A Tutorial on Evolutionary Multiobjective Optimization

Eckart Zitzler

Computer Engineering and Networks Lab Swiss Federal Institute of Technology (ETH) Zurich

• The Big Picture:

Optimization and evolutionary computation

2 The Construction Kit:

Design issues and algorithmic concepts

3 The Pieces Put Together:

Example of an algorithm variant

4 The Big Question:

Performance of evolutionary algorithms

G The Challenge:

Standard interface for search algorithms

6 The End:

Conclusions and outlook

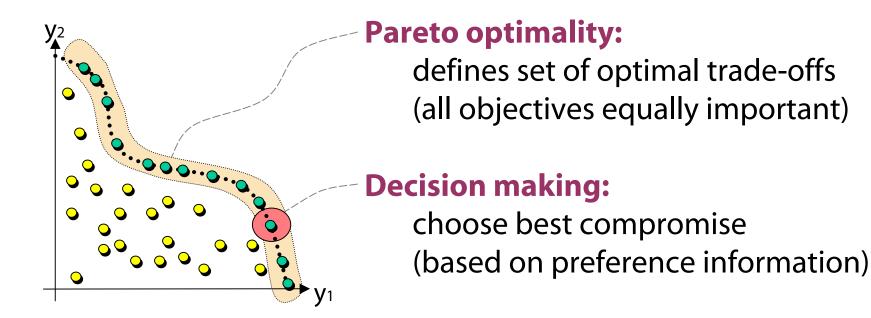
Decision and Objective Space

Pareto set approximation

Pareto front approximation

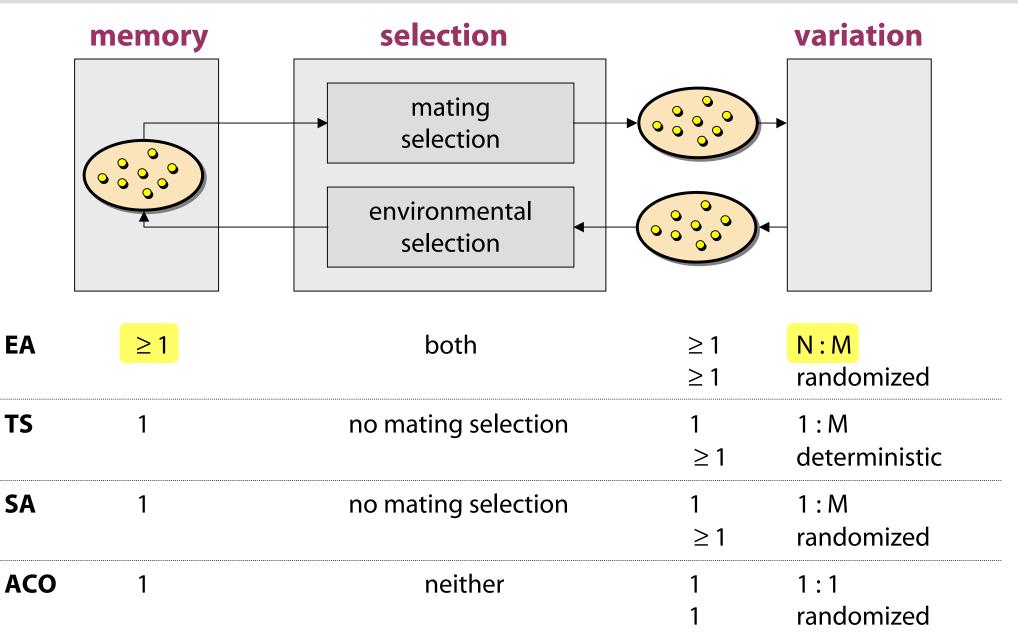


MOMH 2002 Tutorial on EMO



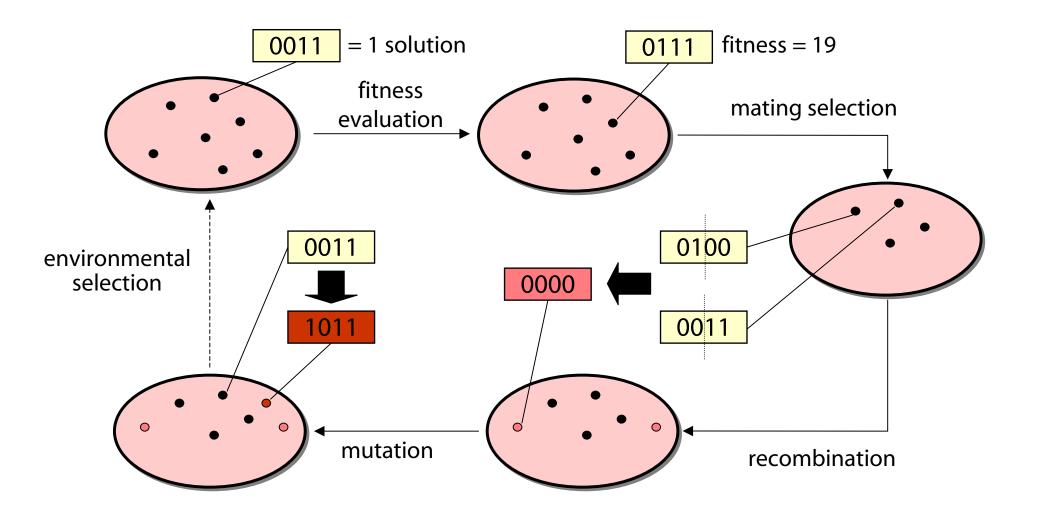
- Decision making before search (define single objective)
