
CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS

AVANZADOS DEL INSTITUTO POLITÉCNICO NACIONAL

DEPARTAMENTO DE COMPUTACIÓN

Development of techniques to improve

computational efficiency in multi-objective

evolutionary algorithms

Submitted by:

Luis Vicente Santana Quintero

as the fulfillment of the
requirement for the degree of

Doctor of Science

Specialization in:
Electrical Engineering

Option:
Computer Science

Advisor:
Dr. Carlos A. Coello Coello

México, D. F. November 2008

CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS

AVANZADOS DEL INSTITUTO POLITÉCNICO NACIONAL

DEPARTAMENTO DE COMPUTACIÓN

Desarrollo de técnicas para mejorar la

eficiencia computacional de algoritmos

evolutivos multiobjetivo

Tesis que presenta:

Luis Vicente Santana Quintero

Para obtener el grado de

Doctor en Ciencias

En la especialidad de
Ingenieŕıa Eléctrica

Opción:
Computación

Director de la Tesis:
Dr. Carlos A. Coello Coello

México, D. F. Noviembre 2008

Dedicada a mis padres. . .

People choose the paths that gain
them the greatest reward for the least

amount of effort. That’s a law of nature.

Las personas eligen los caminos que les
represente la mayor recompensa por la menor
cantidad de esfuerzo. Esa es la ley de la vida.

5

Agradecimientos

Gracias a mis padres (Luis Vicente y Guadalupe), hermanas (Taĺıa y Aglae) y
seres queridos por su apoyo incondicional durante el desarrollo de esta tesis.

Gracias a mi asesor, el Dr. Carlos Coello Coello por bien aconsejarme en todo
momento, además de transmitirme valiosos conocimientos que seguro me serán
útiles por el resto de mi vida.

Gracias a ti, Karina por tu cariño y apoyo, eres una persona muy valiosa para mi,
y espero tenerte a mi lado por mucho tiempo para apoyarnos en todo.

Agradezco a mis compañeros, por hacer de mi estancia en el CINVESTAV un
lugar más ameno y alegre, tanto... que llegase a disfrutarlo. En orden alfabético:
Adriana, Antonio, Alfredo, Aracely, don Benja, Efrén, Gabriela, Gregorio, Israel,
Mario, Mario Augusto, Margarita, Mireya, Noel, Ricardo, entre otros.

Agradezco a todo el personal del departamento de Computación: Sofia, Felipa y
Flor, por apoyarme siempre en cuanto a la loǵıstica de documentos, inscripciones,
boletas, congresos, etc.

Gracias al CINVESTAV por su apoyo al permitirme cursar todos los cursos nece-
sarios para lograr este trabajo de tesis y facilitarme las instalaciones en las que se
desarrolló el mismo.

Gracias al CONACyT por la beca proporcionada durante mi estancia en el pro-

grama de doctorado en el CINVESTAV. Este trabajo de tesis se derivó del proyecto

CONACyT titulado “Técnicas Avanzadas de Optimización Evolutiva Multiobje-

tivo” (Ref. 45683-Y) cuyo responsable es el Dr. Carlos A. Coello Coello.

7

Abstract i

Abstract

In this thesis, we present different techniques that aim to improve the ef-
ficiency of the multi-objective evolutionary algorithms. By efficiency, we
refer to reducing the number of fitness function evaluations performed by a
multi-objective evolutionary algorithm when solving problems of moderate
dimensionality (up to 30 decision variables). When solving a multi-objective
problem, it is very important to do a good exploration at the beginning of
the search and find quickly promising solutions. After that, an exploitation
of those good solutions is needed to accelerate the convergence and finally
get to the true Pareto front of the multi-objective problem. Additionally, a
mechanism to keep the nondominated solutions is normally used to retain
a well-distributed set of solutions along the Pareto front. We present here
mechanisms that tackle each of these problems: exploration, exploitation
and distribution.

First, we propose a new multi-objective evolutionary algorithm (MOEA)
based on differential evolution and rough sets theory to show how the hy-
bridization of a fast multi-objective evolutionary algorithm and a local search
method based on the use of rough sets, is an efficient alternative to obtain a
robust algorithm able to solve difficult unconstrained and constrained multi-
objective optimization problems. The proposed approach adopts an external
archive in order to retain the nondominated solutions found during the evo-
lutionary process. Additionally, the approach also incorporates the concept
of paǫ-dominance to get a good distribution of the solutions retained. The
main idea of the approach is to use differential evolution (DE) as our main
search engine, trying to translate its good convergence properties exhibited
in single-objective optimization to the multi-objective case. Rough sets the-
ory is adopted in a second stage of the search in order to improve the spread
of the nondominated solutions that have been found so far. Our hybrid ap-
proach is validated using standard test functions and performance measures
commonly adopted in the specialized literature. Our results are compared
with respect to two approaches that are representative of the state-of-the-art
in the area: NSGA-II, and SPEA2.

Secondly, we propose an approach in which a multi-objective particle
swarm optimizer (MOPSO) is coupled to a surrogate method in order to
explore the search space in an efficient manner. In order to determine which
is the most appropriate surrogate method to be adopted, a small compara-

ii Abstract

tive study among three surrogate methods is conducted: an artificial neural
network (ANN), a radial basis function (RBF) and a support vector ma-
chine (SVM). The best performer in this comparative study was the support
vector machine, which was, therefore, adopted for our approach. Also, we
perform a comparative study among different leader selection schemes in a
MOPSO, in order to determine the most appropriate approach to be adopted
for solving the sort of problems of our interest. However, our results indi-
cated that the spread of solutions achieved by our surrogate-based MOEA
was poor. Thus, we decided to introduce a second phase to the algorithm in
which it is hybridized with the rough sets in order to improve the spread of
solutions and reach the true Pareto front. In this case, the rough sets act as
a local search approach which is able to generate solutions in the neighbor-
hood of the nondominated solutions previously generated. We show that our
proposed hybrid approach only requires 2,000 fitness function evaluations in
order to solve test problems with up to 30 decision variables.

Finally, we propose a mechanism that can be seen as a variant of ǫ-
dominance, which we call Pareto-adaptive ǫ-dominance (paǫ-dominance).
Our proposed approach overcomes the main limitations of ǫ-dominance: the
loss of several nondominated solutions from the hypergrid adopted in the
archive because of the way in which solutions are selected within each box.

Resumen iii

Resumen

En esta tesis, se presentan diferentes técnicas que tienen como objetivo el
mejorar la eficiencia de los algoritmos evolutivos para problemas de opti-
mización multi-objetivo. Por eficiencia, nos referimos a reducir el número
de evaluaciones de la función objetivo realizadas por el algoritmo evolutivo
multi-objetivo al resolver problemas de dimensionalidad moderada (de hasta
30 variables de decisión). Cuando tratamos de resolver un problema multi-
objetivo, es muy importante hacer una buena exploración al inicio y encontrar
rápidamente soluciones prometedoras. Después, se necesita una explotación
de las buenas soluciones para acelerar la convergencia y, finalmente, encon-
trar el frente de Pareto verdadero del problema. Además, se necesita un
mecanismo para retener a las soluciones no dominadas con una buena dis-
tribución a lo largo del frente de Pareto. En esta tesis, lidiamos con cada
uno de estos problemas: la exploración, la explotación y la distribución de
las soluciones.

En primer lugar, se propone un nuevo algoritmo evolutivo multi-objetivo
basado en evolución diferencial y la teoŕıa de los conjuntos borrosos, para
mostrar cómo es que la hibridación de un algoritmo evolutivo con una alta
velocidad de convergencia como lo es la evolución diferencial y un optimizador
local basado en la teoŕıa de los conjuntos borrosos, pueden ser una alterna-
tiva eficiente para construir un algoritmo robusto capaz de resolver problemas
multi-objetivo con y sin restricciones. El algoritmo propuesto adopta el uso
de un archivo externo con el fin de retener a las soluciones no dominadas
encontradas durante el proceso evolutivo. Además, se utiliza el concepto
de dominancia-ǫ Pareto-adaptativa para obtener una buena distribución de
las mejores soluciones. La idea principal del algoritmo es la de utilizar la
evolución diferencial como el motor de búsqueda, intentando extender las
buenas propiedades de convergencia mostradas en optimización global para
el caso multi-objetivo. Después, la teoŕıa de los conjuntos borrosos se adopta
en una segunda etapa, con el fin de generar más soluciones no dominadas
en la vecindad de aquellas soluciones no dominadas que produjo la primera
etapa. Nuestro algoritmo h́ıbrido es validado utilizando diferentes funciones
de prueba estándar y medidas de desempeño que son utilizadas en la liter-
atura especializada. Nuestros resultados finales son comparados con respecto
a otros dos algoritmos que son representativas del estado del arte: NSGA-II,
y SPEA2.

iv Resumen

En segundo lugar, proponemos un algoritmo multi-objetivo usando el
algoritmo basado en cúmulos de part́ıculas para problemas multi-objetivo
(MOPSO, por sus siglas en inglés), acoplado a un método de aproximación
para explorar el espacio de búsqueda de manera eficiente. Con el fin de
determinar el mejor método de aproximación, se llevo a cabo un pequeño
estudio comparativo entre tres métodos: una red neuronal artificial (ANN),
una red con funciones de base (RBF), y una máquina de vectores de soporte
(SVM). El que mejor desempeño obtuvo de este estudio fueron las máquinas
de vectores de soporte, que fue por tanto, la opción adoptada en nuestro
algoritmo final. Además, se realizó un estudio comparativo entre los difer-
entes esquemas de selección del ĺıder en el algoritmo MOPSO, con tal de
encontrar el tipo de selección más adecuada. Sin embargo, los resultados de
este algoritmo indican que las soluciones alcanzadas en un inicio no fueron
lo eficientemente buenas en cuanto a su distribución, aunque śı respecto a su
cercańıa al frente de Pareto verdadero. En virtud de ello, decidimos agregar
una segunda fase al algoritmo hibridizándolo con los conjuntos borrosos, que
actúan como optimizadores locales con el objetivo de mejorar esa distribución
de soluciones y producir una mejor aproximiación del frente de Pareto ver-
dadero. Se demuestra que nuestro algoritmo h́ıbrido sólo requiere de 2000
evaluaciones de la función de aptitud para resolver problemas de prueba con
hasta 30 variables.

Por último, proponemos un mecanismo que puede ser visto como una vari-
ante de la dominancia-ǫ, al cual llamamos dominancia-ǫ Pareto-adaptativa
(paǫ-dominancia). Nuestra propuesta intenta superar la principal limitación
de la dominancia-ǫ, es decir, la pérdida de soluciones no dominadas que se
encuentran en los extremos de la hiper-malla construida por el archivo ex-
terno, debido a la forma en que ésta selecciona a las soluciones dentro de
cada caja.

Contents

Abstract i

Resumen iii

Contents v

List of Figures ix

List of Tables xiv

1 Introduction 1

2 Background 5

2.1 Optimization . 5

2.1.1 Basic definitions . 6

2.1.2 Karush-Kuhn-Tucker conditions 7

2.2 Optimization problems . 8

2.3 Evolutionary algorithms . 10

2.4 Paradigms . 12

2.4.1 Evolution strategies . 12

2.4.2 Evolutionary programming 13

2.4.3 Genetic algorithms . 14

v

vi CONTENTS

2.4.4 Memetic algorithms . 15
2.4.5 Other approaches . 16

2.5 Advantages and disadvantages of evolutionary algorithms . . . 16

3 Multi-objective Optimization 19
3.0.1 Pareto dominance . 20
3.0.2 Pareto optimality . 20
3.0.3 Pareto front . 20

3.1 Decision making process . 21
3.1.1 A priori techniques . 22
3.1.2 Progressive techniques 23
3.1.3 A posteriori techniques 23

3.2 Evolutionary algorithms for multi-objective optimization . . . 24
3.2.1 Population based evolutionary algorithms 25

3.2.1.1 VEGA . 26
3.2.2 Pareto based evolutionary algorithms 26

3.2.2.1 MOGA . 27
3.2.2.2 NPGA . 28
3.2.2.3 NSGA . 28
3.2.2.4 SPEA . 30
3.2.2.5 PAES . 30
3.2.2.6 NSGA-II . 31
3.2.2.7 SPEA2 . 32
3.2.2.8 µ-GA . 32
3.2.2.9 ǫ-MOEA . 33

3.3 Performance measures . 33
3.4 Test functions . 39

3.4.1 Deb’s test functions . 39
3.4.2 The ZDT test functions 40
3.4.3 The DTLZ test functions 45

4 Exploration: Differential Evolution and Particle Swarm Op-
timization 51
4.1 Differential evolution (DE) . 51

4.1.1 Different strategies of DE 53
4.1.2 Previous related work 56
4.1.3 Proposed algorithm based on DE 61

4.2 Particle swarm optimization (PSO) 66

CONTENTS vii

4.2.1 Previous related work 67
4.2.2 Proposed algorithm based on PSO 71
4.2.3 MOPSO results . 74

4.3 Final remarks . 76

5 Convergence: Fitness Approximation 81
5.1 Knowledge incorporation . 82
5.2 Surrogates . 84

5.2.1 Polynomials: response surface methods (RSM) 86
5.2.2 Radial basis functions 87
5.2.3 Kriging . 90
5.2.4 Artificial neural networks 91

5.2.4.1 Training an ANN 92
5.2.5 Support vector machines 93

5.3 Results using surrogates . 96
5.3.1 Latin-Hypercubes . 97

5.4 Comparative study . 99
5.4.1 Surrogate phase analysis 99

5.5 Final remarks . 100

6 Exploitation: A Local Search Based on Rough Sets Theory 105
6.1 Rough sets theory . 106

6.1.1 Use of rough sets in multi-objective optimization . . . 107
6.1.2 Atom construction in rough sets theory 111
6.1.3 Results of rough sets 112

6.2 Final remarks . 113

7 Distribution: PAǫ-dominance 123
7.1 Pareto-adaptive ǫ-dominance 124

7.1.1 ǫ-dominance . 126
7.1.2 ǫ computation . 130
7.1.3 Box index vector . 132
7.1.4 Algorithm for the hypervolume 134
7.1.5 Acceptance scheme on paǫ-dominance grid 136

7.2 paǫ-Dominance results . 137
7.2.1 Test functions and metrics 138
7.2.2 Results . 139

7.3 Final remarks . 144

viii CONTENTS

8 Results 153
8.1 DEMORS: unconstrained problems 153

8.1.1 Methodology . 153
8.1.2 Parameters . 154
8.1.3 Results . 155

8.1.3.1 ZDT set problems 155
8.1.3.2 DTLZ set problems 162

8.2 DEMORS: constrained problems 162
8.2.1 Methodology . 162
8.2.2 Parameters . 168
8.2.3 Results . 168

8.3 SVM+RS: unconstrained bi-objective problems 173
8.3.1 Methodology . 174
8.3.2 Parameters . 174
8.3.3 Results . 175

8.4 Final remarks . 176

9 Final Remarks 181
9.1 Summary . 181
9.2 Conclusions . 183
9.3 Future Work . 185
9.4 Publications . 186

A Test Functions Adopted: Definitions 189

B Test Functions Adopted: Figures 193

Bibliography 199

List of Figures

2.1 A plot of the value of the objective function over the feasible
range, 0 ≤ x ≤ 31, for the nonlinear programming example. . . 7

3.1 Mapping of the Pareto optimal solutions to the objective func-
tion space. 21

3.2 VEGA flowchart. 26

3.3 Ranking process in MOGA, the rank of the solution depends
on the number of solutions that dominate it, rank = 1 means
a nondominated solution. 28

3.4 Example of fitness sharing, where all the solutions inside the
σshare radius are penalized in their total fitness. 29

3.5 Ranking process in NSGA. 30

3.6 Adaptive grid in PAES. 31

3.7 Crowding distance as a diversity operator used in NSGA-II. . 32

3.8 ZDT1 Pareto front. 41

3.9 10,000 randomly generated solutions are plotted for ZDT1. . . 41

3.10 ZDT2 Pareto front. 42

3.11 10,000 randomly generated solutions are plotted for ZDT2. . . 42

3.12 ZDT3 Pareto front. 43

3.13 10,000 randomly generated solutions are plotted for ZDT3. . . 43

3.14 ZDT4 Pareto front. 44

ix

x LIST OF FIGURES

3.15 10,000 randomly generated solutions are plotted for ZDT4 test
problem. 44

3.16 ZDT6 Pareto front. 45
3.17 10,000 randomly generated solutions are plotted for ZDT6. . . 45
3.18 Two views of the true Pareto front of DTLZ1. 46
3.19 Two views of the true Pareto front of DTLZ2. 48
3.20 Two views of the true Pareto front of DTLZ3. 49
3.21 Two views of the true Pareto front of DTLZ4. 50

4.1 Two dimensional example of an objective function showing its
contour lines and the process of generating an offspring. 52

4.2 Differential evolution crossover with D = 7, n = 2 and L = 3 . 53
4.3 Offspring creation process in the DE/random/1/bin variant. . 56
4.4 Parameter fclose for a bi-objective optimization problem 63
4.5 Graphical illustration of (1) random selection (right) and (2)

elitist selection (left) . 64
4.6 Flowchart of the algorithm adopted. 72
4.7 Different leader selection strategies available for a MOPSO. . . 74
4.8 Pareto fronts generated by the surrogates methods for the

ZDT test problems. 80

5.1 A taxonomy of approaches for incorporating knowledge into
evolutionary algorithms. 82

5.2 Individual-based evolution control. 85
5.3 Generation-based evolution control. 85
5.4 A graphical representation of an MLP network with one hid-

den layer . 92
5.5 ǫ-insensitive loss function for SVM 96
5.6 Surrogate model adopted in this section. 98
5.7 Pareto fronts generated by the surrogate methods for the ZDT

test problems. 103

6.1 Rough approximation . 107
6.2 Use of a rough approximation for unconstrained MOPs 108
6.3 Use of a rough approximation for constrained MOPs 109
6.4 Pareto fronts obtained with ǫ-MyDE and DEMORS for ZDT1. 117
6.5 Pareto fronts obtained with ǫ-MyDE and DEMORS for ZDT2. 117
6.6 Pareto fronts obtained with ǫ-MyDE and DEMORS for ZDT3. 118

LIST OF FIGURES xi

6.7 Pareto fronts obtained with ǫ-MyDE and DEMORS for ZDT4. 118

6.8 Pareto fronts obtained with ǫ-MyDE and DEMORS for ZDT6. 119

6.9 Pareto fronts obtained with ǫ-MyDE and DEMORS for Binh2. 119

6.10 Pareto fronts obtained with ǫ-MyDE and DEMORS for Kita. . 120

6.11 Pareto fronts obtained with ǫ-MyDE and DEMORS for Osyczka.120

6.12 Pareto fronts obtained with ǫ-MyDE and DEMORS for Osy-
czka2. 121

6.13 Pareto fronts obtained with ǫ-MyDE and DEMORS for Srinivas.121

6.14 Pareto fronts obtained with ǫ-MyDE and DEMORS for Tanaka.122

6.15 Pareto fronts obtained with ǫ-MyDE and DEMORS for Welded
Beam. 122

7.1 Graphic representation of the adaptive grid mechanism. 124

7.2 ǫ-dominance relation example. 125

7.3 Uniform grid with 400 boxes (maximum capacity of 20 points)
for the curve x2 + y2 = 1. This grid allows a maximum of 12
points (the other 8 points are lost) because either the extreme
points are easily ǫ-dominated or the precision of the grid is
insufficient. 126

