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Sección de Computación
Av. Instituto Politécnico Nacional No. 2508

Col. San Pedro Zacatenco
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Why Multiobjective Optimization?

Most optimization problems naturally have several objectives to be
achieved (normally conflicting with each other), but in order to
simplify their solution, they are treated as if they had only one (the
remaining objectives are normally handled as constraints).
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Basic Concepts

The Multiobjective Optimization Problem (MOP) (also
called multicriteria optimization, multiperformance or vector
optimization problem) can be defined (in words) as the problem of
finding (Osyczka, 1985):

a vector of decision variables which satisfies constraints and
optimizes a vector function whose elements represent the
objective functions. These functions form a mathematical
description of performance criteria which are usually in
conflict with each other. Hence, the term “optimize” means
finding such a solution which would give the values of all
the objective functions acceptable to the decision maker.
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Basic Concepts

The general Multiobjective Optimization Problem (MOP) can be
formally defined as:

Find the vector ~x∗ = [x∗1, x
∗
2, . . . , x

∗
n]T which will satisfy the m

inequality constraints:

gi(~x) ≥ 0 i = 1, 2, . . . ,m (1)

the p equality constraints

hi(~x) = 0 i = 1, 2, . . . , p (2)

and will optimize the vector function

~f(~x) = [f1(~x), f2(~x), . . . , fk(~x)]T (3)
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Basic Concepts

Having several objective functions, the notion of “optimum”
changes, because in MOPs, we are really trying to find good
compromises (or “trade-offs”) rather than a single solution as in
global optimization. The notion of “optimum” that is most
commonly adopted is that originally proposed by Francis Ysidro
Edgeworth in 1881.
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Basic Concepts

This notion was later generalized by Vilfredo Pareto (in 1896).
Although some authors call Edgeworth-Pareto optimum to this
notion, we will use the most commonly accepted term: Pareto
optimum.
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Basic Concepts

We say that a vector of decision variables ~x∗ ∈ F is Pareto optimal
if there does not exist another ~x ∈ F such that fi(~x) ≤ fi(~x∗) for
all i = 1, . . . , k and fj(~x) < fj(~x∗) for at least one j.
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Basic Concepts

In words, this definition says that ~x∗ is Pareto optimal if there
exists no feasible vector of decision variables ~x ∈ F which would
decrease some criterion without causing a simultaneous increase in
at least one other criterion. Unfortunately, this concept almost
always gives not a single solution, but rather a set of solutions
called the Pareto optimal set. The vectors ~x∗ correspoding to the
solutions included in the Pareto optimal set are called
nondominated. The plot of the objective functions whose
nondominated vectors are in the Pareto optimal set is called the
Pareto front.
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An Example
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Figura 1: A four-bar plane truss.
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Example

Minimize







f1(~x) = L
(

2x1 +
√

2x2 +
√
x3 + x4

)

f2(~x) = FL
E

(

2
x1

+ 2
√

2
x2
− 2
√

2
x3

+ 2
x4

) (4)

such that:

(F/σ) ≤ x1 ≤ 3(F/σ)
√

2(F/σ) ≤ x2 ≤ 3(F/σ)
√

2(F/σ) ≤ x3 ≤ 3(F/σ)

(F/σ) ≤ x4 ≤ 3(F/σ)

(5)

where F = 10 kN, E = 2× 105 kN/cm2, L = 200 cm, σ = 10
kN/cm2.
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Example
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Figura 2: True Pareto front of the four-bar plane truss problem.
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Some Historical Highlights

As early as 1944, John von Neumann and Oskar Morgenstern
mentioned that an optimization problem in the context of a social
exchange economy was “a peculiar and disconcerting mixture of
several conflicting problems” that was “nowhere dealt with in
classical mathematics”.
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Some Historical Highlights

In 1951 Tjalling C. Koopmans edited a book called Activity
Analysis of Production and Allocation, where the concept of
“efficient” vector was first used in a significant way.
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Some Historical Highlights