- **2** Decision making after search (find/approximate Pareto set first)
- Decision making during search (guide search interactively)
- Output Combinations of the above

Stochastic Search Algorithms



© Eckart Zitzler ETH Zürich Outline of a Simple Evolutionary Algorithm

MOMH 2002 Tutorial on EMO



• The Big Picture:

Optimization and evolutionary computation

2 The Construction Kit:

Design issues and algorithmic concepts

3 The Pieces Put Together:

Example of an algorithm variant

4 The Big Question:

Performance of evolutionary algorithms

G The Challenge:

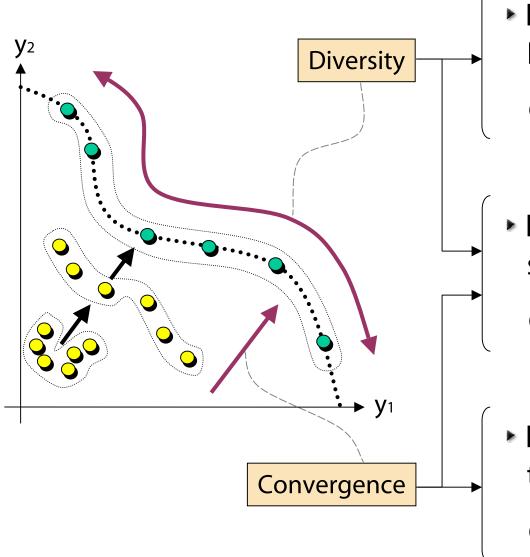
Standard interface for search algorithms

6 The End:

Conclusions and outlook

Issues in EMO

MOMH 2002 Tutorial on EMO



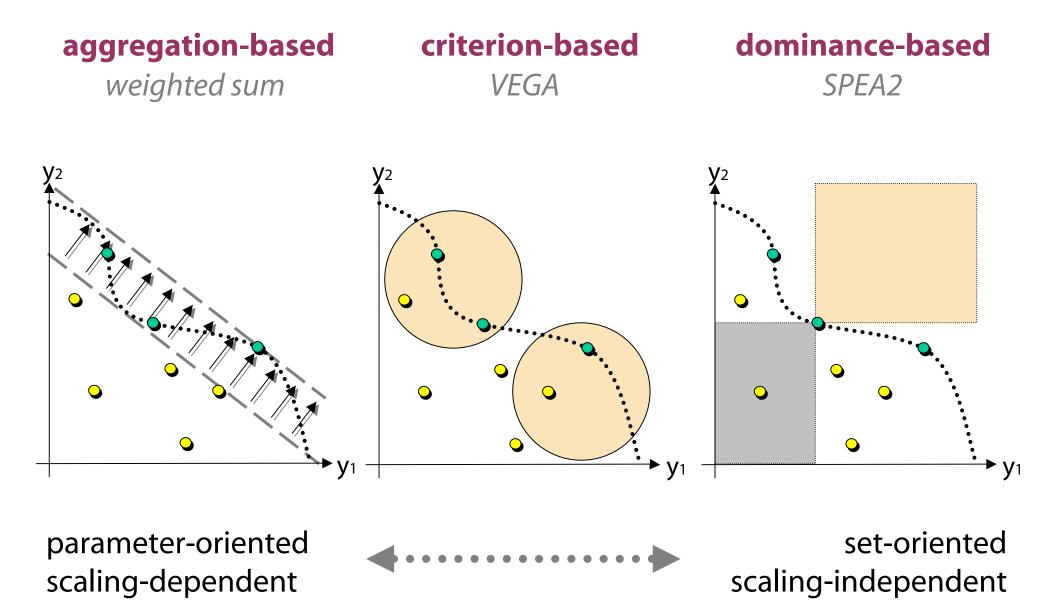
- How to maintain a diverse Pareto set approximation?
 - **2** density estimation

