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y1

y2    Pareto optimality:
defines set of optimal trade-offs
(all objectives equally important)

Decision making:
choose best compromise
(based on preference information)

Decision making before search (define single objective)

Decision making after search (find/approximate Pareto set first)

Decision making during search (guide search interactively)

Combinations of the above
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EA ≥ 1 both ≥ 1 N : M
≥ 1 randomized

TS 1                             no mating selection 1 1 : M
≥ 1 deterministic

SA 1                                 no mating selection 1 1 : M
≥ 1 randomized

ACO 1 neither 1 1 : 1
1 randomized
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Diversity

Convergence

How to maintain a diverse
Pareto set approximation?

density estimation

How to prevent nondominated 
solutions from being lost?

environmental selection

How to guide the population 
towards the Pareto set?

mating selection 
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Types of information:

dominance rank by how many individuals is an 
individual dominated?

dominance count how many individuals does an 
individual dominate?

dominance depth at which front is an individual 
located?

Examples:

MOGA, NPGA dominance rank

NSGA/NSGA-II dominance depth

SPEA/SPEA2 dominance count + rank
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Density estimation techniques: [Silverman: 1986]
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density estimate
=

sum of f values 
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function of the 
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Nearest neighbor
SPEA2
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number of 
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old population offspring

new
population

offspring   archive

new
archive

old population

new
population

Variant 1: without archive Variant 2: with archive

Selection criteria:

Dominance: only nondominated solutions are kept

Density: less crowded regions are preferred to crowded regions

Time: old archive members are preferred to new solutions

Chance: each solution has the same probability to enter the archive
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Step 1: Generate initial population P0 and empty archive 
(external set) A0. Set t = 0.

Step 2: Calculate fitness values of individuals in Pt and At.

Step 3: At+1 = nondominated individuals in Pt and At.
If size of At+1 > N then reduce At+1, else if
size of At+1 < N then fill At+1 with dominated
individuals in Pt and At.

Step 4: If t > T then output the nondominated set of At+1.
Stop.

Step 5: Fill mating pool by binary tournament selection
with replacement on At+1.

Step 6: Apply recombination and mutation operators to 
the mating pool and set Pt+1 to the resulting
population. Set t = t + 1 and go to Step 2.

SPEA2 AlgorithmSPEA2 Algorithm

[Zitzler, Laumanns, Thiele: 2001]
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S (strength) =
#dominated solutions 

R (raw fitness) =  N +
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Density Estimation

k-th nearest neighbor method: 

Fitness = R + 1 / (2 + Dk)

Dk = distance to the k-th 
nearest individual

k =  popsize + archivesize

Truncation

Incremental approach:

Remove individual A for which 
A <d B for all individuals B

B <d A iff:

Dk identical for A and B for 
all k

Dk of A greater than Dk of B 
for a particular k and 
identical for smaller k

< 1
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Theoretically (by analysis): difficult

Limit behavior

“Is the Pareto set found, if there are unlimited run-time 
resources?”

Run-time analysis

“How long does it take to generate the Pareto set with high 
probability?”

Empirically (by simulation): standard
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Basic assumptions:

Every solution can be generated from every other solution by 
mutation

The number of iterations t goes to infinity (t → ∞)

Studies:

Convergence: [Hanne: 1999][Rudolph, Agapie: 2000]

Diversity: e.g., [Knowles, Corne: 2000][Deb et al.: 2001]

Convergence + diversity:

Unlimited memory resources [Rudolph and Agapie: 2000]

Limited memory resources [Laumanns et al.: 2002]
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Definition 1: ε-Dominance

A ε-dominates B iff  ε·f(A) ≥ f(B)

(known since 1987)

Definition 2: ε-Pareto set

subset of the Pareto set
which ε-dominates all Pareto-
optimal solutions

ε-dominated
dominated

Pareto front
ε-Pareto front
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Goal: Maintain ε-Pareto set

Idea: ε-grid, i.e. maintain a
set of nondominated
boxes (one solution
per box)

Algorithm: (ε-update)

Accept a child if

the corresponding box is not 
dominated by any box that 
contains an individual

AND 

any other individual in the same 
box is dominated by the new 
solution

y2

y1

ε2

ε2 ε3 

ε3

ε

ε

1

1
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Basic question: [Laumanns et al.: 2002]

What is the worst case run-time of a multiobjective EA to find 
the Pareto set with high probability?