The origins of the mathematical foundations of multiobjective
optimization can be traced back to the period that goes from 1895
to 1906. During that period, Georg Cantor and Felix Hausdorff laid
the foundations of infinite dimensional ordered spaces.
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Some Historical Highlights

Cantor also introduced equivalence classes and stated the first
sufficient conditions for the existence of a utility function.
Hausdorff also gave the first example of a complete ordering.
However, it was the concept of vector maximum problem introduced
by Harold W. Kuhn and Albert W. Tucker (1951) which made
multiobjective optimization a mathematical discipline on its own.
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Some Historical Highlights

However, multiobjective optimization theory remained relatively
undeveloped during the 1950s. It was until the 1960s that the
foundations of multiobjective optimization were consolidated and
taken seriously by pure mathematicians when Leonid Hurwicz
generalized the results of Kuhn & Tucker to topological vector
spaces.
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Some Historical Highlights

The application of multiobjective optimization to domains outside
economics began with the work by Koopmans (1951) in production
theory and with the work of Marglin (1967) in water resources
planning. The first engineering application reported in the
literature was a paper by Zadeh in the early 1960s. However, the
use of multiobjective optimization became generalized until the
1970s.
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Some Historical Remarks

Currently, there are over 30 mathematical programming techniques
for multiobjective optimization. However, these techniques tend to
generate elements of the Pareto optimal set one at a time.
Additionally, most of them are very sensitive to the shape of the
Pareto front (i.e., they do not work when the Pareto front is
concave).
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Why Evolutionary Algorithms?

The potential of evolutionary algorithms in multiobjective
optimization was hinted by Rosenberg in the 1960s, but the first
actual implementation was produced in the mid-1980s (Schaffer,
1984). During ten years, the field remain practically inactive, but it
started growing in the mid-1990s, in which several techniques and
applications were developed.
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Why Evolutionary Algorithms?

Evolutionary algorithms seem particularly suitable to solve
multiobjective optimization problems, because they deal
simultaneously with a set of possible solutions (the so-called
population). This allows us to find several members of the Pareto
optimal set in a single run of the algorithm, instead of having to
perform a series of separate runs as in the case of the traditional
mathematical programming techniques. Additionally, evolutionary
algorithms are less susceptible to the shape or continuity of the
Pareto front (e.g., they can easily deal with discontinuous or
concave Pareto fronts), whereas these two issues are a real concern
for mathematical programming techniques.
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Classifying Techniques

We will use the following simple classification of Evolutionary
Multi-Objective Optimization (EMOO) approaches:

Non-Pareto Techniques

Pareto Techniques

Recent Approaches
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Classifying Techniques

Non-Pareto Techniques include the following:

Aggregating approaches

VEGA

Lexicographic ordering

The ε-constraint Method

Target-vector approaches

EMO’01



Carlos A. Coello Coello, March 2001. Tutorial on Evolutionary Multiobjective Optimization

Classifying Techniques

Pareto-based Techniques include the following:

Pure Pareto ranking

MOGA

NSGA

NPGA
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Classifying Techniques

Finally, we will also briefly review two recent approaches

PAES

SPEA
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Non-Pareto Techniques

Approaches that do not incorporate directly the concept of
Pareto optimum.

Incapable of producing certain portions of the Pareto front.

Efficient and easy to implement, but appropriate to handle
only a few objectives.
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Aggregation Functions

These techniques are called “aggregating functions” because
they combine (or “aggregate”) all the objectives into a single
one. We can use addition, multiplication or any other
combination of arithmetical operations.

Oldest mathematical programming method, since aggregating
functions can be derived from the Kuhn-Tucker conditions for
nondominated solutions.
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Aggregation Functions

An example of this approach is a sum of weights of the form:

min
k
∑

i=1

wifi(~x) (6)

where wi ≥ 0 are the weighting coefficients representing the relative importance

of the k objective functions of our problem. It is usually assumed that

k
∑

i=1

wi = 1 (7)
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Advantages and Disadvantages

Easy to implement

Efficient

Will not work when the Pareto front is concave, regardless of
the weights used (Das, 1997).
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Sample Applications

Truck packing problems (Grignon, 1996).