How to prevent nondominated solutions from being lost?

O environmental selection

How to guide the population towards the Pareto set?

• mating selection



MOMH 2002 Tutorial on EMO

Types of information:

- dominance rank
- dominance count
- dominance depth

by how many individuals is an individual dominated?

how many individuals does an individual dominate?

at which front is an individual located?

Examples:

- MOGA, NPGA
- NSGA/NSGA-II
- SPEA/SPEA2

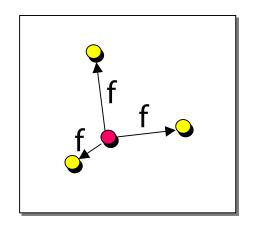
dominance rank dominance depth dominance count + rank

Density estimation techniques: [Silverman: 1986]

Kernel *MOGA*

density estimate

sum of f values where f is a function of the distance



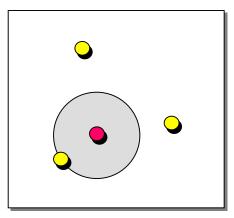
Nearest neighbor

SPEA2

density estimate

=

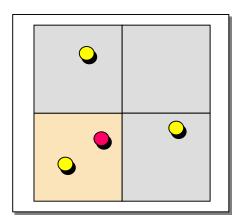
volume of the sphere defined by the nearest neighbor



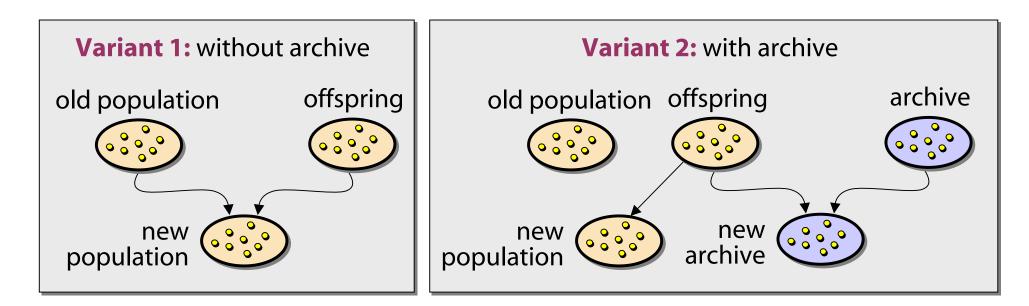
Histogram PAES

density estimate

number of solutions in the same box



Environmental Selection



Selection criteria:

- **Dominance:** only nondominated solutions are kept
- **Density**: less crowded regions are preferred to crowded regions
- **Time**: old archive members are preferred to new solutions
- **Chance:** each solution has the same probability to enter the archive

• The Big Picture:

Optimization and evolutionary computation

2 The Construction Kit:

Design issues and algorithmic concepts

B The Pieces Put Together:

Example of an algorithm variant

4 The Big Question:

Performance of evolutionary algorithms

G The Challenge:

Standard interface for search algorithms

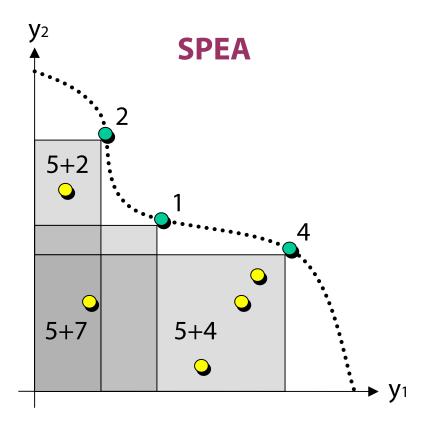
6 The End:

Conclusions and outlook

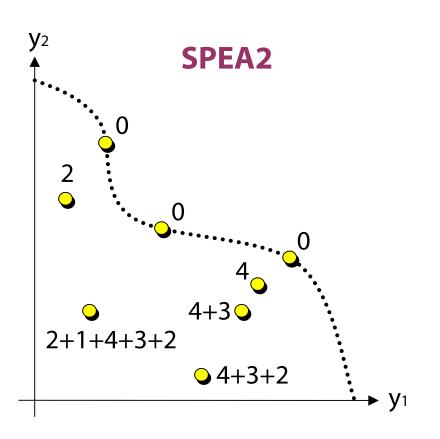
Step 1:	Generate initial population P_0 and empty archive (external set) A_0 . Set t = 0.
Step 2:	Calculate fitness values of individuals in Pt and At.
Step 3:	A _{t+1} = nondominated individuals in P _t and A _t . If size of A _{t+1} > N then reduce A _{t+1} , else if size of A _{t+1} < N then fill A _{t+1} with dominated individuals in P _t and A _t .
Step 4:	If $t > T$ then output the nondominated set of A_{t+1} . Stop.
Step 5:	Fill mating pool by binary tournament selection with replacement on At+1.
Step б:	Apply recombination and mutation operators to the mating pool and set P_{t+1} to the resulting population. Set t = t + 1 and go to Step 2.

[Zitzler, Laumanns, Thiele: 2001]

Pareto Fitness Assignment



- S (strength) =
 #dominated solutions
- R (raw fitness) = N + \sum strengths of dominators •



- S (strength) =
 #dominated solutions •
- R (raw fitness) = \sum strengths of dominators •

Diversity Preservation

Density Estimation

k-th nearest neighbor method:

- Fitness = $R + 1 / (2 + D_k)$
- D_k = distance to the k-th nearest individual
- $k = \sqrt{popsize + archivesize}$

Truncation

Incremental approach:

- Remove individual A for which
 A <d B for all individuals B
- $B <_d A$ iff:
 - Dk identical for A and B for all k
 - Dk of A greater than Dk of B for a particular k and identical for smaller k

• The Big Picture:

Optimization and evolutionary computation

2 The Construction Kit:

Design issues and algorithmic concepts

• The Pieces Put Together:

Example of an algorithm variant

4 The Big Question:

Performance of evolutionary algorithms

G The Challenge:

Standard interface for search algorithms

6 The End:

Conclusions and outlook

MOMH 2002 Tutorial on EMO

• Theoretically (by analysis): difficult

Limit behavior

"Is the Pareto set found, if there are unlimited run-time resources?"

Run-time analysis

"How long does it take to generate the Pareto set with high probability?"

2 Empirically (by simulation): standard

Basic assumptions:

- Every solution can be generated from every other solution by mutation
- The number of iterations t goes to infinity $(t \rightarrow \infty)$

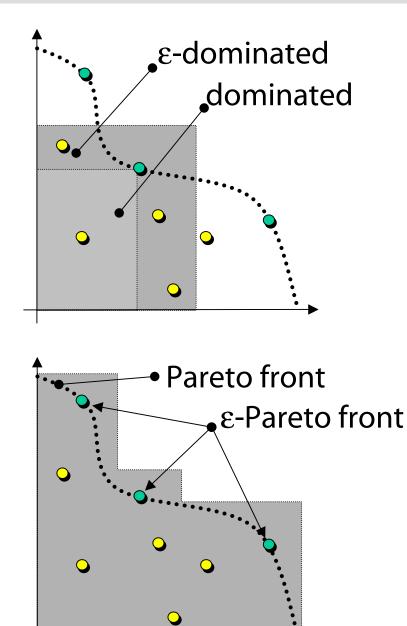
Studies:

- Convergence: [Hanne: 1999][Rudolph, Agapie: 2000]
- Diversity: e.g., [Knowles, Corne: 2000][Deb et al.: 2001]
- Convergence + diversity:
 - Unlimited memory resources [Rudolph and Agapie: 2000]
 - Limited memory resources [Laumanns et al.: 2002]

Epsilon Dominance

Definition 1: ε -Dominance A ε -dominates B iff ε ·f(A) \ge f(B) (known since 1987)

Definition 2: ε-Pareto set subset of the Pareto set which ε-dominates all Paretooptimal solutions