7.4 Non-uniform grid with 400 boxes (maximum capacity of 20
points) for the curve x2 + y2 = 1. In this case, because the
front is concave, the grid only allows a maximum of 10 points,
losing again both extreme points of the Pareto front. 127

7.5 Curves in the reference set for p = 1
3
, 1

2
, 1, 2, 3. The ǫ values

we have to consider for p = 2 and p = 3 have to be different
because x3+y3 = 1 has longer horizontal and vertical stretches
than x2 + y2 = 1. The same happens for p = 1

3
and p = 1

2
. . . 129

7.6 Alternative grid with 400 boxes (maximum capacity of 20
points) using paǫ-dominance for the curve x2 + y2 = 1. In
this case the grid allows a maximum of 19 points. 135

7.7 Four cases of accepting an offspring into the external archive . 137

7.8 Nondominated solutions generated by paǫ-MyDE (top), ǫ-MyDE
(middle) and ǫ-MOEA (bottom) for the first test problem
(Deb11). 141

7.9 Efficient solutions generated by paǫ-MyDE (top), ǫ-MyDE (mid-
dle) and ǫ-MOEA (bottom) for the second test problem (Deb52).
. 143

xii LIST OF FIGURES

7.10 Efficient solutions generated by paǫ-MyDE (top), ǫ-MyDE (mid-
dle) and ǫ-MOEA (bottom) for the third test problem (Kursawe).149

7.11 Efficient solutions generated by paǫ-MyDE (top), ǫ-MyDE (mid-
dle) and ǫ-MOEA (bottom) for the fourth test problem (ZDT1).150

7.12 Efficient solutions generated by paǫ-MyDE (top), ǫ-MyDE (mid-
dle) and ǫ-MOEA (bottom) for the fifth test problem (DTLZ2).151

8.1 Pareto fronts obtained for ZDT1: DEMORS, NSGA-II and
SPEA2. 157

8.2 Pareto fronts obtained for ZDT2: DEMORS, NSGA-II and
SPEA2. 158

8.3 Pareto fronts obtained for ZDT3: DEMORS, NSGA-II and
SPEA2. 159

8.4 Pareto fronts obtained for ZDT4: DEMORS, NSGA-II and
SPEA2. 160

8.5 Pareto fronts obtained for ZDT6: DEMORS, NSGA-II and
SPEA2. 161

8.6 Pareto fronts obtained for DTLZ1: DEMORS, NSGA-II and
SPEA2. 164

8.7 Pareto fronts obtained for DTLZ2: DEMORS, NSGA-II and
SPEA2. 165

8.8 Pareto fronts obtained for DTLZ3: DEMORS, NSGA-II and
SPEA2. 166

8.9 Pareto fronts obtained for DTLZ4: DEMORS, NSGA-II and
SPEA2. 167

8.10 Pareto fronts for Binh2 and Kita: DEMORS and NSGA-II. . . 170

8.11 Pareto fronts for Osyczka 1 and 2: DEMORS and NSGA-II. . 171

8.12 Pareto fronts for Srinivas and Tanaka: DEMORS and NSGA-II.172

8.13 Pareto fronts for Welded Beam: DEMORS and NSGA-II. . . . 174

8.14 Pareto fronts obtained for ZDT1: SVM+RS and NSGA-II. . . 177

8.15 Pareto fronts obtained for ZDT2 and ZDT3: SVM+RS and
NSGA-II. 178

8.16 Pareto fronts obtained for ZDT4 and ZDT6: SVM+RS and
NSGA-II. 179

9.1 Different mechanisms proposed to deal with efficiency on MOEAs.182

B.1 ZDT1 Pareto front . 194

LIST OF FIGURES xiii

B.2 ZDT2 Pareto front . 194
B.3 ZDT3 Pareto front . 194
B.4 ZDT4 Pareto front . 194
B.5 ZDT6 Pareto front . 195
B.6 DTLZ1 Pareto front . 195
B.7 DTLZ2 Pareto front . 195
B.8 DTLZ3 Pareto front . 195
B.9 DTLZ4 Pareto front . 196
B.10 Deb 1 - 1 Pareto front . 196
B.11 Deb 5 - 2 Pareto front . 196
B.12 Kursawe Pareto front . 196
B.13 Binh (2) Pareto front . 197
B.14 Kita Pareto front . 197
B.15 Osyczka Pareto front . 197
B.16 Osyczka (2) Pareto front . 197
B.17 Srinivas Pareto front . 198
B.18 Tanaka Pareto front . 198

xiv LIST OF FIGURES

List of Tables

3.1 Main characteristics of the performance measures 35

4.1 Features of different multi-objective particle swarm optimizers
available in the specialized literature. 71

4.2 Results of inverse generational distance (IGD), spread (∆) and
set coverage (SC) for the ZDT1, ZDT2 and ZDT3 test problems. 78

4.3 Results of inverse generational distance (IGD), spread (∆) and
set coverage (SC) for the ZDT4 and ZDT6 test problems. . . . 79

5.1 Radial basis functions . 89

5.2 Results of inverse generational distance (IGD), spacing (S) and
set coverage (SC) for ZDT1, ZDT2 and ZDT3. 101

5.3 Results of inverse generational distance (IGD), spacing (S) and
set coverage (SC) for ZDT4 and ZDT6. 102

6.1 Parameters of both approaches: ǫ-MyDE and DEMORS. . . . 114

6.2 Performance measure results with respect to the two set cov-
erage (SC), inverted generational distance (IGD) and spread
(∆) for the ZDT problems. 115

6.3 Performance measure results with respect to two set coverage
(SC), inverted generational distance (IGD) and spread (∆) for
the constrained problems. 116

xv

xvi LIST OF TABLES

7.1 Parameters used by the algorithms compared. 139

7.2 k denotes the number of objectives, n the number of decision
variables, Type specifies the type of optimization problem
(maximization or minimization) and Characteristics pro-
vides a summary of the geometrical characteristics of the Pareto
front. 139

7.3 Mean, standard deviation, maximum and minimum values
over 30 runs for the first test problem (Deb11). 140

7.4 Mean, standard deviation, maximum and minimum values
over 30 runs for the second test problem (Deb52). 142

7.5 Mean, standard deviation, maximum and minimum values
over 30 runs for the third test problem (Kursawe). 144

7.6 Mean, standard deviation, maximum and minimum values
over 30 runs for the fourth problem (ZDT1). 145

7.7 Mean, standard deviation, maximum and minimum values
over 30 runs for the fifth test problem (DTLZ2). 145

8.1 Parameters used by DEMORS, NSGA-II and SPEA2 for the
unconstrained problems. 154

8.2 Performance measures: I1
ε+, IGD and Spread for the ZDT test

problems, comparing: DEMORS, NSGA-II and SPEA2. 156

8.3 Performance measures: I1
ε+, IGD and Spread for the DTLZ

test problems, comparing: DEMORS, NSGA-II and SPEA2. . 163

8.4 Parameters used by DEMORS and NSGA-II for the constrained
problems. 169

8.5 Comparison of results between DEMORS and the NSGA-II for
constrained problems adopted. The best values are in bold-
face. σ refers to the standard deviation over the 30 runs
performed. 173

8.6 Parameters used by SVM+RS and NSGA-II for the ZDT test
problems. 175

8.7 Comparison of results between the SVM+RS algorithm and
the NSGA-II for the five test problems adopted (2000 eval-
uations). The best values are in boldface. σ refers to the
standard deviation over the 30 performed runs. 177

A.1 Definition and description of each of the 9 unconstrained test
problems adopted in this thesis. 190

LIST OF TABLES xvii

A.2 Objective functions and bounds of the decision variables for
each of the test problems adopted for our experimental study
in paǫ-dominance. 191

A.3 Definition and description of the constraint test problems adopted
in this thesis. 192

xviii LIST OF TABLES

1
Introduction

In many disciplines, optimization problems have two or more objectives,
which are normally in conflict with one another, and that we wish to opti-
mize simultaneously. These problems are called “multi-objective”, and their
solution involves the design of different algorithms than when dealing with
single-objective optimization problems. Multi-objective problems, in fact,
normally give rise not to one, but to a set of solutions (called Pareto optimal
set) which, in the absence of any further information, are all equally good.

Evolutionary algorithms have been very popular for solving multi-objective
optimization problems [26, 35], mainly because of their ease of use, and
their wide applicability. However, multi-objective evolutionary algorithms
(MOEAs) tend to consume a great amount of resources in evaluating the
objective function many times, in order to achieve a reasonably good approx-
imation of the Pareto front, even when dealing with benchmark problems of
low dimensionality. This is a major concern when attempting to use MOEAs
for real-world applications, since we can normally afford only a fairly limited
number of fitness function evaluations in such cases.

Despite these concerns, little efforts have been reported in the literature
to reduce the computational cost of MOEAs, and several of them only focus
on algorithmic complexity (see for example [79]), in which little improve-

1

2 CHAPTER 1. INTRODUCTION

ment can be done because of the theoretical bounds related to nondominance
checking [93]. It has been until relatively recently, that researchers have de-
veloped techniques to achieve a reduction of fitness function evaluations by
exploiting knowledge acquired during the search [86]. This knowledge can,
for instance, be used to adapt the recombination and mutation operators in
order to sample offspring in promising areas of the search space (as is done
through the use of cultural algorithms [132]). Knowledge of past evaluations
can also be used to build an empirical model that approximates the fitness
function to optimize, approximation model which is much less expensive to
evaluate than the real fitness function. This approximation can then be used
to predict promising new solutions at a smaller evaluation cost than that of
the original problem [86, 81].

In the application of evolutionary algorithms (EAs) to engineering design
domains, a large number of objective evaluations are normally required in
order to obtain a good approximation of the Pareto optimal set. Moreover,
the search space can be complex, having many constraints and a small feasible
region. Additionally, determining the fitness of each solution may involve the
use of a simulator that takes up a significant amount of CPU time.

The high number of fitness evaluations performed by EAs is often com-
putationally expensive, time-consuming or otherwise problematic in many
real-world applications. Especially in the following cases, a computationally
efficient approximation of the original fitness function to reduce is necessary:

• if the evaluation of the fitness function is computationally expensive.

• if the fitness function can not be defined in an algebraic form (i.e., when
using a simulator).

• if additional physical devices must be used and they require human
interaction.

• if parallelism is not allowed.

• if the total number of evaluation of the fitness function is limited due
to financial constraints.

For EAs, various approaches have been developed to reduce this cost by
exploiting knowledge of the history of evaluated points. This knowledge can,
for instance, be used to adapt the recombination and mutation operators in

3

order to sample offspring in promising areas. Knowledge of past evaluations
can also be used to build an empirical model that approximates the fitness
function to optimize. The approximation is then used to predict promising
new solutions at a smaller evaluation cost than that of the original problem.

The remainder of this document is organized as follows. In Chapter 2
we discuss the main concepts from multi-objective optimization necessary to
make this document self-contained. We also describe the different MOEAs
that have been reported in recent years, as well as a description of the perfor-
mance measures and test problems that we used to validate our proposed ap-
proaches in Chapter 3. In Chapter 4, we describe some approaches that have
shown a high convergence rate in single-objective optimization problems: dif-
ferential evolution and particle swarm optimization. Thus, these approaches
are obvious candidates to be adapted as search engines in our multi-objective
optimizer. We also discuss the most relevant attempts to extend differential
evolution and particle swarm optimization to multi-objective optimization.
In Chapter 5 we talk about the incorporation of knowledge into an evolu-
tionary algorithm aiming to reduce the number of function evaluations using
function approximation techniques (also known as surrogates). Also, we de-
cided to hybridized these approaches with a local search procedure that helps
us to find more solutions and make smooth moves along the Pareto front.
For this purpose, we have used a mathematical approach called rough sets,
and this can be found in Chapter 6. In Chapter 7 we talk about different
techniques that use an external archive to retain nondominated solutions and
we propose a technique that is a new archiving mechanism (which extends
and improves ǫ-dominance) called Pareto-adaptive ǫ-dominance. The results
of the different approaches are included in Chapter 8, in which we present
the comparison of the techniques dealing with few fitness evaluations and
the results obtained by our Pareto-adaptive ǫ-dominance technique to retain
nondominated solutions. Finally, in Chapter 9 we provide some final remarks
and mention some of the paths for future research.

2
Background

2.1 Optimization

In mathematics, optimization refers to the study of problems in which one
seeks to find the minimum or maximum value of a function. Optimization
problems appear in many areas: engineering, biology, economics, genetics,
operations research, physics, or chemistry, among others [21].

For the purposes of this thesis, an optimization problem will be formally
defined as follows:
Find the vector ~x which minimizes (without loss of generality, we assume only
minimization problems) the function f(~x) subject to ~x ∈ S, where S ⊆ R

n

is the feasible region which satisfies the m inequality constraints:

gi(~x) ≤ 0; i = 1, . . . ,m

and the p equality constraints:

hj(~x) = 0; j = 1, . . . , p

In the previous definition, the decision variables are the values that we
modify in order to solve the problem, and are denoted by the vector

5

6 CHAPTER 2. BACKGROUND

~x = (x1, x2, . . . , xn). The function f is usually called an objective func-
tion, or fitness function. The feasible solution that minimizes the objective
function is called an optimal solution. Generally, when the feasible region
of the problem does not present convexity, there exist several local optimal
solutions.

In an optimization problem, the types of mathematical relationships be-
tween the objective, constraints and the decision variables determine how
hard is the problem to solve, the solution methods or algorithms that can be
used for the optimization process and the confidence in that the final solu-
tion that we produce is truly optimal. If the objective function and all the
constraints are convex, we can determine precisely a feasible solution, find
the globally optimal solution, and solve the problem up to very large size in
decision variable space. If the function is non-convex, the problem is much
harder to solve and it becomes uncertain if we will be able to find the feasible
region and hence the global optimum.

A large number of algorithms have been proposed [125] for solving non-
convex problems, but none of them is capable of guaranteeing that the best
solution that they produce is the global optimum. Among them, differ-
ent methods exist to deal with nonlinear problems [128]: steepest descent,
Nelder-Mead, simplex method, conjugate gradient, etc.

2.1.1 Basic definitions

Global minimum: A function f(~x) defined on a feasible set S contains a
global optimum ~x∗ ∈ S iff f(~x∗) ≤ f(~x) ∀ ~x ∈ S

Local minimum: A function f(~x) defined on a feasible set S contains a
local optimum ~x+ ∈ S iff f(~x+) ≤ f(~x) ∀ ~x ∈ S within an ǫ > 0
distance from ~x+. This means that for all ~x satisfying |~x − ~x+| < ǫ,
f(~x+) ≤ f(~x) stands.

Convex Function: A function f(~x) is called convex, if for any two vectors
~x1, ~x2 ∈ R

n and θ ∈ [0, 1]:

f(θ~x1 + (1− θ)~x2) ≤ θf(~x1) + (1− θ)f(~x2)

The next problem is an example of a nonconvex programming problem,
a special type of nonlinear problem that typically has multiple local optima.
Consider the following problem:

Optimization 7

0 5 10 15 20 25 30

8⋅10
5

1.6⋅10
6

2.4⋅10
6

3.2⋅10
6

4⋅10
6

4.8⋅10
6

Figure 2.1: A plot of the value of the objective function over the feasible
range, 0 ≤ x ≤ 31, for the nonlinear programming example.

Maximize:

f(x) = 12x5 − 975x4 + 28, 000x3 − 345, 000x2 + 1, 800, 000x

subject to:

0 ≤ x ≤ 31

Figure 2.1 graphs the objective function f(x) over the feasible values of
the single variable x. This plot reveals that the problem has three local
optima, one at x = 5, another at x = 20, and the third at x = 31, where
the global optimum is at x = 20. The objective function f(x) is sufficiently
complicated that it would be difficult to determine where the global optimum
lies without the benefit of viewing the plot in Figure 2.1.

2.1.2 Karush-Kuhn-Tucker conditions

The Karush-Kuhn-Tucker (KKT) conditions were derived independently by
Karush [83] and by Kuhn and Tucker [90]. The KKT conditions help us
to recognize an optimal solution for a nonlinear programming problem (with
differentiable functions). These conditions give us the necessary and sufficient
conditions that a solution must satisfy.

8 CHAPTER 2. BACKGROUND

Lets assume that f(x), g1(x), g1(x), . . . , gm(x) are differentiable functions
satisfying certain regularity conditions. Then:

~x∗ = (x∗
1, x

∗
2, . . . , x

∗
n)

can be an optimal solution for the nonlinear programming problem if there
exist u1, u2, . . . , um and v1, v2, . . . , vp such that all the following KKT condi-
tions are satisfied:

∂f(~x∗)

∂xj

+
m
∑

i=1

ui
∂gi(~x

∗)

∂xj

+

p
∑

j=1

vi
∂gi(~x

∗)

∂xj

= 0

gi(~x
∗) ≤ 0 for i =1, 2, . . . ,m

hj(~x
∗) = 0 for j =1, 2, . . . , p

ui ≥ 0 for i =1, 2, . . . ,m

(2.1)

However, note that satisfying these conditions does not guarantee that the
solution is optimal, certain additional convexity assumptions are needed to
obtain this guarantee:

“Assume that f(~x) is a convex function and that g1(~x), g2(~x), . . . , gm(~x)
are convex functions and h1(~x), h2(~x), . . . , hm(~x) be affine functions, where
all these functions satisfy the regularity conditions. Then ~x∗ = (x∗

1, x
∗
2, . . . , x

∗
n)

is an optimal solution if and only if there exists ui (i = 1, . . . ,m) and
vj (j = 1, . . . , p) such that all the KKT conditions are satisfied”.

2.2 Optimization problems

There exist a large variety of optimization problems, and techniques to handle
them. Optimization problems can be subdivided in:

Linear Programming Problems (LP).- are those problems in which the
objective and all the constraints are linear functions of the decision
variables. A brief example of a linear function is: f(x) = 2x1+4x2+8x3.
Since all linear functions are convex, linear programming problems are
intrinsically easier to solve than general nonlinear (NLP) problems,
which may be non-convex. In a non-convex NLP there may be more

Optimization problems 9

than one feasible region and the optimal solution might be found at
any point within any such region. In contrast, an LP has at most one
feasible region without curves, and the optimal solution will always be
found at a corner point on the surface where the constraints intersect. A
LP may have multiple (or infinite) number of optimal solutions when
two extremes are optimum, then all the segment that connects the
extremes contain infinite number of optimal solutions.

