

used. Multi-objective optimization problems used are ZDT (refer to Appendix C

for details) and CTP (refer to Appendix D for details). All the problems are

solved as minimization problems using EA, SAE-EA and SAR-EA. For SAE-EA,

single surrogate and multiple adaptive surrogate models are used and are referred

to as SAE-SS and SAE-MAS respectively.

4.5.1 Experimental Setup

For single objective optimization problems the number of actual evaluations is

limited to 1,000 and the population size used is 40. This corresponds to 25

generations for EA and SAR-EA, whereas SAE-EA is run till the number of actual

evaluations reaches 1,000. It is possible to pick another combination of population

size and generations that result in 1,000 evaluations. A large population would

be limited in the number of generations over it can be evolved. On the other

hand a small population would lack sufficient diversity to effectively search the

design space. For multi-objective optimization problems the number of actual

evaluations is fixed at 5,000 and population size is 100. The corresponding

generations for EA and SAR-EA are 50, and SAE-EA is run till the number

of actual evaluations reaches 5,000.

Multiple runs are performed for each problem by varying the parameters.

The parameters required for EA are crossover probability, mutation probability,

4.5. RESULTS OF NUMERICAL BENCHMARKS 77

crossover distribution index, mutation distribution index and random seed. The

values used for each parameter are listed in Table 4.1. With two values for each

of the first four parameters and four values for the random seed, the total number

of combinations is (24 × 4 =) 64. Thus, each problem is solved exhaustively for

each of the 64 combinations.

Table 4.1: Parameters for evolutionary algorithm

Parameter Values

Crossover probability 0.8, 0.9
Mutation probability 0.05, 0.1
Distribution index for crossover 10, 15
Distribution index for mutation 10, 20
Random seed 10, 20, 30, 40

The parameters required for spatial surrogate models are training data frac-

tion, maximum number of training samples and prediction accuracy threshold.

The fraction of archive solutions used for training surrogate models is set to

0.8 (corresponding to 80% of the solutions for training and the remaining for

validation) and the maximum number of training samples is fixed at 500. The

training time for RSM and RBF using 500 training samples is less than a second,

so RSM and RBF are used in the spatial surrogates. In addition, SAE-EA

uses two more parameters, namely periodic training interval and retain count.

The values used for all surrogate parameters are listed in Table 4.2. The retain

count parameter is only varied for multi-objective optimization problems. For

single objective optimization, the retain count parameter is set to 1. With

these parameters, SAE-EA is run for (64 × 22 =) 256 separate parameter com-

binations for single objective optimization problems and 512 combinations for

multi-objective optimization problems. The only parameter for SAR-EA is the

78 CHAPTER 4. SURROGATE ASSISTED EA

prediction accuracy threshold for spatial surrogates and the number of parameter

combinations are 128. The population size used for Sub-EA in SAR-EA is

80, twice the size of the original population. The Sub-EA is evolved over 100

generations.

Table 4.2: Parameters for for SAE-EA and SAR-EA

Parameter Values

Training data fraction 0.8
Maximum number of training samples 500
Prediction accuracy threshold 0.02, 0.05
Periodic training interval 3, 5
Retain count2 10, 20

The performance of single objective optimization problems is assessed using

the best, the average and the worst objective values across multiple runs. For the

multi-objective optimization, the non-dominated solutions are compared using

the displacement metric. The minimum, the average and the maximum values of

the displacement metric are reported for multiple algorithms.

4.5.2 Unconstrained Single Objective Optimization

Before comparing the performance of EA and surrogate assisted EA, it is impor-

tant to verify that valid surrogate models are actually built and used. Shown in

Table 4.3 are the statistics on the number of experiments in which valid surrogate

models were trained. For optimization problems f04, f08 and f09 spatial surrogate

models could not be built using RSM or RBF with any surrogate parameter

combinations. The problems f04 and f08 have functions that use the absolute

2Retain count is only used for multi-objective optimization problems. For single objective
optimization problems it is set to 1.

4.5. RESULTS OF NUMERICAL BENCHMARKS 79

values of the design variables and the problem f09 uses a generalized Rastrigin

function. As the spatial surrogate models are not used for these problems, the

results of SAE-EA and SAR-EA are identical to those of EA and are omitted.

For problems f02, f10 and f12 the number of runs in which the surrogate models

are built, is less than half the total number of runs. For these problems, spatial

surrogate models could not be built for a prediction error threshold value of 0.02.

Table 4.3: Number of runs in which surrogate models were built using SAE-EA and
SAR-EA for f-series problems

Problem SAE-SS SAE-MAS SAR
(256) (256) (128)

f01 256 256 128
f02 82 75 58
f03 256 256 128
f04 0 0 2
f05 136 147 87
f06 256 256 128
f07 145 140 88
f08 0 0 0
f09 0 0 0
f10 70 76 58
f11 256 256 128
f12 114 116 74
f13 130 129 125

The best objective values obtained using EA, SAE-EA and SAR-EA on the

remaining f-series problems are listed in Table 4.4. The following observations

can be made:

• The best objective values obtained using SAE-EA with single surrogate

(SAE-SS) are consistently better than those obtained with EA for all the

problems. For problems f01, f03, f05, f06, f12 and f13 the objective values

are better by orders of magnitude.

80 CHAPTER 4. SURROGATE ASSISTED EA

• The best objective values obtained using SAE-EA with multiple adaptive

surrogates (SAE-MAS) are better than those obtained by EA on all the

problems. Compared to the best objective values obtained using single

surrogate, however, those obtained by multiple adaptive surrogates are

generally higher but of the same order of magnitude.

• The optimum solutions (within the tolerance of 1.e-6) are obtained using

SAR-EA for problems f01, f03, f06, f07 and f11. For f12 and f13 the objective

values are multiple orders of magnitude better than SAE-EA with single

and multiple adaptive surrogates.

Table 4.4: Best objective values for f-series problems using EA, SAE-EA and SAR-EA

Problem Optimum EA SAE-SS SAE-MAS SAR

f01 0.0 645.17 5.68 9.0 0.0
f02 0.0 6.21 5.78 6.13 5.46
f03 0.0 5261.63 827.79 1108.27 0.0
f05 0.0 185849.0 49795.5 69537.3 4226.43
f06 0.0 1029.0 11.0 5.0 0.0
f07 0.0 0.08 0.04 0.05 0.0
f10 0.0 7.1 6.09 6.47 3.64
f11 0.0 6.81 1.07 1.08 0.0
f12 0.0 148.77 15.57 33.03 2.17
f13 0.0 158180.0 2965.05 3618.83 9.44

The average objective values for f-series problems using EA, SAE-EA and

SAR-EA are listed in Table 4.5. The average performance of SAE-EA using

single surrogate and multiple adaptive surrogates is better than EA for problems

f01, f03, f05, f06, f11, f12, f13 and on par with EA for problems f02, f07, f10. The

performance of multiple adaptive surrogates is similar to single surrogates as only

a single partition is used in multiple adaptive surrogates for building surrogate

4.5. RESULTS OF NUMERICAL BENCHMARKS 81

models. With accurate spatial surrogate models, SAR-EA can converge to the

optimum value quickly as seen for problems f01 and f03 and near optimum for

problems f06 and f11. However, the premature exploitation of the surrogate

models can misguide SAR-EA and the average performance can be poorer than

EA as seen for problem f12.

Table 4.5: Average objective values for f-series problems using EA, SAE-EA and
SAR-EA

Problem Optimum EA SAE-SS SAE-MAS SAR

f01 0.0 2208.51 53.57 51.13 0.00
f02 0.0 11.94 12.68 13.35 14.76
f03 0.0 15086.28 5182.19 5142.67 0.00
f05 0.0 1564560.33 920083.25 1062907.84 1036372.43
f06 0.0 2113.5 62.66 55.59 6.45
f07 0.0 0.41 0.35 0.35 0.58
f10 0.0 9.81 9.6 9.44 9.4
f11 0.0 20.54 1.58 1.52 0.13
f12 0.0 508433.03 308345.4 286165.1 897432.9
f13 0.0 1864012.2 1436457.1 1596279.2 4784331

Shown in Table 4.6 are the worst objective values obtained using all the

algorithms. The objective values obtained using single surrogate and multiple

adaptive surrogates in SAE-EA are much lower than those obtained by EA for

problems f01, f03, f05, f06, f11, and f12. The performance is similar for the rest

of the problems. The advantages of exploitation of spatial surrogates in SAR-EA

are evident from the objective values close to the optimum obtained for problems

f01, f03, f06, and f11. At the same time poorer performance due to premature

convergence is evident for large objective values for problems f02, f05 and f12.

Average convergence trends for f-series problems are shown in Figure 4.4 and

Figure 4.5. The performances of SAE-EA and SAR-EA in the initial generations

82 CHAPTER 4. SURROGATE ASSISTED EA

Table 4.6: Worst objective values for f-series problems using EA, SAE-EA and SAR-EA

Problem Optimum EA SAE-SS SAE-MAS SAR

f01 0.0 4370.97 462.31 199.76 0.0
f02 0.0 21.5 37.58 28.55 46.37
f03 0.0 24072.1 14877.5 11383.1 0.0
f05 0.0 4956490 4201190 4770500 15190300
f06 0.0 3933.0 295.0 330.0 164.0
f07 0.0 1.5 2.03 1.21 6.34
f10 0.0 12.33 12.97 12.24 13.44
f11 0.0 40.34 3.91 3.4 1.05
f12 0.0 7084780 4586400 2953640 22462200
f13 0.0 11035000 10667700 15086300 74036700

(for lower values of function evaluations) are poorer than that of EA as the num-

bers of solutions in the archive are not sufficient to build valid spatial surrogates.

Once the spatial surrogates are built, the convergence improves for both SAE-EA

and SAR-EA and is faster than that of EA.

4.5.3 Constrained Single Objective Optimization

For g-series problems, the numbers of runs in which valid surrogate models are

built and used are shown in Table 4.7. For problem g02, the spatial surrogates

are built only for a single parameter combination. For problem g08, the number

of runs with valid surrogate models are very few indicating difficulties in ap-

proximating the function response. Problem g02 has an objective function with

a product of all the design variables and the objective function in problem g08

has a product of trigonometric terms. The results of SAE-EA and SAR-EA for

problems g02 and g08 are primarily obtained from the evolutionary search and

not using spatial surrogates, hence they are omitted. For the rest of the problems

valid surrogate models were built in all the runs with the exception of problem

4.5. RESULTS OF NUMERICAL BENCHMARKS 83

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Function Evaluations

O
bj

ec
tiv

e

EA
SAE−SS
SAE−MAS
SAR

(a) f01

0 200 400 600 800 1000
10

0

10
2

10
4

10
6

10
8

Function Evaluations

O
bj

ec
tiv

e

EA
SAE−SS
SAE−MAS
SAR

(b) f02

0 200 400 600 800 1000
0

1

2

3

4

5

6

7
x 10

4

Function Evaluations

O
bj

ec
tiv

e

EA
SAE−SS
SAE−MAS
SAR

(c) f03

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

8

Function Evaluations

O
bj

ec
tiv

e

EA
SAE−SS
SAE−MAS
SAR

(d) f05

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Function Evaluations

O
bj

ec
tiv

e

EA
SAE−SS
SAE−MAS
SAR

(e) f06

0 200 400 600 800 1000
0

5

10

15

20

25

30

35

40

45

50

Function Evaluations

O
bj

ec
tiv

e

EA
SAE−SS
SAE−MAS
SAR

(f) f07

Figure 4.4: Average convergence trend of EA, SAE-EA and SAR-EA for f-series
problems (f01–f03 and f05–f07)

g09. For problem g09, valid spatial surrogate models were built in 100 runs of

SAE-EA with the prediction error threshold value of 0.05, and 10 runs with the

84 CHAPTER 4. SURROGATE ASSISTED EA

0 200 400 600 800 1000
8

10

12

14

16

18

20

Function Evaluations

O
bj

ec
tiv

e

EA
SAE−SS
SAE−MAS
SAR

(a) f10

0 200 400 600 800 1000
0

50

100

150

200

250

300

350

400

Function Evaluations

O
bj

ec
tiv

e

EA
SAE−SS
SAE−MAS
SAR

(b) f11

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5
x 10

8

Function Evaluations

O
bj

ec
tiv

e

EA
SAE−SS
SAE−MAS
SAR

(c) f12

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5
x 10

8

Function Evaluations

O
bj

ec
tiv

e

EA
SAE−SS
SAE−MAS
SAR

(d) f13

Figure 4.5: Average convergence trends of EA, SAE-EA and SAR-EA for f-series
problems (f10–f13)

prediction error threshold of 0.02.

The best, the average and the worst objective values obtained for the remain-

ing g-series problems using EA, SAE-EA and SAR-EA are listed in Table 4.8,

Table 4.9 and Table 4.10 respectively. The best objectives values obtained by

SAE-EA and SAR-EA are much closer to the optimum values than those obtained

by EA. The exception is problem g06, where the objectives values obtained using

SAE-EA are higher than that of EA. For the first three problems (g01, g04 and

g06), the known optimum solutions are obtained using SAR-EA. For the other

problems the objective values reported are very close to the known optimum.

4.5. RESULTS OF NUMERICAL BENCHMARKS 85

Table 4.7: Number of runs in which surrogate models were built using SAE-EA and
SAR-EA for g-series problems

Problem SAE-SS SAE-MAS SAR
(256) (256) (128)

g01 256 256 128
g02 1 1 0
g04 256 256 128
g06 256 256 128
g07 256 256 128
g08 16 18 18
g09 110 109 91
g10 256 256 128

Table 4.8: Best objective values for g-series problems using EA, SAE-EA and SAR-EA

Problem Optimum EA SAE SS SAE MAS SAR

g01 -15 -10.46 -14.87 -14.82 -15
g04 -30665.539 -30385.4 -30631.2 -30593.6 -30665.5
g06 -6961.81 -6835.64 -6788.16 -6880.6 -6961.81
g07 24.306 74.45 25.91 25.77 24.33
g09 680.63 702.4 690.03 693.06 704.59
g10 7049.33 8536.85 7489.95 7429.35 7056.06

Similar trends are observed for the average objective values obtained by

SAE-EA and SAR-EA (see Table 4.9). The average performance of SAE-EA

using single and multiple adaptive surrogates is better than EA for problems

g01, g04, g06, g07 and g10 and similar for problem g09. Using SAR-EA, the

population converges to the region of the optimum very quickly for problems

g01, g04, g06, g07 and g10. For problem g09, the average values across all the

algorithms are similar and indicate convergence to a region of a local minimum.

The errors in the prediction of the constraint values can identify an infeasible

solution as a feasible solution and the search can get misguided. In addition,

86 CHAPTER 4. SURROGATE ASSISTED EA

both RSM and RBF models have difficulty in approximating the responses for

problem g09 as seen in Table 4.7.

Table 4.9: Average objective values for g-series problem using EA, SAE-EA and
SAR-EA

Problem Optimum EA SAE-SS SAE-MAS SAR

g01 -15 -7.38 -12.21 -12.4 -14.97
g04 -30665.539 -29872.83 -30212.34 -30133.43 -30665.26
g06 -6961.81 -4217.64 -4576.55 -4215.13 -6782.17
g07 24.306 868.65 54.64 69.48 26.67
g09 680.63 858.09 956.78 955.84 998.19
g10 7049.33 18313.6 10772.69 11166.16 7507.48

Table 4.10: Worst objective values for g-series problems using EA, SAE-EA and
SAR-EA

Problem Optimum EA SAE-SS SAE-MAS SAR

g01 -15 -3.75 -7.42 -7.56 -13
g04 -30665.539 -29176.3 -29676.5 -29341.4 -30650.3
g06 -6961.81 -1240.13 -1229.72 -1214.77 -5748.64
g07 24.306 2733.68 815.41 1483.27 31.96
g09 680.63 1474.49 4266.72 2895.92 3172.63
g10 7049.33 25036 20665.1 25531.4 8567.12

Comparing the best and the worst objective values obtained for g-series prob-

lems (see Table 4.8 and Table 4.10), it can be seen that the differences are much

larger for EA as compared to SAE-EA and SAR-EA. This indicates that the

performances of SAE-EA and SAR-EA are more consistent than that of EA. The

average convergence trends for g-series problems are depicted in Figure 4.6. It can

be seen from Figure 4.6, that SAE-EA and SAR-EA converge much quicker than

EA for all the g-series problems except problem g09. Also it can be observed that

the feasible solutions are found much faster using SAE-EA and SAR-EA than EA

4.5. RESULTS OF NUMERICAL BENCHMARKS 87

for problems g01, g06, g07 and g10.

0 200 400 600 800 1000
−16

−14

−12

−10

−8

−6

−4

−2

Function Evaluations

O
bj

ec
tiv

e

EA
SAE−SS
SAE−MAS
SAR

(a) g01

0 200 400 600 800 1000
−3.1

−3.05

−3

−2.95

−2.9

−2.85

−2.8
x 10

4

Function Evaluations

O
bj

ec
tiv

e

EA
SAE−SS
SAE−MAS
SAR

(b) g04

0 200 400 600 800 1000
−7000

−6500

−6000

−5500

−5000

−4500

−4000

−3500

−3000

−2500

−2000

Function Evaluations

O
bj

ec
tiv

e

EA
SAE−SS
SAE−MAS
SAR

(c) g06

0 200 400 600 800 1000
0

500

1000

1500

2000

2500

3000

3500

Function Evaluations

O
bj

ec
tiv

e

EA
SAE−SS
SAE−MAS
SAR

(d) g07

0 200 400 600 800 1000
10

2

10
3

10
4

10
5

10
6

10
7

Function Evaluations

O
bj

ec
tiv

e

EA
SAE−SS
SAE−MAS
SAR

(e) g09

0 200 400 600 800 1000
0.5

1

1.5

2

2.5
x 10

4

Function Evaluations

O
bj

ec
tiv

e

EA
SAE−SS
SAE−MAS
SAR

(f) g10

Figure 4.6: Average convergence trends of EA, SAE-EA and SAR-EA for g-series
problems

88 CHAPTER 4. SURROGATE ASSISTED EA

4.5.4 Unconstrained Multi-objective Optimization

Out of the five ZDT problems, spatial surrogate models using RSM and RBF

were built for ZDT1, ZDT2 and ZDT3 and the corresponding results for only

those problems are reported. For ZDT1 and ZDT2, the surrogate models are

built in all the runs whereas for ZDT3 the surrogate models are built in roughly

half the number of runs. These runs correspond to the prediction error threshold

of 0.05.

The minimum values of the displacement metric using EA, SAE-EA and

SAR-EA are shown in Table 4.11. The displacement values for SAE-EA and

SAR-EA are very close to zero for problems ZDT1 and ZDT2, indicating that

the non-dominated solutions are very close to the corresponding Pareto optimal

fronts. For ZDT3, the results of SAE-EA and SAR-EA are slightly better than

that of EA.

Table 4.11: The best displacement metric values for ZDT problems using EA, SAE-EA
and SAR-EA

Problem EA SAE-SS SAE-MAS SAR

ZDT1 0.0030 0.0007 0.0007 0.0006
ZDT2 0.0063 0.0003 0.0004 0.0001
ZDT3 0.0022 0.0017 0.0021 0.0018

The average values of displacement metric obtained using EA, SAE-EA and

SAR-EA are shown in Table 4.12. The performance using spatial surrogates is

definitely better for problems ZDT1 and ZDT2. A similar trend is seen for the

worst values of the displacement metric as listed in Table 4.13.

The non-dominated solutions obtained for problems ZDT1, ZDT2 and ZDT3

using all the algorithms are shown in Figure 4.7. The non-dominated solutions

4.5. RESULTS OF NUMERICAL BENCHMARKS 89

Table 4.12: The average displacement metric values for ZDT problems using EA,
SAE-EA and SAR-EA

Problem EA SAE-SS SAE-MAS SAR

ZDT1 0.0044 0.0018 0.0019 0.0043
ZDT2 0.0288 0.0020 0.0021 0.0003
ZDT3 0.0046 0.0066 0.0058 0.0048

Table 4.13: The worst displacement metric values for ZDT problems using EA, SAE-EA
and SAR-EA

Problem EA SAE-SS SAE-MAS SAR

ZDT1 0.0077 0.0060 0.0086 0.0091
ZDT2 0.0512 0.0313 0.0320 0.0069
ZDT3 0.0090 0.0180 0.0167 0.0122

are taken from a run corresponding to the average displacement performance.

The non-dominated solutions for SAE-EA and SAR-EA have converged closer

to the Pareto front than EA for ZDT1 and ZDT2. The performance of all the

algorithms is comparable for ZDT3.

4.5.5 Constrained Multi-objective Optimization

From the seven CTP problems, spatial surrogate models could be built for first

five problems. The results for problems CTP7 and CTP8 are similar to EA

in the absence of any valid surrogate models and are not presented. All the

CTP problems use generalized Rastrigin function which is one of the uncon-

strained single-objective optimization problems, f09. In the problem f09, 30

design variables are used, whereas in CTP problems, ten design variables are

used. This demonstrates that 500 training solutions are inadequate to build a

spatial surrogate for a 30-variable Rastrigin function, but are insufficient for a

90 CHAPTER 4. SURROGATE ASSISTED EA

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f
1
(x)

f 2(x
)

EA
SAE SS
SAE MAS
SAR

(a) ZDT1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f
1
(x)

f 2(x
)

EA
SAE SS
SAE MAS
SAR

(b) ZDT2

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

f
1
(x)

f 2(x
)

EA
SAE SS
SAE MAS
SAR

(c) ZDT3

Figure 4.7: Non-dominated solutions obtained using EA, SAE-EA and SAR-EA for
ZDT problems

ten-variable Rastrigin function.

The best values of the displacement metric for the CTP problems are listed

in Table 4.14. The displacement values for EA and SAE-EA with multiple

adaptive surrogates are comparable. The performance using a single surrogate

model is worse than multiple adaptive surrogates. For problems CTP2–CTP5,

the Pareto front is disconnected and a single surrogate has difficulty capturing

the Pareto front. However, multiple surrogates have a better chance at capturing

the different regions of the Pareto front.