Scenario:

Problem: leading ones,
trailing zeros (LOTZ)

Variation: single
point mutation

1 1 0 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 01

0

y2

y1

0 0 0 0 0 0 0

trailing 0s

leading 1s

1 1 1 1 1 1 1

1 1 1 1 0 0 0
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select
individual

from archive

insert
into archive

if not dominated

remove
dominated
from archive

flip
randomly

chosen bit

Variant 1: SEMO

Each individual in the
archive is selected with

the same probability

(uniform selection)

Variant 2: FEMO

Select individual with
minimum number of

children 

(fair selection)
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Simple multiobjective EA with uniform selection (SEMO):   Θ(n )

To get to the Pareto front requires n steps

To cover the entire front needs n steps

Simple multiobjective EA with fair selection (FEMO):   Θ(n   log n)

Fair selection helps to spread over the Pareto front

Multistart single-objective optimizer:   Ω(n )

In average, one out of n mutations successful

To get to the Pareto front, n successful mutations needed

Overall n Pareto-optimal solutions have to be found

3

3

2

2

3

multiobjective EA faster than multistart strategy
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Issues: quality measures, statistical testing, benchmark problems, 
visualization, …

Popular approach: unary quality measures

Assign each outcome a real number
Outcomes are compared by comparing the corresponding values

Hypervolume

[Zitzler, Thiele: PPSN1998]

Generational Distance

[Van Veldhuizen: 1999]
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There is no combination of unary quality measures such that
S is better than T in all criteria is equivalent to S dominates T

S
T

application of
quality measures

Basic question: Can we say on the basis of the quality measures
whether or that an algorithm outperforms another?

hypervolume 432.34 420.13
distance 0.3308          0.4532
diversity 0.3637 0.3463
spread 0.3622 0.3601
cardinality 6 5 

S                   T

Unary quality measures usually do not tell that
S dominates T; at maximum that S does not dominate T

[Zitzler et al.: 2002]
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Many popular quality measures are not compliant
with the dominance relation

[Hansen, Jaszkiewicz: 1998][Knowles, Corne: 2002][Zitzler et al.: 2002]

Example: diversity measures

Needed: appropriate binary quality measures that indicate
whether an outcome dominates another, e.g., ε-measure

S
T

S better diversity
value than T

S
T

T better diversity
value than S
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Definition 3: single solutions

Iε(A,B) = minimum ε such that
A ε-dominates B 

Definition 4: sets of solutions

Iε(S,T) = minimum ε such that
each solution in T is
ε-dominated by at least
one solution in S

AB

S

T[Zitzler et al.: 2002]
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Application engineer

knowledge in the algorithm 
domain necessary

state-of-the-art algorithms get 
more and more complex

many algorithms

Algorithm designer

comparison to competing 
algorithms mandatory 

tests on various benchmark 
problems necessary

algorithms and applications 
become increasingly complex

high implementation effort / risk of implementation errors

Programming libraries:

valuable tools to tailor a particular technique to a specific application

exchange of optimization algorithm or application still difficult
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SPEA2

NSGA-II

PAES

Algorithms                                                  Applications

knapsack

TSP

network
design

text-based
Platform and programming language independent Interface

for Search Algorithms [Bleuler et al.: 2002]
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selector
process
selector
process

text
files

shared
file system

shared
file system

variator
process
variator
process

application independent:

mating / environmental 
selection

individuals are described
by IDs and objective 
vectors

handshake protocol:

state / action

individual IDs

objective vectors

parameters

application dependent:

variation operators

stores and manages 
individuals
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Why using an evolutionary algorithm?

Flexibility: problem formulation can be easily modified / 
extended (minimum requirements)

Multiple objectives: the solution space can be explored in a 
single optimization run

Feasibility: EAs are applicable to complex and huge search 
spaces

Why multiobjective optimization?

Robustness: aggregation of several objectives into a single one 
requires setting of parameters

Confidence: it is easier to select a solution if alternatives are 
known

Main application of EMO: design space exploration
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Links:
EMO mailing list:
http://w3.ualg.pt/lists/emo-list/
EMO bibliography:
http://www.lania.mx/~ccoello/EMOO/
PISA website:
http://www.tik.ee.ethz.ch/pisa/

Events:
Conference on Evolutionary Multi-Criterion Optimization (EMO 2003),
April 8-11, 2003, Algarve, Portugal:
http://conferences.ptrede.com/emo03/
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