Quadratic Programming Problems (QP).- are those in which the ob-
jective function is a quadratic function of the decision variables and the
constraints are quadratic functions. An example of a QP is: f(x) =
2x2

1 +4x2
2 +6x1x2. QP problems have only one feasible region with flat

faces on its surface, but the optimal solution may be found anywhere
within the whole region or on its surface. The quadratic function could
be convex (easier to solve) or non-convex which makes it very difficult
to solve. However, a faster and more reliable way to solve a QP is to
use an extension of the Simplex method [28] or an extension of the
Interior Point or Barrier method [147].

Integer Programming Problems (IP).- are those problems where some
of the decision variables can only have integer values. Integer vari-
ables make an optimization problem non-convex, and therefore more
difficult to solve. Memory and solution time may rise exponentially as
more integer variables are added to the problem. This kind of problems
can be solved by a potentially exhaustive search. The most common
used method for solving these problems is called “Branch and Bound”
[96]. This method begins by finding the optimal solution of the prob-
lem without the integer constraints (using standard linear or nonlinear
optimization methods). Using this solution, the Branch and Bound
method chooses one variable and creates two new instances of the prob-
lem where the value of that variable is more tightly constrained. These
new instances are then solved and the process is repeated, until a final
solution that satisfies all the integer constraints is found. Other meth-
ods that can deal with these problems are Tabu Search [57] and Ant
Colony Optimization [43].

Smooth Nonlinear Optimization Problems (NLP).- are those problems
in which the objective or at least one of the constraints is a smooth
nonlinear function of the decision variables. An example of a smooth

10 CHAPTER 2. BACKGROUND

nonlinear function is: f(x) = 3x2
1 + log(x4

2) + exp(x3). NLP problems
and their solution methods require nonlinear functions that are con-
tinuous, and require functions that are smooth (derivatives of these
functions are continuous). NLP solvers generally exploit the smooth-
ness of the problem functions by computing gradient values at various
trial solutions. They usually also exploit second derivative information
to follow the curvature as well as the direction of the problem functions.

Nonsmooth Optimization Problems (NSP).- are the most difficult type
of problems to solve. Those problems have multiple feasible regions
and multiple locally optimal points within each region. Because some
of the functions are non-smooth or discontinuous, the derivative or gra-
dient information generally cannot be used to determine the direction
in which the function is increasing (or decreasing). In other words, the
situation at one possible solution gives very little information about
where to look for a better solution. In this type of problems is where
Evolutionary Algorithms (see Section 2.3) are very useful.

2.3 Evolutionary algorithms

An evolutionary algorithm (EA) is a search method that is inspired on natural
selection and, particularly, the “survival of the fittest” principle that exists
in the biological world. EAs are population based search techniques, which
means that they operate on a set of solutions (called population) instead
of operating on only one solution at a time. At each iteration of an EA a
competitive selection mechanism that keeps the fittest solutions is applied.
The solutions with the highest fitness values have the highest probability
of being recombined with other solutions to mix information and form new
solutions, which are expected to be better than their predecessors. This
process is repeated until a termination condition is reached.

The pseudo code of an evolutionary algorithm is shown in Algorithm 1.
The main components, procedures, or operators that must be specified

in order to define a particular EA are:

Representation (definition of individuals).- To link the real world prob-
lems into the EA, we need to use a particular representation of the
decision variables. There are two levels of representation used in an

Evolutionary algorithms 11

Algorithm 1 Generic scheme of an evolutionary algorithm

1: Initialize vectors of the population P randomly
2: Evaluate the cost of each vector (candidate)
3: repeat
4: Select parents;
5: Recombine parents;
6: Mutate the resulting solutions;
7: Evaluate new candidates;
8: Select the fittest individuals for the next generation;
9: until Termination condition is satisfied

EA: genotypic and phenotypic. The genotype is the encoding repre-
sented by the chromosome and genes1. The phenotype is the result of
decoding the values of the chromosome into the decision variable space
of the problem. The most used representations adopted with EAs are:
binary [70], integer [19], real [53], tree [89] and hybrid [61].

Evaluation function (fitness function).- the fitness of an individual is
related to the objective function value and it also represents the task
to solve in the evolutionary context. The evaluation function assigns a
quality measure with respect to other solutions in the population.

Population.- it is very important to maintain a good diversity of solutions
in the population. This implies keeping different solutions (or individ-
uals) within the population which are located in different regions of the
search space, avoiding that an EA gets trapped in local optima.

Parent selection mechanism.- this mechanism allows the best individu-
als within the population to become parents of the next generation and
guides the search towards solutions with a higher fitness. An individual
is selected as a Parent if survives the selection mechanism that can be:
(1) Proportional Selection [60], in which the individuals are selected
based on their fitness, (some variations are: Roulette Wheel [32], Uni-
versal Stochastic [8] and Deterministic Sampling [32]). (2) Tournament
Selection [165], in which direct comparisons among individuals (two or
more) are performed and the fittest one is selected as a parent.

1A chromosome is a data structure representing an individual in a population, and a
gene encodes one decision variable of the problem within the chromosome.

12 CHAPTER 2. BACKGROUND

Variation operators, recombination and mutation.- Their function is
to modify the way in which the parents are combined to form the off-
spring. The crossover (or recombination operator) uses two or more
parents to generate one or two offspring. The main principle of recom-
bination is to produce an offspring that combines the selected parents
to form better individuals into the search space. There exists several
recombination operators such as one or two point crossover [32], and
uniform crossover [153] among others [7]. The mutation operator is
applied to only one solution and slightly modifies the genetic informa-
tion of the offspring [106]. The general idea of mutation is allowing a
solution to “jump (or abruptly move) from one region to another in the
search space.

Survivor selection mechanism (replacement).- This mechanism helps
the EA to distinguish among individuals based on their fitness or qual-
ity, favoring those with the highest quality.

As the EAs are stochastic, there are no guarantees that the final solution
has reached the global optimum by the time the stopping condition has been
reached. Thus, termination condition is an important issue in EAs. If the
optimization problem has a known optimal solution, the EA should stop
when the objective function reaches the desired level of accuracy. If not, then
the user should determine the number of generations allowed, the maximum
allowed CPU time, the maximum number of fitness evaluations, or some
other similar criterion.

2.4 Paradigms

There exist three main paradigms within evolutionary computation: Evolu-
tion strategies, evolutionary programming and genetic algorithms. A brief
description of each of these paradigms and some other interesting approaches
are provided next.

2.4.1 Evolution strategies

Evolution strategies (ES) were proposed by Ingo Rechenberg and Hans-Paul
Schwefel [69], and it is normally used for continuous parameter optimization,

Paradigms 13

adopting the mutation operator as the main means of creating offspring. The
general scheme is described in Algorithm 2.

The mutation operator is based on a normal (Gaussian) distribution (re-
quiring the mean and the standard deviation as parameters). The mutation
parameters are usually changed during a run of the algorithm, allowing a
good exploration at the beginning and a better exploitation of solutions by
the end of the evolutionary process.

In ES, the parent selection is randomly perform with a uniform distribu-
tion from a population of µ individuals. The basic recombination method
involves two parents that create a single offspring, called local recombination.
Later on, a global recombination was proposed, in which a set of Q parents are
selected to contribute at the moment of generating the offspring. However,
the exact number of parents cannot be defined precisely. After creating λ
offspring (λ > µ) and calculating their fitness, the best µ of them are chosen
in a deterministic way (based only on their fitness value). There exist several
selection schemes, the first one is called (1+1)−ES, in which a single solution
generates a single offspring. Offspring can be generated only from the parent
population ((µ, λ)−ES selection), or from the union of parents and offspring
((µ + λ)−ES selection).

Algorithm 2 Generic scheme of evolution strategies algorithm

1: Initialize population P randomly
2: Evaluate fitness of all individuals of P
3: repeat
4: Apply crossover to create offspring S
5: Apply mutation to all S
6: Evaluate new candidates (offspring)
7: Select the best individuals for the next generation, using:
8: (µ, λ)-selection
9: or:

10: (µ + λ)-selection
11: until Termination condition is satisfied

2.4.2 Evolutionary programming

Evolutionary programming (EP) was proposed by Lawrence J. Fogel [101],
who originally adopted finite state machines as predictors and evolved them.

14 CHAPTER 2. BACKGROUND

The general scheme is described in Algorithm 3.
The parent selection in EP is deterministic and every member of the pop-

ulation creates exactly one offspring via mutation. The crossover in EP is
not used, as the members of the population are viewed as part of a spe-
cific species rather than members of the same species; and different species
are not allowed to recombine (as happens in nature). After having created
the offspring, each solution is evaluated and a (µ + µ)-selection is normally
adopted. Thus, each solution participates with other q solutions in a binary
tournament assigning a “win” if one solution is better than its opponent.
Finally, the µ solutions with the greatest number of wins are retained to be
the parents of the next generation.

Algorithm 3 Generic scheme of an evolutionary programming algorithm

1: Initialize vectors of the population P randomly
2: Evaluate fitness of all initial individuals of P
3: repeat
4: Apply mutation to all solutions of P and generate |P | offspring
5: Evaluate new candidates (offspring)
6: (µ + µ)-selection (stochastic process)
7: until Termination condition is satisfied

2.4.3 Genetic algorithms

The genetic algorithm (GA) was initially proposed by John Holland in his
book Adaptation in Natural and Artificial Systems [70]. Holland had been
convinced that the recombination of groups of genes by means of mating was
a critical part of evolution. By the mid-1960’s Holland developed a program-
ming technique, the genetic algorithm, that was well suited to evolution by
both mating and mutation. During the next decade, he worked to extend the
scope of genetic algorithms by creating a genetic code that could represent
the structure of any computer program. The result was the classifier system,
consisting of a set of rules, each of which performs particular actions every
time its conditions are satisfied by some piece of information.

The classifier system starts with a population of random strings of 1’s and
0’s and rates each string according to the quality of the result. Depending
on the problem, the measure of fitness could be business profitability, game
payoff, error rate or any number of other criteria. High-quality of strings are

Paradigms 15

selected to mate among them, and low-quality of strings tend to perish. As
generations pass, strings associated with improved solutions will predomi-
nate. Furthermore, the mating process continually combines these strings in
new ways, generating ever more sophisticated solutions. The types of prob-
lems that have been solved using this technique range from developing novel
strategies in game theory to designing complex mechanical systems. The
simple genetic algorithm is shown in Algorithm 4

Algorithm 4 Generic scheme of a genetic algorithm

1: Initialize vectors of the population P randomly
2: Evaluate the cost of each vector (candidate)
3: repeat
4: Select a pair of parents;
5: Recombine pairs of parents;
6: Apply mutation to offspring;
7: Evaluate offspring;
8: Select the fittest individuals for the next generation;
9: until Termination condition is satisfied

Currently, there exist many variants of GAs, with different solution rep-
resentations, as well as a variety of selection, crossover and mutation opera-
tors [6]. But the characteristics of the so-called simple GA are the use of bi-
nary representation, fitness proportional selection, a low probability uniform
mutation, and 1-point crossover (with a high probability of crossover) [59].

2.4.4 Memetic algorithms

The concept of memetic algorithm was first introduced in 1989 by Pablo
Moscato [112]. The term “memetic” has its roots in the word “meme” in-
troduced by Richard Dawkins in 1976 [30] to denote the unit of imitation
in cultural transmission. Memetic algorithms (also called hybrid evolution-
ary algorithms) are increasingly being used for solving multiobjective op-
timization problems. The essential idea behind memetic algorithms is the
hybridization of local search refinement techniques with a population-based
strategy, such as evolutionary algorithms. The main difference between ge-
netic and memetic algorithms is the approach and view of the information’s
transmission techniques. In the genetic algorithm, the genetic information
carried by genes is usually transmitted intact to the offspring, meanwhile in

16 CHAPTER 2. BACKGROUND

the memetic algorithm, the base unit are the so-called “memes” and they are
typically adapted by the individual transmitting information. While genetic
algorithms are good at exploring the solution space from a set of candidate
solutions, the memetic algorithms explore from a single point, allowing to
exploit solutions that are close to optimal solutions.

As stated by Knowles [87], for improving optimization results achieved
by genetic algorithms one should: “Hybridize where is possible”. The hy-
bridization of local improvement operators among the evolutionary steps of
an evolutionary algorithm is essential to improve solutions that are close
from becoming optimal. This has been shown in several application domains
to bring improvements to the standard results achieved by standalone ge-
netic algorithms in terms of results quality and speed of convergence. The
combination of global and local search is a strategy used by many successful
global optimization approaches, and has in fact been recognized as a powerful
algorithmic paradigm for evolutionary computing [59].

2.4.5 Other approaches

There are other EAs which are not included in the three main paradigms but
that are commonly used to solve optimization problems. They are: genetic
programming [89], differential evolution [151], particle swarm optimization
[101] [84], ant colony optimization [43], cultural algorithms [132], artificial
immune systems [31], and scatter search [95] among others.

2.5 Advantages and disadvantages of

evolutionary algorithms

The motivation for using evolutionary algorithms as a search and optimiza-
tion technique is partly dependent on the nature of the problem that we
want to solve. In other words, if the optimization problem is mathematically
“well-behaved”, then one should choose the use of conventional, determin-
istic and specialized techniques [107]. Examples of such techniques are the
classical linear and nonlinear programming techniques [100], the determin-
istic gradient-based techniques such as Newton’s method and its variations
and the simplex method [28]. However, these conventional optimization tech-
niques had several problems when dealing with functions that present any of

Advantages and disadvantages of evolutionary algorithms 17

the following features: when the function is discontinuous or characterized by
many local optima (called as multi-modal) and points at which gradients are
undefined, or when the problem involves many parameters that interact in
highly nonlinear ways. In those scenarios, the exact optimization techniques
usually fail to get the optima. And in those scenarios is where metaheuris-
tics2 such as “EAs” are powerful alternatives for exploring the search space
and finding good solutions that can not be attained with conventional math-
ematical programming techniques.

Another major advantage of EAs is their flexibility and their applicability
to a vast variety of applications. This is essential when we compared EAs
with alternative optimization and search methods. Classical optimization
techniques usually require a set of initial conditions and hard constraints,
such as the linearity or differentiability of the objective function. The EAs
are direct search methods which only require information about the objective
function values, but do not require any other information. EAs can also
operate on any problem encoding (binary, integer, real, and combinatorial)
and accept a wide variety of data structures. Among the disadvantages on
EAs are that they are not able to guarantee to reach the optimum, and as
they are stochastic process they do not guarantee to provide the the same
result from one execution to another.

However, the iterative and population based nature of EAs can be compu-
tationally expensive and should be taken into consideration, especially when
we are dealing with expensive objective functions, In Section 5.1, we discuss
the main drawbacks of using a MOEA when many evaluations are required,
as they tend to require a lot of function evaluations to obtain a good approx-
imation. In order to achieve good results using an EA, several design choices
need to be cautiously decided in advance. For example, the population size,
the recombination and mutation probability and the maximum number of
generations. Choosing the correct parameters for an EA is far from being
a straightforward process, and requires practical expertise, as the success of
certain EA parameters and operators cannot be generalized [123].

2a metaheuristic is a heuristic method for solving a general class of computational
problems. The name combines ’meta’ which means ’beyond’ or ’higher level’ and ’heuristic’
which means ’to find’.

3
Multi-objective Optimization

The multi-objective optimization problem (MOP) can be formally defined as
the problem of finding:

~x∗ = (x∗
1, x

∗
2, . . . , x

∗
n)T which satisfies the m inequality constraints:

gi(
−→x) ≤ 0; i = 1, . . . ,m

the p equality constraints:

hj(
−→x) = 0; j = 1, . . . , p

and optimizes the vector function:

~f(~x) = f1(
−→x), f2(

−→x), . . . , fk(
−→x)

In other words, we aim to determine from among the set S of all vectors
(points) which satisfy the constraints those that yield the optimum values
for all the k objective functions simultaneously. The constraints define the
feasible region S and any point −→x in the feasible region is called a feasible
point.

19

20 CHAPTER 3. MULTI-OBJECTIVE OPTIMIZATION

3.0.1 Pareto dominance

Pareto dominance is formally defined as follows:
A vector −→u = (u1, . . . , uk) is said to dominate a vector −→v = (v1, . . . , vk)

if and only if −→u is partially less than −→v , i.e., ∀i ∈ {1, . . . , k}, ui ≤ vi ∧ ∃i ∈
{1, . . . , k} : ui < vi (assuming minimization).

In order to say that a solution dominates another one, this one needs to
be strictly better in at least one objective, and not worse in any of them.
So when we are comparing two different solutions A and B, there are 3
possibilities:

• A dominates B.

• A is dominated by B.

• A and B are incomparable.

3.0.2 Pareto optimality

The formal definition of Pareto optimality is provided next:
A solution −→xu ∈ S (where S is the feasible region) is said to be Pareto

optimal if and only if there is no −→xv ∈ S for which ~v = f(~xv) = (v1, . . . , vk)
dominates ~u = f(~xu) = (u1, . . . , uk), where k is the number of objectives.

In words, this definition says that ~xu is Pareto optimal if there exists no
feasible vector ~xv which would decrease some objective without causing a si-
multaneous increase in at least one other objective (assuming minimization).

This definition does not provide us a single solution (in decision variable
space), but a set of solutions which form the so-called Pareto Optimal Set
(P ∗). The vectors that correspond to the solutions included in the Pareto
optimal set are nondominated.

3.0.3 Pareto front

When all nondominated solutions are plotted in objective function space,
the nondominated vectors are collectively known as the Pareto Front (PF ∗).
Formally:

PF ∗ := {
−→
f (~x) = (f1(~x), . . . , fk(~x))|~x ∈ P ∗}

Decision making process 21

f2

x1

x2

f1

Nondominated points

Feasible points

Infeasible points

Decision Variable Space Objective Function Space

S
Z

S

Z

Feasible Region

Representation of S in

Objective Function Space

Pareto Front

Figure 3.1: Mapping of the Pareto optimal solutions to the objective function
space.

It is, in general, impossible to find an analytical expression that defines the
Pareto front of a problem, so the most common way to get the Pareto front
is to compute a sufficient number of points in the feasible region, and then
filter out the nondominated vectors from them.

The previous definitions are graphically depicted in Figure 3.1, showing
the Pareto front, the Pareto optimal set and dominance relations among
solutions.

3.1 Decision making process

In real world multi-objective optimization, from the set of trade-offs gen-
erated by an algorithm, a single solution is usually chosen by the Decision
Maker (DM). That is why the DM’s preferences are so important since they
will affect the multi-objective optimization process and will delimit the search
space to certain regions of interest if such information is incorporated in the
optimization process. However, this is not an easy task and a number of tech-
niques have been developed for such purpose. In operations research (OS),
several taxonomies of multi-objective optimization techniques (i.e., mathe-
matical programming techniques) have been proposed. However, the most
popular taxonomies are based on the stage of the search at which the DM’s

22 CHAPTER 3. MULTI-OBJECTIVE OPTIMIZATION

preferences are incorporated. One of such taxonomies (proposed in [27, 108])
is described next:

A priori techniques.- This category denotes the process of introducing and
incorporating the DM preferences before the search process.