The average values of the displacement metric for CTP problems are shown

in Table 4.15. The constraint function in CTP problems CTP2–CTP5 is highly

4.5. RESULTS OF NUMERICAL BENCHMARKS 91

Table 4.14: The best displacement metric values for CTP problems using EA, SAE-EA
and SAR-EA

Problem EA SAE-SS SAE-MAS SAR

CTP2 0.0010 0.0030 0.0022 0.0009
CTP3 0.0141 0.0221 0.0139 0.0166
CTP4 0.0666 0.0731 0.0691 0.0700
CTP5 0.0015 0.0022 0.0016 0.0011
CTP6 0.0103 0.0130 0.0032 0.0011

nonlinear and multi-modal. The performance of SAE-EA and SAR-EA is worse

than EA for these problems. Multiple adaptive surrogates perform better than a

single surrogate model for CTP2–CTP5. Also, for constrained problems incorrect

determination of feasibility can lead to the rejection of those solutions from

the population. For CTP problems, the Pareto solutions are on the constraint

boundary and even small error in prediction of constraint values can transform

an infeasible solution into a feasible one and vice versa. This problem is evident

in the results of problems CTP2–CTP5. On the other hand, the convergence of

SAE-EA and SAR-EA is better than EA for problem CTP6, which has a linear

Pareto optimal front. The worst displacement metric values for CTP problems are

reported in Table 4.16. It can be seen that displacement values for SAE-EA and

SAR-EA are smaller than EA. This indicates that the spatial surrogates are able

to identify the regions of Pareto solutions correctly and the population quickly

migrates to those regions. The exploitation of spatial surrogates in SAR-EA

results in lower values of displacement metric using SAR-EA as compared to

SAE-EA. Once the solutions are closer to the Pareto front, the evolutionary

search is driven by feasibility and constraint handling.

The non-dominated solutions obtained using EA, SAE-EA and SAR-EA for

92 CHAPTER 4. SURROGATE ASSISTED EA

Table 4.15: The average displacement metric values for CTP problems using EA,
SAE-EA and SAR-EA

Problem EA SAE-SS SAE-MAS SAR

CTP2 0.0261 0.0360 0.0348 0.0345
CTP3 0.1313 0.1996 0.1901 0.1652
CTP4 0.1825 0.2381 0.2294 0.2595
CTP5 0.0170 0.0247 0.0233 0.0219
CTP6 0.1350 0.1120 0.1001 0.0219

Table 4.16: The worst displacement metric values for CTP problems using EA, SAE-EA
and SAR-EA

Problem EA SAE-SS SAE-MAS SAR

CTP2 0.1292 0.1154 0.1157 0.1194
CTP3 0.6385 0.6879 0.5126 0.6187
CTP4 0.6385 0.7590 0.7486 0.7412
CTP5 0.1141 0.1213 0.0837 0.1209
CTP6 0.4042 0.4159 0.3688 0.1209

a run corresponding to the average displacement metric are shown in Figure 4.8.

(The dash-dot line in figures show the constraint boundary.) The spatial surro-

gates have difficulty capturing multi-modal variation of the constraint function

everywhere and are able to capture only some of the regions of the disconnected

Pareto fronts.

4.6 Summary

Spatial surrogate modeling, a framework for surrogate modeling in EA using

multiple types of surrogate models is proposed. Spatial surrogate models are

trained using an archive of all the solutions generated during the evolutionary

search and evaluated using actual analysis. As the population migrates towards

4.6. SUMMARY 93

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f
1
(x)

f 2(x
)

EA
SAE SS
SAE MAS
SAR

(a) ctp2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f
1
(x)

f 2(x
)

EA
SAE SS
SAE MAS
SAR

(b) ctp3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f
1
(x)

f 2(x
)

EA
SAE SS
SAE MAS
SAR

(c) ctp4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f
1
(x)

f 2(x
)

EA
SAE SS
SAE MAS
SAR

(d) ctp5

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

f
1
(x)

f 2(x
)

EA
SAE SS
SAE MAS
SAR

(e) ctp6

Figure 4.8: Non-dominated solutions obtained using EA, SAE-EA and SAR-EA for CTP
problems

the region(s) containing optimum solutions as a result of the evolutionary search,

spatial surrogates trained using these solutions approximate the regions (contain-

ing optimum solutions) better and can converge faster using the spatial surro-

94 CHAPTER 4. SURROGATE ASSISTED EA

gate models. The offspring solutions are periodically evaluated using the actual

simulations to ensure that the spatial surrogate assisted search is not misguided.

Spatial surrogates use a fraction of the solutions in the archive for training and the

rest of the solutions are used to validate the spatial surrogate models to ensure

good prediction generalization and avoid over-fitting. In the spatial surrogate

modeling framework, either a single or multiple surrogate models can be built.

The K-Means clustering algorithm is used to partition the solutions in the archive

into multiple clusters and individual spatial surrogate model is built using the

solutions belonging to each cluster. The specification of number of partitions for

multiple spatial surrogates is difficult in general and an adaptive approach based

on prediction accuracy is proposed for multiple adaptive surrogates.

Two surrogate assisted evolutionary algorithms are proposed using spatial

surrogates – surrogate assisted evaluation and surrogate assisted recombination.

In SAE-EA, the spatial surrogates are used in lieu of the expensive analysis for

evaluating the fitness of the candidate solutions generated in the evolutionary

search. In SAR-EA, the candidate solutions are evaluated using the actual anal-

ysis, but the candidate solutions are selected using the fitness derived from spatial

surrogates. The proposed algorithms are tested on a number of unconstrained

and constrained, single and multi-objective optimization problems. The findings

are listed below.

1. Spatial surrogate models using RSM and RBF are able to approximate the

responses for most of the optimization problems except functions f04, f08,

f09, g02, g08, ZDT4, ZDT5, CTP7 and CTP8. One reason for surrogate

models unable to approximate these functions is the limited number of

training samples. In this study, the maximum number of training solutions

used is 500. Spatial surrogates are able to approximate Rastrigin function

4.6. SUMMARY 95

with ten variable using 500 training solutions, but not when there are 30

variables. Using other types of surrogate models, e.g. Kriging or MLP,

might help in approximating the responses at the cost of increased training

time or requiring specification of additional parameters.

2. With a small value for the prediction error threshold (0.02 in this case),

spatial surrogate models could not be built for f02, f10, f12, g09 and ZDT3

in many of the runs. However, the prediction error threshold value of 0.05

has worked across all the problems.

3. The surrogate assisted evaluation (SAE-EA) algorithm outperforms EA for

unconstrained and constrained single objective optimization problems. The

objective values obtained using SAE-EA for single objective optimization

problems, in many cases, are orders of magnitude better than EA.

4. In surrogate assisted recombination (SAR-EA) algorithm, spatial surrogate

models are exploited to find solutions very close to the optimum solutions

within 1,000 evaluations for single objective problems f01, f03, f06, f07, g01,

g04, g06 and g07.

5. In the case of unconstrained multi-objective optimization problems, SAE-EA

and SAR-EA outperform EA for problems ZDT1 and ZDT2.

6. For CTP problems, handling a multi-modal constraint function is quite

challenging. Multiple adaptive surrogates perform better than single sur-

rogates for problems CTP2–CTP5. The non-dominated solutions obtained

using SAE-EA and SAR-EA reach the regions of the Pareto optimal solu-

tions faster than EA. Closer to the Pareto optimal front, the convergence is

dictated by the accuracy of approximation of the constraint function. Solu-

96 CHAPTER 4. SURROGATE ASSISTED EA

tions assessed feasible by spatial surrogates can be in reality infeasible and

for problems CTP2–CTP5 the narrow feasible regions present additional

difficulty.

The studies on the constrained optimization problems have highlighted the

problem of misjudging feasibility of solutions using the spatial surrogate models.

This can adversely affect the performance of spatial surrogate assisted EAs when

the constraint functions are highly multi-modal. Instead of treating the solutions

infeasible outright, “softer” handling of constraint violations may be required to

keep up the performance of SAE-EA and SAR-EA for constrained optimization

problems. A constraint handling method that does not discard infeasible solutions

during evolutionary search is proposed in the next chapter and the benefits, if

any, are studied in the context of an EA.

Chapter 5

Constraint Handling in EA

5.1 Overview

Real life optimization problems involve one or more constraints and in most

cases, the optimal solutions to such problems lie on constraint boundaries. The

performance of a constrained optimization algorithm is known to be largely

dependent on the mechanism used for constraint handling. Evolutionary al-

gorithms in general lack explicit mechanisms to handle constraints. However,

many methods have been proposed in the literature to handle constraints within

EA. The proposals include use of a composite penalty function that converts the

values of the objectives and the constraints into a single fitness value, treating

the constraint as additional objectives and solving the constrained problem as

a multi-objective optimization problem. The existing methods of constraint

handling are discussed in Section 5.2.

Most of the constraint handling techniques focus on generating the best

feasible solution of the problem and hence a feasible solution is always considered

better than an infeasible solution during the course of the evolution. This

97

98 CHAPTER 5. CONSTRAINT HANDLING IN EA

fundamental assumption always drives the population first towards feasibility and

then towards a constraint boundary from within the feasible region. In reality

a designer is often interested to look at the solutions that might be marginally

infeasible in addition to the optimum solutions. Hence, a marginally infeasible

solution near the constraint boundary is more desirable than a poor feasible

solution away from the constraint boundary.

In this chapter, a constraint handling method is proposed that searches through

the infeasible as well as the feasible regions. The constraint handling method

maintains infeasible solutions in the population and ranks a few infeasible so-

lutions higher than feasible solutions to focus the search along the constraint

boundary. The mechanism of maintaining infeasible solutions in the population

is described in Section 5.3. An infeasibility driven evolutionary algorithm (IDEA)

using the proposed constraint handling method is proposed in Section 5.4. In

IDEA, the original constrained optimization problem is converted into an un-

constrained optimization problem with an additional objective that represents

constraint violation measure. The performance of IDEA is compared to EA

on a number of single and multi-objective constrained optimization problems in

Section 5.5. The summary of findings is presented in Section 5.6.

5.2 Constraint Handling Methods

The most common approach for constraint handling in EA is to use a penalty

function. A penalty function converts a constrained optimization problem into an

unconstrained optimization problem. There are two types of penalty functions

used in optimization: interior and exterior with respect to the feasible design

space. Using an interior penalty function, a small penalty is imposed on feasible

5.2. CONSTRAINT HANDLING METHODS 99

solutions far away from the constraint boundary and the penalty approaches

infinity as the solutions approach the constraint boundary. Since interior penalty

methods require a feasible starting point, they are not preferred. The exterior

penalty methods can handle infeasible solutions and are used in EA. An exterior

penalty function is formulated as,

fp(x) = f(x) +
m
∑

i=1

wi ∗G(gi(x)) (5.1)

where fp(x) is the penalty function, f(x) is the original objective, gi(x) are the

constraints and wi are the penalty factors for each constraint. The functionG(·) is

0 if the constraint is satisfied and takes the value of the constraint violation if the

constraint is not satisfied. (See [128] for detailed discussion on penalty functions.)

The various EA implementations using penalty function include – static penalty

where the penalty function is fixed [129, 130]; dynamic penalty where the penalty

factors are derived from the current EA generation [131]; annealing penalty where

the penalty is increased over time in the fashion of SA [132, 133]; adaptive penalty

where the penalty is scaled based on the success or failure of the evolutionary

search [134, 135, 136, 137]; and death penalty where the solution is assigned zero

fitness if it violates any of the constraints [138]. The penalty function approach

though simple, requires assignment of penalty factors which are often obtained

based on trial and error and the result of optimization is known to be highly

sensitive to the choice of the penalty factors. Runarsson and Yao [139] have

proposed stochastic ranking to balance between the objective and the penalty.

Although this approach does not need any penalty factors, it uses a probability

value (between 0.4 and 0.5) to compare infeasible individuals. Xiao and Zu [140]

extended this method for multi-objective optimization.

100 CHAPTER 5. CONSTRAINT HANDLING IN EA

In an attempt to alleviate the problem of specifying penalty factors, a number

of alternate approaches have been proposed. These include special representation

schemes to maintain feasibility [141], search for the constraint boundary by

crossing the boundary back and forth using special operators [142], transforming

the original problem into easier to optimize function using homomorphous map-

ping [143], and use of repair algorithms [144, 145, 146, 147]. The main drawbacks

of these approaches are the need to develop problem specific representation

schemes and corresponding operators, problem specific repair mechanisms (to

produce feasible solutions from infeasible solutions), extra computational effort

in the operators, and early loss of diversity.

Another method for constraint handling is to handle feasible and infeasible

solutions separately. Powell and Skolnick [148] mapped the feasible solutions in

the interval (−∞, 1) and infeasible solutions in the interval (1,∞) to construct a

single fitness function. A similar approach by Deb [149] used the objective value

as the fitness for the feasible solutions and the total constraint violation as fitness

for infeasible solutions. This constraint handling is now part of NSGA-II. For

single objective optimization, Coello [150] proposed to split the population into

1+m (where m is the number of constraints) sub-populations, each population

using either the objective or one of the constraints as the fitness function.

Dominance based constraint handling approaches convert the constrained op-

timization problem (with k objectives) into multi-objective (k+1 objectives or k+

m objectives, where m is the number of constraints) unconstrained optimization

problem. Surry and Radcliffe [151] proposed COMOGA, in which the solutions

are Pareto ranked based on the sum of constraint violation and the binary

tournament that uses either the ranks of the solutions or the objective function

values dynamically based on a parameter. Camponagara and Talukdar [152] used

5.2. CONSTRAINT HANDLING METHODS 101

the sum of constraint violations as the additional objective. For single objective

optimization, Coello [153] used constraints as additional objectives and solved the

multi-objective optimization problem using NPGA. For multi-objective problems

Vieira et al. [154, 155] used constrains as additional objectives with modified

Parks & Miller elitist technique. In the above approaches a significant time may

be spent on non-dominated sorting in the presence of large number of constraints.

There is also a risk of generating solutions excellent objective function values but

with poor constraint satisfaction.

Few researchers have proposed maintaining a proportion of infeasible solutions

in the population during the evolution. Hamida and Schoenauer [156] developed

adaptive segregational algorithm (ASCHEA), where the proportion of infeasible

solutions in the population was controlled using an adaptive penalty. The ap-

proach used single penalty coefficient for all constraints, and was later extended

to incorporate a separate penalty coefficient for each constraint [157]. Hinterding

and Michalewicz [158] proposed CONGA for constraint handling using effective

parent matching, where mating was done between two infeasible solutions satisfy-

ing different constraints to create offspring which would satisfy all the constraints.

Mezura-Montes and Coello [159] suggested a simple multi-membered evolution

strategy (SMES) where the “best” infeasible solution determined by its objective

function value is allowed to be copied into the next generation. Though these

algorithms effectively illustrated the benefits of preserving infeasible solutions in

the population, their scope was limited to single-objective optimization problems.

102 CHAPTER 5. CONSTRAINT HANDLING IN EA

5.3 Maintaining Infeasible Solutions

To enable EA to search through the feasible and the infeasible regions of the

design space, the population must contain infeasible solutions. In the absence

of infeasible solutions, the search will always be restricted to the feasible region.

In NSGA-II (EA used in this study), the infeasible solutions are eliminated from

the population since the elite preservation mechanism prefers feasible solutions to

infeasible solutions. In the proposed approach, the elite preservation mechanism

is modified to select a few infeasible solutions along with the feasible solutions.

Then the question is how many infeasible solutions are to be retained. A user

defined parameter, infeasible ratio, is introduced to determine the number of

infeasible solutions in the population. The infeasible ratio denotes the percentage

of the population to be retained infeasible.

The evolutionary search in NSGA-II is controlled by the selection, crossover

and mutation operators. The selection process chooses the solutions for mating.

The creation of offspring is dictated by the crossover operation. Two feasible

solutions undergoing crossover are most likely to produce feasible offspring. If

only the feasible parents are used in the evolution process, the search will be

restricted to the feasible region. To be able to search through the infeasible space,

the evolution process must create infeasible offspring and therefore must select

infeasible solutions are parents. Selection is another place in NSGA-II where the

feasible solutions are preferred over the infeasible solutions. The selection process

uses a binary tournament between two solutions to determine a parent as follows.

1. If both solutions are feasible, the solution with the better objective value

wins.

2. If both solutions are infeasible, the solution with the smaller constraint

5.3. MAINTAINING INFEASIBLE SOLUTIONS 103

violations wins.

3. If one solution is feasible and other is infeasible, the feasible solution wins.

Using this mechanism, an infeasible solution can be selected as a parent only if

both the solutions undergoing binary tournament are infeasible.

The solutions to the constrained problems are often on the constraint bound-

ary and searching near the constraint boundary can increase the chances of finding

the optimum solutions. The region around the constraint boundary can explored

by crossover between a feasible and an infeasible solutions. In the proposed

approach this is achieved by promoting the infeasible solutions over feasible

solutions. Few of the infeasible solutions in the population are ranked higher

than the feasible solutions as depicted in Figure 5.1. Let N , Nf , Ninf , α be the

population size, the numbers of feasible and infeasible solutions, and the infeasible

ratio respectively. Let Nr = α × N be the number of infeasible solutions to be

retained in the population. The feasible and the infeasible solutions are ranked

separately using appropriate techniques. The combined ranks are assigned in the

following way. If the number of infeasible solutions (Ninf) is more than Nr, then

the first Nr solutions are selected based on the rank; otherwise all the infeasible

solutions are selected. These solutions are ranked from 1 to Nr. Then all the

feasible solutions are ranked from Nr + 1 to Nr + Nf based on their rank. Any

infeasible solutions left are assigned ranks starting from Nr+Nf +1. Additionally,

the binary tournament is modified to compare only the ranks of the solutions and

pick the solution with a lower rank as the winner.

The proportion of infeasible solutions in the population is controlled by the

parameter infeasible ratio. It takes values between zero and one. A zero value

for the infeasible ratio means no infeasible solutions and a value of one means all

104 CHAPTER 5. CONSTRAINT HANDLING IN EA

feasible

infeasible

Nr

1

1

Nf

Ninf

Figure 5.1: Ranking procedure to retain infeasible solutions in the population

the solutions are infeasible. In the case of multi-objective optimization problems,

if a large proportion of solutions are infeasible, then the entire Pareto front may

not be represented by the small number of feasible solutions. In case of single

objective optimization, there is no such limitation on the number of infeasible

solutions in the population. As the primary motivation of maintaining infeasible

solutions in the population is to aid the search through infeasible space, even a

small fraction of infeasible solutions is adequate.

5.4 Infeasibility Driven EA (IDEA)

The proposed infeasibility driven evolutionary algorithm uses a multi-objective

formulation of the optimization problem for constraint handling. The original k

objective constrained optimization problem is reformulated as k+1 objective un-

constrained optimization problem as given in Equation 5.2. The first k objectives

are the same as in the original optimization problem. The additional objective

5.4. INFEASIBILITY DRIVEN EA (IDEA) 105

represents a measure of constraint violation.

Minimize f ′

1(x) = f1(x), . . . , f ′

k(x) = fk(x)

f ′

k+1(x) = Violation measure

(5.2)

The main steps of IDEA are the same as EA as outlined in Algorithm 2.1. The

feasible solutions are ranked using non-dominated sorting and crowding distance

for more than one objectives. For the feasible solutions, the constraint violation

measure is zero and non-dominated sorting with k+1 objectives is the same as the

non-dominated sorting with original k objectives. In the case of single objective

optimization, the feasible solutions are sorted based on the objective value. The

infeasible solutions are ranked with k+1 objectives using non-dominated sorting

and crowding distance. Since the violation measure value for feasible solutions

is zero and for infeasible solutions greater than zero, all the solutions can be

sorted together. The combined ranks are assigned as shown in Figure 5.1. Two

constraint violation measures are considered.

5.4.1 Constraint Violation Count

To anchor the infeasible solutions on the infeasible region of the design space, the

solutions to the unconstrained version (obtained by dropping constraints) of the

optimization problem are considered. For the constrained optimization problem,

the optimum solutions lie on the constraint boundary (provided the constraints

are active). The solutions of the unconstrained problem obtained by dropping

the constraints in the original problem would lie in the infeasible region of the

original problem. These solutions would violate one or more constraints in the

original problem. If the constraints are active but redundant, then the solutions

106 CHAPTER 5. CONSTRAINT HANDLING IN EA

to the original problem and the unconstrained problem coincide. Thus, one of the

ways to find infeasible solutions is to consider the number of violated constraints

as additional objective. This forms the Constraint violation count measure.

The results of CTP problems (CTP2–CTP4 and CTP6–CTP8) using IDEA

with constraint violation count are shown in Fig 5.2 and Figure 5.3. The figures on

the left hand side show the non-dominated solutions obtained using additional

objective in the modified formulation, the figures on the right are the IDEA

solutions plotted in the objective space of the original problem. These results

are obtained for a population size of 100 evolved over 200 generations using an

infeasible ratio of 0.4. The non-dominated solutions obtained by IDEA for a

modified CTP2 problem is shown in Figure 5.2(a). The solutions corresponding

to f3 = 0 (zero constraint violation) are the solutions of the original constrained

CTP2 problem. The solutions corresponding to f3 = 1 represent the solutions to

the unconstrained problem with a single constraint violation. The same solutions

are plotted in the objective space for the original CTP2 problem in Figure 5.2(b).

For CTP3 and CTP4, the Pareto optimal front comprises of discontinuous regions

with a single point in each region. The search from the feasible side has to move

along the narrow regions of the feasible space for CTP4 (Figure 5.2(f)) and many

evolutionary algorithms have difficulty to find the Pareto optimal solutions for

such problems.

CTP6 has many local Pareto fronts and the solutions can get trapped in

the non-optimal Pareto fronts. The presence of infeasible solutions helps the

feasible solutions to move towards the Pareto optimal front early in the search.

The non-dominated solutions for the constrained and the unconstrained CTP6

problem are shown in Figure 5.3(a) and Figure 5.3(b). The Pareto optimal

solutions for CTP7 form a subset of the solutions to the unconstrained CTP7

5.4. INFEASIBILITY DRIVEN EA (IDEA) 107

0

0.5

1

0

0.5

1

1.5
0

0.2

0.4

0.6

0.8

1

f 3

f
1

f
2

(a) CTP2 - modified POF

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f
1

f 2

Constrained ND
Unconstrained ND
Pareto Front for Unconstrainted Problem
Pareto Front for Constrainted Problem

(b) CTP2 - original POF

0

0.5

1

0

0.5

1

1.5
0

0.2

0.4

0.6

0.8

1

f 3

f
1

f
2

(c) CTP3 - modified POF

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f
1

f 2

Constrained ND
Unconstrained ND
Pareto Front for Unconstrainted Problem
Pareto Front for Constrainted Problem

(d) CTP3 - original POF

0

0.5

1

0

0.5

1

1.5
0

0.2

0.4

0.6

0.8

1

f 3

f
1

f
2

(e) CTP4 - modified POF

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f
1

f 2

Constrained ND
Unconstrained ND
Pareto Front for Unconstrainted Problem
Pareto Front for Constrainted Problem

(f) CTP4 - original POF

Figure 5.2: IDEA results for CTP2, CTP3 and CTP4 using constraint violation count
measure.