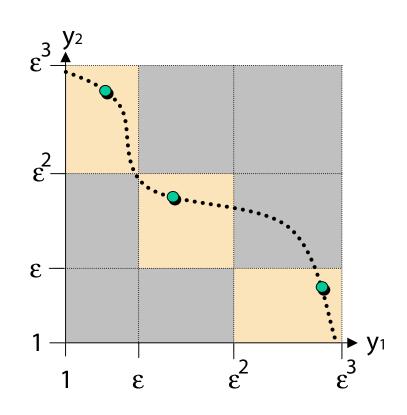
Achieving Convergence and Diversity

Goal: Maintain ε -Pareto set

© Eckart Zitzler

FTH Zürich

Idea: ε-grid, i.e. maintain a set of nondominated boxes (one solution per box)



Algorithm: (ε-update)

Accept a child if

the corresponding box is not dominated by any box that contains an individual

AND

any other individual in the same box is dominated by the new solution

Run-Time Analysis of a Multiobjective EA

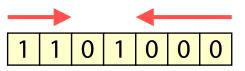
MOMH 2002 Tutorial on EMO

Basic question: [Laumanns et al.: 2002]

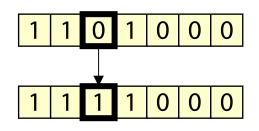
What is the worst case run-time of a multiobjective EA to find the Pareto set with high probability?

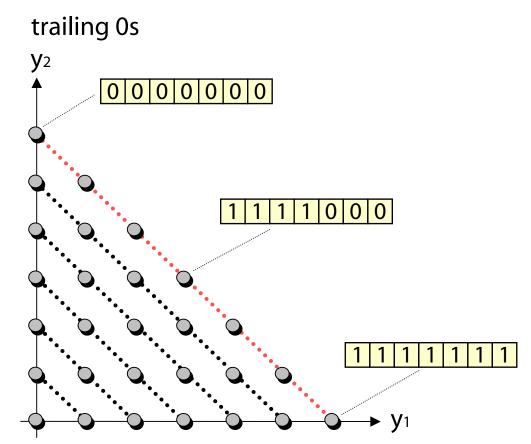
Scenario:

 Problem: leading ones, trailing zeros (LOTZ)