Real-time scheduling (Montana, 1998).

Structural synthesis of cell-based VLSI circuits (Arslan, 1996).

Design of optical filters for lamps (Eklund, 1999).
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Vector Evaluated Genetic Algorithm (VEGA)

Proposed by Schaffer in the mid-1980s (1984,1985).

Only the selection mechanism of the GA is modified so that at
each generation a number of sub-populations was generated by
performing proportional selection according to each objective
function in turn. Thus, for a problem with k objectives and a
population size of M , k sub-populations of size M/k each would
be generated. These sub-populations would be shuffled together
to obtain a new population of size M , on which the GA would
apply the crossover and mutation operators in the usual way.
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VEGA
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Figura 3: Schematic of VEGA selection.
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Advantages and Disadvantages

Efficient and easy to implement.

If proportional selection is used, then the shuffling and merging
of all the sub-populations corresponds to averaging the fitness
components associated with each of the objectives. In other
words, under these conditions, VEGA behaves as an
aggregating approach and therefore, it is subject to the same
problems of such techniques.
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Sample Applications

Optimal location of a network of groundwater monitoring wells
(Cieniawski, 1995).

Combinational circuit design at the gate-level (Coello, 2000).

Design multiplierless IIR filters (Wilson, 1993).

Groundwater pollution containment (Ritzel, 1994).
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Lexicographic Ordering

In this method, the user is asked to rank the objectives in order of
importance. The optimum solution is then obtained by minimizing
the objective functions, starting with the most important one and
proceeding according to the assigned order of importance of the
objectives.

It is also possible to select randomly a single objective to optimize
at each run of a GA.
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Advantages and Disadvantages

Efficient and easy to implement.

Requires a pre-defined ordering of objectives and its
performance will be affected by it.

Selecting randomly an objective is equivalent to a weighted
combination of objectives, in which each weight is defined in
terms of the probability that each objective has of being
selected. However, if tournament selection is used, the
technique does not behave like VEGA, because tournament
selection does not require scaling of the objectives (because of
its pairwise comparisons). Therefore, the approach may work
properly with concave Pareto fronts.

Inappropriate when there is a large amount of objectives.
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Sample Applications

Symbolic layout compaction (Fourman, 1985).

Tuning of a fuzzy controller for the guidance of an autonomous
vehicle in an elliptic road (Gacôgne, 1997).
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The ε-Constraint Method

This method is based on minimization of one (the most preferred
or primary) objective function, and considering the other objectives
as constraints bound by some allowable levels εi. Hence, a single
objective minimization is carried out for the most relevant
objective function subject to additional constraints on the other
objective functions. The levels εi are then altered to generate the
entire Pareto optimal set.

EMO’01



Carlos A. Coello Coello, March 2001. Tutorial on Evolutionary Multiobjective Optimization

Advantages and Disadvantages

Easy to implement.

Potentially high computational cost (many runs may be
required).
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Sample Applications

Preliminary design of a marine vehicle (Lee, 1997).

Groundwater pollution containment problems (Ranjithan,
1992).

Fault tolerant system design (Schott, 1995).
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Target-Vector Approaches

Definition of a set of goals (or targets) that we wish to achieve
for each objective function. EA minimizes differences between
the current solution and these goals.

Can also be considered aggregating approaches, but in this
case, concave portions of the Pareto front could be obtained.

Examples: Goal Programming, Goal Attainment, min-max
method.
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Advantages and Disadvantages

Efficient and easy to implement.

Definition of goals may be difficult in some cases and may
imply an extra computational cost.

Some of them (e.g., goal attainment) may introduce a
misleading selection pressure under certain circumstances.

Goals must lie in the feasible region so that the solutions
generated are members of the Pareto optimal set.
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Sample Applications

Design of multiplierless IIR filters (Wilson, 1993).