108 CHAPTER 5. CONSTRAINT HANDLING IN EA

0

0.5

1

0
1

2
3

4
0

0.2

0.4

0.6

0.8

1

f 3

f
1

f
2

(a) CTP6 - modified POF

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

f
1

f 2

Constrained ND
Unconstrained ND
Pareto Front for Unconstrainted Problem
Pareto Front for Constrainted Problem

(b) CTP6 - original POF

0

0.5

1

0

0.5

1

1.5
0

0.2

0.4

0.6

0.8

1

f 3

f
1

f
2

(c) CTP7 - modified POF

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f
1

f 2

Constrained ND
Unconstrained ND
Pareto Front for Unconstrainted Problem
Pareto Front for Constrainted Problem

(d) CTP7 - original POF

0

0.5

1

0
1

2
3

4
0

0.5

1

1.5

2

f
1

f
2

f 3

(e) CTP8 - modified POF

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

f
1

f 2

Constrained ND
Unconstrained ND
Pareto Front for Unconstrainted Problem
Pareto Front for Constrainted Problem

(f) CTP8 - original POF

Figure 5.3: IDEA results for CTP6, CTP7 and CTP8 using constraint violation count
measure.

5.4. INFEASIBILITY DRIVEN EA (IDEA) 109

problem (Figure 5.3(d)). The solutions of the constrained CTP7 problem appear

as holes in the non-dominated set of solutions for the unconstrained problem (f3 =

1) as shown in Figure 5.3(c). For CTP8, the solutions corresponding to a single

constraint violation (f3 = 1) and both constraint violations (f3 = 2) are shown in

Figure 5.3(e). As seen in Figure 5.3(f), the solutions to the unconstrained CTP8

problem correspond to either one or both constraint violations.

5.4.2 Constraint Relative Rank

The infeasible solutions obtained using constraint violation count are on the

Pareto optimal front of the unconstrained version of the optimization problem.

This Pareto optimal front can be quite far from the constraint boundary, or

it might intersect partially or fully with the constraint boundary. Infeasible

solutions far away from the constraint boundary are of not much interest to the

designers as compared to marginally infeasible solutions. To restrict the infeasible

solutions moving too far away from the constraint boundary a constraint relative

rank measure is proposed.

The constraint relative rank measure is based on the amount of relative

constraint violation among the population members. The constraint relative

rank of a solution is based on the constraint violation levels for all constraint

values for that solution. Consider one of the constraints (gi). All the solutions in

the population are sorted in ascending order based on the value of the constraint

violation for gi. The solution with the least constraint violation value gets first

rank. The solutions that do not violate the constraint gi have zero constraint

violation and get zero rank. Each solution is assigned a constraint violation

rank for constraint gi based on the sorted list. Solutions with the same value of

constraint violation get the same rank. This ranking procedure is repeated for all

110 CHAPTER 5. CONSTRAINT HANDLING IN EA

the constraints. The constraint relative rank for each solution is then calculated

as the sum of the ranks (based on constraint violation level) obtained for all the

constraints.

The process of determining constraint relative ranks is illustrated using an

example. Consider an optimization problem with three constraints (g1, g2, g3).

A sample population of ten individuals is shown in Table 5.1. For each solution,

the first three columns contain the value of the constraint violation (which is

the absolute value of the constraint function). The constraint violation values

are sorted for each constraint and each solution is assigned relative ranks for the

constraints. The relative ranks are shown in the next three columns. Solutions 3,

7 and 9 do not violate constraint g1 and get a zero relative rank. Solution 4 with

the least constraint violation value of 1.25 for g1 gets first rank and solution 6 with

the highest constraint violation value of 100.70 gets seventh rank. The constraint

violation measure as the sum of the ranks with respect to each constraint is given

in the last column.

Table 5.1: Calculation of constraint relative rank (CRR)

Violations Relative ranks
Solution g1 g2 g3 g1 g2 g3 CRR

1 3.50 90.60 8.09 3 8 7 18
2 5.76 7.80 6.70 4 6 5 15
3 0.00 3.40 7.10 0 4 6 10
4 1.25 0.00 0.69 1 0 1 2
5 13.75 90.10 5.87 6 7 4 17
6 100.70 2.34 3.20 7 3 2 12
7 0.00 5.09 4.76 0 5 3 8
8 1.90 0.00 0.00 2 0 0 2
9 0.00 0.56 0.00 0 1 0 1
10 8.90 2.30 9.80 5 2 8 15

5.5. RESULTS OF NUMERICAL BENCHMARKS 111

It can be seen that the violation measure favors solutions with good ranks for

most (or all) of the constraints. As a result, a solution with a large violation

in only one of the constraints would roughly have the same preference as a

solution with marginal violations of multiple constraints. The violation measure

is used as the additional objective in IDEA to rank the infeasible solutions using

non-dominated sorting. Consequently, the final population will contain solutions

with marginal constraint violations.

5.5 Results of Numerical Benchmarks

The performance of IDEA using the constraint relative rank procedure is com-

pared to EA using single and multi-objective constrained optimization test prob-

lems. The test problems used for single objective optimization are g-series prob-

lems (refer to Appendix B for details) and CTP (refer to Appendix D for details)

for multi-objective optimization. All the problems are solved as minimization

problems.

5.5.1 Experimental Setup

For single objective optimization problems the number of function evaluations is

limited to 4,000 with the population size of 40. Both the algorithms, EA and

IDEA, are run for 100 generations. For multi-objective optimization problems

the number of function evaluations used is 20,000 with the population size of 100

evolved over 200 generations.

Multiple runs are performed for EA and IDEA by varying the parameters

similar to the surrogate assisted EA as described in Section 4.5.1. Two values each

are considered for EA parameters – crossover probability, mutation probability,

112 CHAPTER 5. CONSTRAINT HANDLING IN EA

crossover distribution index and mutation distribution index. Four values of

random seed are considered. The parameters values used are the same as listed

in Table 4.1. The number of independent runs for each problem using EA is 64.

In IDEA, there is an additional parameter, the infeasible ratio. Two values are

considered for the proportion of infeasible solutions retained in the population,

10% and 20%. The number of independent runs for each problem using IDEA

are (64× 2 =) 128.

5.5.2 Single Objective Optimization

The best objective values obtained for g-series problems with EA and IDEA are

listed in Table 5.2. The objective values using IDEA are better than EA for

problems g01, g02, g04 and g10 and similar for the rest of the problems. The

average performance of IDEA is better than EA in all the problems except g01

as seen from Table 5.3. For g01, the average values of the objective function are

close. A similar trend can be observed for the worst values reported using EA and

IDEA in Table 5.4. The worst objective values obtained using IDEA are much

lower than the values obtained using EA. For problem g02 the worst objective

values are the same for EA and IDEA.

The convergence trends for EA and IDEA on g-series problems are shown

in Figure 5.4 and Figure 5.5. The convergence rate of IDEA is better than

EA for problems g02, g04, g07 and g10 as the objective values continue to fall

over generations (or equivalently number of function evaluations) more rapidly

in IDEA than EA. For the rest of the problems the trends are similar without

significant improvement.

One of the advantages of IDEA is that the final population contains a few

infeasible solutions that marginally violate one or more constraints. Such trade-off

5.5. RESULTS OF NUMERICAL BENCHMARKS 113

Table 5.2: Best objective values for g-series problems using EA and IDEA

Problem Optimum EA IDEA

g01 -15 -14.72 -14.83
g02 -0.8036 -0.74 -0.78
g04 -30665.539 -30578.3 -30658.5
g06 -6961.81 -6847.95 -6932.74
g07 24.306 25.76 25.62
g08 -0.0958 -0.0958 -0.0958
g09 680.63 681.81 681.11
g10 7049.33 7415.57 7451.15

Table 5.3: Average objective values for g-series problems using EA and IDEA

Problem Optimum EA IDEA

g01 -15 -12.92 -12.78
g02 -0.8036 -0.62 -0.65
g04 -30665.539 -30225.23 -30440.94
g06 -6961.81 -4901.43 -5863.24
g07 24.306 62.44 32.99
g08 -0.0958 -0.0751 -0.0816
g09 680.63 697.83 690.46
g10 7049.33 11193.19 10704.61

Table 5.4: Worst objective values for g-series problems using EA and IDEA

Problem Optimum EA IDEA

g01 -15 -7.22 -7.31
g02 -0.8036 -0.44 -0.44
g04 -30665.539 -29799.2 -29891.9
g06 -6961.81 -1240.14 -4764.37
g07 24.306 779.72 55.66
g08 -0.0958 -0.0227 -0.0258
g09 680.63 794.04 727.02
g10 7049.33 22587.5 16290.9

114 CHAPTER 5. CONSTRAINT HANDLING IN EA

0 500 1000 1500 2000 2500 3000 3500 4000
−16

−14

−12

−10

−8

−6

−4

−2

Function Evaluations

O
bj

ec
tiv

e

EA
IDEA

(a) g01

0 500 1000 1500 2000 2500 3000 3500 4000
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Function Evaluations

O
bj

ec
tiv

e

EA
IDEA

(b) g02

0 500 1000 1500 2000 2500 3000 3500 4000
−3.1

−3.05

−3

−2.95

−2.9

−2.85

−2.8
x 10

4

Function Evaluations

O
bj

ec
tiv

e

EA
IDEA

(c) g04

0 500 1000 1500 2000 2500 3000 3500 4000
−7000

−6500

−6000

−5500

−5000

−4500

−4000

−3500

−3000

−2500

−2000

Function Evaluations

O
bj

ec
tiv

e

EA
IDEA

(d) g06

Figure 5.4: Average convergence trends of EA and IDEA for g-series problems (g01,
g02, g04 and g06)

solutions can be of importance to the designers as these solutions illustrate the

quantifiable improvement in the objective value if one or more constraints are

relaxed. Listed in Table 5.5 are some of the infeasible solutions obtained by

IDEA, the objective values and the constraint violations. The optimum objective

value for problem g06 is -6961.81. Better objective values can be obtained

by relaxing one or both the constraints as seen in Table 5.5. The constraint

violations values for both the constraints are orders of magnitude smaller than

the average constraint violation values in the initial population of EA and IDEA.

The constraint violation values are, in fact, of the same order as the constraint

values of the feasible solutions close to the optimum. Thus, allowing marginal

5.5. RESULTS OF NUMERICAL BENCHMARKS 115

0 500 1000 1500 2000 2500 3000 3500 4000
0

500

1000

1500

2000

2500

3000

3500

Function Evaluations

O
bj

ec
tiv

e

EA
IDEA

(a) g07

0 500 1000 1500 2000 2500 3000 3500 4000
−0.1

−0.05

0

0.05

0.1

0.15

Function Evaluations

O
bj

ec
tiv

e

EA
IDEA

(b) g08

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5
x 10

4

Function Evaluations

O
bj

ec
tiv

e

EA
IDEA

(c) g09

0 500 1000 1500 2000 2500 3000 3500 4000
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

4

Function Evaluations

O
bj

ec
tiv

e

EA
IDEA

(d) g10

Figure 5.5: Average convergence trends of EA and IDEA for g-series problems
(g07–g10)

constraint violation can improve the objective value by up to 5%.

5.5.3 Multi-objective Optimization

A summary of the displacement metric values for the non-dominated solutions

obtained using EA and IDEA for CTP problems is listed in Table 5.6. It can

be seen from the minimum values of the displacement metric that the best

non-dominated solutions obtained using EA and IDEA are very close to the

Pareto front. The average values of the displacement metric for IDEA are

consistently better than EA. It indicates that IDEA has better convergence for

116 CHAPTER 5. CONSTRAINT HANDLING IN EA

Table 5.5: Marginally infeasible solutions obtained using IDEA for problem g06

x1 x2 f C1 C2

14.0951 0.8403 -6964.7233 0.0 0.0236
14.0587 0.8028 -7007.9283 0.3235 0.0
14.0622 0.7722 -7041.6570 0.0021 0.0635
14.0589 0.7001 -7121.5879 0.0 0.6213
13.9484 0.5316 -7317.2921 0.0398 0.3330
13.8099 0.2998 -7590.2439 0.2931 0.2769

CTP problems than EA. Also the worst performance of IDEA is as good as EA

for problems CTP2, CTP3, CTP4 and CTP5 and better than EA for problems

CTP6, CTP7 and CTP8.

Table 5.6: Summary of Displacement metric for CTP problems using EA and IDEA

EA IDEA
Problem Min Average Max Min Average Max

CTP2 0.0001 0.0174 0.0830 0.0002 0.0131 0.0830
CTP3 0.0052 0.0930 0.4118 0.0051 0.0680 0.4118
CTP4 0.0397 0.1331 0.4118 0.0274 0.0904 0.4118
CTP5 0.0005 0.0142 0.0767 0.0004 0.0124 0.0767
CTP6 0.0008 0.0543 0.3460 0.0008 0.0027 0.0253
CTP7 0.0001 0.0263 0.1432 0.0001 0.0165 0.0615
CTP8 0.0063 0.2005 0.3996 0.0004 0.0126 0.0672

The non-dominated solutions in a runs corresponding to the average displace-

ment metric values of EA and IDEA for CTP problems are shown in Figure 5.6. It

can be seen that EA solutions have converged to a local Pareto front for problems

CTP2 and CTP3. For problem CTP4, EA has difficulty searching along the

narrow feasible regions whereas IDEA can reach the tips of the feasible region

traversing through the infeasible region. For problem CTP5, EA solutions have

converged only on the small part of the Pareto front. Once the population has

5.6. SUMMARY 117

converged, EA has to rely on mutation operation (which is usually performed

with a very small probability) to spread the solutions across the Pareto front.

In IDEA, the presence of infeasible solutions can generate solutions across the

entire Pareto front using crossover operation. This behaviour is also seen for

problem CTP6. For problem CTP7, EA solutions have not converged during 200

generations, but IDEA solutions have reached the Pareto front.

The benefit of maintaining infeasible solutions in the population can be seen

by observing the evolution of IDEA population across generations. Shown in

Figure 5.7 are the non-dominated solutions obtained by EA and IDEA in few

generations for problem CTP2. Also, the infeasible solutions in the population

using IDEA are shown as crosses. In generation 70, the non-dominated solutions

of EA have covered the few disconnected regions of the Pareto front. The same is

true for non-dominated solutions by IDEA. In generations 100, 130, 160 and 190

IDEA solutions have progressively spread to other regions of the Pareto front,

whereas EA solutions spread much more slowly. With the infeasible solutions

close to the constraint boundary, the IDEA population can move across the

infeasible regions and cover the entire Pareto front easily.

5.6 Summary

A novel algorithm, Infeasibility Driven evolutionary algorithm (IDEA), is pro-

posed for constrained optimization problems. IDEA maintains infeasible solutions

in the population and assigns higher ranks to a few infeasible solutions to actively

search through the infeasible regions of the design space. Two methods are

proposed to assign ranks – constraint violation rank and constraint relative

rank. Using constraint violation rank, one can solve the unconstrained and

118 CHAPTER 5. CONSTRAINT HANDLING IN EA

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f
1
(x)

f 2(x
)

EA
IDEA

(a) CTP2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f
1
(x)

f 2(x
)

EA
IDEA

(b) CTP3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f
1
(x)

f 2(x
)

EA
IDEA

(c) CTP4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f
1
(x)

f 2(x
)

EA
IDEA

(d) CTP5

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

f
1
(x)

f 2(x
)

EA
IDEA

(e) CTP6

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f
1
(x)

f 2(x
)

EA
IDEA

(f) CTP7

Figure 5.6: Non-dominated solutions obtained using EA and IDEA for CTP problems
in a median run

5.6. SUMMARY 119

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f
1
(x)

f 2(x
)

EA
IDEA
IDEA Inf

(a) Generation 40

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f
1
(x)

f 2(x
)

EA
IDEA
IDEA Inf

(b) Generation 70

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f
1
(x)

f 2(x
)

EA
IDEA
IDEA Inf

(c) Generation 100

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f
1
(x)

f 2(x
)

EA
IDEA
IDEA Inf

(d) Generation 130

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f
1
(x)

f 2(x
)

EA
IDEA
IDEA Inf

(e) Generation 160

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f
1
(x)

f 2(x
)

EA
IDEA
IDEA Inf

(f) Generation 190

Figure 5.7: Evolution of Non-dominated solutions over generations for problem CTP2
using EA and IDEA

120 CHAPTER 5. CONSTRAINT HANDLING IN EA

the constrained versions of the optimization problem simultaneously. Although,

IDEA can search through the infeasible region using this measure, the infeasible

solutions (which are the solutions of the unconstrained problem) can have very

large constraint violations and are of not much value to the designers. Constraint

relative rank measure on the other hand promotes marginally infeasible solutions,

thus retaining solutions that are close to the constraint boundaries.

The performance of IDEA is compared with EA on a number of single and

multi-objective constrained optimization problems. The average objective values

obtained for single objective optimization problems using IDEA are better than

those obtained with EA. Also the average convergence of IDEA is much faster

than EA for most of the single objective problems. The added advantage for single

objective optimization problems is that IDEA has a set of infeasible solutions in

the final population that can be used for trade-off study. These solutions can

provide significant improvement at the cost of small constraint violations. For

problem g06 the objective value can be improved by up to 5% by relaxing the

constraints marginally.

The benefits of simultaneous search through the infeasible as well as the

feasible regions are clearly evident from the results of CTP problems. The

evolutionary search in IDEA is focused near the constraint boundary resulting in

a faster convergence to the Pareto front for all CTP problems. This also prevents

solutions from getting stuck in local minima. Another advantage of IDEA is that

the non-dominated solutions can spread easily through the infeasible regions to

the neighboring disjoint parts of the Pareto front as seen in Figure 5.7.

Chapter 6

Engineering Examples

6.1 Overview

A set of engineering design examples are presented in this chapter. The problems

include Belleville and compression spring design, speed reducer gear design,

design of a pressure vessel, welded beam design and airfoil design. These problems

are well studied in the literature and are widely used to compare performance

of optimization algorithms. These engineering examples are single objective

optimization problems. The airfoil design problem is also formulated and solved

as a bi-objective optimization problem. The individual problems are discussed in

following Sections, while a summary of results for all the examples is presented

in Section 6.9.

6.2 Experimental Setup

All the engineering problems are solved using EA, SAE-EA, SAR-EA and IDEA.

For single objective optimization the number of function evaluations is limited

121

122 CHAPTER 6. ENGINEERING EXAMPLES

to 1,000 and for the bi-objective optimization problem it is set at 5,000. The

population size for single objective and bi-objective problems is set to 40 and 100

respectively. For each problem, ten independent runs are performed by varying

the random seed. The spatial surrogate models are built using RSM, RBF and

Kriging. The prediction error threshold for spatial surrogates is set to 0.05. The

retain count parameter is set to one for single objective problems and 20 for the

bi-objective problem. In SAE-EA, the spatial surrogates are periodically trained

every five generations.

6.3 Belleville Spring Design

The Belleville spring design problem is to find the minimum weight spring subject

to the stress and displacement constraints [1]. The configuration of the Belleville

spring is shown in Figure 6.1. The design variables are external diameter (De),

internal diameter (Di), thickness t, and free height h. The variable bounds are

0.01 ≤ De ≤ 6.0, 0.05 ≤ Di ≤ 0.50, 5.0 ≤ t ≤ 15.0 and 5.0 ≤ h ≤ 15.0. Other

parameters used in the design are listed in Table 6.1.

Figure 6.1: Belleville spring configuration (Source: Siddall (1982) [1])

6.3. BELLEVILLE SPRING DESIGN 123

Table 6.1: Parameters for Belleville spring design

Parameter Value

Maximum load (Pmax) 5400 lb
Maximum deflection (δmax) 0.2 in
Maximum outside diameter (Dmax) 12.01 in
Maximum allowable stress (σD) 200000 psi
Maximum total height (l) 2.0 in

The Belleville spring design optimization problem is defined as follows:

Minimize f =
0.283π(D2

e −D2
i)t

4

subject to g1 = σD − σ ≥ 0

g2 = P − Pmax ≥ 0

g3 = δl − δmax ≥ 0

g4 = l − h− t ≥ 0

g5 = Dmax −De ≥ 0

g6 = De −Di ≥ 0

g7 = 0.3− h

De −Di

≥ 0

where, σ is the stress at the upper edge (marked I in Figure 6.1), P is the load

corresponding to the limiting deflection δmax. The stress σ on the upper edge is

given by

σ =
Eδmax

(1− µ2)α(De/2)2

[

β

(

h− δmax

2

)

+ γt

]

.

124 CHAPTER 6. ENGINEERING EXAMPLES

The load P corresponding to the limiting deflection δmax is given by

P =
Eδmax

(1− µ2)αa2

[(

h− δ

2

)

(h− δ)t+ t3
]

.

The geometric parameters α, β and γ are defined in terms of K = De/Di as

follows:

α =
6

π lnK

(

K − 1

K

)2

, β =
6

π lnK

(

K − 1

lnK
− 1

)

, γ =
6

π lnK

(

K − 1

2

)

The results for the Belleville spring design obtained using EA and surrogate

assisted EA are given in Table 6.2. The best spring design with a weight of 2.29 lb

is obtained using SAE-EA with multiple adaptive surrogates which corresponds

to 9% improvement in the weight. The average and the worst spring weights

obtained using SAE-EA and SAR-EA are less than that of EA corresponding to

10–15% improvement. The performance of IDEA is comparable to SAE-EA per-

formance, which shows that the constraints play an important role in the design

of the Belleville spring. The average convergence trends for all the algorithms

are depicted in Figure 6.2. The convergence of IDEA is much faster as compared

to other algorithms.

Table 6.2: Results of Belleville spring design using EA, SAE-EA, SAR-EA and IDEA

EA SAE-SS SAE-MAS SAR IDEA

Best 2.89 2.62 2.29 2.78 2.43
Average 3.83 3.31 3.73 3.63 3.39

Worst 7.15 6.22 7.49 5.76 5.64

6.4. DESIGN OF COIL COMPRESSION SPRING 125

0 200 400 600 800 1000
2

3

4

5

6

7

8

Function Evaluations

O
bj

ec
tiv

e

EA
SAE−SS
SAE−MAS
SAR
IDEA

Figure 6.2: Average convergence of EA, SAE-EA and SAR-EA for Belleville spring
design

6.4 Design of Coil Compression Spring

A tension/compression spring is shown in Figure 6.3. The design of the spring

involves minimizing the weight of the spring subject to constraints on minimum

deflection, shear stress, surge frequency [1]. The design variables are the mean

coil diameter D, the wire diameter d and the number of active coils N .