Progressive techniques.- This category denotes the process of introducing,
incorporating and modifying the DM preferences in an interactive way
at any time during the search process.

A posteriori techniques.- This category denotes the process of incorporat-
ing the preferences at the end of the search process.

In the following, a brief overview of these three techniques is provided.

3.1.1 A priori techniques

In a priori techniques, the DM is requested to know and expose his/her
preferences before the optimization begins. The main disadvantage of a priori
techniques is the assumption that the DM knows his/her preferences and does
not allow a flexibility to change those preferences once the search process has
begun. In many real world applications, the DM might be uncertain about
his/her preferences of the problem and a priori techniques are not appropriate
in this case because they are unsuitable.

There exist several proposals, some of which are reviewed next:

Lexicographic order: [50] The objective functions are sorted according to
their importance, and they are optimized in sequence beginning with
the most important and finishing with the less important. The perfor-
mance of the algorithm is highly dependent on this ordering given by
the DM.

Linear aggregating functions: It combines the results of the different ob-
jective functions into a single fitness value. This single value is often
obtained by means of a linear combination of the objective functions,
although that is not the only way to do it. This linear combination
is done assigning a relative importance to each of the objective func-
tions(assuming that the objective function values are all normalized).
Implementing an algorithm that uses a linear combination of objectives

Decision making process 23

can be very simple, and also efficient, but a linear function is unable to
generate nonconvex portions of the Pareto front [29] regardless of the
weights used.

Goal programming: [18, 75] The DM assigns targets (goals) that wishes
to accomplish for each objective and these values are incorporated into
the problem as additional constraints.

3.1.2 Progressive techniques

In progressive techniques, the DM requests the preferences progressively
throughout the optimization process. With this technique, the DM can mod-
ify the preferences at any time of the optimization process and make use of
any trade-off or beneficial information such as objectives’ relationships. The
main problem with this technique is that the interactions with the DM can
be quite demanding and can require many interactions with the DM at every
generation of the optimization process.

There exist several proposals along this line, some of which are reviewed
next:

Sequential multi-objective problem solving method: [109] Also
known as SEMOPS. It uses a surrogate objective function based on
the goal levels (imposed by the DM) and aspiration levels (attainment
levels of the objectives which the DM desires to achieve).

Goal sequence method: [154] Suggested as a method for articulating al-
ternative preference scenarios for the optimization problem at hand.
This technique allows the articulation of hard and soft preferences on
each objective function such as priorities and constraints using logical
connectives (“AND” and “OR”) to drive the search towards multiple
trade-off regions.

Tchebycheff method: [150] Consists of new techniques to convert multi-
objective problems into a single objective problem, combining multiple
objectives into a single one, using weighted distances.

3.1.3 A posteriori techniques

A posteriori techniques require the DM to articulate the preferences and se-
lect a single solution or a subset of solutions from a whole set of solutions

24 CHAPTER 3. MULTI-OBJECTIVE OPTIMIZATION

provided by the multi-objective evolutionary algorithm (MOEA). This tech-
nique is the most widely used in evolutionary multi-objective optimization
(EMO). A good optimizer should provide the DM with a well-diversified ap-
proximation set along the Pareto front. The next step consists in choosing
a certain solution based on certain preferences and priorities and might re-
quire a further analysis and more profound. This technique allows a better
understanding of the problem as well as its objective space. Nevertheless,
this technique requires that the MOEA produces a large set of solutions,
which can be computational expensive. Also, providing the DM with a large
number of solutions to choose from can be very confusing and complicates
this approach. In fact a posteriori multi-criteria decision making approaches
are among the most difficult to implement and use [47].

There exist several proposals within this type of approach, some of which
are reviewed next:

Weighting method: [172] This method consists in solving a scalar opti-
mization problem in which the objective function is a weighted sum of
the components of the original vector-valued functions. So, varying the
components of the objective function we can generate all the solutions
along the Pareto front.

ǫ-constraint method: [63] This approach suggests to keep one single ob-
jective to optimize and manage the rest of the objectives as constraints
within a specific value. With this method, we can also find solutions
in nonconvex parts of the Pareto front but usually at a very high com-
putational cost.

3.2 Evolutionary algorithms for multi-objective

optimization

The first attempts to adapt evolutionary algorithm to solve multi-objective
optimization problems relied on straightforward transformations of a multi-
objective optimization problem into a single-objective one. For example:

Weighted sum approach: Jakob et. al [78] assign different weights to each
of the objectives of a problem before the optimization starts. The
weights’ values reflect the importance and the priority of each objective.

Evolutionary algorithms for multi-objective optimization 25

The problem is then converted, by aggregating the weighted objectives,
into the optimization of a weighted sum.

ǫ-constraint based approach: The epsilon-constraint method [63] works
by choosing one objective function as the only objective and the re-
maining objective functions as constraints. By a systematic variation
of the constraint bounds, different elements of the Pareto front can be
obtained. The method relies on the availability of a procedure to solve
constrained single-objective problems. Mathematically, we aim to:

min fj(~x)

subject to: fi(~x) ≤ ǫi ∀ i ∈ {1, . . . , k}, i 6= j

where f: x→ R
k and k is the number of objectives.

Goal programming: [18] This method transforms the problem into a min-
imization task of a weighted sum of deviations of the objectives from
user-defined goal vectors.

The main problem with these approaches is that they can only produce
a single solution at each execution. In order to produce a diverse set of
solutions along the Pareto front, the method needs to be executed several
times changing the weight values and the optimizer configuration. In the case
of the weighted sum approach, it can be easily demonstrated that is unable
to produce solutions on non-convex regions of the Pareto front regardless of
the weights adopted [51]. These techniques are computationally expensive
and require a considerable number of objective function calls.

3.2.1 Population based evolutionary algorithms

The population-based nature of EAs and their flexible selection mechanisms
have proved to be extremely useful and successful for solving multi-objective
optimization problems [22]. The two factors that make the use of a popu-
lation in EAs very practical are: 1) the simultaneous operation on multiple
solutions transforms the search for optimal solutions into a cooperative pro-
cess and hence increases its speed. 2) the Pareto dominance scheme used by
most MOEAs makes it possible to tackle the problems and assess candidate
solutions to such problems without requiring the aggregation of noncommen-
surable objectives.

26 CHAPTER 3. MULTI-OBJECTIVE OPTIMIZATION

Generation (t)

1

Popsize Popsize

1

Select ‘n’
subsets
based on
each
objective
function.
- Selection

Merge the
selected
solutions

Applied
genetic
operators:
- One point
crossover
- Uniform
mutation

1

2

n

Parents

Elitism.- Only the best solutions
survive to the next generations

Generation (t+1)

Figure 3.2: VEGA flowchart.

3.2.1.1 Vector evaluated genetic algorithm (VEGA)

It was in 1985 when the first implementation of a multi-objective evolutionary
optimizer was introduced. When David Schaffer proposed the Vector Eval-
uated Genetic Algorithm (VEGA) [143], he was inspired by Grefenstette’s
GENESIS [62] program. VEGA operates by dividing the population of so-
lutions into N equally sized subpopulations at every generation (see Fig-
ure 3.2). Each subpopulation is designed to separately optimize only one
of the N objectives. In other words, the selection of the fittest individuals
in each subpopulation is based in a single objective of the problem. After
performing selection, individuals are shuffled and then they are recombined
and mutated. The main problem in VEGA is the selection procedure, which
can hardly produce compromise solutions among all the objectives. Most of
the solutions found in VEGA are in the extreme parts of the Pareto front.

3.2.2 Pareto based evolutionary algorithms

David Goldberg [59] proposed the use of Pareto dominance to assign fit-
ness values to candidate solutions and select those solutions for recombina-
tion and survival. Most of the modern MOEA approaches are influenced by
Goldberg’s work, and can be categorized into two generations:

First generation MOEAs: This category includes those algorithms that
lack the concept of elitism (that ensures the preservation of the good

Evolutionary algorithms for multi-objective optimization 27

solutions found along the search process). The emphasis of this first
generation is the simplicity of the approaches which normally incor-
porate fitness sharing or analogous processes in order to produce well-
distributed sets of solutions. The most representative and widely cited
are: the multi-objective genetic algorithm (MOGA) [54], the niched-
Pareto genetic algorithm (NPGA) [72], and the nondominated sorting
genetic algorithm (NSGA) [149].

Second generation MOEAs: These MOEAs incorporate elitism and more
sophisticated methods to improve the diversity in the solutions (the
so-called diversity estimators). Elitism is usually implemented through
an external archive, also called secondary population, which stores the
nondominated solutions found during the search process. Also, using
a selection operator (µ + λ), by which at each generation, parents and
children are placed together in order to select the best of them to build
the next generation. The most representative and cited algorithms from
this group are the following: the strength Pareto evolutionary algorithm
(SPEA) [175], the Pareto archived evolution strategy (PAES) [88], the
nondominated sorting genetic algorithm II (NSGA-II) [39], the strength
Pareto evolutionary algorithm 2 (SPEA2) [174], the micro-genetic al-
gorithm (µ-GA) [24] and the ǫ-dominance multi-objective evolutionary
algorithm (ǫ-MOEA) [38].

3.2.2.1 Multi-objective genetic algorithm (MOGA)

MOGA was proposed by Fonseca and Fleming [54], in which the strategy is to
rank a certain individual according to the number of solutions in the current
population that dominates it (see Figure 3.3). It means, that a nondominated
solution is assigned a rank of one denoting that there is no other solution
in the population dominating it, and the rest of the solutions are penalized
according to the number of solutions that dominate them. The rank of an
individual i in the population is thus given as: rank(i) = 1 + qi where qi is
the number of individuals that dominate individual i in the objective space.
Also, fitness sharing is implemented and applied in the objective space in
order to obtain a well distributed set of solutions. To calculate the fitness

sharing, it is first calculated as: φ(dij) =

{

1−
(

dij

σshare

)

, dij < σshare;

0, otherwise.
where dij is the distance between individuals i and j, and σshare is the niche

28 CHAPTER 3. MULTI-OBJECTIVE OPTIMIZATION

f2

f1Objective Function Space

1

1

1

3

3

6

5

2

2

Figure 3.3: Ranking process in MOGA, the rank of the solution depends on
the number of solutions that dominate it, rank = 1 means a nondominated
solution.

radius. The sharing distance σshare determines the extent of sharing allowed
in terms of the radius distance (see Figure 3.4).

3.2.2.2 Niche Pareto genetic algorithm (NPGA)

Horn et. al [72] proposed a mechanism to perform a Pareto dominance tour-
nament. Two candidate solutions are randomly chosen from the population.
A certain number of solutions are randomly selected and constitute a specific
subset (usually 10% of the population). These two selected solutions are
compared with the specific subset, and if one of the two solutions is nondom-
inated with the specific subset, then it is selected for variation. In the case
of a tie, the winner is chosen based on fitness sharing, which means that the
solution that resides in a less crowded region is selected.

3.2.2.3 Nondominated sorting genetic algorithm (NSGA)

Srinivas and Deb [149] proposed an algorithm based on the nondominated
sorting strategy. This strategy classifies all the nondominated solutions into
one category and they are all assigned the rank of one, denoting their mem-
bership with the first level of nondominance. The solutions with rank = 1 are
removed from the population and the process continues until all the solutions

Evolutionary algorithms for multi-objective optimization 29

f2

f1Objective Function Space

δ
1

share

Figure 3.4: Example of fitness sharing, where all the solutions inside the
σshare radius are penalized in their total fitness.

in the population are assigned a rank to a certain level of nondominance (see
Figure 3.5). This process only gives us a partial sorting of the solutions as all
of them have the same dummy fitness value. In order to maintain diversity in
the population, fitness sharing is applied to every level of dominance in order
to degrade the fitness values of the solutions, based on the density of the
neighborhood (called σshare or niche radius defined by the user). The sharing
in each front is achieved by calculating a sharing function value between two
individuals in the same front as follows:

Shdij
=

{

1−
(

dij

σshare

)2

, dij < σshare;

0, otherwise.

where dij is the distance between individuals i and j, and σshare is the niche
radius. A parameter niche count is calculated by adding the above sharing
function values for all individuals in the current front. Finally, the shared fit-
ness value of each individual is calculated by dividing its dummy fitness value
with its niche count. The best individuals are always preferred over other
solutions, favoring the generation of new individuals near the nondominated
solutions and the fitness share mechanism helps the algorithm to distribute
the nondominated solutions along the Pareto front. The high sensitivity to
σshare resulted in a less efficient performance of NSGA.

30 CHAPTER 3. MULTI-OBJECTIVE OPTIMIZATION

f2

f1Objective Function Space

1

1

1

2

2

3

3

2

2

3

3

Figure 3.5: Ranking process in NSGA.

3.2.2.4 Strength Pareto evolutionary algorithm (SPEA)

Proposed by Zitzler and Thiele [175], SPEA introduced the use of two pop-
ulation with P for the population and P’ for the external archive, which
contains the nondominated solutions found so far in the process. The fitness
process is based on Pareto optimality. At each generation, the nondominated
individuals in P are copied to the archive and any dominated solutions in
the archive are removed. In SPEA, individuals in the archive are ranked
with reference to the number of members that dominate from the population
(called as strength), while individuals in the population are evaluated with
reference to the number of members that are dominated from the archive.
Each solution in the population is then assigned a fitness value which is pro-
portional to the strength of solutions that dominates. SPEA uses a clustering
technique [111] to maintain diversity in the external archive, which is pruned
by means of clustering once it exceeds a certain (pre-defined) size.

3.2.2.5 Pareto archived evolution strategy (PAES)

Proposed by Knowles and Corne [88], it is a simple (1 + 1) evolution strategy
with a single parent generating a single offspring. PAES uses an external
archive (with an upper bound on its size) that contains all the nondominated
solutions generated so far. Each solution generated is a candidate to be
accepted in the external archive that uses an adaptive hyper-grid in the

Evolutionary algorithms for multi-objective optimization 31

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

A

B

C

D
E

F

G
H

I
J

K

L
M

N

7

6

5

4

3

2

1

0

 0 1 2 3 4 5 6 7
f1

f2
Size

of objective 1

O
bjective 2

Si
ze

of
 o

bj
ec

tiv
e

2

Hypercube

extra room

corresponding component
to cover in the

Space that we need

Objective 1

objective 1

nDivs = 7

nDivs = 7

Individual with the worst
value in objective 2 and
best value in objective 1

Individual with the worst
value in objective 1 and
best value in objective 2

Figure 3.6: Adaptive grid in PAES.

objective space (see figure 3.6) to divide it into several hyper boxes. In
the case which an offspring solution is nondominated by the reference set,
another solution that resides in the most crowded region is removed from the
external archive.

3.2.2.6 Nondominated sorting genetic algorithm II

(NSGA-II)

Proposed by Deb et. al [39] as a second and improved version of the NSGA.
NSGA-II ranks a solution using the nondominated sorting scheme. It incor-
porates an efficient density estimator called crowding in objective function
space (see Figure 3.7). For each ranking level, a crowding distance is esti-
mated by calculating the sum of the Euclidean distances between the two
neighboring solutions from either side of the solution along each of the ob-
jectives. NSGA-II uses a simple (µ + λ) scheme for the selection survival,
which means that µ parents compete against λ offspring to survive until the
next generation. Currently, NSGA-II remains as one of the most competitive
MOEAs known to date.

32 CHAPTER 3. MULTI-OBJECTIVE OPTIMIZATION

f2

f1Objective Function Space

Crowding
distance = c + c1 2

C2

C1

Figure 3.7: Crowding distance as a diversity operator used in NSGA-II.

3.2.2.7 Strength Pareto evolutionary algorithm 2

(SPEA2)

Proposed by Zitzler et. al [174], it contains three new features introduced to
improve the original SPEA: 1) It takes into consideration the count of the
dominating and the dominated solutions to help the ranking technique; 2)
it uses the k − th nearest neighbor strategy as a density estimator around
each solution; 3) it incorporates the truncation method, which maintains a
fixed size for the external population avoiding to lose the extreme parts of
the Pareto front.

3.2.2.8 µ-genetic algorithm (µ-GA)

Proposed by Coello and Toscano [24], is a genetic algorithm with a small (µ)
population (no more than 5 individuals) that is combined with a reinitial-
ization process, and an adaptive grid similar to the one used in PAES. The
population is divided in two: 1) the replaceable and the 2) nonrepleaceable
memory. The nonrepleaceable memory does not intervene in the evolution
process and it remains as the source of diversity. The replaceable memory

Performance measures 33

is constantly updated with new nondominated solutions that come from the
external archive. At every cycle of the µ-GA, the population is filled with
four solutions from each memory (two from the replaceable and two from
the nonreplaceable memory). During each cycle, the crossover and mutation
operators are applied, and two solutions are chosen from the final population
and are candidates to get into the external archive. The authors show that
the µ-GA is very efficient (computationally speaking) and the quality of its
results are also very competitive with respect to those generated by other
MOEAs.

3.2.2.9 ǫ-dominance multi-objective evolutionary

algorithm (ǫ-MOEA)

Proposed by Deb et. al [41], ǫ-MOEA is based on the ǫ-dominance concept
first introduced by Laummans et al. [98] which is a relaxed form of Pareto
dominance. The main idea is to keep two populations co-evolving: 1) the
main population and 2) the secondary population. The procedure begins
initializing the main population with random solutions, and all the nondom-
inated solutions found during the search are candidate solutions to be in the
secondary population (which only keeps record of the nondominated solu-
tions). Next, two solutions are randomly selected from both populations (one
from the main and other from the second one) and after applying crossover
and mutation operators, two offspring solutions are generated. The mecha-
nism to maintain diversity in the secondary population consists of dividing
the objective space into a certain number of hyper-boxes of size ǫ, such that
each hyper-box can only contain a single solution.

3.3 Performance measures

In order to allow a quantitative comparison of results among the different
algorithm, there are two distinct goals that we pursue: (1) get the solutions
as close to the Pareto optimal solutions as possible (closer to the true Pareto
front) and (2) get the solutions as diverse as possible along the Pareto front
(good distribution of the solutions). Apparently, these two goals are indepen-
dent from each other and there exist different performance measures to deal
with one or both of the goals. Thus, it does not exist a single performance
measure that can indicate the superiority of one algorithm over another in

34 CHAPTER 3. MULTI-OBJECTIVE OPTIMIZATION

these two aspects. So, there is a clear need of having at least two performance
measures for adequately evaluate both goals (convergence and diversity) of
a MOEA.

In Table 3.3 we can see a general scheme of the different performance
measures that we adopted and their classification. In the Table 3.3 we see
the characteristics of the performance measures such as:

• unary.- indicates if it is a unary performance measure (i.e. perfor-
mance measures which assign a single value to each nondominated set
of solutions).

• binary.- indicates if it is a binary performance measure (i.e. perfor-
mance measures which assign a single value to a pair of nondominated
set of solutions).

• convergence.- indicates that the performance measure assigns a single
value corresponding to the convergence of the nondominated set.