• Variation: single point mutation

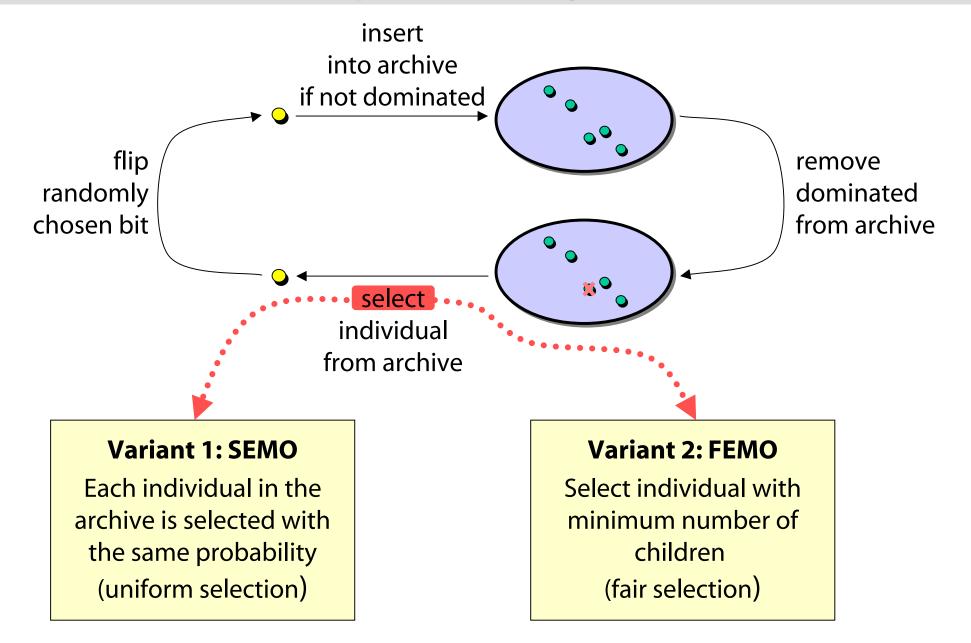




leading 1s

Two Simple Multiobjective EAs

MOMH 2002 Tutorial on EMO



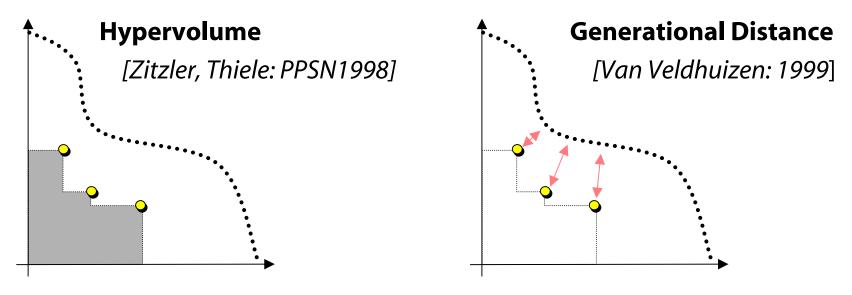
Results of Analysis

- Simple multiobjective EA with uniform selection (SEMO): $\Theta(n^3)$
 - To get to the Pareto front requires n^2 steps
 - To cover the entire front needs n^3 steps
- Simple multiobjective EA with fair selection (FEMO): $\Theta(n^2 \log n)$
 - Fair selection helps to spread over the Pareto front
- Multistart single-objective optimizer: $\Omega(n^3)$
 - In average, one out of n mutations successful
 - To get to the Pareto front, n successful mutations needed
 - Overall n Pareto-optimal solutions have to be found

multiobjective EA faster than multistart strategy

Issues: quality measures, statistical testing, benchmark problems, visualization, ...

Popular approach: unary quality measures



- Assign each outcome a *real number*
- Outcomes are compared by comparing the corresponding *values*

MOMH 2002 Tutorial on EMO

Basic question: Can we say on the basis of the quality measures whether or that an algorithm outperforms another?

•••• application of		S	т
quality measures	hypervolume	432.34	420.13
quality measures	distance	0.3308	0.4532
	diversity	0.3637	0.3463
	spread	0.3622	0.3601
	cardinality	6	5

There is no combination of unary quality measures such that **S** is better than **T** in all criteria is equivalent to **S** dominates **T**

Unary quality measures usually do not tell that **S** dominates **T**; at maximum that **S** does not dominate **T**

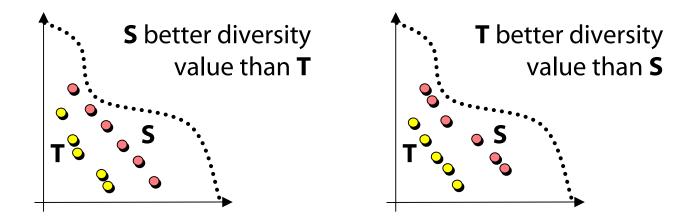
[Zitzler et al.: 2002]

MOMH 2002 Tutorial on EMO

Many popular quality measures are not compliant with the dominance relation

[Hansen, Jaszkiewicz: 1998][Knowles, Corne: 2002][Zitzler et al.: 2002]

Example: diversity measures



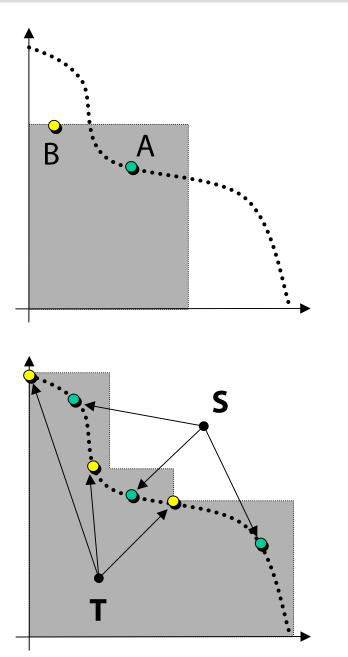
Needed: appropriate binary quality measures that indicate *whether* an outcome dominates another, e.g., ε-measure

© Eckart Zitzler ETH Zürich

Epsilon Quality Measure

Definition 3: single solutions $I\epsilon(A,B) = \min \epsilon \text{ such that}$ $A \epsilon \text{-dominates } B$

Definition 4: sets of solutions $l\epsilon(S,T) = \min \epsilon \text{ such that}$ each solution in T is ϵ -dominated by at least one solution in S



[Zitzler et al.: 2002]

• The Big Picture:

Optimization and evolutionary computation

2 The Construction Kit:

Design issues and algorithmic concepts

• The Pieces Put Together:

Example of an algorithm variant

4 The Big Question:

Performance of evolutionary algorithms

5 The Challenge:

Standard interface for search algorithms

6 The End:

Conclusions and outlook

Application engineer

- knowledge in the algorithm domain necessary
- state-of-the-art algorithms get more and more complex
- many algorithms

Algorithm designer

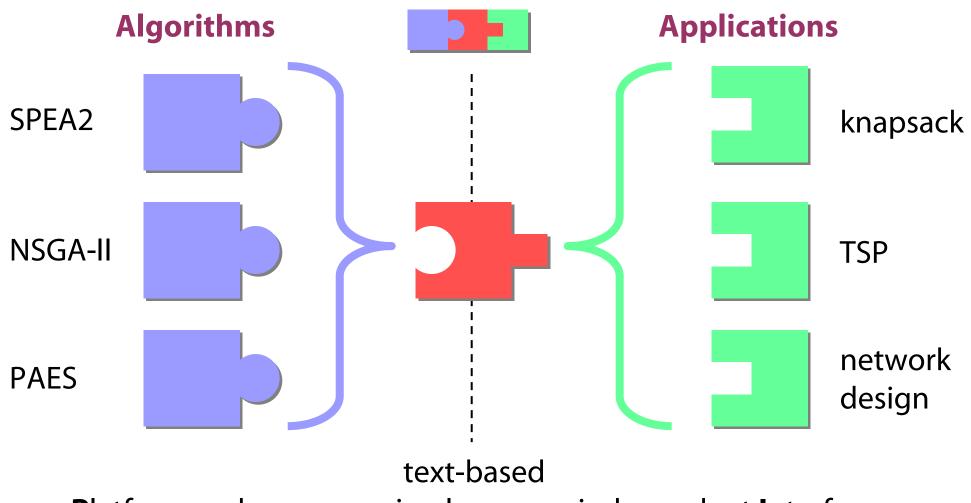
- comparison to competing algorithms mandatory
- tests on various benchmark problems necessary
- algorithms and applications become increasingly complex

high implementation effort / risk of implementation errors

Programming libraries:

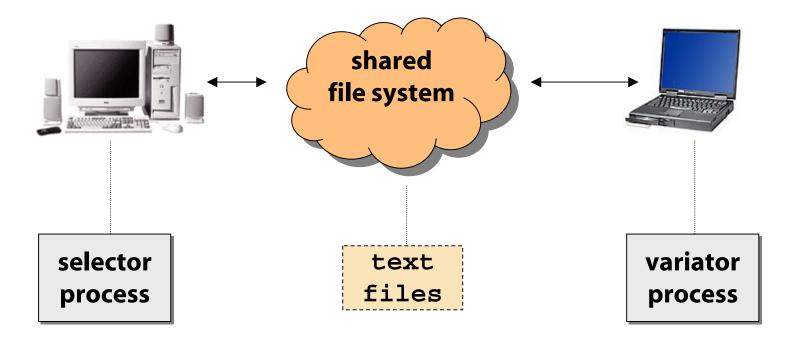
valuable tools to tailor a particular technique to a specific application
 exchange of optimization algorithm or application still difficult

The Concept of PISA



Platform and programming language independent Interface for Search Algorithms [Bleuler et al.: 2002]

PISA: Implementation



application independent:

- mating / environmental selection
- individuals are described by IDs and objective vectors

handshake protocol:

- state / action
- individual IDs
- objective vectors
- parameters

application dependent:

- variation operators
- stores and manages individuals

Why using an evolutionary algorithm?

- Flexibility: problem formulation can be easily modified / extended (minimum requirements)
- Multiple objectives: the solution space can be explored in a single optimization run
- Feasibility: EAs are applicable to complex and huge search spaces

Why multiobjective optimization?

- Robustness: aggregation of several objectives into a single one requires setting of parameters
- Confidence: it is easier to select a solution if alternatives are known

Main application of EMO: design space exploration

Links:

- EMO mailing list: http://w3.ualg.pt/lists/emo-list/
- EMO bibliography: http://www.lania.mx/~ccoello/EMOO/
- PISA website: http://www.tik.ee.ethz.ch/pisa/

Events:

 Conference on Evolutionary Multi-Criterion Optimization (EMO 2003), April 8-11, 2003, Algarve, Portugal: http://conferences.ptrede.com/emo03/

Acknowledgments:

Stefan Bleuler, Marco Laumanns, Lothar Thiele