Figure 6.3: Tension/Compression spring

126 CHAPTER 6. ENGINEERING EXAMPLES

The optimization problem is defined as follows:

Minimize f =
π2

4
(N + 2)Dd2

subject to g1 = S − Cf8Fmax
D

πd3
≥ 0

g2 = lmax − lf ≥ 0

g3 = d− dmin ≥ 0

g4 = Dmax −D − d ≥ 0

g5 = C − 3 ≥ 0

g6 = δpm −
Fp

K
≥ 0

g7 = lf − δp −
Fmax − Fp

K
− 1.05(N + 2)d ≥ 0

g8 =
Fmax − Fp

K
− δw ≥ 0

g9 =
Pcrit

1.25
− Fmax ≥ 0

where g1 is a stress constraint, g2–g5 are geometry constraints, g6–g7 are deflection

constraints and g9 is a buckling constraint. The variables used in the constraints

are defined as follows:

C =
D

d
, δ =

Fmax

K
, K =

Gd4

8ND3
, Cf =

4C − 1

4C − 4
+

0.615

C
,

lf = δ + 1.05(N + 2)d, Pcrit =
lf
K

The other parameters required for the design are specified in Table 6.3. The

variable bounds are 0.05 ≤ D ≤ 2.0, 0.25 ≤ d ≤ 1.3, 2 ≤ N ≤ 20.

The results obtained using EA, surrogate assisted EA and IDEA are listed

6.4. DESIGN OF COIL COMPRESSION SPRING 127

Table 6.3: Parameters for coil compression spring design

Parameter Value

Maximum working load (Fmax) 1000.0 lb
Maximum free length (lmax) 14.0 in
Minimum wire diameter (dmin) 0.2 in
Maximum outer diameter (Dmax) 3.0 in
Preload compression force (Fp) 300.0 lb
Maximum allowable deflection under preload (δpm) 6.0 in
Deflection from preload to maximum load (δw) 1.25 in
Maximum allowable shear stress (S) 189000 psi
Shear modulus of the material (G) 1.15e7 psi
Modulus of elasticity (E) 3.0e7 psi
End coefficient for spring (CE) 1.0

in Table 6.4. The best weight obtained for compression spring using all the

algorithms is similar. The average performance of IDEA is better than EA (more

than 5% improvement) which is better than that of SAE-EA and SAR-EA, which

indicates that the design space is highly constrained. The average convergence

trends for EA, SAE-EA, SAR-EA and IDEA are shown in Figure 6.4. It can be

observed that the feasible solutions are found after approximately 200 function

evaluations.

Table 6.4: Results of compression spring design using EA, SAE-EA, SAR-EA and IDEA

EA SAE-SS SAE-MAS SAR IDEA

Best 2.72 2.79 2.81 2.71 2.71
Average 3.62 3.91 4.3 3.72 3.41

Worst 5.03 8.95 10.71 5.93 5.24

128 CHAPTER 6. ENGINEERING EXAMPLES

0 200 400 600 800 1000
2.5

3

3.5

4

4.5

5

5.5

6

Function Evaluations

O
bj

ec
tiv

e

EA
SAE−SS
SAE−MAS
SAR
IDEA

Figure 6.4: Average convergence of EA, SAE-EA and SAR-EA for compression spring
design

6.5 Speed Reducer Design

A speed reducer configuration and a typical gear are shown in Figure 6.5. The

design variables consist of width of gear face (b) and teeth module (m), number

of pinion teeth (z), shaft lengths (l1, l2) and diameters (d1, d2) for each of the two

gears. The design problem is to minimize the weight of the speed reducer subject

to stress and geometry constraints [2].

The objective function is to minimize the weight of the speed reducer given

by

f =
2
∑

i=1

[

(d2
st(i)
− d2

w(i)
)
πb

4
+ (d2

w(i)
− d2

p(i)

πb

12
+ (d2

p(i)
− d2

(i))2b

]

+ π

2
∑

i=1

d(i)

4
l(i)

where,

dp(i)
= d(i) + 2e(i), e(i) = 0.7d(i),

dst(i) = mz(i) − 2.4m, dw(i)
= dst(i) − 4m.

6.5. SPEED REDUCER DESIGN 129

Figure 6.5: Speed Reducer and typical gear (Source: Golinski (1970) [2])

The constraints for the optimization problem are:

σy =
2Mq

bm2z
≤ kg, P 2

s =
2BM

m2z2b
≤ P 2

d

5 ≤ b

m
≤ 12, m(z1 + z2) ≤ 160

f1 =
1

48

Pl31
EI1
≤ f01 = 0.001

f1 =
1

48

Pl32
EI2
≤ f02 = 0.001

σg1 =
Mz1

Wz1

≤ kg1, σg2 =
Mz2

Wz2

≤ kg2

d2 ≥ 5, 1.5d1 + 1.9 ≤ l1, 1.1d2 + 1.9 ≤ l2

130 CHAPTER 6. ENGINEERING EXAMPLES

The bounds of the variables are – 2.6 ≤ m ≤ 3.6, 0.7 ≤ b ≤ 0.8, 17 ≤ z ≤ 28,

7.3 ≤ l1, l2 ≤ 8.3, 2.9 ≤ d1 ≤ 3.9, and 5.0 ≤ d2 ≤ 5.5. The values of other

parameters are listed in Table 6.5.

Table 6.5: Parameters for speed reducer design

Parameter Value

Transmitted Power (N) 100 km
Pinion Speed (n) 1500 1/min
Transmission Ratio (i) 3
Permissible bending stress of gear teeth (kg) 900 k G cm−2

Permissible surface compressive stress (pd) 5800 k G cm−2

Permissible bending stress for shaft 1 (kg1) 1100 k G cm−2

Permissible bending stress for shaft 2 (kg2) 850 k G cm−2

Tooth form factor (q) 2.54

The results of the speed reducer design using EA, SAE-EA, SAR-EA and

IDEA are listed in Table 6.6. All the designs obtained using SAE-EA and

SAR-EA have converged very close. The spread of the solutions is within 0.1%

of the average objective value for SAE-EA and SAR-EA, whereas the spread of

solutions for EA is more than 7% of the average objective value. The spatial

surrogates are able to create very good approximations for the objective and

the constraints, which result in a faster convergence to the best value as seen in

Figure 6.6. Although IDEA converges slower than SAE-EA and SAR-EA, the

performance of IDEA is better than EA as seen from the best, the average and

the worst objective values in Table 6.6.

6.6 Design of a Welded beam

The design of a welded beam is to minimize the manufacturing cost of the beam

subject to constraints on deflection, shear stress, bending stress and buckling

6.6. DESIGN OF A WELDED BEAM 131

Table 6.6: Results of speed reducer design using EA, SAE-EA, SAR-EA and IDEA

EA SAE-SS SAE-MAS SAR IDEA

Best 3002.73 2994.43 2994.67 2994.39 2999.6
Average 3060.56 2995.93 2995.41 2994.42 3017.82

Worst 3234.31 2999.16 2996.14 2994.46 3037.23

0 200 400 600 800 1000
2800

2900

3000

3100

3200

3300

3400

3500

3600

3700

3800

Function Evaluations

O
bj

ec
tiv

e

EA
SAE−SS
SAE−MAS
SAR
IDEA

Figure 6.6: Convergence plots for speed reducer design

load [160]. The optimization problem has four continuous design variables – h

and l are the height and the length of the weld; t and b are the thickness and the

breadth of the beam as shown in Figure 6.7.

The mathematical formulation of the optimization problem with five con-

straints is as follows:

Minimize f = 1.10471h2l + 0.04811tb(14 + l)

Subject to g1 = 0.25− δ ≥ 0

g2 = 13600− τ ≥ 0

g3 = 30000− σ ≥ 0

g4 = b− h ≥ 0

g5 = Pc − 6000 ≥ 0

132 CHAPTER 6. ENGINEERING EXAMPLES

Figure 6.7: Welded-Beam Problem Configuration

where,

δ =
2.1952

t3b

σ =
504000

t2b

Pc = 64746.022(1− 0.0282346t)tb3

τ =

√

(τ ′)2 + (τ ′′)2 +
lτ ′τ ′′

√

0.25(l2 + (h+ t)2

τ ′ =
6000√

2hl

τ ′′ =
6000(14 + 0.5l)

√

0.25[l2 + (h+ t)2]

2[0.707hl(l2/12 + 0.25(h+ t)2)]

The bounds for the design variables are 0.125 ≤ h ≤ 5.0, 0.125 ≤ t ≤ 5.0,

0.1 ≤ l ≤ 10.0 and 0.1 ≤ b ≤ 10.0.

The designs obtained using EA, SAE-EA, SAR-EA and IDEA are listed in

Table 6.7. The best design, obtained using SAE-EA, represents a cost of 2.44

which is slightly better than 2.46 obtained using EA. The average cost of the

6.7. DESIGN OF A PRESSURE VESSEL 133

welded beam obtained using SAE-EA and SAR-EA is better than that of EA.

For this problem, IDEA has better convergence among all algorithms as seen from

the small difference in the best and the worst objective values and the average

improvement in the cost by 17%. The average convergence trends are shown in

Figure 6.8. Even though the designs in the initial generations of SAE-EA and

SAR-EA have high cost, the solutions converge quickly.

Table 6.7: Results of welded beam design using EA, SAE-EA, SAR-EA and IDEA

EA SAE-SS SAE-MAS SAR IDEA

Best 2.46 2.44 2.45 2.57 2.51
Average 3.59 3.53 3.48 3.36 2.96

Worst 5.09 4.77 4.39 4.38 3.52

0 200 400 600 800 1000
2

4

6

8

10

12

14

16

Function Evaluations

O
bj

ec
tiv

e

EA
SAE−SS
SAE−MAS
SAR
IDEA

Figure 6.8: Optimization of welded beam

6.7 Design of a Pressure Vessel

A cylindrical vessel is capped at both ends by hemispherical heads as shown

in Figure 6.9. The objective is to minimize the total cost, including the cost

of material, forming and welding [161]. There are four design variables: Ts

134 CHAPTER 6. ENGINEERING EXAMPLES

(thickness of the shell), Th (thickness of the head), R (inner radius) and L (length

of the cylindrical section of the vessel, not including the head). Ts and Th are

integer multiples of 0.0625 inch, which are the available thicknesses of rolled steel

plates, and R and L are continuous.

Figure 6.9: Center and End section of the pressure vessel

The optimization problem is defined as follows:

Minimize f = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x2

1x4 + 19.84x2
1x3

subject to g1 = −x1 + 0.0193x3 ≤ 0

g2 = −x2 + 0.00954x3 ≤ 0

g3 = −πx2
3x4 −

4

3
πx3

3 + 1296000 ≤ 0

g4 = x4 − 240 ≤ 0

The bounds on the design variables are 0.0625 ≤ Ts, Th ≤ 6.25 and 10 ≤

L,R ≤ 200. The results of the pressure vessel design using all the algorithms are

6.8. AIRFOIL DESIGN 135

listed in Table 6.8. It can be seen that the surrogate assisted EAs perform poorly

for this problem. The thicknesses Th and Ts are discrete variables in this problem

and the spatial surrogate models are not able to approximate the responses with

discrete sampling of thickness variables. Even though the average performance

of IDEA is worse than that of EA, the best design is obtained using IDEA.

Table 6.8: Results of pressure vessel design using EA, SAE-EA, SAR-EA and IDEA

EA SAE-SS SAE-MAS SAR IDEA

Best 6194.01 6792.78 6305.11 7598.75 6119.97
Average 7150.93 9581.23 8521.01 10627.23 7415.53

Worst 7770.53 12680.5 12680.5 12847 9204.8

6.8 Airfoil Design

The airfoil shape is represented using a PARSEC formulation [162] as shown in

Figure 6.10. The PARSEC method uses eleven parameters to represent the airfoil.

They are leading edge radius (rle), upper crest location (Xup, Zup), upper crest

curvature (ZXXup), lower crest location (Xlo, Zlo), lower crest curvature (ZXXlo),

trailing edge wedge direction (αTE), trailing edge wedge angle (βTE), trailing edge

offset (ZTE) and trailing edge thickness (∆ZTE).

The mathematical formulation of PARSEC is given by,

Zu =
6
∑

i=1

aiX
n−1/2

Zl =
6
∑

i=1

biXn−1/2

where X is the chord wise location, Zu is the coordinate of the upper surface and

136 CHAPTER 6. ENGINEERING EXAMPLES

Figure 6.10: PARSEC representation for 2-D airfoil

Zl is coordinate of the lower surface of the airfoil. The chord length is assumed

to be one. The coefficients ai and bi are solved using the eleven parameters.

In this study, a multigrid Euler code is used to compute the flow around the

airfoil. The governing Euler equations are solved using a finite volume formulation

as proposed in [163]. The field grid is generated algebraically using a conformal

mapping method to create an O-grid airfoil of size 161 × 33 around the airfoil.

In the interest of robustness in the multigrid computation, full coarsening up till

a minimum of four cells was used with lower values of Courant-Friedrichs-Lewy

number set at seven.

Aerodynamic design of the airfoil is carried out to minimize the drag coefficient

(Cd) subject to the lift coefficient (Cl) value of 0.824 (Cl ≥ 0.824). Flow Mach

number is set to 0.73 and the angle of attack is set at two degrees. The trailing

edge offset (ZTE) and the trailing edge offset (∆ZTE) are set to zero. The bounds

for the remaining variables are listed in Table 6.9.

The results of the airfoil optimization using EA, SAE-EA, SAR-EA and IDEA

are listed in Table 6.10. The objective and the constraint functions are highly

non-linear functions of the geometry variables and spatial surrogates are able to

approximate these functions reasonably well as seen from the better performance

of SAE-EA and SAR-EA. The best and the worst values of drag coefficient

6.8. AIRFOIL DESIGN 137

Table 6.9: Design variable limits for airfoil design problem

Variable Lower Bound Upper Bound

Rle 0.0055 0.0085
Xup 0.3 0.5
Zup 0.0055 0.0085
ZXXup -0.6 -0.4
Xlo 0.28 0.42
Zlo -0.075 -0.05
ZXXlo 0.55 0.85
αTE -12 -8
βTE -14.5 -9.5

obtained using SAE-EA and SAR-EA are lower than that of EA with the average

improvement of 10–20%. For the airfoil design, even small improvements in the

drag coefficient can result in significant benefits in the airfoil application. The

optimum design in this problem is a constrained design and IDEA has the best

convergence among all the algorithms as seen from the small difference between

the best and the worst objective values. The average improvement in the airfoil

designs using IDEA is more than 30%. The average convergence of SAE-EA,

SAR-EA and IDEA is significantly better than EA as seen from Figure 6.11.

Table 6.10: Results of airfoil design using EA, SAE-EA, SAR-EA and IDEA

EA SAE-SS SAE-MAS SAR IDEA

Best 2.0287e-3 1.9585e-3 1.9303e-3 1.9633e-3 1.9365e-3
Average 3.2731e-3 2.3696e-3 2.4785e-3 2.2650e-3 2.0550e-3

Worst 5.9429e-3 3.8730e-3 5.2073e-3 3.0907e-3 2.2374e-3

The airfoil design problem is also posed as a bi-objective optimization prob-

lem with an additional objective the pitching moment coefficient (Cm) being

minimized. The non-dominated solutions obtained across all the runs using EA,

138 CHAPTER 6. ENGINEERING EXAMPLES

0 200 400 600 800 1000
10

−3

10
−2

10
−1

Function Evaluations

O
bj

ec
tiv

e

EA
SAE−SS
SAE−MAS
SAR
IDEA

Figure 6.11: Convergence plots for airfoil design

SAE-EA, SAR-EA and IDEA are shown in Figure 6.12. The non-dominated

solutions obtained using SAE-EA with multiple adaptive surrogates dominate

the solutions obtained using other algorithms. The non-dominated solutions of

IDEA dominate the solutions obtained using EA. As the Pareto optimal solutions

are not known for this problem, the non-dominated solutions from the solutions of

all the algorithms across all the runs are used as a reference and the displacement

metric is calculated for each algorithm. The summary of the displacement metrics

for EA, SAE-EA, SAR-EA and IDEA are presented in Table 6.11. The best

non-dominated solutions are obtained using IDEA with the smallest value for the

displacement metric. The average performance of SAE-EA with multiple adaptive

surrogates and IDEA is better than EA with lower values of the displacement

metric.

Table 6.11: Summary of Displacement metric for airfoil design using EA, SAE-EA,
SAR-EA and IDEA

EA SAE-SS SAE-MAS SAR IDEA

Minimum 1.1730e-5 4.8999e-5 1.5096e-5 2.1825e-5 9.9655e-6
Average 3.5279e-5 7.3890e-5 3.3321e-5 4.0438e-5 2.8876e-5

Maximum 6.2441e-5 1.8163e-4 5.1825e-5 6.2517e-5 6.4632e-5

6.9. SUMMARY 139

1.8 2 2.2 2.4 2.6 2.8 3

x 10
−3

0.0096

0.0098

0.01

0.0102

0.0104

0.0106

0.0108

0.011

0.0112

0.0114

f
1
(x)

f 2(x
)

EA
SAE SS
SAE MAS
SAR
IDEA

Figure 6.12: Non-dominates solutions obtained for airfoil design using EA, SAE-EA,
SAR-EA and IDEA

6.9 Summary

Surrogate assisted EAs (SAE-EA and SAR-EA) and IDEA are tested on a set of

engineering problems and the results are compared with EA for a fixed number of

function evaluations across ten independent runs. For each engineering problem,

better performing algorithms for the best, the average and the worst objective

values are listed in Table 6.12. If more than one algorithm have similar objective

values, all are listed. The summary of results indicates that IDEA outperforms

the other algorithms in half the number of cases, and SAE-EA and SAR-EA in

four cases each. Real-life design problems are driven by constraints and improved

constraint handling in IDEA achieves better results as evident from the results.

Spatial surrogate assisted algorithms, SAE-EA and SAR-EA, achieve better

results as compared to EA for Belleville spring design, speed reducer design,

welded beam design and airfoil design problems. There is 5–20% improvement

in the average objective values for these problems. The spatial surrogates have

difficulty in approximating the responses in pressure vessel design problem, which

has discrete design variables. In case of bi-objective airfoil design problem,

140 CHAPTER 6. ENGINEERING EXAMPLES

Table 6.12: Summary of algorithms with the best performance on engineering problems

Best Average Worst

Belleville spring IDEA SAE-SS IDEA
Compression spring SAR/IDEA IDEA EA
Speed reducer SAE-SS/SAR SAR SAR
Welded beam SAE-SS IDEA IDEA
Pressure vessel IDEA EA EA
Airfoil SAE-MAS IDEA IDEA

SAE-EA with multiple adaptive surrogates and IDEA are able to find better

non-dominated solutions as compared to EA.

Chapter 7

Truss Design

7.1 Overview

The design of discrete structures such as trusses involves sizing and topology

optimization in the presence of applied loads, and stress and displacement con-

straints. For truss structures, sizing optimization refers to finding the optimum

cross-sectional areas of the truss elements, keeping the connectivity of truss

elements fixed. Topology optimization deals with finding the optimum con-

nectivity of the truss elements. A truss design problem is often represented

as a minimum weight design problem as described in Section 7.2. Topology

optimization is characterized by the changes in the number of structural elements

and the connectivity between those elements. Typically changes in topology are

represented as Boolean variables (1 to denote presence of a truss element and 0

for absence) in the optimization problem. Often, the truss elements are designed

using pipes of available sizes, which makes the cross-sectional areas of the truss

elements discrete variables. Evolutionary algorithms (EAs) can easily handle

Boolean and discrete variables making them ideally suited to solve truss design

141

142 CHAPTER 7. TRUSS DESIGN

problems. A review of the existing truss design methods using EAs is presented

in Section 7.3.

Structural design uses finite element analysis (FEA) which can take a few

seconds to a few minutes or even hours for complex structures. Since, EAs

require evaluations of large number of designs to search for the optimum design,

structural design using EAs can be computationally quite expensive. Use of

surrogate models in lieu of FEA is complicated by the changes in the number of

elements during topology optimization of structures. On the other hand sizing

optimization can employ surrogate models to reduce the number of FEA.

In this chapter a Discrete Structures Optimization (DSO) algorithm is pro-

posed for sizing and topology of the discrete structures. In DSO, topology

optimization and sizing optimization are handled separately in two phases. In

the first phase, the optimum topology is identified by removing the elements of

the structure which are not load-bearing. The second phase is sizing optimization

which uses EA for optimization. The discrete structures optimization algorithm

is presented in Section 7.4. The use of spatial surrogates in the second phase con-

stitutes proposed Surrogate-assisted Discrete Structures Optimization (SDSO),

which is presented in Section 7.4.3. The algorithms are tested on a number of

truss design examples in Section 7.5. The summary of the results is presented in

Section 7.6.

7.2. OPTIMIZATION PROBLEM STATEMENT 143

7.2 Optimization Problem Statement

The minimum weight design optimization problem for a truss structure with m

nodes and n elements is expressed as

Minimize W =
n
∑

i=1

ρi · Ai · Li

subject to σmin ≤ σi ≤ σmax i = 1, . . . , n

δmin ≤ δi ≤ δmax i = 1, . . . ,m

Amin ≤ Ai ≤ Amax i = 1, . . . , ng

where W is the weight of the structure, Ai is the cross-sectional area, Li is

the length and ρi is the material density for ith element. The areas of the

elements are bounded in the range Amin and Amax. For symmetric truss structures

the similar elements are grouped in ng groups and the same cross-section area

limits are applied. The design is usually constrained by the stress limits and/or

displacement limits. The stress limits are given by σmin for stress in compression

(-ve) and σmax for stress in tension. The displacements limits are given by δmin

and δmax for deflections in the -ve and +ve axial directions.

7.3 Topology Optimization Using EA

The early use of EAs in truss design was for the sizing optimization [164, 165, 166].

Later, EAs were used for solving simultaneous sizing and topology optimization

problems [167, 168, 169] and combined sizing, shape and topology optimization

of trusses [170, 171].

In topology optimization of truss structures, the elements and their connec-

144 CHAPTER 7. TRUSS DESIGN

tivity is identified. In the optimization process, the elements can be added to or

removed from the structure. This aspect of topology optimization requires special

representation schemes to describe the truss design using a fixed set of design

variables. In addition, the cross-sectional areas of truss elements are often selected

from a set of possible areas. This makes the design variables corresponding to

the cross-sectional areas discrete and they also need a representation scheme.