• diversity.- indicates that the performance measure assigns a single
value corresponding to the diversity of the nondominated set.

• req. PFtrue.- indicates if the performance measure requires the true
Pareto front to assign a single value to the nondominated set.

• best value.- indicates the best value that can be obtained from the
performance measure.

• Pareto compliant.- indicates if the performance measure is Pareto
dominance compliant. An indicator I : Ω → R is Pareto compliant if
for all A,B ∈ Ω : A � B ⇒ I(A) ≤ I(B).

A MOEA will be termed as a good multi-objective solver if both goals
are properly satisfied. This is, we expect to find solutions that are very close
to the true Pareto front and, at the same time, are well distributed along the
Pareto front.

A detailed explanation of each performance metric is provided next:

Number of points: It shows us how far the number of solutions found
is from the maximum capacity of the grid. In all our experiments,
the grid was defined with a capacity of 100 points. So, the closer to
100 that an algorithm gets, the better the value of this performance
measure.

Performance measures 35

Performance Measures U
n
ar

y

B
in

ar
y

C
on

ve
rg

en
ce

D
iv

er
si

ty

re
q
.

tr
u
e

P
ar

et
o

fr
on

t

b
es

t
va

lu
e

P
ar

et
o

co
m

p
li
an

t

Error Ratio (ER) [162] X X X 0.0 X
Two Set Coverage (SC) [173] X X 1.0 X

(I1
ε+) [176] X X 0.0 X

(IGD) [163] X X X 0.0
Spread (S) [35] X X X X 0.0

σ(Crowding) or SDC X X 0.0
SSC [175] X X 1.0 X

Spacing [173] X X 0.0
χ2-Like Dev Meas [149] X X X 0.0

Table 3.1: Main characteristics of the performance measures

Error Ratio (ER) Van Veldhuizen [162] simply counts the number of
solutions ’N’ which are not members of the Pareto optimal set, or
mathematically:

ER =

∑|N |
i=1 ei

|N |

where ei = 1 if the solution is dominated by any member of the Pareto
optimal set, and ei = 0 otherwise. This metric takes a value of 0 when
all the solutions are in the true Pareto front and ER = 1 means that
no solution is in the true Pareto front.

Two Set coverage (SC) Zitzler [173] proposed this metric that can be
termed relative coverage comparison of two sets. SC is defined as the
mapping of the order pair (A,B) to the interval [0,1] as follows:

36 CHAPTER 3. MULTI-OBJECTIVE OPTIMIZATION

SC(A,B) =
|{b ∈ B;∃a ∈ A : b � a}|

|B|

If all points in A dominate or are equal to all points in B, then by
definition SC = 1. SC = 0 implies the opposite. Observe that this is
not a distance measure that allows to determine how close these sets are
from each other. SC(A,B) represents the total percentage of solutions
in B that are dominated for A, note that SC(A,B) 6= 1− SC(B,A)

Unary additive epsilon indicator (I1
ε+): The epsilon indicator family

has been introduced by Zitzler et al. [176] and comprises a multiplica-
tive and additive version. The unary additive epsilon indicator of an
approximation set A (I1

ε+(A)) gives the minimum factor ǫ by which
each point in the true Pareto front PFtrue can be added such that the
resulting transformed approximation set is dominated by A:

I1
ε+(A) = infǫ∈R{∀z

2 ∈ PFtrue\∃z
1 ∈ A : z2

i ≤ z1
i + ǫ ∀i}.

I1
ε+(A) is to be minimized and implies that A is on the true Pareto

front PFtrue.

Inverted generational distance (IGD): Van Veldhuizen and Lamont
[163, 164] proposed the generational distance (GD) metric as a way
of estimating how far are the elements in the Pareto front produced
by an algorithm from those in the true Pareto front of the problem.
Mathematically:

GD =

√
∑n

i=1 d2
i

n

where n is the number of nondominated solutions found by the algo-
rithm being analyzed and di is the Euclidean distance between each
of these and the nearest member of the true Pareto front. A value of
zero for this metric indicates that our algorithm has converged to the
true Pareto front. Therefore, any other value indicates how “far” we
are from the true Pareto front. We adopted a variation of this metric,
called inverted generational distance (IGD) in which we use as a refer-
ence the true Pareto front, and we compare each of its elements with
respect to the approximation produced by an algorithm. This provides

Performance measures 37

a better estimation and avoids some of the pathological cases of poor
convergence that could arise (see [20] for a more extended discussion
on this metric).

Spread (∆): Deb [35] proposed the metric ∆ with the idea of measur-
ing both progress towards the Pareto-optimal front and the extent of
spread. To this end, if A is a Pareto front, ∆ is defined as follows:

∆ =

k
∑

i=1

de
i +

|PFtrue|
∑

i=1

|di − d|

k
∑

i=1

de
i + |PFtrue|d

.

where de
i denotes the distance between the i-th coordinate for both ex-

treme points in A and the true Pareto front PFtrue. F , and di measures
the distance of each point in A to its closer point in PFtrue.

From the above definition, it is easy to conclude that 0 ≤ ∆ ≤ 1
and the lower the ∆ value, the better the distribution of solutions. A
perfect distribution, that is ∆ = 0, means that the extreme points of
the Pareto-optimal front have been found and di is constant for all i.

Standard deviation of the crowding distances (SDC): This perfor-
mance measure was proposed in this thesis, in which we tried to get
more information with the crowding distance, so we measure the stan-
dard deviation from a Pareto set as:

SDC =

√

√

√

√

1

|A|

|A|
∑

i=1

(di − di)2

Now, 0 ≤ SDC ≤ ∞ and the lower the value of SDC, the better the
distribution of vectors in A, di is the mean value of all di. A perfect
distribution, that is SDC = 0, means that di is constant for all i.

Size of the space covered (SSC): This metric was proposed by Zitzler
and Thiele [175], and it measures the hypervolume of the portion of the
objective space that is dominated by the set, which is to be maximized.
In other words, SSC measures the volume of the dominated points.
Hence, the larger the SSC value, the better.

38 CHAPTER 3. MULTI-OBJECTIVE OPTIMIZATION

Spacing (Spacing): This metric was proposed by Schott [146] and cal-
culates a relative distance between consecutive solutions in the Pareto
front, it can be formally defined as:

Spacing =

√

√

√

√

1

|A|

|A|
∑

i=1

(di − d̄)2

where di = minj∈A

∑k
m=1 |f

i
m − f j

m| and d̄ is the mean value of the
distance di. The distance measure is the minimum value of the sum of
the absolute difference in objective function values between the i− th
solution and any other solution in the Pareto optimal set. A value of
0 means that all the solutions are equally distributed along the Pareto
front.

Chi-square-like deviation measure (χ2-Like deviation): This metric
was proposed by Srinivas and Deb [149] to measure the diversity of
the set of solutions obtained. Solutions are compared with respect to
a uniformly distributed set of the true Pareto front. Let P be the set
of vectors uniformly distributed along the Pareto-optimal front and F
the set of solutions to be compared. Then, for each i ∈ {1, ..., |P |}, let
us denote by ni the number of solutions in F whose distance from i is
less than δ (δ is set beforehand and we use Euclidean distance). Then,
the deviation is measured like a Chi-square distribution such as

χ =

√

√

√

√

|P |+1
∑

i=1

(
ni − ni

σi

)2.

The ideal distribution is achieved when all of the neighborhoods of
points in P have the same number of vectors, that is, if for each point
in P there are ni = |F |/|P | points in F whose distance from this
vector is less than δ, then χ = 0. The variance σ2

i is proposed to
be σ2

i = ni(1 −
ni

|F |
), for all i ∈ {1, 2, ..., |P |}. Index i = |P | + 1 is

used for those points that are far from all points in P . For this index,
n|P |+1 = 0 and σ2

|P |+1 = |F |(1− 1
|P |

) are also proposed in [149]. Then, it
is easy to see that 0 ≤ χ <∞ and the lower the χ value the better the
distribution of F with respect to P . The parameter δ depends on P
and it is crucial for the final χ value. Neighborhoods must be disjoint,

Test functions 39

so we take δ as a half of the minimum distance between two points in
P .

3.4 Test functions

In order to challenge the search capabilities of the MOEAs, a set of multi-
objective test functions were used during this thesis. These test functions
encapsulate special characteristics, such as multi-modality, non-convexity
and discontinuity, which are known to generally cause difficulties to most
MOEAs to solve them. Some problems contains a disconnected and asym-
metric Pareto fronts in two and three objective functions that causes several
problems to MOEAs to reach all the regions in the true Pareto front. In
Appendix A we provide the specific definitions of the different test functions
that we used to validate the different approaches proposed in the thesis, and
in Appendix B we show the Pareto fronts of the test functions and the op-
timal Pareto set (when it is possible to plot the decision variables). Also, it
is important to mention that these test functions not necessarily reflect the
main characteristics of the optimization problems found in the real world.
It is true that some of these functions contain important features that make
them particularly difficult to solve. Thus, the underlying assumption is that
if a MOEA can solve such test functions, it should also be able to tackle
real-world problems; although this is not necessarily true.

3.4.1 Deb’s test functions

A methodology for constructing MOPs exhibiting desired characteristics has
been proposed by Deb [33]. Their main characteristics are ease of construc-
tion and scalability to any number of objective functions and decision vari-
ables. Also, the associated Pareto fronts have to be known and easy to
construct. Deb defines both a local and global Pareto optimal set. His global
Pareto optimal set is the well known Pareto front, and the local Pareto opti-
mal is “behind” the global Pareto front. He then indicates that a deceptive
multi-objective optimization problem is one which at least contains both (a
global and a local) Pareto fronts. This also is known as a multifrontal prob-
lem.

To accomplish this, Deb defines several generic bi-objective optimization
problems as:

40 CHAPTER 3. MULTI-OBJECTIVE OPTIMIZATION

Minimize F = (f1(~x), f2(~x)), where

f1(~x) = f(x1, . . . , xm),

f2(~x) = g(xm+1, . . . , xN) h(f(x1, . . . , xm), g(xm+1, . . . , xN))

where function f1 is a function of m where m < N decision variables and
f2 a function of all N decision variables. The function g is one of N − m
decision variables which are not included in function f . The function h is
directly a function of f and g function values. The f and g functions are
also restricted to positive values in the search space, i.e., f > 0 and g > 0.

Deb lists five different functions for possible f and g and four for h. These
functions may then be “mixed and matched” to create MOPs with desired
characteristics. Deb states these functions have the following general effect:

f – This function controls vector representation uniformity along the Pareto
front.

g – This function controls the resulting MOP’s characteristics – whether it
is multifrontal or has an isolated optimum.

h – This function controls the resulting Pareto front’s characteristics (e.g.,
convex, disconnected, etc.)

These functions respectively influence the search along and towards the
Pareto front, and the shape of a Pareto front. Deb implies that a MOEA has
difficulty finding the global Pareto front because it gets “trapped” in a local
optimum, namely a local Pareto front.

3.4.2 The ZDT test functions

Zitzler et al. [174] proposed a set of test functions which are known as the
ZDT (Zitzler-Deb-Thiele) set, and will be described next. Notice that ZDT5
is not described in this part because it is a binary problem and is not used
in this thesis.

Test functions 41

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

ZDT1 Pareto Front

Fu
nc

tio
n

2

Function 1

Figure 3.8: ZDT1 Pareto
front.

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

 10,000 random points
 ZDT1 Pareto Front

Fu
nc

tio
n

2

Function 1

Figure 3.9: 10,000 randomly generated
solutions are plotted for ZDT1.

Test Problem ZDT1: It has a convex Pareto-optimal front:

f1(~x) = x1,

f2(~x, g) = g(~x) · (1−
√

f1(~x)/g(~x))

g(~x) = 1 +
9

n− 1
·

n
∑

i=2

xi

where n = 30, and xi ∈ [0, 1]. The true Pareto front is formed with g(~x) = 1.
In Figure 3.8 we show the true Pareto front. Figure 3.9 shows 10,000 ran-
dom solutions in objective space together with the true Pareto front with the
objective to show the difficulty of the problem to reach the true Pareto front
with a random sampling.

Test Problem ZDT2: It has a concave Pareto-optimal front:

f1(~x) = x1,

f2(~x, g) = g(~x) · (1− (f1(~x)/g(~x))2)

g(~x) = 1 +
9

n− 1
·

n
∑

i=2

xi

42 CHAPTER 3. MULTI-OBJECTIVE OPTIMIZATION

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

ZDT2 Pareto Front

Fu
nc

tio
n

2

Function 1

Figure 3.10: ZDT2 Pareto
front.

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8 10,000 random points
 ZDT2 Pareto front

Fu
nc

tio
n

2
Function 1

Figure 3.11: 10,000 randomly gener-
ated solutions are plotted for ZDT2.

where n = 30, and xi ∈ [0, 1]. The true Pareto front is formed with g(~x) = 1.
In Figure 3.10 we show the true Pareto front. Figure 3.11 shows 10,000 ran-
dom solutions plotted in objective space together with the true Pareto front.

Test Problem ZDT3: It has a Pareto-optimal front disconnected and con-
vex:

f1(~x) = x1

f2(~x, g) = g(~x) ·

(

1−

√

f1(~x)

g(~x)
−

f1(~x)

g(~x)
· sin(10πf1(~x))

)

g(~x) = 1 +
9

n− 1
·

n
∑

i=2

xi

where n = 30, and xi ∈ [0, 1]. The true Pareto front is formed with g(~x) = 1.
The introduction of the sine function causes discontinuities in the Pareto-

Test functions 43

0.0 0.2 0.4 0.6 0.8 1.0
-1

0

1

ZDT3 Pareto Front

Fu
nc

tio
n

2

Function 1

Figure 3.12: ZDT3 Pareto
front.

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8 10,000 random points
 ZDT3 Pareto front

Fu
nc

tio
n

2

Function 1

Figure 3.13: 10,000 randomly gener-
ated solutions are plotted for ZDT3.

optimal front. However, there is no discontinuity in the parameter space. In
Figure 3.12 we show the true Pareto front. Figure 3.13 shows 10,000 random
solutions plotted in objective space together with the true Pareto front.

Test Problem ZDT4: It contains 219 local Pareto fronts and, therefore,
tests for the MOEA’s ability to deal with multimodality:

f1(~x) = x1

f2(~x, g) = g(~x) · (1−

√

f1(~x)

g(~x)
)

g(~x) = 1 + 10 · (n− 1) +
n
∑

i=2

(x2
i − 10 cos(4πxi))

where n = 10, x1 ∈ [0, 1] and x2, . . . , xn ∈ [−5, 5]. The true Pareto front is
formed with g(~x) = 1. The best local Pareto front is formed with g(~x) = 1.25.
In Figure 3.14 we show the true Pareto front. Figure 3.15 shows 10,000 ran-

44 CHAPTER 3. MULTI-OBJECTIVE OPTIMIZATION

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

ZDT4 Pareto Front

Fu
nc

tio
n

2

Function 1

Figure 3.14: ZDT4 Pareto
front.

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100

120

140

160

180 10,000 random points
 ZDT4 Pareto front

Fu
nc

tio
n

2

Function 1

Figure 3.15: 10,000 randomly gener-
ated solutions are plotted for ZDT4
test problem.

dom solutions plotted in objective space together with the true Pareto front.

Test Problem ZDT6: It includes two difficulties caused by the nonuni-
formity of the search space: first, the Pareto optimal set is nonuniformly
distributed along the Pareto front (the front is biased for solutions for which
f1(~x) is near to one); and second, the density of the solutions is lowest close
to the Pareto front and highest away from the front:

f1(~x) = 1− exp(−4x1) · sin
6(6πx1)

f2(~x, g) = g(~x) ·

(

1−

(

f1(~x)

g(~x)

)2
)

g(~x) = 1 + 9 ·

(

1

9
·

n
∑

i=2

xi

)0.25

where n = 10, xi ∈ [0, 1]. The true Pareto front is formed with g(~x) = 1 and
is nonconvex. In Figure 3.16 we show the true Pareto front. In Figure 3.17
10,000 random solutions are plotted in objective space together with the true
Pareto front.

Test functions 45

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

0.0

0.2

0.4

0.6

0.8

1.0 ZDT6 Pareto Front

Fu
nc

tio
n

2

Function 1

Figure 3.16: ZDT6 Pareto
front.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

2

4

6

8

10

12
 10,000 random points
 ZDT6 Pareto front

Fu
nc

tio
n

2

Function 1

Figure 3.17: 10,000 randomly gener-
ated solutions are plotted for ZDT6.

3.4.3 The DTLZ test functions

Deb et al. [40] have proposed a set of test functions for testing and comparing
MOEAs. This test suite, known as the DTLZ (Deb-Thiele-Laumanns-Zitzler)
set, attempts to define generic MOEA test problems that are scalable to
a user defined number of objectives. An increase in dimensionality of the
objective space also causes a large portion of a randomly generated initial
population to be nondominated to each other, thereby reducing the effect of
the selection operator in a MOEA.

Because of these interesting features this benchmark is commonly used
today in order to test a MOEA’s ability to converge to the true Pareto front
in problems with three or more objectives. Since the desired front can be
analytically obtained for these problems, a convergence metric (such as av-
erage distance to the front) can be used to track the convergence of a MOEA.

Test Problem DTLZ1: A simple test problem using M objectives; the
Pareto front is linear, separable and multimodal.

Minimize:
f1(~x) = 1

2
x1x2 . . . xM−1(1 + g(~xM)),

f2(~x) = 1
2
x1x2 . . . (1− xM−1)(1 + g(~xM)),

46 CHAPTER 3. MULTI-OBJECTIVE OPTIMIZATION

0.0
0.1

0.2
0.3

0.4
0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0
0.1

0.2
0.3

0.4
0.5

DTLZ1 Pareto Front

Fu
nc

tio
n

3

Function 2

Function 1

0.0
0.1

0.2
0.3

0.4
0.5

0.0
0.1

0.2
0.3

0.4
0.5

0.0

0.1

0.2

0.3

0.4

0.5

 F
un

ct
io

n
3

 Fu
nc

tio
n 1

DTLZ1 Pareto Front

Function 2

Figure 3.18: Two views of the true Pareto front of DTLZ1.

...
...

fM−1(~x) = 1
2
x1(1− x2)(1 + g(~xM)),

fM(~x) = 1
2
(1− x1)(1 + g(~xM)),

subject to 0 ≤ xi ≤ 1 ∀ i = 1, 2, ..., n
where: ~xM = M,M + 1, . . . , xn and
g(~xM) = 100

[

|~xM |+
∑

xi∈~xM
(xi − 0.5)2 − cos(20π(xi − 0.5))

]

The Pareto-optimal solution corresponds to ~x∗
M = 0.5 and the objec-

tive function values on the linear hyper-plane:
∑M

m=1 fi = 0.5. The true
Pareto front of this problem is shown in Figure 3.18. A value of k = 5
is suggested here. In the above problem, the total number of variables is
n = M + k − 1. The difficulty in this problem is to converge to the hyper-
plane. The search space contains 11k − 1 local Pareto fronts, each of which
can attract a MOEA. The problem can be made more difficult by using other
multi-modal g functions (using a larger k) and/or replacing xi by a nonlinear
mapping xi = Ni(yi) and treating yi as decision variables. It is interesting
to note that for M > 3 all Pareto-optimal solutions on a three-dimensional
plot involving fM and any other two objectives will lie on or below the above
hyper-plane.