Structural optimization (Sandgren, 1994; Hajela, 1992).

Optimization of the counterweight balancing of a robot arm
(Coello, 1998).
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Pareto-based Techniques

Suggested by Goldberg (1989) to solve the problems with
Schaffer’s VEGA.

Use of nondominated ranking and selection to move the
population towards the Pareto front.

Requires a ranking procedure and a technique to maintain
diversity in the population (otherwise, the GA will tend to
converge to a single solution, because of the stochastic noise
involved in the process).
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Fitness Sharing

Goldberg & Richardson (1987) proposed the use of an approach in
which the population was divided in different subpopulations
according to the similarity of the individuals in two possible
solution spaces: the decoded parameter space (phenotype) and the
gene space (genotype). They defined a sharing function φ(dij) as
follows:

φ(dij) =







1−
(

dij
σsh

)α

, dij < σshare

0, otherwise
(8)

where normally α = 1, dij is a metric indicative of the distance
between designs i and j, and σshare is the sharing parameter which
controls the extent of sharing allowed.
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Fitness Sharing

The fitness of a design i is then modified as:

fsi =
fi

∑M
j=1 φ(dij)

(9)

where M is the number of designs located in vicinity of the i-th
design.

Deb and Goldberg (1989) proposed a way of estimating the
parameter σshare in both phenotypical and genotypical space.
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Fitness Sharing

In phenotypical sharing, the distance between 2 individuals is
measured in decoded parameter space, and can be calculated with
a simple Euclidean distance in an p-dimensional space, where p
refers to the number of variables encoded in the GA; the value of
dij can then be calculated as:

dij =

√

√

√

√

p
∑

k=1

(xk,i − xk,j)2 (10)

where x1,i, x2,i, . . . , xp,i and x1,j , x2,j , . . . , xp,j are the variables
decoded from the EA.
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Fitness Sharing

In genotypical sharing, dij is defined as the Hamming distance
between the strings and σshare is the maximum number of different
bits allowed between the strings to form separate niches in the
population.

The experiments performed by Deb and Goldberg (1989) indicated
that phenotypic sharing was better than genotypic sharing.

Other authors have also proposed their own methodology to
compute σshare (see for example: (Fonseca & Fleming, 1993)).
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Pure Pareto Ranking

Although several variations of Goldberg’s proposal have been
proposed in the literature (see the following subsections), several
authors have used what we call “pure Pareto ranking”. The idea in
this case is to follow Goldberg’s proposal as stated in his book
(1989).
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Advantages and Disadvantages

Relatively easy to implement.

Problem to scale the approach, because checking for
nondominance is O(kM2), where k is the amount of objectives
and M is the population size.

Fitness sharing is O(M2).

The approach is less susceptible to the shape or continuity of
the Pareto front.
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Sample Applications

Optimal location of a network of groundwater monitoring wells
(Cieniawski, 1995).

Pump scheduling (Schwab, 1996;Savic, 1997).

Feasibility of full stern submarines (Thomas, 1998).

Optimal planning of an electrical power distribution system
(Ramı́rez, 1999).
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Multi-Objective Genetic Algorithm (MOGA)

Proposed by Fonseca and Fleming (1993).

The approach consists of a scheme in which the rank of a
certain individual corresponds to the number of individuals in
the current population by which it is dominated.

It uses fitness sharing and mating restrictions.
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Advantages and Disadvantages

Efficient and relatively easy to implement.

Its performance depends on the appropriate selection of the
sharing factor.

MOGA has been very popular and tends to perform well when
compared to other EMOO approaches.
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Some Applications

Fault diagnosis (Marcu, 1997).

Control system design (Chipperfield 1995; Whidborne, 1995;
Duarte, 2000).

Wing planform design (Obayashi, 1998).

Design of multilayer microwave absorbers (Weile, 1996).
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Nondominated Sorting Genetic Algorithm

(NSGA)

Proposed by Srinivas and Deb (1994).