Many researchers have applied evolutionary algorithms to solve the truss

design problem using various representation schemes for describing topology and

the cross-sectional areas. Wu and Chow [166], Kaveh and Kalatjari [168], and

Coello [165] have all used binary-coded variables to represent the cross-sectional

areas. In binary coding, discrete values are represented by n bits (each bit taking

a value of 0 or 1), giving rise to 2n possible combinations. Discrete values that

are not powers of 2 cannot be represented exactly. In [165], there are 42 discrete

values of cross-sectional areas, binary coded using 6-bits. This corresponds to a

total of 64 combinations with the first 42 combinations representing prescribed

cross-section area values and the remaining 22 combinations are randomly as-

signed to the discrete values. Thus, some of the area values are repeated. In the

case of Ghasemi, Hinton and Wood [172], the remaining 22 values repeat the first

22 values. Kaveh and Kalatjari [168] use an additional bit per truss member to

represent the presence (1) or absence (0) of the truss members in the structure.

Real-coded variables are used by Deb [173, 167] to represent the cross-sectional

area. Negative values of the cross-sectional areas are used to represent the

absence of that truss member. For discrete values of cross-sectional area, discrete

versions of simulated binary crossover (SBX) and mutation operators are used to

ensure that recombination and mutation generate only discrete values from the

prescribed set of values. Turkkan [174] uses the real-coding of the area variables

7.3. TOPOLOGY OPTIMIZATION USING EA 145

using the real recombination and mutation operators. The area computed from

recombination and mutation is mapped using the integer part of that value into

an array of discrete values.

Tang, Tong and Gu [171] have used mixed representation, integer coding

to represent the discrete values of the cross-sectional area and binary-coding to

represent the topological variables (one for each of the truss members). They

also propose recombination and mutation operators to work with the integer

coding. Topology is represented using additional binary-coded variables. Rajeev

and Krishnamoorthy [170] have used variable length representation in Variable

String Length Genetic Algorithm (VGA) to represent different topologies for truss

design. They use the cut-and-splice operator as in messy genetic algorithm [175]

to generate offspring with differing chromosome length from their parents.

Xie and Steven [176] introduced Evolutionary Structural Optimization (ESO)

technique in 1993. It is based on the idea that the optimal structure (which is

a fully stressed design) can be produced by gradually removing material from

the design domain. The technique has also been applied to simultaneous sizing

and topology optimization of discrete structures [177]. In ESO for trusses, the

area of the truss elements is reduced in very small steps (of the order of (original

area)/1000 or less) provided that the stress in a truss element is below the target.

This process requires a lot of small steps to reach the optimum structure and

consequently a large number of FEA evaluations.

The original ESO technique is applicable to problems with stress considera-

tions only and do not consider stiffness constraints in the form of displacement

constraints. To alleviate this problem Chu et al. [178] proposed the use of

sensitivity numbers, which indicate the change in overall stiffness (in the form

of strain energy) to remove the elements. The structural elements with the least

146 CHAPTER 7. TRUSS DESIGN

strain energy are removed from the structure, thus achieving a faster convergence

to optimum topology in the case of continuous structures. Based on the ESO

approach, Tanskanen [179] has proposed a multi-objective modification to ESO

with modified objective as a function of compliance volume and strain energy, and

utilized the approximations to the gradient of the objective with respect to the

design variables. This method can only be used for continuous design variables.

Similar methods involving material removal for truss design are presented in

[180, 181]. These methods are used for the truss design with discrete design

variables.

7.4 Discrete Structures Optimization

Discrete Structures Optimization (DSO) is derived from the ESO technique by

Xie and Steven [176]. In DSO, material is removed based on the least strain

energy rather than the least amount of stress. The strain energy Ei for ith truss

element is given by,

Ei =
1

2
{ui}T [Ki]{ui},

where {ui} is the nodal displacement vector of the ith element and [Ki] is

the element stiffness matrix. Use of strain energy instead of stress allows for

rapid material removal for the structural elements that do not carry any of the

structural loads. Once the structural elements have reached the limit of material

removal, they are deleted. Discrete Structures Optimization is a two stage process

unlike ESO. In the first stage, the optimum topology of the structure is identified.

The second stage of DSO is the sizing optimization using the optimum topology

obtained in the first stage.

7.4. DISCRETE STRUCTURES OPTIMIZATION 147

7.4.1 First Stage: Topology Optimization

The steps involved in the first stage of DSO are described as follows.

1. Start with the ground structure with all the elements initialized to the

upper limit of material (i.e. maximum area possible).

2. Perform FEA to calculate stresses, displacements and strain energy.

3. If the structure is infeasible for the initial structure, there is no possible

solution to the given problem. Stop.

4. If the structure is feasible, find the element with the least amount of strain

energy that is less than the threshold. Remove material from that element.

Repeat from step 2.

5. If the element has reached lower limit for the material, freeze the element.

6. If the structure becomes infeasible, revert the material back (to the element

from which it was removed) and freeze the element.

7. If there are no more elements with the strain energy less than the threshold,

Stop. If not, repeat from step 2.

Once the structural elements are frozen, they are not considered for material

removal. At the end of the first stage, all the frozen elements that are at the

lowest limit of the material are removed from the structure to form the optimum

topology of the structure. The algorithm requires a user defined parameter,

strain energy threshold, to identify an element from which material is removed.

The strain energy threshold depends on the structure. Typically the strain energy

for the structurally redundant element is found to be much less than the average

148 CHAPTER 7. TRUSS DESIGN

strain energy of the elements. For a truss structure with 10 elements, the average

strain energy is 10% of the total strain energy and a strain energy threshold of 1%

of the total strain energy would be adequate to remove the redundant elements.

For faster removal of material or reducing the cross-sectional area (in step 4),

a polynomial mutation operator [38] is used as given in Equation 7.1.

y = x+ (x− x) δ̄

δ̄ =

(2r)1/(ηm+1) − 1, if r < 0.5,

1− [2(1− r)]1/(ηm+1), if r ≥ 0.5.

(7.1)

For r < 0.5, δ̄ is negative and y value is smaller than x value. For r ≥ 0.5, δ̄ is

positive and y value is larger than x. To reduce the area x, a random number

is generated between 0 and 0.5 and used as the value for r. The polynomial

mutation operator constructs a density function between the lower limit x and

specified x peaking at x. The shape of the density function is controlled by

mutation distribution index ηm. Higher the value of ηm, peakier is the density

function and lower the value of ηm, flatter is the density function. The use of the

mutation operator avoids the need to specify the area decrements absolutely as

in the case of ESO [177] and large steps can be considered for material removal.

7.4.2 Second Stage: Sizing Optimization

The topology of the structure is fixed after the first stage of DSO. As the number

of truss elements are fixed, so is the number of design variables. The second

stage of DSO is sizing optimization to obtain the minimum weight structure by

varying the cross-sectional areas of truss elements. This problem can be posed

as a standard optimization problem with fixed number of design variables and

7.5. RESULTS OF TRUSS DESIGN 149

solved as such. Since the element areas can be discrete, an evolutionary algorithm

is used for sizing optimization.

7.4.3 Surrogate assisted DSO

Surrogate assisted Discrete Structures Optimization (SDSO) is an extension to

DSO where spatial surrogates are used in the sizing optimization stage. Similar

to DSO, SDSO is also a two stage process of topology optimization and sizing

optimization. The first stage of SDSO, topology optimization, is the same as that

of DSO. In the second stage of sizing optimization, surrogate assisted EA is used

instead of EA. In this study, SAE-EA with single spatial surrogate model is used

for sizing optimization in SDSO.

7.5 Results of Truss Design

Both the proposed algorithms (DSO and SDSO) are tested on 2-D and 3-D

structures. Two-dimensional truss structures include ten-bar and seventeen-bar

cantilever trusses. Three-dimensional structures include twenty-two-bar space

truss and twenty-five-bar transmission tower.

The strain energy criterion for element removal is 1% of the total strain energy

(which is sufficiently less than the average strain energy) for all the problems.

For the sizing optimization phase, the number of FEA is fixed at 1,000. The

population size of 40 is used for EA in DSO and SAE-EA in SDSO. Each truss

design example is solved using ten different values for random seeds. The rest

of the EA parameters are fixed. For SAE-EA, a single spatial surrogate model

is trained using RSM, RBF and Kriging. The prediction accuracy threshold is

set to 5% and training interval is set to five. The maximum number of training

150 CHAPTER 7. TRUSS DESIGN

samples used for training is 500.

7.5.1 Ten-bar 2D cantilever truss

A ground structure for a six-node, ten-bar 2-D cantilever truss is shown in

Figure 7.1. The problem is to design the minimum weight truss structure using

sizing and topology optimization subject to stress and displacement constraints.

The truss is elastic with the modulus of elasticity E=107 lb/in2, and the density

0.1 lb/in3. The maximum allowed stress in compression or tension for all elements

is 25,000 lb/in2. The maximum vertical displacement allowed is 2 in. Two

different loading conditions are considered in this example, namely, case 1, where

P1 = 100 kips and P2 = 0, and case 2, where P1 = 150 kips and P2 = 50 kips. The

areas of the truss elements are allowed to vary in the continuous range [1, 35] in2

for both cases. In addition to continuous area variation, discrete area variation

is considered for Case 1. The area values are taken from the American Institute

of Steel Construction Manual [170].

Area = (1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38,

3.47, 3.55, 3,63, 3,84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 5.12, 5.74, 7.22, 7.97,

11.50, 13.50, 13.90, 14.20, 15.50, 16.00, 16.90, 18.80, 19.90, 22.00, 22.90, 26.50,

30.00, 33.50). All the values are in square inches.

In the first stage, the areas are reduced systematically for the elements using

the least amount of strain energy in each generation. At the end of the first

stage, elements 2, 5, 6, and 10 are eliminated and the remaining elements 1, 3,

4, 7, 8, and 9 form the optimum topology for Case 1. The variation of area and

strain energy across generations for the elements 2, 5, 6, 10 for Case 1 is shown

in Figure 7.2. The strain energy is shown as a fraction of total strain energy. It

is seen that the strain energy for the elements falls well below 1% of the total

7.5. RESULTS OF TRUSS DESIGN 151

Figure 7.1: Ground structure for 6-Node, 10-Member 2-D Truss

strain energy by generation 45. Over the next 20 generations the areas of these

elements are reduced to the minimum possible value. For Case 2, elements 2

and 10 are eliminated and elements 1, 3, 4, 5, 6, 7, 8, and 9 form the optimum

topology. The number of evaluations required for the topology optimization for

both the cases are listed in Table 7.1.

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

Generations

A
re

a

Member 1
Member 5
Member 6
Member 10

(a) Area

0 10 20 30 40 50 60 70
0

0.005

0.01

0.015

0.02

0.025

0.03

Generations

S
tr

ai
n

E
ne

rg
y

Member 1
Member 5
Member 6
Member 10

(b) Strain Energy

Figure 7.2: Area and strain energy fraction variation with generations for 10-bar 2D
truss (Case 1)

The summary of results of the sizing optimization using DSO and SDSO are

listed in Table 7.2. The truss weights obtained using SDSO are are significantly

lower that those obtained by DSO. In addition, the weight obtained for Case

152 CHAPTER 7. TRUSS DESIGN

Table 7.1: Number of FEA for first stage of DSO and SDSO for 2D 10-bar truss

Case 1 (Continuous) Case 1 (Discrete) Case 2

Minimum 82 67 60
Average 89 79 64

Maximum 97 89 67

1 with continuous area variation is very close to the best reported weight of

4899.15 lb by Deb and Gulati [167], which was obtained for a population size of

220 evolved over 225 generations corresponding to 49,500 FEA evaluations. The

weight of 4928.17 lb was obtained with SDSO using only (82 + 1000 =) 1,082

FEA evaluations. Similarly, the best weight reported for Case 1 with discrete

area variation is 4962.1 lb by Kaveh and Kalatjari [168] using more than 15,000

FEA evaluations. A truss weight of 4981.18 lb was obtained with SDSO using

only (67 + 1000 =) 1,067 FEA evaluations. These results indicate that the truss

designs obtained by SDSO for Case 1 have weights within 6% and 1% of the

best designs reported in the literature using only 3% and 7% of the function

evaluations, which is a considerable saving. For Case 2, the best reported weight

is 4668.81 lb by Lee and Geem [182] using 15,000 evaluations, whereas the weight

obtained using SDSO, 4988.4 lb, is within 7% of the best reported weight with

only 1,060 evaluations, which are 7% of the 15,000 evaluations used by Lee and

Geem. The cross-sectional areas of the best designs obtained using SDSO are

listed in Table 7.3.

7.5.2 Seventeen-bar 2-D cantilever truss

A ground structure for a nine-node, seventeen-bar 2-D cantilever truss is shown

in Figure 7.3. The structure is elastic with the modulus of elasticity E=30,000

7.5. RESULTS OF TRUSS DESIGN 153

Table 7.2: Summary of 2D 10-bar truss results using DSO and SDSO

Case 1 (Continuous) Case 1 (Discrete) Case 2

Best 5094.38 4981.18 7217.27
DSO Average 5959.01 5072.83 7900.28

Worst 6510.48 5223.03 8548.51

Best 4928.17 4981.18 4988.4
SDSO Average 4976.97 5003.21 5186.31

Worst 5085.68 5046.54 5781.38

Table 7.3: Best design for 2D 10-bar cantilever truss using SDSO

Case 1 (Continuous) Case 1 (Discrete) Case 2
Element Area (in2) Area (in2) Area (in2)

1 27.29 30.00 26.40
3 22.62 22.90 22.84
4 15.93 16.00 13.94
5 - - 1.06
6 - - 2.20
7 6.06 7.22 10.12
8 20.61 22.00 15.30
9 23.58 19.90 25.59

Weight (lb) 4928.17 4981.18 4988.4

ksi, and the density of 0.268 lb/in3. The maximum allowed stress in compression

or tension for all elements is 50 ksi and the maximum displacement of the nodes

in both directions (x and y) is 2 in. A single load of 100 kips is applied vertically

downward at node 9. The minimum area for the truss elements is 0.1 in2.

In the topology optimization stage, six elements (2, 4, 8, 10, 12, and 16)

are eliminated and the optimum topology consists of eleven elements. The

minimum and the maximum number of FEA required in the first stage are 146

and 174 respectively. The summary of results for 17-member 2D truss are listed

in Table 7.4. The truss weights obtained using SDSO are much smaller than

154 CHAPTER 7. TRUSS DESIGN

Figure 7.3: Ground structure for 9-Node, 17-Member 2-D truss

DSO. The minimum truss weight of 2671.39 lb is obtained after (146 + 1000 =)

1,146 FEA evaluations. The best design reported in the literature is by Lee and

Geem [182] with the weight of of 2580.81 lb after 20,000 evaluations. The result

indicates that using only 5% of the function evaluations, truss structure with the

weight of within 4% of the best design was obtained using SDSO. The member

areas for the best design obtained using SDSO are listed in Table 7.5.

Table 7.4: Summary of 2D 17-member truss results using DSO and SDSO

DSO SDSO

Best 4022.06 2671.39
Average 4688.89 2785.43
Worst 5148.63 3018.39

7.5.3 Twenty-two-bar space truss

A ground structure for a eight-node, twenty-two-bar space truss is shown in

Figure 7.4. The modulus of elasticity and the material density for the elements

are 10,000 kpsi and 0.1 lb/in3 respectively. The element areas are linked into

seven groups – (1) A1 ∼ A4, (2) A5 ∼ A6, (3) A7 ∼ A8, (4) A9 ∼ A10, (5)

A11 ∼ A14, (6) A15 ∼ A18, and (7) A19 ∼ A22. Within each group the areas of the

7.5. RESULTS OF TRUSS DESIGN 155

Table 7.5: Best design for 2D 17-bar cantilever truss using SDSO

Element Area (in2)

1 15.32
3 10.12
5 6.45
6 6.61
7 13.35
9 8.64
11 4.98
13 8.56
14 4.91
15 5.75
17 4.46

Weight (lb) 2671.39

elements are equal. The truss is loaded with three load cases listed in Table 7.6.

For each load case, the maximum displacement in any direction is 2 in. The

maximum allowed stresses in compression and tension for each group of elements

are as given in Table 7.7. The minimum cross-sectional area for all the elements

is 0.1 in2.

Figure 7.4: Ground structure for 8-Node, 22-Member space truss

156 CHAPTER 7. TRUSS DESIGN

Table 7.6: Load cases for 22-bar space truss

Load Case Node # Fx (kips) Fy (kips) Fz (kips)

1 1 -20.0 0.0 -5.0
2 -20.0 0.0 -5.0
3 -20.0 0.0 -30.0
4 -20.0 0.0 -30.0

2 1 -20.0 -5.0 0.0
2 -20.0 -50.0 0.0
3 -20.0 -5.0 0.0
4 -20.0 -50.0 0.0

3 1 -20.0 0.0 35.0
2 -20.0 0.0 0.0
3 -20.0 0.0 0.0
4 -20.0 0.0 -35.0

Table 7.7: Stress limitations for 22-bar space truss

Area Compressive Stress Tension Stress
Group # Variables Limitation (kpsi) Limitation (kpsi)

1 A1 ∼ A4 24.0 36.0
2 A5 ∼ A6 30.0 36.0
3 A7 ∼ A8 28.0 36.0
4 A9 ∼ A10 26.0 36.0
5 A11 ∼ A14 22.0 36.0
6 A15 ∼ A18 20.0 36.0
7 A19 ∼ A22 18.0 36.0

For this problem, when the strain energy of all the elements in a group is

less than 1% of the total strain energy, the entire group of elements is deleted;

otherwise, all the elements in the group are retained. The topology optimization

resulted in the elimination of group 3 and corresponding two elements 7 and 8.

The average number of FEA evaluations required for topology optimization is

7.5. RESULTS OF TRUSS DESIGN 157

20. The results of sizing optimization in DSO and SDSO are given in Table 7.8.

The minimum weight of 1031.15 lb was obtained after (20 + 1000 =) 1,022 FEA

evaluations. The best design reported in the literature by Lee and Geem [182]

has weight of 1022.23 lb after 50,000 evaluations. This corresponds to 98% saving

in the computations to find the truss structure with weight within 1% of the best

reported design. The cross-sectional areas of six area groups for the best design

obtained using SDSO are shown in Table 7.9.

Table 7.8: Summary of 22-member space truss results using DSO and SDSO

DSO SDSO

Best 1075.65 1031.15
Average 1102.27 1063.59
Worst 1130.85 1081.51

Table 7.9: Results of 22-member space truss using DSO

Group # Area (in2)

1 2.58
2 1.49
4 0.73
5 2.65
6 2.08
7 2.20

Weight (lb) 1031.15

7.5.4 Twenty-five-bar 3D transmission tower

A ground structure for 10-node, 25-bar transmission tower is shown in Figure 7.5.

The elements of the tower are grouped in eight groups based on similar charac-

teristics. Within each group, the elements have the same cross-sectional areas.

158 CHAPTER 7. TRUSS DESIGN

The groups are as follows – (1) A1, (2) A2 ∼ A5, (3) A6 ∼ A9, (4) A10 ∼ A11, (5)

A12 ∼ A13, (6) A14 ∼ A17, (7) A18 ∼ A21, and (8) A22 ∼ A25. The tower is subject

to two independent loading conditions as given in Table 7.10. The maximum

stress limit is 40,000 lb/in2 for elements in tension. The stress limits for elements

in compression are different for each group and are given in Table 7.11. The

maximum displacement of each joint in any direction is limited to 0.35 in. The

material density is 0.1 lb/in3, and modulus of elasticity is 10,000 ksi.

The design problem is solved with continuous and discrete area variation. For

continuous area variation, the cross-sectional areas are in the range [0.005, 3] in2.

For the discrete area variation the area values are chosen from the following set.

Area = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7,

1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.8, 3.0, 3.2, 3.4). All values are in square

inches.

Figure 7.5: Ground structure for 10-Node, 25-Member 3-D Truss

In the topology optimization stage groups 1, 4 and 5 (and corresponding 5

elements 1, 10, 11, 12, and 13) are eliminated. For the transmission tower with

continuous area variation, the average number of FEA evaluations in topology

7.5. RESULTS OF TRUSS DESIGN 159

Table 7.10: Load cases for 25-bar transmission tower

Load Case Node # Fx (lb) Fy (lb) Fz (lb)

1 1 1,000 10,000 -5,000
2 0 10,000 -5,000
3 500 0 0
6 500 0 0

2 1 0 20,000 -5,000
2 0 -20,000 -5,000

Table 7.11: Member stress limitations for 25-bar transmission tower

Area Compressive Stress Tension Stress
Group # Variables Limitation (kpsi) Limitation (kpsi)

1 A1 35.092 40.0
2 A2 ∼ A5 11.590 40.0
3 A6 ∼ A9 17.305 40.0
4 A10 ∼ A11 35.092 40.0
5 A12 ∼ A13 35.092 40.0
6 A14 ∼ A17 6.759 40.0
7 A18 ∼ A21 6.959 40.0
8 A22 ∼ A25 11.082 40.0

optimization stage is 61 and for discrete area variation it is 53. The summary

of the tower weights obtained using DSO and SDSO for continuous and discrete

are variation are listed in Table 7.12. The minimum weight of the transmission

tower obtained is 559.02 lb using DSO for continuous area variation and 557.04

lb using SDSO for discrete are variation. The average tower weights are smaller

for SDSO as compared to DSO. The spatial surrogate models are built only in

the last few generations and the benefits of SDSO are comparatively smaller in

this example as compared to previous examples. The best design reported by Lee

160 CHAPTER 7. TRUSS DESIGN

and Geem [182] for the continuous area variation with the weight of 544.38 lb is

obtained after 15,000 evaluations. Tower designs obtained with DSO and SDSO

are with 1,061 and 1,053 FEA evaluations respectively. The results obtained

by DSO and SDSO are within 4% of the best reported design using only 7% of

corresponding function evaluations. The best designs for continuous and discrete

area variation are listed in Table 7.13.