Test functions 47

Test Problem DTLZ2: This test problem is described next:

Minimize:
f1(~x) = (1 + g(~xM)) cos(x1π/2) cos(x2π/2) . . . cos(xM−2π/2) cos(xM−1π/2),
f2(~x) = (1 + g(~xM)) cos(x1π/2) cos(x2π/2) . . . cos(xM−2π/2) sin(xM−1π/2),
f3(~x) = (1 + g(~xM)) cos(x1π/2) cos(x2π/2) . . . sin(xM−2π/2),
...

...
fM−1(~x) = (1 + g(~xM)) cos(x1π/2) sin(x2π/2),
fM(~x) = (1 + g(~xM)) sin(x1π/2).
subject to 0 ≤ xi ≤ 1 ∀ i = 1, 2, ..., n
where: ~xM = M,M + 1, . . . , xn and
g(~xM) =

∑

xi∈~xM
(xi − 0.5)2

The Pareto-optimal solutions corresponds to xi = 0.5 for all xi ∈ ~xM ∀ i =
M,M+1, . . . , n and all objective function values must satisfy:

∑M
i=1(fi)

2 = 1.
The true Pareto front of this problem is shown in Figure 3.19. It is recom-
mended to use k = |~xM | = 10. The total number of variables is n = M+k−1.
This function can also be used to investigate a MOEA’s ability to scale up its
performance with a large number of objectives. Like in DTLZ1, for M > 3,
the Pareto-optimal solution must lie inside the first quadrant of the unit
sphere in a three-objective plot with fM as one of the axes. To make the
problem more difficult, each variable xi (for i = 1, . . . ,M−1) can be replaced
by the mean value of p variables xi = 1

p

∑p
k=(i−1)p+1 xk.

Test Problem DTLZ3: This is the same as DTLZ2 except for a new g
function. The Pareto front is concave, scalable and multimodal.

Minimize:
f1(~x) = (1 + g(~xM)) cos(x1π/2) cos(x2π/2) . . . cos(xM−2π/2) cos(xM−1π/2),
f2(~x) = (1 + g(~xM)) cos(x1π/2) cos(x2π/2) . . . cos(xM−2π/2) sin(xM−1π/2),
f3(~x) = (1 + g(~xM)) cos(x1π/2) cos(x2π/2) . . . sin(xM−2π/2),
...

...
fM−1(~x) = (1 + g(~xM)) cos(x1π/2) sin(x2π/2),
fM(~x) = (1 + g(~xM)) sin(x1π/2).

subject to 0 ≤ xi ≤ 1 ∀ i = 1, 2, ..., n
where: ~xM = M,M + 1, . . . , xn and
g(~xM) = 100[|~xM |+

∑

xi∈~xM
(xi − 0.5)2 − cos(20π(xi − 0.5))]

48 CHAPTER 3. MULTI-OBJECTIVE OPTIMIZATION

0.0
0.2

0.4
0.6

0.8
1.0

0.0
0.2

0.4
0.6

0.8
1.0

0.0

0.2

0.4

0.6

0.8

1.0

 F
un

ct
io

n
3

 Fu
nc

tio
n 1

Function 2

DTLZ2 Pareto Front

0.0
0.2

0.4
0.6

0.8
1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0
0.2

0.4
0.6

0.8
1.0

Fu
nc

tio
n

3

Function 2Function 1

DTLZ2 Pareto Front

Figure 3.19: Two views of the true Pareto front of DTLZ2.

It is suggested k = |~xM | = 10. There are a total of n = M +k−1 decision
variables in this problem. The above g function introduces 3k−1 local Pareto
fronts, and one Pareto-optimal front. All local Pareto fronts are parallel to
the Pareto-optimal front and a MOEA can get stuck at any of these local
Pareto fronts, before converging to the Pareto-optimal front, which is located
at g∗ = 0. The Pareto-optimal front corresponds to ~xM = (0.5, . . . , 0.5)T .
The next local Pareto is at g∗ = 1. In Figure 3.20, we show the true Pareto
front of this problem.

Test Problem DTLZ4: This problem uses a modified meta-variable map-
ping over DTLZ (y → yα, α > 0); the Pareto front is concave, separable
and unimodal. This problem tests a MOEA’s ability to maintain a good
distribution of solutions as they tend to find only the extremes of the Pareto
front.

Minimize:
f1(~x) = (1 + g(~xM)) cos(xα

1 π/2) cos(xα
2π/2) . . . cos(xα

M−2π/2) cos(xα
M−1π/2),

f2(~x) = (1 + g(~xM)) cos(xα
1 π/2) cos(xα

2π/2) . . . cos(xα
M−2π/2) sin(xα

M−1π/2),
f3(~x) = (1 + g(~xM)) cos(xα

1 π/2) cos(xα
2π/2) . . . sin(xα

M−2π/2),
...

...
fM−1(~x) = (1 + g(~xM)) cos(xα

1 π/2) sin(xπ
2π/2),

fM(~x) = (1 + g(~xM)) sin(xα
1 π/2).

Test functions 49

0

1

0

1

0.0

0.4

0.8

 F
un

ct
io

n
3

 Function 1

 F
un

ct
io

n
2

DTLZ3 Pareto Front

0

1

0

1

0.0

0.4

0.8

 F
un

ct
io

n
3

 Function 1

DTLZ3 Pareto Front

Function 2

Figure 3.20: Two views of the true Pareto front of DTLZ3.

subject to 0 ≤ xi ≤ 1 ∀ i = 1, 2, ..., n
where: α = 100, ~xM = M,M + 1, . . . , xn and
g(~xM) =

∑

xi∈~xM
(xi − 0.5)2

Here, all variables x1 to xM−1 are varied in [0, 1]. It is also suggested
k = 10. There are n = M + k − 1 decision variables in the problem. The
true Pareto front of this problem is shown in Figure 3.21. This modification
allows a dense set of solutions to exist near the fM−f1 plane. It is interesting
to note that although the search space has a variable density of solutions, the
classical weighted-sum approaches or other directional methods may not have
any added difficulty in solving these problems compared to DTLZ2. Since
MOEAs attempt to find multiple and well-distributed Pareto-optimal solu-
tions in one simulation run, these problems may hinder MOEAs to achieve
a well-distributed set of solutions.

This methodology is not the only way to construct MOPs exhibiting some
set of desired features such as curve, surface, convex, non-convex, continuous,
discrete, disjoint, scalable, and others. Real-world MOPs may have similar
genotype and/or phenotype characteristics but look nothing at all like the
examples proposed. Thus, the fact a MOEA can successfully solve these (and
other analogous) test problems may have no bearing on its performance in
solving real-world MOPs. Nevertheless, and as indicated before, we expect

50 CHAPTER 3. MULTI-OBJECTIVE OPTIMIZATION

0

1

0

1

0.0

0.4

0.8

 F
un

ct
io

n
3

 F
un

cti
on

 1

DTLZ4 Pareto Front

Function 2

01

0

1

0.0

0.4

0.8

 F
un

ct
io

n
3

 Function 1

DTLZ4 Pareto Front

Fu
nc

tio
n 2

Figure 3.21: Two views of the true Pareto front of DTLZ4.

that the features included in the test functions adopted do reflect sources
of difficulty of real-world problems. Additionally, such benchmarks were
adopted also because of their popularity in the current specialized literature.

4
Exploration: Differential Evolution
and Particle Swarm Optimization

4.1 Differential evolution (DE)

Differential Evolution (DE) is a relatively recent evolutionary algorithm de-
signed to optimize problems over continuous domains which was proposed
by Kenneth Price and Rainer Storn in the mid-1990s [151, 152]. In DE, each
decision variable is represented by a real number. As in any other evolution-
ary algorithm, the initial population of DE is randomly generated, and then
evaluated. After that, the selection process takes place. During the selection
stage, three parents are chosen and they generate a single offspring which
competes with a parent to determine who passes to the following generation.
DE generates a single offspring (instead of two as in a genetic algorithm) by
adding the weighted difference vector between two parents to a third parent.
In the context of single-objective optimization, if the resulting vector yields
a lower objective function value than a predetermined population member,
the newly generated vector replaces the vector with respect to which it was
compared. In addition, the best parameter vector Xbest,G is evaluated for

51

52

CHAPTER 4. EXPLORATION: DIFFERENTIAL EVOLUTION AND PARTICLE
SWARM OPTIMIZATION

every generation G in order to keep track of the progress that is made during
the minimization process. More formally, the process is described as follows:

For each vector −−→xi,G; i = 0, 1, 2, . . . , N − 1, a trial vector −→v is generated
using:

−→v = −−→xr1,G + F · (−−→xr2,G −
−−→xr3,G)

with r1, r2, r3 ∈ [0, N − 1], integer and mutually different, and F > 0.
The integers r1, r2 and r3 are randomly chosen from the interval [0, N−1]

and are different from i. F is a real and constant factor which controls the
amplification of the differential variation (−−→xr2,G −

−−→xr3,G).
Figure 4.1 shows a two dimensional example that illustrates the different

vectors which play a role in DE.

Figure 4.1: Two dimensional example of an objective function showing its
contour lines and the process of generating an offspring.

In order to increase the diversity of the parameter vectors, the following
vector is adopted:

−→u = (u1, u2, . . . , un)T

with:

uj =

{

vj, if (x ∈ [0, 1]) ≤ CR or j = i;
xij,G, otherwise.

Differential evolution (DE) 53

Figure 4.2: Differential evolution crossover with D = 7, n = 2 and L = 3

where i = 1, 2, . . ., n; j is a randomly selected value from {1, . . . , n}; and
CR is a user-defined crossover rate in the range [0, 1]. In other words, a
certain sequence of the vector elements of −→u are identical to the elements
of −→v , when j = i at least one of the elements of −→u acquires the original
values of −−→xi,G. This idea is illustrated in Figure 4.2 with D = 7, n = 2 and
L = 3. The variable n is randomly chosen in [0, D − 1]; L ∈ [0, D − 1]
with the probability Pr(L = v) = (CR)v.CR ∈ [0, 1], which is the crossover
probability and it is also a parameter in DE. The random variables for both
n and L are calculated for all new offspring −→v .

In order to decide whether the new vector −→u shall become a population
member at generation G+1, it is compared to −−→xi,G. If −→u yields a lower objec-
tive function value than −−→xi,G, then it replaces it (i.e., −−→xi,G = −→u). Otherwise,
the old value −−→xi,G is retained.

4.1.1 Different strategies of DE

The different strategies that can be adopted in DE [122] depend on the type
of problem that we want to solve. Such strategies are based on the vector
that is perturbed, the number of different parents that are considered and
the crossover that is used. The ten different strategies that were proposed
by Price[122] are:

54

CHAPTER 4. EXPLORATION: DIFFERENTIAL EVOLUTION AND PARTICLE
SWARM OPTIMIZATION

1. DE/best/1/exp

2. DE/random/1/exp

3. DE/target-to-best/1/exp

4. DE/best/2/exp

5. DE/random/2/exp

6. DE/best/1/bin

7. DE/random/1/bin

8. DE/target-to-best/1/bin

9. DE/best/2/bin

10. DE/random/2/bin

The last convention used is in the form:DE/x/y/z.

• DE: refers to the acronym of differential evolution.

• x: this term specifies how the base vector or reference parent is chosen.
For example, best means that the base vector is the current best vector.
Similarly, random means that base vectors are randomly chosen, while
target− to− best means that base vectors are chosen to lie on the line
defined by the target vector and the best vector.

• y: this term refers to how many vector differences contribute to gener-
ate the offspring. For example, 1 means that only one vector difference
is used, and 2 means that two difference vectors are used to generate a
single offspring.

• z: this term refers to the crossover used in DE. If the strategy uses
binomial crossover, then it is appended with the term bin. And the
term exp indicates that trial vectors are generated using the exponen-
tial crossover. In the exponential crossover, one variable is initially
chosen at random and copied from the trial vector to the offspring.
The subsequent variables are determined by comparing the CR to a
uniformly distributed random number between 0 and 1, i.e., rand(0, 1).

Differential evolution (DE) 55

As long as rand(0, 1) ≤ CR, the variables continue to be taken from
the trial vector, but the first time that rand(0, 1) > CR, the remaining
variables are taken from the reference parent. In binomial crossover
(uniform crossover), each variable has the same probability, pcr, of in-
heriting its value from the reference parent. With high values of CR,
both crossover operators show the same behavior.

The strategy adopted to solve a specific problem is normally determined
independently through a trial-and-error process. So, a specific strategy that
works better to solve a problem may not work to solve another one. Also, the
different parameters that are adopted to solve a problem may not work well
with some other problems. The most common used strategy is DE/rand/1/bin
which is graphically illustrated in Figure 4.3.

A detailed explanation of the example show in Figure 4.3 is provided
next:

1 A vector is randomly chosen and marked as the reference parent from the
current population, which has a fitness of 94.

2 Two parents are randomly chosen, with a fitness of 9 and 63.

3 A weighted difference vector is obtained from the two parents and is mul-
tiplied by the factor F .

4 A third parent is randomly chosen from the current population (with a
fitness of 56), and it is added to the difference of the other parents to
obtain a mutated vector.

5 A binomial crossover between the reference parent (step 1) and the off-
spring generated (step 4) is performed and its fitness is calculated, i.e.,
fitness = 24.

6 At last, a comparison is performed between the reference parent and the
trial vector in order to determine who passes to the next generation. In
this case: offspring (24) <parent (94), thus, the trial vector is retained
and used in the next generation.

56

CHAPTER 4. EXPLORATION: DIFFERENTIAL EVOLUTION AND PARTICLE
SWARM OPTIMIZATION

1) Choose Reference
Parent

94 12 9 78 63 31 56

24

X

45

24

2) Random choice of two
Members

3) Build weighted
Difference vector

4) Add a third randomly
Chosen vector

5) Perform Crossover with
Target vector to get trial vector

TRIAL VECTOR
6) Smaller cost value

Survives into next
Generation

?

TRIAL VECTOR

Current Population

Next Population

+

-
F

Figure 4.3: Offspring creation process in the DE/random/1/bin variant.

4.1.2 Previous related work

Currently, there are several papers that propose ways of extending DE to
handle multiple objectives. The most representative of them are briefly dis-
cussed next:

• Pareto differential evolution (PDE):

It was proposed by Abbass in 2002 [2]. An initial population is gener-
ated at random from a Gaussian distribution. All dominated solutions
are removed from the population. The remaining nondominated solu-
tions are retained for reproduction. If the number of nondominated
solutions exceeds some threshold, a distance metric relation (D(x), as
defined in equation 4.1) is used to remove those parents which are very

Differential evolution (DE) 57

close to each other. Three parents are selected at random. A child is
generated from the three parents and is placed into the population if
it dominates the first selected parent; otherwise a new selection pro-
cess takes place. Also, it is important to mention that there is another
version of this approach (called the self-adaptive Pareto differential
evolution) in which self-adaptive crossover and mutation operators are
adopted [1].

D(x) =
(min‖x− xi‖+ min‖x− xj‖)

2
(4.1)

where x 6= xi 6= xj. That is, the nearest neighbor distance is the average
Euclidean distance between the two closest points. The nondominated
solution with the smallest neighbor distance is removed from the pop-
ulation until the total number of nondominated solutions is reduced to
50.

• Pareto-based differential evolution approach:

It was proposed by Madavan in 2002 [102]. In this algorithm, dif-
ferential evolution is extended to multi-objective optimization by in-
corporating a nondominated sorting and ranking selection procedure
proposed by Deb et al. [36, 39]. Once the new candidate is obtained
using DE operators, the new population is combined with the exist-
ing parents population and then the best members of the combined
population (parents plus offspring) are chosen. This algorithm is not
compared with respect to any other approach and is tested on 10 dif-
ferent unconstrained problems performing 250,000 evaluations. The
authors indicate that the approach has difficulties to converge to the
true Pareto front in two problems (Kursawe’s test function [94] and
ZDT4 [173]).

• Multi-objective differential evolution (MODE):

It was proposed by Xue in 2003 [170]. This algorithm uses a variant
of the original DE, in which the best individual is adopted to create
the offspring. A Pareto-based approach is introduced to implement the
selection of the best individual. If a solution is dominated, a set of
nondominated individuals can be identified and the “best” turns out
to be any individual (randomly picked) from this set. Also, the authors

58

CHAPTER 4. EXPLORATION: DIFFERENTIAL EVOLUTION AND PARTICLE
SWARM OPTIMIZATION

adopt (µ+λ) selection, Pareto ranking and crowding distance in order
to produce and maintain well-distributed solutions. MODE is used
to solve five high dimensional unconstrained problems with 250,000
evaluations and the results are compared only to those obtained by
SPEA [175].

• Differential evolution for multi-objective optimization:

It was proposed by Babu in 2003 [5]. This algorithm uses the single-
objective Differential Evolution strategy with an aggregating function
to solve bi-objective problems. A single optimal solution is obtained
after N iterations using both a penalty function method (to handle the
constraints) and the weighting factor method (to provide the impor-
tance of each objective from the user’s perspective) [35] to optimize a
single value. The authors present results for two bi-objective problems
and compare them with respect to a simple GA. The authors indi-
cate that the DE algorithm provides the exact optimum with a lower
number of evaluations than the GA.

• Vector evaluated differential evolution for multi-objective op-
timization (VEDE):

It was proposed by Parsopoulos in 2004 [117]. It is a parallel, multi-
population Differential Evolution algorithm, which is inspired by the
Vector Evaluated Genetic Algorithm (VEGA) [142] approach. A num-
ber M of subpopulations are considered in a ring topology. Each popu-
lation is evaluated using one of the objective functions of the problem,
and there is an exchange of information among the populations through
the migration of the best individuals. VEDE is validated using four bi-
objective unconstrained problems and was compared to VEGA. The
authors indicate that the proposed approach outperformed VEGA in
all cases.

• Nondominated sorting differential evolution (NSDE):

This approach was proposed by Iorio in 2004 [76]. It is a simple mod-
ification of the NSGA-II [39]. The only difference between this ap-
proach and the NSGA-II is in the method for generating new individu-
als. The NSGA-II uses a real-coded crossover and mutation operator,
but in the NSDE, these operators are replaced with the operators of
Differential Evolution. The authors proposed a new DE strategy called

Differential evolution (DE) 59

DE/current-to-rand/1 in which the CR does not need to be specified.
NSDE is used to solve rotated problems with a certain degree of ro-
tation on each plane. The results of the NSDE outperformed those
produced by the NSGA-II.