It is based on several layers of classifications of the individuals.
Nondominated individuals get a certain dummy fitness value
and then are removed from the population. The process is
repeated until the entire population has been classified.

To maintain the diversity of the population, classified
individuals are shared (in decision variable space) with their
dummy fitness values.
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NSGA

No

is
gen < maxgen

         ?
No

S T A R T

initialize
population

gen = 0

front = 1

classified ?
population

is identify
Nondominated

individuals

assign
dummy fitness

sharing in
current front

front = front + 1

  crossover

  mutation

S T O P

Yes

gen = gen + 1

reproduction
according to

dummy fitness

Yes

Figura 4: Flowchart of the Nondominated Sorting Genetic Algorithm (NSGA).
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Advantages and Disadvantages

Relatively easy to implement.

Seems to be very sensitive to the value of the sharing factor.

Has been recently improved (NSGA II) with elitism and a
crowded comparison operator that keeps diversity without
specifying any additional parameters.
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Sample Applications

Airfoil shape optimization (Mäniken, 1998).

Scheduling (Bagchi, 1999).

Minimum spanning tree (Zhou, 1999).

Computational fluid dynamics (Marco, 1999).
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Niched-Pareto Genetic Algorithm (NPGA)

Proposed by Horn et al. (1993,1994).

It uses a tournament selection scheme based on Pareto
dominance. Two individuals randomly chosen are compared
against a subset from the entire population (typically, around
10 % of the population). When both competitors are either
dominated or nondominated (i.e., when there is a tie), the
result of the tournament is decided through fitness sharing in
the objective domain (a technique called equivalent class
sharing was used in this case).
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NPGA

The pseudocode for Pareto domination tournaments assuming that
all of the objectives are to be maximized is presented in the next
slide. S is an array of the N individuals in the current population,
random pop index is an array holding the N indices of S, in a
random order, and tdom is the size of the comparison set.
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NPGA
function selection /* Returns an individual from the current population S */

begin

shuffle(random pop index); /* Re-randomize random index array */

candidate 1 = random pop index[1];

candidate 2 = random pop index[2];

candidate 1 dominated = false;

candidate 2 dominated = false;

for comparison set index = 3 to tdom + 3 do

/* Select tdom individuals randomly from S */

begin

comparison individual = random pop index[comparison set index];

if S[comparison individual] dominates S[candidate 1]

then candidate 1 dominated = true;

if S[comparison individual] dominates S[candidate 2]

then candidate 2 dominated = true;

end /* end for loop */

if ( candidate 1 dominated AND ¬ candidate 2 dominated )

then return candidate 2;

else if ( ¬ candidate 1 dominated AND candidate 2 dominated )

then return candidate 1;

else

do sharing;

end
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Advantages and Disadvantages

Easy to implement.

Efficient because does not apply Pareto ranking to the entire
population.

It seems to have a good overall performance.

Besides requiring a sharing factor, it requires another
parameter (tournament size).
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Sample Applications

Automatic derivation of qualitative descriptions of complex
objects (Ruspini, 1999).

Feature selection (Emmanouilidis, 2000).

Optimal well placement for groundwater containment
monitoring (Horn, 1994).

Investigation of feasibility of full stern submarines (Thomas,
1998).
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Recent approaches

The Pareto Archived Evolution Strategy (PAES) was introduced by
Knowles & Corne (2000).

This approach is very simple: it uses a (1+1) evolution strategy
(i.e., a single parent that generates a single offspring) together with
a historical archive that records all the nondominated solutions
previously found (such archive is used as a comparison set in a way
analogous to the tournament competitors in the NPGA).
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Recent approaches

PAES also uses a novel approach to keep diversity, which consists
of a crowding procedure that divides objective space in a recursive
manner. Each solution is placed in a certain grid location based on
the values of its objectives (which are used as its “coordinates” or
“geographical location”).

A map of such grid is maintained, indicating the amount of
solutions that reside in each grid location. Since the procedure is
adaptive, no extra parameters are required (except for the number
of divisions of the objective space). Furthermore, the procedure has
a lower computational complexity than traditional niching methods.