Table 7.12: Summary of 3-D transmission tower results using DSO and SDSO

Continuous Discrete
DSO SDSO DSO SDSO

Best 559.02 563.67 571.4 557.04
Average 599.60 589.82 616.38 583.2
Worst 648.83 617.79 653.09 609.32

Table 7.13: Best designs for 3D transmission tower using DSO and SDSO

Continuous Discrete
Group # Area (in2) Area (in2)

2 2.04 2.1
3 2.63 2.6
6 0.93 1.0
7 1.92 1.8
8 2.51 2.5

Weight (lb) 559.02 557.04

7.6 Summary

The design of discrete structures involves topology and sizing optimization. Topol-

ogy optimization finds the optimum connectivity of the structural elements and

7.6. SUMMARY 161

sizing optimization finds the sizes of the structural elements. Topology optimiza-

tion requires special representation schemes to describe the connectivity using

a fixed number of variables. The sizes of the structural elements are often not

continuously varying but chosen from a set of discrete values. Since evolutionary

algorithms can handle Boolean, integer and discrete variables, they have been

used for simultaneous topology and sizing optimization. But the number of FEA

evaluations required using EAs is usually quite large.

Discrete structures optimization algorithm based on ESO technique is pro-

posed in this chapter. In DSO, the material is removed from the structural

elements based on the least amount of strain energy. The use of strain energy

instead of stress allows faster removal of material from the structure. In addition,

a mutation operator is proposed to further speed up material removal, instead of

prescribing a fixed rate. In DSO, topology optimization problem is solved first to

identify the optimum topology. The second stage is sizing optimization to find the

optimum sizes for structural elements. An EA is used to solve sizing optimization

problem in second stage of DSO. An extension to DSO using spatial surrogates

is also proposed as surrogate assisted DSO. In SDSO, spatial surrogate assisted

EA is used for sizing optimization. The first stage of topology optimization in

SDSO is the same as that of DSO.

The proposed algorithms are tested on 2-D and 3-D truss structures. The

first stage results indicate that the optimum topologies are identified correctly

for all the problems using very few FEA evaluations. For 2-D examples, the

average number of FEA evaluations for topology optimization is 64–161 and for

3-D examples it is 20–61. Once the optimum topology is identified, the redundant

structural elements are dropped and the subsequent sizing optimization problem

is smaller than the original optimization problem. The designs obtained using

162 CHAPTER 7. TRUSS DESIGN

SDSO are much lighter than those obtained using DSO and fairly close to the

best designs (within 1–7% for all the problem studied) reported in the literature.

The best results reported for all the problems use tens of thousands of FEA

evaluations, whereas the results obtained using DSO and SDSO are with 1,000

FEA evaluations for sizing and maximum of 174 evaluations for topology opti-

mization. Thus a significant saving of 93–98% in the number of FEA evaluations

is achieved by separating topology and sizing optimization problems, and using

spatial surrogates to improve the convergence in sizing optimization.

Chapter 8

Conclusions

8.1 Research Summary and Outcomes

Evolutionary algorithms (EAs) are well suited as general global optimization

methods owing to their ease of use and applicability to a wide range of single and

multi-objective optimization problems. However, their use for engineering design

can be difficult as evolutionary algorithms require evaluations of large numbers

of candidate solutions and each evaluation in engineering design often requires a

solution of computationally expensive simulation.

The research reported in this thesis is focused on improving the efficiency

of evolutionary algorithms to obtain better designs for a fixed computational

cost. One strategy is to use surrogate models in lieu of expensive simulations

to evaluate the performance of a design. A generic framework, spatial surrogate

modeling, is proposed for use of surrogate models within EA. This framework

tries to address several shortcomings of the existing methods employed involving

surrogate models. Multiple types of surrogate models are used instead of a single

type to select the surrogate model that best approximates each of the objective

163

164 CHAPTER 8. CONCLUSIONS

and the constraint functions. A spatial surrogate model mimics the behavior of

a global surrogate model in the early stages of evolutionary search and a local

surrogate model as the EA population converges. Spatial surrogate models are

validated using a prediction accuracy criterion to ensure that the search based

on the approximations is not misguided. Two EAs are proposed using spatial

surrogate models for evaluation and evolution. In surrogate assisted evaluation

(SAE-EA), the spatial surrogate models are periodically trained and used in

place of the actual simulations. In surrogate assisted recombination (SAR-EA),

the spatial surrogate models are used to perform a secondary evolutionary search

and identify better offspring solutions within the broader EA scheme.

Most engineering problems are constrained design problems, but evolutionary

algorithms do not have a native constraint handling mechanism. A simple ap-

proach commonly used is a penalty based formulation to convert a constrained op-

timization problem into an unconstrained optimization problem. This approach

requires specification of penalty factors which are often problem dependent. The

other approaches without use of penalty functions, favour feasible solutions over

infeasible solutions and search the design space through feasible regions. The

proposed infeasibility driven evolutionary algorithm (IDEA) retains a few infea-

sible solutions in the population and ranks them higher than feasible solutions to

focus the search near the constraint boundaries through the infeasible as well as

the feasible regions. Even though, only the feasible solutions are considered valid

designs, the infeasible solutions in the population can be be used as trade-off

solutions to study the effects of relaxing one or more constraints.

Two extensions to EA proposed in this research are tested on a number

of benchmark problems and engineering examples. The results clearly indicate

significant benefit of using spatial surrogate models. Various functions of up to 30

8.1. RESEARCH SUMMARY AND OUTCOMES 165

variables have been successfully approximated using the spatial surrogates with

the maximum of 500 training solutions. Using SAR-EA, solutions very close to the

optimum are found within 1,000 evaluations. For engineering examples, 5–20%

improvements in the objective values are achieved using spatial surrogates over

EA. The results of IDEA show faster convergence for single and multi-objective

constrained optimization problems. Real life engineering design problems are

constrained optimization problems and the advantages of IDEA are apparent

from the results of the engineering examples documented in the thesis.

In the design of discrete structures, one of the goals is to identify the structural

elements (and their connectivity) to form the optimum topology. Topology opti-

mization requires capability to handle varying number of structural elements and

EAs have been successfully used as they can handle discrete variables, which are

often used to represent changes in the structure. As the spatial surrogate models

cannot be used to represent functions of varying number of design variables,

discrete structure optimization (DSO) is proposed to separate optimum topology

identification and sizing optimization. Strain energy based material removal

criterion is used to eliminate the elements that do not carry any load, thus

identifying the optimum topology. Once the optimum topology is identified,

sizing optimization problem has a fixed number of design variables and is solved

using EA. Surrogate assisted DSO (SDSO), an extension to DSO uses spatial

surrogate models to improve the convergence of sizing optimization. In the studies

on 2-D and 3-D truss structures, truss designs obtained using DSO and SDSO

have weights within 1–7% of the best reported in the literature and in the process

require only 2–7% of the function evaluations, which is a significant saving in the

computational cost.

The results obtained using spatial surrogates and infeasibility driven con-

166 CHAPTER 8. CONCLUSIONS

straint handling are promising and demonstrate the potential of the proposed

approaches to improve the efficiency of evolutionary algorithms for engineering

design.

8.2 Achievements

To summarize, the achievements reported in the thesis are clustered around four

concepts as follows.

1. A spatial surrogate modeling framework is proposed to replace expensive

analysis with computationally cheap surrogate models in the context of

evolutionary algorithms. Spatial surrogate models can have a single sur-

rogate model or multiple spatially distributed surrogate models. In the

case of multiple surrogate models, the number of surrogate models can be

determined adaptively using a prediction accuracy based criterion. Spatial

surrogate models are able to approximate various functions of up to 30

variables using RSM and RBF.

2. Two evolutionary algorithms are presented using the proposed spatial sur-

rogate models.

(a) The first is surrogate assisted evaluation (SAE-EA), where the spatial

surrogates are used in lieu of expensive simulations to evaluate the ob-

jectives and the constraints. Using SAE-EA, the population migrates

quickly to the region of better solutions, improving the convergence of

evolutionary search.

(b) The second is surrogate assisted recombination (SAR-EA), where the

spatial surrogates are used in each generation to perform an evolu-

8.2. ACHIEVEMENTS 167

tionary search to quickly find the best solutions as per the surrogate

models. The exploitation of surrogate models in SAR-EA can result in

solutions very close to the optimum within a few function evaluations.

3. An infeasibility driven evolutionary algorithm (IDEA) with a novel con-

straint handling method is proposed and developed. In IDEA, the original

m objective optimization problem is transformed into m+1 objective opti-

mization problem, where the additional objective is the constraint violation

measure. Two constraint violation measures are proposed.

(a) A constraint violation count measure is used to solve a constrained

optimization problem along with the unconstrained variant of the

problem formulated by dropping all the constraints. With this ap-

proach the Pareto front for the modified unconstrained optimization

problem is discovered.

(b) A constraint relative rank measure is used to rank infeasible solutions

with relatively less constraint violation higher. With this measure

IDEA results in marginally infeasible solutions near the constraint

boundaries. These solutions then can be used for trade-off studies.

4. Sizing and topology optimization methods based on evolutionary structural

optimization are proposed and developed for the design of discrete struc-

tures. The proposed methods include –

(a) Discrete structures optimization (DSO), where topology optimization

and sizing optimization problems are solved separately to speed up the

identification of the optimum topology.

(b) Surrogate assisted discrete structures optimization (SDSO), which is

168 CHAPTER 8. CONCLUSIONS

an extension of DSO using SAE-EA for sizing optimization.

Significant computational savings of 93-98% are obtained using SDSO to

find the truss designs very close to the best reported in literature.

All the proposed algorithms (SAE-EA, SAR-EA, IDEA, DSO and SDSO)

are implemented under a unified evolutionary algorithm framework. The unified

framework has been developed in Matlab. The framework is coded in objective

oriented style, consists of 16 classes and more than 5000 lines of Matlab code. The

framework is currently being used by the multidisciplinary design optimization

(MDO) group in UNSW@ADFA for fast craft design and design of flapping wings.

The framework is also being used by the Hypersonics group at the University of

Queensland for the design of a hypersonic vehicle. The concept of IDEA has

been used to solve constrained dynamic optimization problems and optimization

problems involving many objectives.

During the course of the research, a total of 22 articles have been published

in various journals, books and conference proceedings (see List of Publications at

the beginning of thesis).

8.3 Future Areas of Research

It is clear from the engineering examples, that for real life problem constraint

handling is as important as improving the efficiency of evolutionary algorithms.

It is logical, then, to extend the proposed constraint handling technique for spatial

surrogate assisted EAs to gain a two-fold benefit.

In the spatial surrogate framework, when multiple spatially distributed sur-

rogates are built, it is quite possible, that surrogate models on all clusters are

8.3. FUTURE AREAS OF RESEARCH 169

not valid (i.e. the prediction accuracy is not within the prescribed threshold). In

such a case, currently, all the surrogate models are then discarded. There may be

merit in utilizing the valid surrogate models as long as the evolutionary search

is concentrated in the regions covered by the training data corresponding to the

valid models.

The framework for spatial surrogate modeling and infeasibility driven con-

straint handling, though developed for evolutionary algorithms, are generic ap-

proaches. They can be adapted to other population based heuristic methods such

as particle swarm methods and similar benefits can be derived as obtained for

evolutionary algorithms.

REFERENCES 171

References

[1] J. N. Siddall. Optimal engineering design - principles and applications.
Marcel Dekker, Inc., New York, 1982.

[2] J. Golinski. Optimal synthesis problems solved by means of nonlinear
programming and random methods. Journal of Mechanisms, 5(3):287–309,
1970.

[3] G. S. Hornby, A. Globus, D. S. Linden, and J. D. Lohn. Automated antenna
design with evolutionary algorithms. In Proceedings of the AIAA SPACE
2006 conference, San Jose, CA, September 2006. AIAA 2006-7242.

[4] P. Hajela and E. Lee. Genetic algorithms in truss topological optimization.
International Journal of Solids and Structures, 32(22):3341–3357, nov 1995.

[5] J. L. Henderson, Z. Gurdal, and A. C. Loos. Combined structural and
manufacturing optimization of stiffened composite panels. Journal of
Aircraft, 36(1):246–254, 1999.

[6] C. S. Krishnamoorthy. Structural optimization in practice: Potential
applications of genetic algorithms. Structural Engineering and Mechanics,
11:151–170, 2001.

[7] G. Soremekun, Z. Gurdal, R. T Haftka, and L. T. Watson. Composite
laminate design optimization by genetic algorithm with generalized elitist
selection. Computers & Structures, 79:131–143, 2001.

[8] M. Walker and R. E. Smith. A technique for the multiobjective optimisation
of laminated composite structures using genetic algorithms and finite
element analysis. Composite Structures, 62(1):123–128, 2003.

[9] S. Nagendra, D. Jestin, Z. Gurdal, R. T. Haftka, and L. T. Watson.
Improved genetic algorithm for the design of stiffened composite panels.
Computers & Structures, 58(3):543–555, 1996.

[10] J. H. Kang and C. G. Kim. Minimum-weight design of compressively loaded
composite plates and stiffened panels for postbuckling strength by genetic
algorithm. Composite Structures, 69(2):239–246, 2005.

[11] F. Muyl, L. Dumas, and V. Herbert. Hybrid method for aerodynamic shape
optimization in automotive industry. Computers & Fluids, 33(5-6):849–858,
2004.

[12] Y. S Lian and M. S Liou. Multi-objective optimization of transonic
compressor blade using evolutionary algorithm. Journal of Propulsion and
Power, 21(6):979–987, 2005.

172 REFERENCES

[13] S. Obayashi, D. Sasaki, Y. Takeguchi, and N. Hirose. Multiobjective
evolutionary computation for supersonic wing-shape optimization. IEEE
Transactions on Evolutionary Computation, 4(2):182–187, 2000.

[14] D. Sasaki, M. Morikawa, S. Obayashi, and K. Nakahashi. Aerodynamic
shape optimization of supersonic wings by adaptive range multiobjective
genetic algorithms. In Evolutionary Multi-Criterion Optimization, volume
1993 of Lecture Notes in Computer Science, pages 639–652, Berlin, 2001.
Springer-Verlag Berlin.

[15] R. Kicinger, T. Arciszewski, and K. De Jong. Evolutionary computation
and structural design: A survey of the state-of-the-art. Computers &
Structures, 83(23-24):1943–1978, 2005.

[16] D. Dasgupta and Z. Michalewicz, editors. Evolutionary Algorithms in
Engineering Applications. Springer-Verlag, Berlin, 1997.

[17] W. Annicchiarico, J. Periaux, M. Cerrolaza, and G. Winter, editors.
Evolutionary Algorithms and Intelligent Tools in Engineering Optimization.
Handbooks on Theory and Engineering Applications of Computational
Methods. WIT Press, Southampton, UK, 2005.

[18] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation, 6(2):182–197, 2002.

[19] R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, 1987.

[20] S. S. Rao. Engineering Optimization. John Wiley & Sons, New York, 1996.

[21] J. Nocedal and S. J. Wright. Numerical Optimization. Operations Research.
Springer, 1999.

[22] R. Hooke and T. A. Jeeves. Direct search soluation of numerical and
statistical problems. J. ACM, 8:212–229, 1961.

[23] J. A. Nelder and R. Mead. A simplex method for function minimization.
The computer journal, 7(4):308, 1965.

[24] Colin R. Reeves, editor. Modern Heuristic Techniques for Combinatorial
Problems. Orient Longman, 1993.

[25] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, 1983.

[26] F. Glover and M. Laguna. Tabu Search. Kluwer, Norwell, MA, 1997.

REFERENCES 173

[27] J. H. Holland. Adaptation in natural and artificial systems. University of
Michigan Press, Ann Arbor, MI, 1975.

[28] D. E. Goldberg. Genetic Algorithms for Search, Optimization, and Machine
Learning. Addison-Wesley, 1989.

[29] L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial intelligence through
simulated evolution. John Wiley & Sons Inc, 1966.

[30] H. P. Schwefel. Evolution and optimum seeking. Wiley-Interscience, 1995.

[31] R. Storn and K. Price. Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces. Journal of global
optimization, 11(4):341–359, 1997.

[32] M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: optimization by
a colony of cooperating agents. Systems, Man, and Cybernetics, Part B:
Cybernetics, IEEE Transactions on, 26(1):29–41, February 1996.

[33] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings
of IEEE International Conference on Neural Networks, volume 4, pages
1942–1948, 1995.

[34] R. G. Reynolds. An introduction to cultural algorithms. In Proceedings of
the Third Annual Confernce on Evolutionary Programming, pages 131–139,
1994.

[35] K. M. Passino. Biomimicry of bacteria foraging for distributed optimization
and control. IEEE Control Systems Magazine, 22(3):52–67, June 2002.

[36] Z. W. Geem, J. H. Kim, and G. V. Loganathan. A new heuristic
optimization algorithm: Harmony search. Simulation, 76(2):60–68, 2001.

[37] K. Deb and R. B. Agrawal. Simulated binary crossover for continuous
search space. Complex Systems, 9(2):115–148, 1995.

[38] K. Deb and M. Goyal. A combined genetic adaptive search (GeneAS) for
engineering design. Computer Science and Informatics, 26(4):30–45, 1996.

[39] D. A. Van Veldhuizen and G. B. Lamont. Multiobjective evolutionary
algorithm test suites. In Proceedings of the 1999 ACM Symposium on
Applied Computing, pages 351–357, 1999.

[40] S. Bandyopadhyay, S. Saha, U. Maulik, and K. Deb. A simulated
annealing-based multiobjective optimization algorithm: AMOSA. IEEE
Transactions on Evolutionary Computation, 12(3), 2008.

174 REFERENCES

[41] J. F. M. Barhelemy and R. T. Haftka. Approximation concepts for optimum
structural design a review. Structural and Multidisciplinary Optimization,
5(3):129–144, September 1993.

[42] Y. Jin. A comprehensive survey of fitness approximation in evolutionary
computation. Soft Computing - A Fusion of Foundations, Methodologies
and Applications, 9(1):3–12, 2005.

[43] R. E. Smith, B. A. Dike, and S. A. Stegmann. Fitness inheritance in genetic
algorithms. In Proceedings of ACM Symposium on Applied Computing,
pages 345–350. ACM, 1995.

[44] K. Sastry, D. E. Goldberg, and M. Pelikan. Don’t evaluate, inherit.
In Proceedings of the Genetic and Evolutionary Computation Conference
GECCO, pages 551–558. Morgan Kaufmann, 2001.

[45] J.-H. Chen, D. E. Goldberg, S.-Y. Ho, and K. Sastry. Fitness inheritance
in multi-objective optimization. In Proceedings of the Genetic and
Evolutionary Computation Conference GECCO, pages 319–326. Morgan
Kaufmann, 2002.

[46] D. E. Goldberg and J. Richardson. Genetic algorithms with sharing
for multimodal function optimization. In Proceedings of the Second
International Conference on Genetic Algorithms, pages 41–49, 1987.

[47] R. H. Myers and D. C. Montgomery. Response Surface Methodology:
Process and Product in Optimization Using Designed Experiments. John
Wiley & Sons, Inc. New York, NY, USA, 1995.

[48] G. G. Wang, Z. Dong, and P. Aitchison. Adaptive response surface method
- A global optimization scheme for approximation-based design problems.
Engineering Optimization, 33:707–734, 2001.

[49] G. G. Wang and T. W. Simpson. Fuzzy clustering based hierarchical
metamodeling for space reduction and design optimization. Journal of
Engineering Optimization, 36(3):313–335, 2004.

[50] Y. S. Lian and M. S Liou. Multiobjective optimization using coupled
response surface model and evolutionary algorithm. AIAA Journal,
43(6):1316–1325, 2005.

[51] R. Rikards, H. Abramovich, K. Kalnins, and J. Auzins. Surrogate modeling
in design optimization of stiffened composite shells. Composite Structures,
73:244–251, 2006.

[52] S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall,
1994.

REFERENCES 175

[53] T. Morimoto, J. D. Baerdemaeker, and Y. Hashimoto. An intelligent
approach for optimal control of fruit-storage process using neural networks
and genetic algorithms. Computers and Electronics in Agriculture,
18(2-3):205–224, August 1997.

[54] J. Lee and P. Hajela. Parallel genetic algorithms implementation for
multidisciplinary rotor blade design. Journal of Aircraft, 33(5):962–969,
1996.

[55] S.-T. Khu, D. Savic, Y. Liu, and H. Madsen. A fast evolutionary-based
meta-modelling approach for the calibration of a rainfall–runoff model.
In Proceedings of 1st biennial meeting of the international environmental
modelling and software society, volume 1, pages 147–152, 2002.

[56] Y.-S. Hong, H. Lee, and M.-J. Tahk. Acceleration of the convergence speed
of evolutionary algorithms using multi-layer neural networks. Engineering
Optimization, 35(1):91–102, February 2003.

[57] M. J. D. Powell. Radial basis functions for multivariate interpolation:
a reivew. In J. C. Mason and M. G. Cox, editors, Algorithms for
approximation, pages 143–167. Clarendon Press, 1987.

[58] M. Farina. A neural network based generalized response surface
multiobjective evolutionary algorithms. In Proceedings of the IEEE
Congress on Evolutionary Computation (CEC’02), volume 1, pages
956–961. IEEE Press, 2002.

[59] P. K. S. Nain and K. Deb. Computationally effective search and
optimization procedure using coarse to fine approximation. In Proceedings
of the IEEE Congress on Evolutionary Computation (CEC’03), volume 3,
pages 2081–2088, Canberra, Australia, 2003.

[60] Y. Jin, T. Okabe, and B. Sendhoff. Neural network regularization and
ensembling using multi-objective evolutionary algorithms. In Proceedings
of the IEEE Congress on Evolutionary Computation (CEC’04), volume 1,
pages 1–8, 2004.

[61] A. P. Giotis, M. Emmerich, B. Naujoks, K. C. Giannakoglou, and T. Bäck.
Low-cost stochastic optimization for engineering applications. In K. C.
Giannakoglou, D. Tsahalis, J. Periaux, K. Papailiou, and T. Fogarty,
editors, Proceedings of International Conference on Evolutionary Methods
for Design, Optimization and Control with Applications to Industrial
Problems, Barcelona, Spain, 2001.

176 REFERENCES

[62] Y.-S. Ong, P. B. Nair, and K. Y. Lum. Max-min surrogate-assisted
evolutionary algorithm for robust design. IEEE Transactions on
Evolutionary Computation, 10(4):392–404, 2006.

[63] Y.-S. Ong, A. J. Keane, and P. B. Nair. Surrogate-assisted coevolutionary
search. In Proceedings of the 9th International Conference on Neural
Information Processing, volume 3, pages 1140–1145, Singapore, 2002.

[64] T. Ray and W. Smith. Surrogate assisted evolutionary algo-
rithm for multiobjective optimization. In Proceedings of the 47th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and
Materials Conference, Newport, Rhode Island, May 2006. AIAA-2006-2050.