• Generalized differential evolution (GDE):

This approach was proposed by Kukkonen in 2004 [91]. GDE extends
the selection operation of the basic DE algorithm for constrained multi-
objective optimization. The basic idea in this selection rule is that the
trial vector is required to dominate the old population member used as
a reference either in constraint violation space or in objective function
space. If both vectors are feasible and nondominated with respect to
each other, the one residing in a less crowded region is chosen to be-
come part of the population of the next generation. GDE its validated
using five bi-objective unconstrained problems. Results are compared
with respect to the NSGA-II and SPEA [175]. The authors report that
the performance of GDE is similar to the NSGA-II, but they claim that
their approach requires a lower CPU time. GDE is able to outperform
SPEA in all the test functions adopted. Later on, in 2005, the authors
proposed an extension of this approach called GDE3 [92] which is ca-
pable of handling constraints and obtains a better distribution of the
solutions.

• Differential evolution for multi-objective optimization
(DEMO):

DEMO was proposed by Robic in 2005 [133]. This algorithm combines
the advantages of DE with the mechanisms of Pareto-based ranking
and crowding distance sorting. DEMO only maintains one population
and it is extended when newly created candidates take part immedi-
ately in the creation of the subsequent candidates. This enables a fast
convergence towards the true Pareto front, while the use of nondomi-
nated sorting and crowding distance (derived from the NSGA-II [39])
of the extended population promotes the uniform spread of solutions.
DEMO is validated using five high-dimensionality unconstrained prob-
lems outperforming in some cases to the NSGA-II, PDEA [1], PAES
[88], SPEA [175] and MODE [170].

60

CHAPTER 4. EXPLORATION: DIFFERENTIAL EVOLUTION AND PARTICLE
SWARM OPTIMIZATION

• Nondominated sorting differential evolution with directional
convergence and spread (NSDE-DCS):

It was proposed by Iorio et al. in 2006 [77]. This algorithm extends
the original NSDE [76] by incorporating the ranking scheme informa-
tion into the DE scheme. The purpose is to produce better offspring
and accelerate the convergence in the algorithm as well as to promote
the spread among them. The algorithm is assessed using four multi-
dimensional test problems with 30,000 function evaluations and its re-
sults were compared with respect to the original NSGA-II [39] and the
original NSDE [77].

• ǫ-orthogonal differential evolution for multi-objective optimiza-
tion (ǫ-ODEMO):

It was proposed by Cai et al. in 2007 [16]. ǫ-ODEMO is analogous
to the ǫ-MOEA [38] with the exception that in ǫ-ODEMO the initial
population is generated using the orthogonal design method [65] and it
also adopts DE/rand/1/exp to produce new solutions. Additionally, an
external archive based on ǫ-dominance is used to retain the nondom-
inated solutions. ǫ-ODEMO is validated using the ZDT set test and
two test problems with three objectives (DTLZ1 and DTLZ6). Results
were compared against the ǫ-MOEA with 20,000 function evaluations.
The authors show that the use of the orthogonal array method helps
the algorithm to improve performance.

• Adaptive variable strategy Pareto differential evolution
(AVSPDE):

It was proposed by Fu et al. in 2008 [55]. This algorithm replaces
the crossover and mutation operator from the NSGA-II [39] by the
DE operators. Also, the algorithm switches between two DE variants
(DE/rand/1/bin and DE/rand/2/bin) dynamically during its execu-
tion, based on information extracted (in real-time) from the tourna-
ment selection. The authors use two test functions with 15,000 func-
tion evaluations, showing a fast convergence and a diverse spread when
AVSPDE is compared against the NSDE-DCS [77] and NSGA-II [39].

After analyzing the different MOEAs based on differential evolution avail-
able in the specialized literature, we identified Pareto ranking and crowding
distance as two of the most common and effective mechanisms adopted. We

Differential evolution (DE) 61

also found that most of the previous approaches were tested in unconstrained
test problems with only two objectives and that little attention had been paid
to the importance of the selection criteria (which is a key issue to regulate the
high selection pressure of differential evolution). We also noticed that only
one of these previous proposals adopted ǫ-dominance [98] to generate a set of
well-spread solutions. These were the main motivations for our algorithmic
design, which is presented in the next section.

4.1.3 Proposed algorithm based on DE

Our approach keeps three populations: the main population (which is used
to select the parents), a secondary (external) population, in which we adopt
the concept of Pareto-adaptive ǫ-dominance (see Section 7.1) to retain the
nondominated solutions found and to distribute them in an uniform way and
a third population that retains dominated solutions removed from the second
population. The concept of ǫ-dominance [98] does not allow two solutions
with a difference less than ǫi in the i-th objective to be nondominated with
respect to each other, thereby allowing a good spread of solutions. The
pseudo-code of our proposed DE-based MOEA (called ǫ-MyDE) is shown in
Algorithm 5.

ǫ-MyDE uses real numbers representation, where each chromosome is a
vector of real numbers (each number corresponds to a decision variable of
the problem). We also incorporate a constraint-handling mechanism that
allows infeasible solutions to intervene during recombination. This helps to
solve in a more efficient way highly constrained multi-objective optimization
problems.

At the beginning of the evolutionary process, our approach randomly
initializes all the individuals of the population. Each decision variable is
normalized within its allowable bounds. The expression that we adopt is the
following:

xi = LIi + U(0, 1) · (LSi − LIi)

where j = 0, 1, 2, . . . , n − 1. (n is the total number of decision variables),
LIj and LSj are the upper and lower bounds of the variable j, respectively.
U(0, 1) generates a random number between 0 and 1 with a uniform distri-
bution.

Our approach has two selection mechanisms that are activated based on

62

CHAPTER 4. EXPLORATION: DIFFERENTIAL EVOLUTION AND PARTICLE
SWARM OPTIMIZATION

Algorithm 5 Algorithm: ǫ-MyDE

1: Input: MyDE Parameters: |P |, Gmax, CR, Pm and elitism.
2: Output: nondominated solutions found in the secondary population.
3: Randomly initialize vectors of the population P
4: Evaluate the cost of each vector
5: for i = 0 to G do
6: repeat
7: Select (randomly) three different vectors
8: Perform crossover using DE scheme
9: Perform mutation

10: Evaluate objective values
11: if offspring is better than main parent then
12: replace it in population
13: end if
14: until population is completed
15: Identify nondominated solutions in population
16: Add nondominated solutions into secondary population
17: Add dominated solutions into third population
18: end for

the total number of generations and a parameter called elitism ∈ (0.2, 1),
which regulates the selection pressure. For example, if elitism = 0.6 and the
total number of generations is Gmax = 200, this means that during the first
120 generations (60 % of Gmax), a random selection will be adopted, and
during the last 80 generations an elitist selection will be adopted.

Type of Selection =

{

Random, gen < (elitism ∗Gmax)
Elitist, otherwise

where:
gen = generation number.
Gmax = total number of generations.

In both selections (random and elitist), a single parent is selected as a
reference. This parent is used to compare the offspring generated by three
different parents. This mechanism guarantees that all the parents of the main
population will be reference parents for only one time during the generating
process. Both types of selection are described next:

Differential evolution (DE) 63

1. Random selection.- three different parents are randomly selected
from the primary population.

2. Elitist selection.- three different parents are selected from the sec-
ondary population such that they maintain a close distance fnear among
them. In Figure 4.4, we illustrate the fnear parameter. If no parent ex-
ists which fulfills this condition, we randomly select another parent
from the secondary population.

fclose =

√

∑k
i=0 (xi,max − xi,min)2

2k

where:
k = number of objective functions.
xi,max = upper bound of the i-th objective function in the secondary
population.
xi,min = lower bound of the i-th objective function in the secondary
population.

Figure 4.4: Parameter fclose for a bi-objective optimization problem

In Figure 4.5, we illustrate (for a bi-objective problem) the main differ-
ence between the random and the elitist selection once the main parent has

64

CHAPTER 4. EXPLORATION: DIFFERENTIAL EVOLUTION AND PARTICLE
SWARM OPTIMIZATION

Figure 4.5: Graphical illustration of (1) random selection (right) and (2)
elitist selection (left)

been selected, and it is required to select two more parents. The candidate
solutions are those inside the dotted circle.

Recombination in our approach is performed using the following proce-
dure. For each parent vector −→pi ; i = 0, 1, 2, . . . , P − 1(P = population), the

offspring vector
−→
h is generated as:

hj =

{

pr1,j + F · (pr2,j − pr3,j), if x < pcrossoveror CR;
pref,j, otherwise.

where j = 0, 1, 2, . . . , n − 1. (n is the number of variables for each solution
vector), x ∈ U(0, 1), pr1, pr2, pr3 ∈ [0, |P | − 1], are integers and mutually
different, and F > 0. The integers r1, r2 and r3 are the indexes of the
selected parents randomly chosen from the interval [0, |P | − 1] and ref is
the index of the reference parent. F is a constant factor (a real number)
which controls the amplification of the differential variation pr2,j−pr3,j. The
optimal value of F for most of the functions lies within the range from 0.4
to 1.0 [152].

Differential evolution does not use an specific mutation operator, since
such operator is embedded within its recombination operator. However, in
multi-objective optimization problems, we found it is necessary to provide
an additional mutation operator to allow a better exploration of the search
space (mainly in constrained problems). We adopted uniform mutation [42]
for that sake:

Differential evolution (DE) 65

hj =

{

LIj + U(0, 1) · (LSj − LIj), if x < pmutation;
pj, otherwise.

where j = 0, 1, 2, . . . , n − 1. (n is the number of variables). LIj and LSj are
the lower an upper bounds for the variable j, respectively.

Once a child has been generated, it is compared with respect to the
reference parent, against which it competes to determine who passes to the
following generation.

It is important to mention that in our approach, we normalize the con-
straints so that their value ranges between 0 and 1. This normalization is
transparent for the user (the algorithm does this without requiring any input
from the user). This normalization mechanism is described next:

For each constraint Ci, two different variables CS and CI store its upper
and lower values. Therefore, whenever a constraint is required, the following
expression is adopted:

NCi =
Ci − CIi
CSi − CIi

The rules of comparison between a child and its parent are the following:

Version for unconstrained problems

* If parent dominates child, the parent is chosen.

* If child dominates parent, the child is chosen.

* If both are nondominated with respect to each other, perform a flip(0.5)1

to determine who passes to the following generation.

Version for constrained problems

* If parent is infeasible and child is infeasible, the solution that is closest to
the feasible region is selected.

* If parent is feasible and child is infeasible, the child is chosen if and only
if the child is at least at a distance of 0.1 of the feasible region and a
flip (0.5) returns true. Otherwise, the father is chosen.

1The function flip(0.5) generates a random value r in the interval (0,1), if 0.5 ≤ r then
it returns 0, returns 1 otherwise.

66

CHAPTER 4. EXPLORATION: DIFFERENTIAL EVOLUTION AND PARTICLE
SWARM OPTIMIZATION

* If parent is infeasible and child is feasible, the parent is chosen if and only
if the parent is at least at a distance of 0.1 of the feasible region and a
flip (0.5) returns true. Otherwise, the child is chosen.

* If parent is feasible and child is feasible, Pareto dominance is verified be-
tween them and is treated as an unconstrained problem.

Note that the scheme previously described allows some infeasible solutions
to intervene during the recombination process. We found that this sort of
scheme is particularly useful when dealing with highly constrained problems.
It has been previously shown that maintaining infeasible solutions that lie
in the frontier between the feasible and infeasible regions, helps to obtain
better solutions in highly constrained problems (particularly when dealing
with equality constraints) [105, 145].

As indicated before, our proposed approach uses an external archive (also
called secondary population). In order to include a solution into this archive,
it is compared with respect to each member already contained in the archive
using the paǫ-dominance grid [68]. Any member that is removed from the
secondary population is included in the third population. The paǫ-dominance
grid is created once we obtain 100 nondominated solutions. The results from
this proposed algorithm are presented in chapter 8, once that we have intro-
duced the local search procedure based on Rough Sets and the mechanism
based on ǫ-dominance to retain the nondominated solutions found during the
search process.

4.2 Particle swarm optimization (PSO)

Particle Swarm Optimization (PSO) is a heuristic search technique (which is
considered as an evolutionary algorithm by its authors James Kennedy and
Russell Eberhart [44]) that simulates the movements of a flock of birds which
aim to find food. PSO has been found to be a very successful optimization
approach both in single-objective and in multi-objective problems [84, 131].

In PSO, each solution is represented by a particle. Particles group in
“swarms” (there can be either one swarm or several in one population) and
the evolution of the swarm to the optimal solutions is achieved by a velocity
equation. This equation is composed of three elements: a velocity inertia,
a cognitive component “pbest” and a social component “gbest”. Depending
on the topology adopted (i.e., one swarm or multiple swarms), each particle

Particle swarm optimization (PSO) 67

can be affected by either the best local and/or the best global particle in
its swarm. PSO presents a good convergence rate to the optimum (or its
vecinity) in multi-objective optimization [156], but normally has difficulties to
achieve a good distribution of solutions with a low number of evaluations [25].

In the PSO algorithm, the particles (including the pbest) are randomly
initialized at the beginning of the search process. Next, the fittest particle
from the swarm is identified and assigned to the gbest solution (i.e., the global
best, or best particle found so far). After that, the swarm flies through the
search space (in n dimensions, in the general case). The flight function
adopted by PSO is determined by equation (4.2), which updates the position
and fitness of the particle using equation (4.3). The new fitness is compared
with respect to the particle’s pbest position. If it is better, then it replaces
the pbest (i.e., the personal best, or the best value that has been found for
this particle so far). This procedure is repeated for every particle in the
swarm until the termination criterion is reached.

v′
i,j = w · vi,j + c1 · U(0, 1)(pbesti,j − xi,j) + c2 · U(0, 1)(gbestj − xi,j) (4.2)

x′
i,j = xi,j + v′

i,j (4.3)

where c1 and c2 are constants that indicate the attraction from the pbest or
gbest position, respectively; w refers to the inertia of the previous movement;
~xi = (xi1, xi2, ..., xin) represents the i− th particle; j = 1, 2, . . . , n and n rep-
resents the number of decision variables; U(0,1) denotes a uniformly random
number generated within the range (0,1); ~vi = (vi1, vi2, ..., vin) represents the
rate change (velocity) of particle i. Equation (4.2) describes the velocity
that is constantly updated by each particle and equation (4.3) updates the
position of the particle in each decision variable.

4.2.1 Previous related work

The main difficulties to extend PSO to handle multiple objectives are the
leader selection, the comparison operator, and the continuous problems to
converge in some test functions due to a loss of diversity in the swarm. There
are plenty of proposals to extend PSO for dealing with multiple objectives
(see for example [4, 9, 10, 23, 103]) and the survey by Reyes-Sierra and
Coello Coello [131]. A brief description of the most representative proposals
is provided next and a summary of their features is presented in Table 4.1:

68

CHAPTER 4. EXPLORATION: DIFFERENTIAL EVOLUTION AND PARTICLE
SWARM OPTIMIZATION

Abido [3]: The authors propose a PSO that retains two nondominated pop-
ulations, one set that stores the nondominated solutions obtained by
a single particle at the time and helps to decide the pbest particle in
the flight equation and the second set stores the nondominated solu-
tions obtained by all the particles. Both sets use the average linkage
based hierarchical clustering algorithm [111] used by SPEA [175] to re-
duce the set size if it exceed a certain prespecified value. The authors
test the algorithm in four bi-objective problems and compare it against
the SPEA with 50,000 function evaluations, showing that the proposed
MOPSO is able to capture the shape of the different characteristics of
the Pareto fronts.

Alvarez-Benitez et al. [4]: The authors propose methods based exclu-
sively on Pareto dominance for selecting leaders from an unconstrained
nondominated (external) archive. The authors propose and evaluate
four mechanisms for confining particles to the feasible region, that is,
constraint-handling methods. The authors show that a probabilistic se-
lection favoring archival particles that dominate few particles provides
good convergence towards the Pareto front while properly covering it
at the same time. Also, they conclude that allowing particles to explore
regions close to the constraint boundaries is important to ensure con-
vergence to the Pareto front. This approach uses a turbulence factor
that is added to the position of the particles with certain probability.

Bartz et al. [9]: This approach starts from the idea of introducing elitism
(through the use of an external archive) into PSO. Different methods for
selecting and deleting particles (leaders) from the archive are analyzed
to generate a satisfactory approximation of the Pareto front. Selecting
methods are either inversely related to the fitness value or based on the
previous success of each particle. The authors provide some statistical
analysis in order to assess the impact of each of the parameters used
by their approach.

Baumgartner et al. [10]: This approach, based on the fully connected to-
pology, uses linear aggregating functions. In this case, the swarm is
equally partitioned into n subswarms, each of which uses a different set
of weights and evolves into the direction of its own swarm leader. The
approach adopts a gradient technique to identify the Pareto optimal
solutions.

Particle swarm optimization (PSO) 69

Coello Coello et al. [23, 25]: This proposal is based on the idea of hav-
ing an external archive in which every particle deposits its flight ex-
periences after each flight cycle. The search space explored is divided
in hypercubes. Each hypercube receives a fitness value based on the
number of particles it contains. Once a hypercube has been selected,
the leader is randomly chosen. This approach also uses a mutation op-
erator that acts both on the particles of the swarm, and on the range
of each design variable of the problem to be solved.

Fieldsend and Singh [49]: This approach uses an unconstrained elite ex-
ternal archive (in which a special data structure called “dominated
tree” is adopted) to store the nondominated individuals. The archive
interacts with the primary population in order to define leaders. The
selection of the gbest for a particle in the swarm is based on the struc-
ture defined by the dominated tree. First, a composite point of the tree
is located based on dominance relations, and then the closest mem-
ber (in objective function space) of the composite point is chosen as
the leader. On the other hand, a set of personal best particles found
(nondominated) is also maintained for each swarm member, and the
selection is performed uniformly. This approach also uses a “turbu-
lence” operator which is basically a mutation operator that acts on the
velocity value used by the PSO algorithm.

Mahfouf et al. [103]: The authors propose an adaptive weighted PSO (AW-
PSO) algorithm, in which the velocity is modified by including an ac-
celeration term that increases as the number of iterations increases.
This aims to enhance the global search ability at the end of the run
and to help the algorithm to jump out of local optima. The authors
use dynamic weights to generate Pareto optimal solutions. When the
population is losing diversity, a mutation operator is applied to the
positions of certain particles and the best of them are retained. Fi-
nally, the authors include a nondominated sorting algorithm to select
the particles from one iteration to the next.

Moore and Chapman [110]: This was the first attempt to produce a multi-
objective particle swarm optimizer. In this approach, the personal best
(pbest) of a particle is a list of all the nondominated solutions it has
found in its trajectory. When selecting a pbest, a particle from the list
is randomly chosen. Since a ring topology is used, when selecting the

70

CHAPTER 4. EXPLORATION: DIFFERENTIAL EVOLUTION AND PARTICLE
SWARM OPTIMIZATION

best particle of the neighborhood, the solutions contained in the pbest
lists are compared, and a nondominated solution with respect to the
neighborhood is chosen. The authors do not indicate how they choose
the pbest particle when more than one nondominated solution is found
in the neighborhood.