PAES has been used to solve the off-line routing problem (1999)
and the adaptive distributed database management problem (2000).
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Recent approaches

The Strength Pareto Evolutionary Algorithm (SPEA) was
introduced by Zitzler & Thiele [Zitzler 99c].

This approach was conceived as a way of integrating different
EMOO techniques. SPEA uses an archive containing nondominated
solutions previously found (the so-called external nondominated
set). At each generation, nondominated individuals are copied to
the external nondominated set. For each individual in this external
set, a strength value is computed.
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Recent approaches

This “strength” is similar to the ranking value of MOGA, since it is
proportional to the number of solutions to which a certain
individual dominates. The fitness of each member of the current
population is computed according to the strengths of all external
nondominated solutions that dominate it.

Additionally, a clustering technique called “average linkage
method” (Morse, 1980) is used to keep diversity.

SPEA has been used to explore trade-offs of software
implementations for DSP algorithms (1999) and to solve 0/1
knapsack problems (1999a).
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Theory

The most important theoretical work related to EMOO has
concentrated on two main issues:

Studies of convergence towards the Pareto optimum set
(Rudolph, 1998, 2000; Hanne 2000,2000a; Veldhuizen, 1998).

Ways to compute appropriate sharing factors (or niche sizes)
(Horn, 1997, Fonseca, 1993).
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Theory

Much more work is needed. For example:

To study the structure of fitness landscapes (Kaufmann, 1989)
in multiobjective optimization problems.

Detailed studies of the different aspects involved in the
parallelization of EMOO techniques (e.g., load balancing,
impact on Pareto convergence, etc.).
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Test Functions

Good benchmarks were disregarded for many years.

Recently, there have been several proposals to design test
functions suitable to evaluate EMOO approaches.

Constrained test functions are of particular interest.

Multiobjective combinatorial optimization problems have also
been proposed.
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Metrics

Three are normally the issues to take into consideration to design a
good metric in this domain (Zitzler, 2000):

1. Minimize the distance of the Pareto front produced by our
algorithm with respect to the true Pareto front (assuming we
know its location).

2. Maximize the spread of solutions found, so that we can have a
distribution of vectors as smooth and uniform as possible.

3. Maximize the amount of elements of the Pareto optimal set
found.
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Metrics

Enumeration: Enumerate the entire intrinsic search space
explored by an EA and then compare the true Pareto front
obtained against those fronts produced by any EMOO approach.

Obviously, this has some serious scalability problems.
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Metrics

Spread: Use of a statistical metric such as the chi-square
distribution to measure “spread” along the Pareto front.

This metric assumes that we know the true Pareto front of the
problem.

EMO’01



Carlos A. Coello Coello, March 2001. Tutorial on Evolutionary Multiobjective Optimization

Metrics

Attainment Surfaces: Draw a boundary in objective space that
separates those points which are dominated from those which are
not (this boundary is called “attainment surface”).

Perform several runs and apply standard non-parametric statistical
procedures to evaluate the quality of the nondominated vectors
found.

It is unclear how can we really assess how much better is a certain
approach with respect to others.
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Metrics

Generational Distance: Estimates how far is our current Pareto
front from the true Pareto front of a problem using the Euclidean
distance (measured in objective space) between each vector and the
nearest member of the true Pareto front.

The problem with this metric is that only distance to the true
Pareto front is considered and not uniform spread along the Pareto
front.
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Metrics

Coverage: Measure the size of the objective value space area
which is covered by a set of nondominated solutions.

It combines the three issues previously mentioned (distance, spread
and amount of elements of the Pareto optimal set found) into a
single value. Therefore, sets differing in more than one criterion
cannot be distinguished.
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Promising areas of future research

Incorporation of preferences

Emphasis on efficiency

More test functions and metrics
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Promising areas of future research

More theoretical studies

New approaches (hybrids with other heuristics)

New applications
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