[65] J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn. Design and analysis
of computer experiments. Statistical Science, 4:409–436, 1989.

[66] A. Ratle. Accelerating the convergence of evolutionary algorithms by fitness
landscape approximation. In A. Eiben, Thomas Bäck, Marc Schoenauer,
and H.-P. Schwefel, editors, Parallel Problem Solving from Nature - PPSN
V, volume 1498 of Lecture Notes in Computer Science, pages 87–96, 1998.

[67] A. Ratle. Kriging as a surrogate finess landscape in evolutionary
optimization. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, 15:37–49, 2001.

[68] D. Büche, N. N. Schraudolph, and P. Koumoutsakos. Accelerating
evolutionary algorithms using fitness function models. In Proceedings
of GECCO Workshop on Learning, Adaptation and Approximation in
Evolutionary Computation, pages 166–169, 2003.

[69] M. Li, G. Li, and S. Azarm. A kriging metamodel assisted multi-objective
genetic algorithm for design optimization. Journal of Mechanical Design,
130(3):031401, March 2008.

[70] M. A. El-Beltagy and A. J. Keane. Evolutionary optimization for
computationally expensive problems using gaussian processes. In
Proceedings of the International Conference on Artificial Intelligence, pages
708–714. CSREA, 2001.

[71] B. Wilson, D. Cappelleri, T. W. Simpson, and M. Frecker. Efficient pareto
frontier exploration using surrogate approximations. Optimization and
Engineering, 2(1):31–50, March 2001.

[72] M. Emmerich, A. P. Giotis, M. Özdemir, T. Bäck, and K. C. Giannakoglou.
Metamodel-assisted evolution strategies. In Proceedings of the 7th
International Conference on Parallel Problem Solving from Nature, Lecture
Notes in Computer Science, pages 361–370. Springer, 2002.

REFERENCES 177

[73] K. S. Won and T. Ray. A framework for design optimization using
surrogates. Engineering Optimization, 37(7):685–703, 2005.

[74] Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient
global optimization of expensive black-box functions. Journal of Global
Optimization, 13:455–492, 1998.

[75] J. Knowles. ParEGO: a hybrid algorithm with on-line landscape
approximation for expensive multiobjective optimization problems. IEEE
Transactions on Evolutionary Computation, 10(1):50–66, 2006.

[76] W. C. Carpenter and J.-F. Barthelemy. A comparison of polynomial
approximation and artificial neural nets as response surface. Structural
and Multidisciplinary Optimization, 5(3):166–174, September 1993.

[77] T. W. Simpson, T. M. Mauery, J. J. Korte, and F. Mistree. Comparison
of response surface and kriging models for multidisciplinary design
optimization. In Proceedings of the 7th AIAA/USAF/NASA/ISSMO
Symposium on Multidisciplinary Analysis & Optimization. AIAA, 1998.
AIAA-98-4755.

[78] K. Rasheed, Xiao Ni, and S. Vattam. Comparison of methods for developing
dynamic reduced models for design optimization. Soft Computing -
A Fusion of Foundations, Methodologies and Applications, 9(1):29–37,
January 2005.

[79] D. C. Montgomery. Design and Analysis of Experiments. Wiley, 1976.

[80] A. B. Owen. Orthogonal arrays for computer experiments, integration and
visualization. Statistica Sinica, 2(2):439–452, 1992.

[81] A. S. Hedayat, N. J. A. Sloane, and J. Stufken. Orthogonal Arrays - Theory
and Application. Springer Series in Statistics. Springer, 1999.

[82] Michael D. McKay, R. J. Beckman, and W. J. Conover. A comparison
of three methods for selecting values of input variables in the analysis of
output from a computer code. Technometrics, 21(2):239–245, may 1979.

[83] Boxin Tang. Orthogonal array-based latin hypercubes. Journal of the
American Statistical Association, 88(424):1392–1397, 1993.

[84] A. J. Booker, J. Dennis, P. D. Frank, D. B. Serafini, V. Torczon, and
M. Trosset. A rigorous framework for optimization of expensive functions
by surrogates. Structural and Multidisciplinary Optimization, 17(1):1–13,
February 1999.

178 REFERENCES

[85] K. S. Won, T. Ray, and K. Tai. A framework for optimization
using approximate functions. In Proceedings of the IEEE Congress
on Evolutionary Computation (CEC’03), volume 3, pages 1520–1527,
December 2003.

[86] Y. Jin and B. Sendhoff. Reducing fitness evaluations using clustering
techniques and neural networks ensembles. In Proceedings of the 2004
Genetic and Evolutionary Computing Conference GECCO, pages 688–699,
2004.

[87] A. Ratle. Optimal sampling strategies for learning a fitness model. In
Proceedings of the IEEE Congress on Evolutionary Computation (CEC’99),
volume 3, pages 2078–2085, Washington D.C., July 1999.

[88] M. A. El-Beltagy, P. B. Nair, and A. J. Keane. Metamodeling techniques
for evolutionary optimization of computationally expensive problems:
promises and limitations. In Proceedings of the Genetic and Evolutionary
Computation Conference GECCO, pages 196–203, Orlando, 1999. Morgan
Kaufmann.

[89] M. Papadrakakis, N. D. Lagaros, and Y. Tsompanakis. Structural
optimization using evolution strategies and neural networks. Computer
Methods in Applied Mechanics and Engineering, 156(1-4), April 1998.

[90] A. Schmitz, E. Besnard, and E. Vivies. Reducing the cost of computational
fluid dynamics optimization using multilayer perceptrons. In Proceedings
of the 2002 International Joint Conference on Neural Networks, volume 2,
pages 1877–1882. IEEE, 2002.

[91] L. Willmes, T. Bäck, Y. Jin, and B. Sendhoff. Comparing neural networks
and kriging for fitness approximation in evolutionary optimization. In
Proceedings of the IEEE Congress on Evolutionary Computation CEC’03,
volume 1, pages 663–670, 2003.

[92] R. G. Regis and C. A. Shoemaker. Local function approximation in
evolutionary algorithms for the optimization of costly functions. IEEE
Transactions on Evolutionary Computation, 8(5):490–505, 2004.

[93] Z. Zhou, Y.-S. Ong, and P. B. Nair. Hierarchical surrogate-assisted
evolutionary optimization framework. In Proceedings of the IEEE Congress
on Evolutionary Computation (CEC’04), pages 1586–1593. IEEE, 2004.

[94] Z. Zhou, Y.-S. Ong, P. B. Nair, A. J. Keane, and K. Y. Lum. Combining
global and local surrogate models to accelerate evolutionary optimization.
Ieee Transactions on Systems Man and Cybernetics Part C-Applications
and Reviews, 37(1):66–76, 2007.

REFERENCES 179

[95] Y. Tenne. A framework for memetic optimization using variable global
and local surrogate models. Soft Computing - A Fusion of Foundations,
Methodologies and Applications, 13(8-9):781, 2009.

[96] L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[97] S. Abney, R. E. Schapire, and Y. Singer. Boosting applied to tagging
and PP attachment. In Proceedings of the Joint SIGDAT Conference
on Empirical Methods in Natural Language Processing and Very Large
Corpora, 1999.

[98] H. A. Abbass. Pareto neuro-evolution: Constructing ensemble of neural
networks using multi-objective optimization. In Proceedings of the
IEEE Congress on Evolutionary Computation (CEC’03), volume 3, pages
2074–2080, 2003.

[99] K. Hamza and K. Saitou. Vehicle crashworthiness design via a surrogate
model ensemble and a coevolutionary genetic algorithm. In Proceedings
of IDETC/CIEASME 2005 International Design Engineering Technical
Conference, California, USA, September 2005.

[100] L. E. Zerpa, N. V. Queipo, S. Pintos, and J.-L. Salager. An optimization
methodology of alkaline-surfactant-polymer flooding processes using field
scale numerical simulation and multiple surrogates. Journal of Petroleum
Science and Engineering, 47(3-4):197–208, June 2005.

[101] T. Goel, R. T. Haftka, W. Shyy, and N. V. Queipo. Ensemble of surrogates.
Structural and Multidisciplinary Optimization, 33(3):199–216, March 2007.

[102] Z. Zhou, Y.-S. Ong, M. H. Lim, and B. S. Lee. Memetic algorithm using
multi-surrogates for computationally expensive optimization problems. Soft
Computing - A Fusion of Foundations, Methodologies and Applications,
11(10):957–971, 2007.

[103] Y. Zhao, J. Gao, and X. Yang. A survey of neural network ensembles. In
International Conference on Neural Networks and Brain, 2005. ICNN&B,
volume 1, pages 438–442, 2005.

[104] D. Lim, Y.-S. Ong, Y. Jin, and B. Sendhoff. A study on metamodelling
techniques, ensembles, and multi-surrogates in evolutionary computation.
In Proceedings of the 9th annual conference on Genetic and evolutionary
computation, pages 1288–1295, 2007.

[105] Y. Jin, M. Olhofer, and B. Sendhoff. Managing approximate models in
evolutionary aerodynamic design optimization. In Proceedings of the IEEE
Congress on Evolutionary Computation, volume 1, pages 592–599, May
2001.

180 REFERENCES

[106] Y. Jin, M. Olhofer, and B. Sendhoff. A framework for evolutionary
optimization with approximate fitness functions. IEEE Transactions on
Evolutionary Computation, 6(5):481–494, 2002.

[107] L. Bull. On model-based evolutionary computation. Soft Computing
- A Fusion of Foundations, Methodologies and Applications, 3(2):76–82,
September 1999.

[108] S. D’Angelo and E. A. Minsci. Multi-objective evolutionary optimization
of subsonic airfoils by kriging approximation and evolutionary control. In
Proceedings of the IEEE Congress on Evolutionary Computation (CEC’05),
volume 2, pages 1262–1267, 2005.

[109] P. B. Nair, A. J. Keane, and R. P. Shimpi. Combining approximation
concepts with algorithm-based structural optimization procedures. In Pro-
ceedings of the 39th AIAA/ASMEASCE/AHS/ASC Structures, Structural
Dynamics and Materials Conference, pages 1741–1751, 1998.

[110] Y. Jin, M. Olhofer, and B. Sendhoff. On evolutionary optimization
with approximate fitness functions. In Proceedings of the Genetic and
Evolutionary Computation Conference GECCO, pages 786–793, Las Vegas,
Nevada, 2000.

[111] Y. Tenne and S. W. Armfield. Metamodel accuracy assessment in
evolutionary optimization. In Proceedings of the IEEE Congress on
Evolutionary Computation, 2008 (CEC 2008), pages 1505–1512, June 2008.

[112] K. Rasheed and H. Hirsh. Informed operators: Speeding up
genetic-algorithm-based design optimization using reduced models. In
Proceedings of the Genetic and Evolutionary Computation Conference
GECCO, pages 628–635, Las Vegas, 2000. Morgan Kaufmann.

[113] A. Mutoh, S. Kato, T. Nakamura, and H. Itoh. Reducing execution time
on genetic algorithms in real-world applications using fitness prediction. In
Proceedings of the IEEE Congress on Evolutionary Computation, volume 1,
pages 552–559, Sydney, Australia, 2003. IEEE.

[114] M. Emmerich, K. C. Giannakoglou, and B. Naujoks. Single and
multiobjective evolutionary optimization assisted by gaussian random
field metamodels. IEEE Transactions on Evolutionary Computation,
10(4):421–439, 2006.

[115] H. Ulmer, F. Streichert, and A. Zell. Evolution startegies assisted by
gaussian processes with improved pre-selection criterion. In Proceedings
of the IEEE Congress on Evolutionary Computation (CEC’03), volume 1,
pages 692–699, 2003.

REFERENCES 181

[116] K. S. Anderson and Y. Hsu. Genetic crossover strategy using an
approximation concept. In Proceedings of the IEEE Congress on
Evolutionary Computation (CEC), volume 1, 1999.

[117] K. Abboud and M. Schoenauer. Surrogate deterministic mutation:
Preliminary results. In Artificial Evolution, volume 2310 of Lecture Notes
in Computer Science, pages 919–954. Springer, 2002.

[118] P. Moscato and C. Cotta. A gentle introduction to memetic algorithms. In
F. Glover and G. Kochenberger, editors, Handbook of Metaheuristics, pages
105–144. Kluwer Academic Press, 2003.

[119] P. Moscato and C. Cotta. Memetic algorithms. In T. González, editor,
Handbook of Approximation Algorithms and Metaheuristics. Chapman &
Hall/CRC Press, 2007.

[120] K.-H. Liang, X. Yao, and C. Newton. Combining landscape approximation
and local search in global optimization. In Proceedings of the IEEE
Congress on Evolutionary Computation, volume 2, pages 1514–1520, 1999.

[121] K.-H. Liang, X. Yao, and C. Newton. Evolutionary search of approximated
N-Dimensional landscape. International Journal of Knowledge-based
Intelligent Engineering Systems, 4(3):172–183, 2000.

[122] K. W. C. Ku, M. W. Mak, and W.-C. Siu. A study of the lamarckian
evolution of recurrent neural networks. IEEE Transactions on Evolutionary
Computation, 4(1):31–42, 2000.

[123] Y.-S. Ong, P. B. Nair, and A. J. Keane. Evolutionary optimization
of computationally expensive problems via surrogate modeling. AIAA
Journal, 41(4):687–696, 2003.

[124] Y.-S. Ong, K. Y. Lum, P. B. Nair, D. M. Shi, and Z. K. Zhang. Global
convergence unconstrained and bound constrained Surrogate-Assisted
evolutionary search in aerodynamic shape design. In Proceedings of the
IEEE Congress on Evolutionary Computation (CEC’03), volume 3, pages
1856–1863, Canberra, Australia, 2003.

[125] Y.-S. Ong, Z. Zhou, and D. Lim. Curse and blessing of uncertainty in
evolutionary algorithms using approximation. In Proceedings of the IEEE
Congress on Evolutionary Computation (CEC-2006), pages 2928–2935,
2006.

[126] J. MacQueen. Some methods for classification and analysis of multivariate
ob servations. In Proc. Fifth Berkeley Symp. on Math. Statist. and Prob.,
volume 1, pages 281–297, 1967.

182 REFERENCES

[127] H. B. Nielsen. Dace - a matlab kriging toolbox.

[128] C. A. C. Coello. Theoretical and numerical constraint-handling
techniques used with evolutionary algorithms: a survey of the state
of the art. Computer Methods in Applied Mechanics and Engineering,
191(11-12):1245–1287, January 2002.

[129] A. Homaifar, C. X. Qi, and S. H. Lai. Constrained optimization via genetic
algorithms. Simulation, 62(4):242–253, 1994.

[130] A. Kuri-Morales and C. V. Quezada. A Universal Eclectic Genetic
Algorithm for Constrained Optimization. In Proceedings 6th European
Congress on Intelligent Techniques & Soft Computing, EUFIT’98, pages
518–522, Aachen, Germany, September 1998. Verlag Mainz.

[131] J. A. Joines and C. R. Houck. On the use of non-stationary penalty
functions to solve nonlinear constrained optimization problems with GAs.
In David Fogel, editor, Proceedings of the first IEEE Conference on
Evolutionary Computation (CEC), volume 2, pages 579–584, Orlando,
Florida, 1994.

[132] Z. Michalewicz and N. F. Attia. Evolutionary optimization of constrained
problems. In Proceedings of the 3rd Annual Conference on Evolutionary
Programming, pages 98–108. World Scientific, 1994.

[133] Z. Michalewicz. Genetic Algorithms, Numerical Optimization, and
Constraints. In Larry J. Eshelman, editor, Proceedings of the Sixth
International Conference on Genetic Algorithms (ICGA-95), pages
151–158, San Mateo, California, July 1995. University of Pittsburgh,
Morgan Kaufmann Publishers.

[134] J. C. Bean. Genetics and random keys for sequencing and optimization.
Technical Report TR 92-43, Department of Industrial and Operations
Engineering, The University of Michigan, 1992.

[135] A. B. Hadj-Alouane and J. C. Bean. A Genetic Algorithm for the
Multiple-Choice Integer Program. Operations Research, 45(1):92–101, 1997.

[136] R. Farmani and J. A. Wright. Self-adaptive fitness formulation
for constrained optimization. IEEE Transactions on Evolutionary
Computation, 7(5):445–455, October 2003.

[137] Y. Wang, Z. Cai, Y. Zhou, and Z. Fan. Constrained optimization
based on hybrid evolutionary algorithm and adaptive constraint-handling
technique. Structural and Multidisciplinary Optimization, 37(4):395–413,
January 2009.

REFERENCES 183

[138] F. Hoffmeister and J. Sprave. Problem-independent handling of constraints
by use of metric penalty functions. In Lawrence J. Fogel, Peter J. Angeline,
and Thomas Bäck, editors, Proceedings of the Fifth Annual Conference on
Evolutionary Programming (EP’96), pages 289–294, San Diego, California,
February 1996. The MIT Press.

[139] T. P. Runarsson and X. Yao. Stochastic ranking for constrained
evolutionary optimization. IEEE Transactions on Evolutionary Compution,
4(3):284–294, September 2000.

[140] H. Xiao and J. W. Zu. A new constrained multiobjective optimization
algorithm based on artificial immune systems. In Proceedings of the 2007
IEEE International Conference on Mechatronics and Automation, Harbin,
China, 2007.

[141] L. D. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold,
New York, 1991.

[142] M. Schoenauer and Z. Michalewicz. Evolutionary computation at the edge
of feasibility. In Parallel Problem Solving from Nature - PPSN IV, volume
1141 of Lecture Notes in Computer Science, pages 245–254, 1996.

[143] S. Koziel and Z. Michalewicz. Evolutionary Algorithms, Homomorphous
Mappings, and Constrained Parameter Optimization. Evolutionary
Computation, 7(1):19–44, 1999.

[144] Z. Michalewicz and J. Xiao. Evaluation of Paths in Evolutionary
Planner/Navigator. In Proceedings of the 1995 International Workshop
on Biologically Inspired Evolutionary Systems, pages 45–52, Tokyo, Japan,
May 1995.

[145] Z. Michalewicz and G. Nazhiyath. Genocop III: A co-evolutionary
algorithm for numerical optimization with nonlinear constraints. In
Proceedings of the Second IEEE International Conference on Evolutionary
Computation, volume 2, pages 647–651, 1995.

[146] J. Xiao, Z. Michalewicz, and L. Zhang. Evolutionary Planner/Navigator:
Operator Performance and Self-Tuning. In Proceedings of the 3rd IEEE
International Conference on Evolutionary Computation, Nagoya, Japan,
May 1996.

[147] J. Xiao, Z. Michalewicz, and K. Trojanowski. Adaptive Evolutionary
Planner/Navigator for Mobile Robots. IEEE Transactions on Evolutionary
Computation, 1(1):18–28, 1997.

184 REFERENCES

[148] D. Powell and M. M. Skolnick. Using genetic algorithms in engineering
design optimization with non-linear constraints. In Stephanie Forrest,
editor, Proceedings of the Fifth International Conference on Genetic
Algorithms (ICGA-93), pages 424–431, San Mateo, California, July 1993.
Morgan Kaufmann Publishers.

[149] K. Deb. An Efficient Constraint Handling Method for Genetic Algorithms.
Computer Methods in Applied Mechanics and Engineering, 186(2):311–338,
2000.

[150] C. A. C. Coello. Treating constraints as objectives for single-objective
evolutionary optimization. Engineering Optimization, 32(3):275–308,
January 2000.

[151] P. D. Surry and N. J. Radcliffe. The COMOGA method: Constrained
optimisation by multi-objective genetic algorithms. Control and
Cybernetics, 26(3):391–412, 1997.

[152] E. Camponogara and S. N. Talukdar. A genetic algorithm for constrained
and multiobjective optimization. In J. T. Alander, editor, 3rd Nordic
Workshop on Genetic Algorithms and Their Applications, pages 49–62,
1997.

[153] C. A. C. Coello and E. Mezura-Montes. Constraint-handling in genetic
algorithms through the use of dominance-based tournament selection.
Advanced Engineering Informatics, 16(3):193–203, July 2002.

[154] D. A. G. Vieira, R. L. S. Adriano, L. Krahenbuhl, and J. A. Vasconcelos.
Handing constraints as objectives in a multiobjective genetic based
algorithm. Journal of Microwaves and Optoelectronics, 2(6):50–58,
December 2002.

[155] D. A. G. Vieira, R. L. S. Adriano, J. A. Vasconcelos, and L. Krahenbuhl.
Treating constraints as objectives in multiobjective optimization problems
using niched pareto genetic algorithm. IEEE Transactions on Magnetics,
40(2):1188–1191, March 2004.

[156] S. B. Hamida and M. Schoenauer. An adaptive algorithm for constrained
optimization problems. In Parallel Problem Solving from Nature - PPSN
VI, volume 1917 of Lecture Notes in Computer Science, pages 529–538,
2000.

[157] S. B. Hamida and M. Schoenauer. ASCHEA: new results using adaptive
segregational constraint handling. In Proceedings of the IEEE Congress on
Evolutionary Computation (CEC’02), volume 1, pages 884–889, May 2002.

REFERENCES 185

[158] R. Hinterding and Z. Michalewicz. Your brains and my beauty: parent
matching for constrained optimisation. In Proceedings of the IEEE
International Conference on Evolutionary Computation (CEC’98), pages
810–815, May 1998.

[159] E. Mezura-Montes and C. A. C. Coello. A simple multimembered evolution
strategy to solve constrained optimization problems. IEEE Transactions on
Evolutionary Computation, 9(1):1–17, 2 2005.

[160] K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. John
Wiley and Sons Pvt. Ltd., 2001.

[161] C. A. C. Coello. Use of a Self-Adaptive Penalty Approach for Engineering
Optimization Problems. Computers in Industry, 41(2):113–127, January
2000.

[162] K. C. Giannakoglou. Design of optimal aerodynamic shapes using
stochastic optimization methods and computational intelligence. Progress
in Aerospace Sciences, 38(1):43–76, 2002.

[163] A. Jameson, W. Schmidt, and E. Turkel. Numerical solutions of the euler
equations by finite volume methods using Runge-Kutta Time-Stepping
schemes. In Proceedings of the AIAA 14th Fluid and Plasma Dynamic
Conference, Palo Alto, 1981.

[164] S. Rajeev and C. S. Krishnamoorthy. Discrete optimization of
structures using genetic algorithms. Journal of Structural Engineering,
118(5):1233–1250, May 1992.

[165] C. A. C. Coello, M. Rudnick, and A. D. Christiansen. Using genetic
algorithms for optimal design of trusses. In Proceedings of Sixth
Interanational Conference on Tools with Artificial Intelligence, pages 88–94,
New Orleans, LA, USA, nov 1994.

[166] S.-J. Wu and P.-T. Chow. Steady-state genetic algorithms for discrete
optimization of trusses. Computers & Structures, 56(6):979–991, 1995.

[167] K. Deb and S. Gulati. Design of truss-structures for minimum weight using
genetic algorithms. Finite Elements in Analysis and Design, 37(5):447–465,
may 2001.

[168] A. Kaveh and V. Kalatjari. Topology optimization of trusses using genetic
algorithm, force method and graph theory. International Journal for
Numerical Methods in Engineering, 58(5):771–791, 2003.

186 REFERENCES

[169] A. Kaveh and M. Shahrouzi. Simultaneous topology and size optimization
of structures by genetic algorithm using minimal length chromosome.
Engineering Computations, 23(6):644–674, 2006.

[170] S. Rajeev and C. S. Krishnamoorthy. Genetic Algorithms-Based
methodologies for design optimization of trusses. Journal of Structural
Engineering, 123(3):350–358, March 1997.

[171] W. Tang, L. Tong, and Y. Gu. Improved genetic algorithm for
design optimization of truss structures with sizing, shape and topology
variables. International Journal for Numerical Methods in Engineering,
62(13):1737–1762, 2005.

[172] M. R. Ghasemi, E. Hinton, and R. D. Wood. Optimization of trusses
using genetic algorithms for discrete and continuous variables. Engineering
Computations, 16(3):272–301, 1999.

[173] K. Deb, S. Gulati, and S. Chakrabarti. Optimal Truss-Structure design
using Real-Coded genetic algorithms. In John R. Koza, Wolfgang Banzhaf,
Kumar Chellapilla, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max H.
Garzon, David E. Goldberg, Hitoshi Iba, and Rick Riolo, editors, Genetic
Programming 1998: Proceedings of the Third Annual Conference, pages
479–486, University of Wisconsin, Madison, Wisconsin, USA, 1998. Morgan
Kaufmann.

[174] N. Turkkan. Discrete optimization of structures using a floating point
genetic algorithm. In Proceedings of Annual Conference of the Canadian
Society for Civil Engineering, Canada, 2003.

[175] D. E. Goldberg, B. Korb, and K. Deb. Messy genetic algorithms:
Motivation, analysis, and first results. Complex Systems, 3(5):493–530,
1989.

[176] Y. M. Xie and G. P. Steven. A simple evolutionary procedure for structural
optimization. Computational Structures, 49(5):885–896, 1993.

[177] G. P. Steven, O. M. Querin, and Mike Xie. Evolutionary structural
optimisation (ESO) for combined topology and size optimisation of discrete
structures. Computer Methods in Applied Mechanics and Engineering,
188(4):743–754, 2000.

[178] D. N. Chu, Y. M. Xie, A. Hira, and G. P. Steven. On various aspects of
evolutionary structural optimization for problems with stiffness constraints.
Finite Elements in Analysis and Design, 24(4):197–212, 1997.

REFERENCES 187

[179] P. Tanskanen. A multiobjective and fixed elements based modification of
the evolutionary structural optimization method. Computer Methods in
Applied Mechanics and Engineering, 196(1-3):76–90, 2006.

[180] W. Gutkowski, J. Bauer, and J. Zawidzka. An effective method for discrete
structural optimization. Engineering Computations, 17(4):417–426, 2000.

[181] M. Pyrz and J. Zawidzka. Optimal discrete truss design using
improved sequential and genetic algorithm. Engineering Computations,
18(8):1078–1090, 2001.

[182] K. S. Lee and Z. W. Geem. A new structural optimization method based on
the harmony search algorithm. Computers & Structures, 82(9-10):781–798,
2004.

[183] X. Yao and Y. Liu. Fast evolutionary strategies. In Peter J. Angeline,
Robert G. Reynolds, John R. McDonnell, and Russ Eberhart, editors,
Evolutionary Programming VI, pages 151–161, Berlin, 1997. Springer.

[184] Z. Michalewicz and M. Schoenauer. Evolutionary Algorithms for Con-
strained Parameter Optimization Problems. Evolutionary Computation,
4(1):1–32, 1996.

[185] E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective
evolutionary algorithms: Empirical results. Evolutionary Computation,
8(2):173–195, 2000.

[186] K. Deb, A. Pratap, and T. Meyarivan. Constrained test problems for
multi-objective evolutionary optimization. In Evolutionary Multi-Criterion
Optimization, volume 1993 of Lecture Notes in Computer Science, pages
284–298, 2001.

Appendix A

f-series optimization problems

The f-series of problems are the unconstrained single objective problems [183].

Thirteen problems (f01–f13) in the f-series are considered in the thesis. Problems

f01–f07 are unimodal with a single global minimum. Functions f08–f13 are

multi-modal with a large number of local minima. The number of local minima

increases exponentially with the problem dimension. All the problems are scalable

in the number of design variables. In this study, 30 design variables are considered

for all the problems.

A.1 Sphere Model

f1(x) =
30
∑

i=1

x2
i

−100 ≤ xi ≤ 100, i = 1, 2, . . . , 30 min(f1) = f1(0, . . . , 0) = 0

A.2 Schwefel’s Problem 2.22

f2(x) =
30
∑

i=1

|xi|+
30
∏

i=1

|xi|

−10 ≤ xi ≤ 10, i = 1, 2, . . . , 30 min(f2) = f2(0, . . . , 0) = 0

189

190 APPENDIX A. F-SERIES PROBLEMS

A.3 Schwefel’s Problem 1.2

f3(x) =
30
∑

i=1

(

i
∑

j=1

xj

)2

−100 ≤ xi ≤ 100, i = 1, 2, . . . , 30 min(f3) = f3(0, . . . , 0) = 0

A.4 Schwefel’s Problem 2.21

f4(x) = max
i
{|xi|, 1 ≤ i ≤ 30}

−100 ≤ xi ≤ 100, i = 1, 2, . . . , 30 min(f4) = f4(0, . . . , 0) = 0

A.5 Generalized Rosenbrock’s Function

f5(x) =
29
∑

i=1

[

100(xi+1 − x2
i)

2 + (xi − 1)2
]

−30 ≤ xi ≤ 30, i = 1, 2, . . . , 30 min(f5) = f5(1, . . . , 1) = 0

A.6 Step Function

f6(x) =
30
∑

i=1

(⌊xi + 0.5⌋)2

−100 ≤ xi ≤ 100, i = 1, 2, . . . , 30 min(f6) = f6(0, . . . , 0) = 0

A.7 Quartic Function with Noise

f7(x) =
30
∑

i=1

ix4
i + random[0, 1)

−1.28 ≤ xi ≤ 1.28, i = 1, 2, . . . , 30 min(f7) = f7(0, . . . , 0) = 0

APPENDIX A. F-SERIES PROBLEMS 191

A.8 Generalized Schwefel’s Problem 2.26

f8(x) = −
30
∑

i=1

(

xi sin
(

√

|xi|
))

−500 ≤ xi ≤ 500, i = 1, 2, . . . , 30

min(f8) = f8(420.9687, . . . , 420.9687) = −12569.5

A.9 Generalized Rastrigin’s Function

f9(x) =
30
∑

i=1

[

x2
i − 10 cos(2πxi) + 10

]

−5.12 ≤ xi ≤ 5.12, i = 1, 2, . . . , 30 min(f9) = f9(0, . . . , 0) = 0

A.10 Ackley’s Function

f10(x) = −20 exp

−0.2

√

√

√

√

1

30

30
∑

i=1

x2
i

− exp

(

1

30

30
∑

i=1

cos(2πxi)

)

+ 20 + e

−32 ≤ xi ≤ 32, i = 1, 2, . . . , 30 min(f10) = f10(0, . . . , 0) = 0

A.11 Generalized Griewank Function

f11(x) =
1

4000

30
∑

i=1

x2
i −

30
∏

i=1

cos

(

xi√
i

)

+ 1

−600 ≤ xi ≤ 600, i = 1, 2, . . . , 30 min(f11) = f11(0, . . . , 0) = 0

192 APPENDIX A. F-SERIES PROBLEMS

A.12 Generalized Penalized Functions

f12(x) =
π

30

{

10 sin2(πy1) +
29
∑

i=1

(yi − 1)2
[

1 + 10 sin2(πyi+1)
]

+

(yn − 1)2

}

+
30
∑

i=1

u(xi, 10, 100, 4)

−50 ≤ xi ≤ 50, i = 1, 2, . . . , 30 min(f12) = f12(1, . . . , 1) = 0

f13(x) = 0.1

{

sin2(3πx1) +
29
∑

i=1

(xi − 1)2
[

1 + sin2(3πxi+1)
]

+ (x30 − 1)2[1 + sin2(2πx30)]

}

+
30
∑

i=1

u(xi, 5, 100, 4)

−50 ≤ xi ≤ 50, i = 1, 2, . . . , 30 min(f13) = f13(1, . . . , 1) = 0

where

u(xi, a, k,m) =

k(xi − a)m, xi > a,

0, −a ≤ xi ≤ a,

k(−xi − a)m, xi ≤ −a.

yi = 1 +
1

4
(xi + 1)

Appendix B

g-series optimization problems

The g-series of problems consists of constrained single objective problems [184,

143]. The g-series has a total of eleven problems out of which eight problems

without equality constraints are studied.

B.1 g01

Minimize f(x) = 5
4
∑

i=1

xi − 5
4
∑

i=1

x2
i −

13
∑

i=5

xi

subject to

g1(x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0

g2(x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0

g3(x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0

g4(x) = −8x1 + x10 ≤ 0

g5(x) = −8x2 + x11 ≤ 0

g6(x) = −8x3 + x12 ≤ 0

g7(x) = −2x4 − x5 + x10 ≤ 0

g8(x) = −2x6 − x7 + x11 ≤ 0

g9(x) = −2x8 − x9 + x12 ≤ 0

where the bounds are 0 ≤ xi ≤ 1 (i = 1, · · · , 9), 0 ≤ xi ≤ 100 (i = 10, 11, 12),

and 0 ≤ x13 ≤ 1. The global minimum is at x∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1)

193

194 APPENDIX B. G-SERIES PROBLEMS

where six constrains are active (g1, g2, g3, g7, g8, g9) and f(x∗) = −15.

B.2 g02

Maximize f(x) =

∣

∣

∣

∣

∣

∑n
i=1 cos4(xi)− 2

∏n
i=1 cos2(xi)

√
∑n

i=1 ix
2
i

∣

∣

∣

∣

∣

subject to

g1(x) = 0.75−
n
∏

i=1

xi ≤ 0

g2(x) =
n
∑

i=1

xi − 7.5n ≤ 0

where n = 20 and 0 ≤ xi ≤ 10 (i = 1, . . . , n). The global maximum is unknown;

the best found is f(x∗) = 0.803619.

B.3 g04

Minimize f(x) = 5.3578547x2
3 + 0.8356891x1x5 + 37.293239x1 − 40792.141

subject to

g1(x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5 − 92 ≤ 0

g2(x) = −85.334407− 0.0056858x2x5 − 0.0006262x1x4 + 0.0022053x3x5 ≤ 0

g3(x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x2
3 − 110 ≤ 0

g4(x) = −80.51249− 0.0071317x2x5 − 0.0029955x1x2 − 0.0021813x2
3 + 90 ≤ 0

g5(x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4 − 25 ≤ 0

g6(x) = −9.300961− 0.0047026x3x5 − 0.0012547x1x3 − 0.0019085x3x4 + 20 ≤ 0

where 78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45 and 27 ≤ xi ≤ 45 (i = 3, 4, 5). The

optimum solution is x∗ = (78, 33, 29.99526025682, 45, 36.775812905788) where

f(x∗) = −30665.539. Two constraints are active (g1 and g6).

APPENDIX B. G-SERIES PROBLEMS 195

B.4 g06

Minimize f(x) = (x1 − 10)3 + (x2 − 20)3

subject to

g1(x) = −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0

g2(x) = (x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0

where 13 ≤ x1 ≤ 100 and 0 ≤ x2 ≤ 100. The optimum solution is x∗ =

(14.095, 0.84296) where f(x∗) = −6961.81388. Both constraints are active.

B.5 g07

Minimize f(x) = x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2

+ 4(x4 − 5)2 + (x5 − 3)2 + 2(x6 − 1)2 + 5x2
7

+ 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45

subject to

g1(x) = −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0

g2(x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0

g3(x) = −8x1 − 2x2 + 5x9 − 2x10 − 12 ≤ 0

g4(x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2
3 − 7x4 − 120 ≤ 0

g5(x) = 5x2
1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0

g6(x) = x2
1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0

g7(x) = 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2
5 − x6 − 30 ≤ 0

g8(x) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0

where −10 ≤ xi ≤ 10 (i = 1, . . . , 10). The optimum solution is x∗ = (2.171996,

2.363683, 8.773926, 5.095984, 0.9906548, 1.430574, 1.321644, 9.828726, 8.280092,

8.375927) where f(x∗) = 24.3062091. Six constraints are active (g1, g2, g3, g4, g5, g6).

196 APPENDIX B. G-SERIES PROBLEMS

B.6 g08

Maximize f(x) =
sin3(2πx1) sin(2πx2)

x3
1(x1 + x2)

subject to

g1(x) = x2
1 − x2 + 1 ≤ 0

g2(x) = 1− x1 + (x2 − 4)2 ≤ 0

where 0 ≤ x1 ≤ 10 and 0 ≤ x2 ≤ 10. The optimum is located at x∗ =

(1.2279713, 4.2453733) where f(x∗) = 0.095825. The solution lies within the

feasible region.

B.7 g09

Minimize f(x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2

+ 10x6
5 + 7x2

6 + x4
7 − 4x6x7 − 10x6 − 8x7

subject to

g1(x) = −127 + 2x2
1 + 3x4

2 + x3 + 4x2
4 − 5x5 ≤ 0

g2(x) = −282 + 7x1 + 3x2 + 10x2
3 + x4 − x5 ≤ 0

g3(x) = −196 + 23x1 + x2
2 + 6x2

6 − 8x7 ≤ 0

g4(x) = 4x2
1 + x2

2 − 3x1x2 + 2x2
3 + 5x6 − 11x7 ≤ 0

where −10 ≤ xi ≤ 10 (i = 1, . . . , 7). The optimum solution is x∗ = (2.330499,

1.951372, −0.4775414, 4.365726, −0.6244870, 1.038131, 1.594227) where f(x∗) =

680.6300573. Two constraints are active (g1 and g4).

APPENDIX B. G-SERIES PROBLEMS 197

B.8 g10

Minimize f(x) = x1 + x2 + x3

subject to

g1(x) = −1 + 0.0025(x4 + x6) ≤ 0

g2(x) = −1 + 0.0025(x5 + x7 − x4) ≤ 0

g3(x) = −1 + 0.01(x8 − x5) ≤ 0

g4(x) = −x1x6 + 833.33252x4 + 100x1 − 83333.333 ≤ 0

g5(x) = −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0

g6(x) = −x3x8 + 1250000 + x3x5 − 2500x5 ≤ 0

where 100 ≤ x1 ≤ 10000, 1000 ≤ xi ≤ 10000 (i = 2, 3), and 10 ≤ xi ≤
1000 (i = 4, . . . , 8). The optimum solution is x∗ = (579.3167, 1359.943, 5110.071,

182.0174, 295.5985, 217.9799, 286.4162, 395.5979) where f(x∗) = 7049.3307.

Three constraints are active (g1, g2, and g3).

g1(x) = (x1 − p)2 + (x2 − q)2 + (x3 − r)2 − 0.0625 ≤ 0

where 0 ≤ xi ≤ 10 (i = 1, 2, 3) and p, q, r = 1, 2, . . . , 9.

Appendix C

Zitlzer-Deb-Thiele’s (ZDT) test

problems

Zitzler et al. [185] proposed six test problems for bi-objective unconstrained

optimization. The problem ZDT5 is defined for binary representation and is

not considered. The test problems have the form,

Minimize f1(x),

Minimize f2(x) = g(x)h(f1(x), g(x)).

Function definitions for the three functions f1(x), g(x) and h(x) are varied for the

test problems. The Pareto optimal front for all the problems (ZDT1 to ZDT4,

ZDT6) corresponds to g(x) = 1. (See [160] for detailed discussion on these test

problems.)

C.1 ZDT1

ZDT1 is a 30-variable (n = 30) problem with convex Pareto optimal front as

shown in Fig. C.1. The functions are defined as follows:

f1(x) = x1,

g(x) = 1 +
9

n− 1

n
∑

i=2

xi,

h(f1, g) = 1−
√

f1/g.

199

200 APPENDIX C. ZDT PROBLEMS

All the variables lie in the range [0,1]. The Pareto optimal front corresponds to

0 ≤ x1 ≤ 1 and xi = 0 for i = 2, 3, . . . , 30.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

f
1
(x)

f 2(x
)

Figure C.1: Pareto optimal front for ZDT1

C.2 ZDT2

ZDT2 is a 30-variable (n = 30) problem with nonconvex Pareto optimal front as

shown in Fig. C.2. The functions are defined as follows:

f1(x) = x1,

g(x) = 1 +
9

n− 1

n
∑

i=2

xi,

h(f1, g) = 1− (f1/g)
2.

All the variables lie in the range [0,1]. The Pareto optimal front corresponds to

0 ≤ x1 ≤ 1 and xi = 0 for i = 2, 3, . . . , 30.

APPENDIX C. ZDT PROBLEMS 201

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

f
1
(x)

f 2(x
)

Figure C.2: Pareto optimal front for ZDT2

C.3 ZDT3

ZDT3 is a 30-variable (n = 30) problem with disconnected Pareto optimal fronts

as shown in Fig. C.3. The functions are defined as follows:

f1(x) = x1,

g(x) = 1 +
9

n− 1

n
∑

i=2

xi,

h(f1, g) = 1−
√

f1/g − (f1/g) sin(10πf1).

All the variables lie in the range [0,1]. The Pareto optimal front corresponds to

xi = 0 for i = 2, 3, . . . , 30. Not all points corresponding to 0 ≤ x1 ≤ 1 lie on the

Pareto front.

202 APPENDIX C. ZDT PROBLEMS

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

f
1
(x)

f 2(x
)

Figure C.3: Pareto optimal front for ZDT3

C.4 ZDT4

ZDT4 is a 10-variable (n = 10) problem with convex Pareto optimal front as

shown in Fig. C.4. The functions are defined as follows:

f1(x) = x1,

g(x) = 1 + 10(n− 1) +
n
∑

i=2

(x2
i − 10 cos(4πxi)),

h(f1, g) = 1−
√

f1/g.

The variable x1 lies in the range [0,1] and the other variables lie in the range

[-5,5]. The problem has many local Pareto optimal fronts, each corresponding to

0 ≤ x1 ≤ 1 and xi = 0.5m for i = 2, 3, . . . , 10, where m is in the range [-10,10].

The global Pareto optimal front corresponds to m = 0.

APPENDIX C. ZDT PROBLEMS 203

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

f
1
(x)

f 2(x
)

Figure C.4: Pareto optimal front for ZDT4

C.5 ZDT6

ZDT6 is a 10-variable (n = 10) problem having a nonconvex Pareto optimal front

as shown in Fig. C.5. The functions are defined as follows:

f1(x) = 1− exp(−4x1) sin6(6πx1),

g(x) = 1 + 9

[

1

9

n
∑

i=2

xi

]0.25

,

h(f1, g) = 1− (f1/g)
2.

All variables lie in the range [0,1]. The Pareto optimal front corresponds to

0 ≤ x1 ≤ 1 and xi = 0 for i = 2, 3, . . . , 10.

204 APPENDIX C. ZDT PROBLEMS

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

f
1
(x)

f 2(x
)

Figure C.5: Pareto optimal front for ZDT6

Appendix D

CTP problems

Deb et al. [186] proposed constrained biobjective test problems (CTP). The test

functions CTP2-CTP7 have a single constraint and CTP8 has two constraints.

The mathematical formulation of CTP2-CTP8 is given in Eq. D.1. Both the

constraints of CTP8 are of the same form as the single constraint in other CTP

problems.

Min. f1(x) = x1,

Min. f2(x) = C(x)
(

1−
√

f1(x)/C(x)
)

,

g(x) = cos(θ) (f2(x)− e)− sin(θ)f1(x) ≥
a| sin (bπ (sin(θ) (f2(x)− e) + cos(θ)f1(x))c) |d,

C(x) = 1 +
10
∑

i=2

(

x2
i − 10 cos(2πxi) + 10

)

,

(D.1)

where 0 ≤ xi ≤ 1, i = 1, . . . , 10, and C(x) is the generalized Rastrigin function.

The constraint parameters θ, a, b, c, d, e for CTP2 to CTP8 are listed in Table D.1.

205

206 APPENDIX D. CTP PROBLEMS

Table D.1: Parameters for the Test Problems CTP2 to CTP8

θ a b c d e

CTP2 −0.20π 0.20 10.0 1 6.0 1
CTP3 −0.20π 0.10 10.0 1 0.5 1
CTP4 −0.20π 0.75 10.0 1 0.5 1
CTP5 −0.20π 0.75 10.0 2 0.5 1
CTP6 0.10π 40.00 0.5 1 2.0 −2
CTP7 −0.05π 40.00 5.0 1 6.0 0

CTP8 0.10π 40.00 0.05 1 2.0 −2
−0.05π 40.00 2.0 1 6.0 0

APPENDIX D. CTP PROBLEMS 207

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f
1
(x)

f 2(x
)

(a) CTP2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f
1
(x)

f 2(x
)

(b) CTP3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f
1
(x)

f 2(x
)

(c) CTP4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f
1
(x)

f 2(x
)

(d) CTP5

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

f
1
(x)

f 2(x
)

(e) CTP6

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f
1
(x)

f 2(x
)

(f) CTP7

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

f
1
(x)

f 2(x
)

(g) CTP8

Figure D.1: Pareto optimal fronts for CTP

	Title page : Development of optimization methods to solve computationally expensive problems
	Copyright Statement
	Authenticity Statement
	Originality Statement
	Abstract
	Acknowledgements
	List of Publications
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations

	Chapter 1 Introduction
	Chapter 2 Optimization and EA
	Chapter 3 Approximations in EA
	Chapter 4 Surrogate Assisted EA
	Chapter 5 Constraint Handling in EA
	Chapter 6 Engineering Examples
	Chapter 7 Truss Design
	Chapter 8 Conclusions
	References
	Appendix