Parsopoulos et al. [118]: This is a parallel version of the vector evalu-
ated particle swarm (VEPSO) method for multi-objective problems.
VEPSO is a multi-swarm variant of PSO, which is inspired on the
Vector Evaluated Genetic Algorithm (VEGA) [142]. In VEPSO, each
swarm is evaluated using only one of the objective functions of the
problem under consideration, and the information it possesses for this
objective function is communicated to the other swarms through the
exchange of their best experience (gbest particle). The authors argue
that this process can lead to Pareto optimal solutions.

Reyes-Sierra and Coello Coello [129]: This approach is based on Pare-
to dominance and the use of a nearest neighbor density estimator for the
selection of leaders (by means of a binary tournament). This proposal
uses two external archives: one for storing the leaders currently used for
performing the flight and another for storing the final solutions. On the
other hand, the concept of ǫ-dominance is used to select the particles
that remain in the archive of final solutions. Additionally, the authors
propose a scheme in which they subdivide the population (or swarm)
into three different subsets. A different mutation operator is applied
to each subset. Finally, this approach incorporates fitness inheritance
[148] in order to reduce the total number of fitness function evaluations
performed.

Tripathi et al. [157]: This algorithm is called adaptive multi-objective par-
ticle swarm optimization (AMOPSO) and incorporates inertia and the
acceleration coefficient as control variables that the PSO needs to evolve.
AMOPSO uses an external archive to retain the elitist solutions and the
crowding-distance measure to help with diversity, selects the gbest with
a roulette wheel selection and includes the PSO parameters (w, c1 and
c2) into the evolution. Also, AMOPSO includes a mutation operator
to allow a better exploration and is compared with several MOPSOs
taken from the literature performing 25,000 fitness functions in seven
bi-objective functions and two problems with three objective functions.

Particle swarm optimization (PSO) 71

Author(s) / (reference) Se
lec

tio
n

El
iti

sm

M
ut

at
io
n

Abido [3] Pareto Ranking yes no
Alvarez-Benitez et al. [4] Pareto Ranking yes no
Bartz et al. [9] Population-based yes no
Baumgartner et al. [10] Linear Aggregation no no
Coello et al. [23, 25] Pareto Ranking yes yes
Fieldsend and Singh [49] Dominated Tree based yes yes
Mahfouf et al. [103] Population-based no yes
Moore and Chapman [110] Population-based no no
Parsopoulos et al. [118] Population-based no yes
Reyes and Coello [129] Pareto Ranking yes yes
Tripathi [157] Roulette Wheel yes yes

Table 4.1: Features of different multi-objective particle swarm optimizers
available in the specialized literature.

The appropriate selection of leaders is essential for the good performance
of a MOPSO. If the particle chooses an inappropriate leader (i.e., a leader
who is too far away in the search space) then most of the flight will be
fruitless because the particle will not be visiting promissory regions of the
search space.

4.2.2 Proposed algorithm based on PSO

Our proposed approach is a hybrid composed by two different parts. The
first part uses surrogates (it will be discussed in Chapter 5), in particular
support vector machines (SVM) (see Section 5.2.5). The second part uses
PSO to optimize the approximation obtained by the surrogate model and
its main purpose is to produce a reasonably good approximation of the true
Pareto front using a meta-model.

The surrogate model adopted in this work is shown in Figure 4.6. A
multi-objective particle swarm optimizer (MOPSO) is adopted to optimize
the approximate model generated by the surrogate (using support vector
machines). Our MOPSO maintains two populations: the main one (which is

72

CHAPTER 4. EXPLORATION: DIFFERENTIAL EVOLUTION AND PARTICLE
SWARM OPTIMIZATION

used to select the parents), and a second population that retains the global
nondominated solutions.

Figure 4.6: Flowchart of the algorithm adopted.

First, we generate P individuals using Latin Hypercubes [104] (see Sec-
tion 5.3.1), which guarantees a good distribution of the initial population in
a multidimensional space. Then, we evaluate these P individuals with the
real functions, and train the meta-model using the surrogate model.

All the nondominated solutions found by the MOPSO, are evaluated with
the real function and added to the main population. Once all the points are
in the main population, they are used to re-train the meta-model and get

Particle swarm optimization (PSO) 73

another approximation of the real objectives. As it is shown in Figure 4.6,
the first phase procedure contains an internal cycle which evaluates using
the surrogate model instead of the real function evaluation. Once the in-
ternal cycle finishes the evolution (with the PSO) of the surrogate model,
the nondominated solutions are evaluated with the real fitness function and
added to the main population. After that, the training set is updated and the
meta-model is re-trained with the new solutions to get a new (and hopefully
better) approximation. This procedure is repeated until the MaxGen num-
ber of generations is reached. We use an external population which contains
the nondominated solutions and use the paǫ-dominance grid proposed in [68]
(see Chapter 7) to maintain diversity.

Our MOEA is based on the PSO algorithm [84], which uses a leader
selection based on the gbest model, in which we choose the leader particle
from the nondominated set. We also add a turbulence operator in order to
jump into search regions that the PSO flight equation is not able to reach.
Replacing the comparison operator (to determine whether a solution is better
than other solution) is a natural modification to a PSO algorithm aimed to
handle multiple objectives.

The analogy of PSO with EAs makes evident the notion that using a
Pareto ranking scheme [59] could be the straightforward way to extend the
approach to handle multiple objectives. However, if we merge a Pareto rank-
ing scheme with the PSO algorithm, a set of nondominated solutions will
be produced (by definition, all nondominated solutions are equally good).
Having several nondominated solutions implies the inclusion into the algo-
rithm of both: an additional criteria to decide whether a new nondominated
solution is pbest or gbest and a strategy to select the guide particles (pbest and
gbest).

However, the selection of an “appropriate” leader becomes a difficult task,
since there can be more than one leader in the gbest set. Therefore, an addi-
tional strategy to select one of the multiple gbest to use in the PSO’s velocity
equation is still necessary. Some possible leader selection strategies are de-
scribed next, and are shown in Figure 4.7.

a. Random and dominator: the leader is randomly selected and prefer-
ably the leader chosen should dominate the reference particle; if that
is not the case then a random leader is selected.

b. Random: a leader is randomly selected - no constraints are imposed on
what sort of leader can a particle choose.

74

CHAPTER 4. EXPLORATION: DIFFERENTIAL EVOLUTION AND PARTICLE
SWARM OPTIMIZATION

c. Closest: a particle picks up as its leader to the geographically closest
leader.

d. Farthest: a particle picks up as its leader to the geographically farthest
solution in the set.

Random and
Dominator

(a) Random and dominator

Random

(b) Random

Closest

(c) Closest

Farthest

(d) Farthest

Figure 4.7: Different leader selection strategies available for a MOPSO.

4.2.3 MOPSO results

Our experimental design considers that only a few function evaluations are
performed in several multi-dimensional test problems from the ZDT [173]
test suite (see Appendix A for further information). The problems in this set
are bi-objective, unconstrained and have between 10 and 30 decision variables
each. Three performance measures were adopted in order to allow a quanti-
tative assessment of our results (see Section 3.3 for further information): (1)

Particle swarm optimization (PSO) 75

Inverted generational distance (IGD), (2) Two set coverage (SC), and (3)
Spread (∆). For each test problem, 10 independent runs were performed.

We ran a comparative analysis with only 600 real function evaluations,
comparing the leader selection in the PSO: (1) randomly chosen dominator,
(2) randomly, (3) closest and (4) farthest.

The parameters of our approach were: main population size P = 100,
maximum number of evaluations = 600, MOPSO’s internal population size
(Pmopso = 100), maximum number of generations (Gmopso = 100), PSO flight
equation (w= 0.1, c1 = 0.1 and c2 = 1.4), mutation rate = 1/n (n = number
of decision variables). From the parameters, we can observe that we prefer
the gbest model from the PSO, this means that we prefer that the new particle
follows the gbest particle instead of the pbest particle by giving a value of c1 =
0.1 and c2 = 1.4.

The results are reported in Tables 4.2 and 4.3 correspond to the perfor-
mance measures adopted (IGD, ∆ and SC). We show in boldface the best
mean values per test function of 10 independent runs performed using each
of the leader selection models compared. We show the plot of all the non-
dominated solutions generated by a single run of the different algorithms in
Figure 4.8. In all cases, we generated the true Pareto front, so we could
make a graphical comparison of the quality of the solutions produced by our
approach. The summary of our results is the following:

MOPSO-1 (randomly chosen dominator): When we select the leader
that usually dominates the particle, the algorithm shows a good per-
formance in general, obtaining the best results for ZDT1, ZDT2 and
ZDT3 in IGD and Spread. Graphically, it can be seen that it obtained
a good approximation to the true Pareto front in ZDT1, ZDT2 and
ZDT3.

MOPSO-2 (randomly): When we use the random selection from the non-
dominated set, the performance of the algorithm is acceptable, showing
the best performance in ZDT4 and ZDT6 with respect the other ap-
proaches. Graphically, it can be seen that is not able to produce better
results than other approaches and that this approach stays far away
from the true Pareto front.

MOPSO-3 (closest): When we select the closest particle as a leader from
the gbest set, the algorithm shows a poor performance in general, except
for ZDT4, in which outperforms the other schemes.

76

CHAPTER 4. EXPLORATION: DIFFERENTIAL EVOLUTION AND PARTICLE
SWARM OPTIMIZATION

MOPSO-4 (farthest): When we select the farthest particle as the leader
from the gbest set, we intend to help the algorithm to maintain diver-
sity in the population. However, this seems to cause that the algorithm
cannot approach the Pareto front fast enough. Consequently, the per-
formance of this scheme is very poor, obtaining good results only in
ZDT6.

From this analysis, we can see that in ZDT4 the performance was very
poor in general, getting trapped in one of the multiple local optima that this
problem contains, but in the other approaches the result is not bad at all if
we consider that only 600 real evaluations are performed. So, if we need to
choose only one leader selection scheme, the best compromise seems to be
MOPSO-1 (randomly chosen dominator). This was, therefore, our choice,
and this MOPSO was then hybridized with the rough sets in order to spread
the solutions that it generated. The results produced by our hybrid approach
are compared with respect to the NSGA-II, which is a MOEA representative
of the state-of-the-art in the area and the results are presented in Chapter 8.
Also, in Chapter 5 we perform a comparative study using different surrogate
methods to approximate the functions using the PSO algorithm described in
this section.

4.3 Final remarks

We have introduced an approach that uses differential evolution to solve
both unconstrained and constrained multi-objective optimization problems.
The high convergence rate that characterizes the differential evolution al-
gorithm was controlled using two elitist selection schemes. The constraint-
handling scheme adopted in our algorithm allowed a successful exploration of
the search space even in the presence of problems whose optimum lies on the
boundary between the feasible and infeasible regions. Later in the chapter,
we used four different schemes to select a leader in the PSO flight equation
for multi-objective problems in combination with the surrogate model to
approximate the functions using supervised learning. From the initial com-
parison, we concluded that the PSO scheme based on selecting a leader that
dominates the particle was the most appropriate model to use as the search
engine, because it provides a good (although insufficient) approximation of
the Pareto front. Finally, the use of ǫ-dominance introduced the capability

Final remarks 77

of controlling the convergence of our approach while achieving a good spread
of solutions. We decided to use both heuristics (DE and PSO) because they
have both shown a high convergence rate to the optimum (or its vicinity) in
single and multi-objective optimization, and both have a performance that
relies on few parameters, which facilitates their use to get a good initial ap-
proximation of the Pareto front. Several papers have been derived from this
chapter (see [66, 136, 137, 138]).

78

CHAPTER 4. EXPLORATION: DIFFERENTIAL EVOLUTION AND PARTICLE
SWARM OPTIMIZATION

ZDT1

Perf. Meas. - Algorithm mean St. dev. best worst
MOPSO-1 0.0122 0.0039 0.0074 0.0199

IGD MOPSO-2 0.0178 0.0034 0.0134 0.0222
MOPSO-3 0.0201 0.0013 0.0176 0.0227
MOPSO-4 0.0163 0.0037 0.0117 0.0219
MOPSO-1 0.6044 0.0709 0.5160 0.7291

∆ MOPSO-2 0.6730 0.0677 0.5402 0.7744
MOPSO-3 0.7287 0.0373 0.6782 0.7936
MOPSO-4 0.6598 0.0502 0.5312 0.7179

SC(A, B) B
MOPSO-1 MOPSO-2 MOPSO-3 MOPSO-4 Mean

MOPSO-1 – 0.9417 0.8829 0.6598 0.8281

A MOPSO-2 0.0164 – 0.5385 0.3290 0.2891
MOPSO-3 0.0817 0.3462 – 0.2646 0.1731
MOPSO-4 0.1000 0.5343 0.6225 – 0.3856

ZDT2

Perf. Meas. - Algorithm mean St. dev. best worst
MOPSO-1 0.0346 0.0048 0.0200 0.0365

IGD MOPSO-2 0.0357 0.0003 0.0354 0.0362
MOPSO-3 0.0366 0.0024 0.0353 0.0437
MOPSO-4 0.0356 0.0003 0.0348 0.0361
MOPSO-1 0.1832 0.3679 0.0000 0.9892

∆ MOPSO-2 0.2960 0.4522 0.0000 0.9981
MOPSO-3 0.2993 0.4572 0.0000 1.000
MOPSO-4 0.3985 0.4881 0.0000 0.9995

SC(A, B) B
MOPSO-1 MOPSO-2 MOPSO-3 MOPSO-4 Mean

MOPSO-1 – 0.2750 0.2500 0.0000 0.1750
A MOPSO-2 0.6300 – 0.7500 0.3500 0.3667

MOPSO-3 0.6200 0.200 – 0.1000 0.1000
MOPSO-4 0.9200 0.6000 0.9000 – 0.500

ZDT3

Perf. Meas. - Algorithm mean St. dev. best worst
MOPSO-1 0.0287 0.0099 0.0170 0.0462

IGD MOPSO-2 0.0351 0.0087 0.0221 0.0489
MOPSO-3 0.0439 0.0109 0.0329 0.0742
MOPSO-4 0.0314 0.0062 0.0197 0.0397
MOPSO-1 0.7178 0.0718 0.5638 0.8179

∆ MOPSO-2 0.7544 0.0263 0.7081 0.8016
MOPSO-3 0.7810 0.0222 0.7307 0.8127
MOPSO-4 0.7582 0.0797 0.6055 0.8405

SC(A, B) B
MOPSO-1 MOPSO-2 MOPSO-3 MOPSO-4 Mean

MOPSO-1 – 0.6286 0.7344 0.5153 0.6261

A MOPSO-2 0.2381 – 0.6835 0.2799 0.3211
MOPSO-3 0.2025 0.1711 – 0.1446 0.1052
MOPSO-4 0.3489 0.4912 0.7011 – 0.3974

Table 4.2: Results of inverse generational distance (IGD), spread (∆) and
set coverage (SC) for the ZDT1, ZDT2 and ZDT3 test problems.

Final remarks 79

ZDT4

Perf. Meas. - Algorithm mean St. dev. best worst
MOPSO-1 1.2384 0.2204 0.8144 1.6364

IGD MOPSO-2 1.1121 0.2442 0.8715 1.6318
MOPSO-3 1.0162 0.1538 0.7503 1.2818
MOPSO-4 1.2157 0.2108 0.8910 1.6635
MOPSO-1 0.9806 0.0279 0.9234 1.0338

∆ MOPSO-2 0.9802 0.0135 0.9614 0.9981
MOPSO-3 0.8560 0.2890 0.0000 1.0516
MOPSO-4 0.8786 0.2932 0.0000 0.9968

SC(A, B) B
MOPSO-1 MOPSO-2 MOPSO-3 MOPSO-4 Mean

MOPSO-1 – 0.1821 0.2850 0.2857 0.2509
A MOPSO-2 0.7333 – 0.6217 0.5000 0.3739

MOPSO-3 0.6583 0.3815 – 0.6000 0.3271
MOPSO-4 0.6333 0.4125 0.3000 – 0.2375

ZDT6

Perf. Meas. - Algorithm mean St. dev. best worst
MOPSO-1 0.0351 0.0028 0.0285 0.0405

IGD MOPSO-2 0.0327 0.0028 0.0286 0.0371
MOPSO-3 0.0339 0.0034 0.0286 0.0377
MOPSO-4 0.0330 0.0026 0.0271 0.0361
MOPSO-1 0.9494 0.1284 0.7218 1.1933

∆ MOPSO-2 0.8850 0.1057 0.6669 1.0961
MOPSO-3 0.8998 0.0944 0.7791 1.1026
MOPSO-4 0.8715 0.0508 0.7921 0.9764

SC(A, B) B
MOPSO-1 MOPSO-2 MOPSO-3 MOPSO-4 Mean

MOPSO-1 – 0.3560 0.3526 0.3286 0.3457
A MOPSO-2 0.4494 – 0.3536 0.2087 0.1874

MOPSO-3 0.4333 0.3176 – 0.3306 0.2160
MOPSO-4 0.5494 0.5501 1.0 – 0.5167

Table 4.3: Results of inverse generational distance (IGD), spread (∆) and
set coverage (SC) for the ZDT4 and ZDT6 test problems.

80

CHAPTER 4. EXPLORATION: DIFFERENTIAL EVOLUTION AND PARTICLE
SWARM OPTIMIZATION

ZDT1

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

Fu
nc

tio
n

2

Function 1

 true_zdt1
 MOPSO-1
 MOPSO-2
 MOPSO-3
 MOPSO-4

ZDT2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

Fu
nc

tio
n

2

Function 1

 true_zdt2
 MOPSO-1
 MOPSO-2
 MOPSO-3
 MOPSO-4

ZDT3

0.0 0.2 0.4 0.6 0.8 1.0

0

2

Fu
nc

tio
n

2

Function 1

 true_zdt3
 MOPSO-1
 MOPSO-2
 MOPSO-3
 MOPSO-4

ZDT4

0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

50

60

70

80

Fu
nc

tio
n

2

Function 1

 true_zdt4
 MOPSO-1
 MOPSO-2
 MOPSO-3
 MOPSO-4

ZDT6

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
-1

0

1

2

3

4

5

Fu
nc

tio
n

2

Function 1

 true_zdt6
 MOPSO-1
 MOPSO-2
 MOPSO-3
 MOPSO-4

Figure 4.8: Pareto fronts generated by the surrogates methods for the ZDT
test problems.

5
Convergence: Fitness
Approximation

This chapter describes some of the possible schemes by which knowledge can
be incorporated into an evolutionary algorithm, with a particular emphasis
on MOEAs. The taxonomy of approaches that we will cover in this chapter
is shown in Figure 5.1. In Section 5.2, we discuss schemes that incorporate
knowledge into the fitness evaluations of an evolutionary algorithm. The
three schemes normally adopted (problem approximation, functional approx-
imation, and evolutionary approximation) are all discussed in this chapter.
We also provide a brief explanation of the surrogate models that we decided to
use in this thesis: 1) radial basis functions, 2) artificial neural networks, and
3) support vector machines. Finally, a comparison of the surrogate models is
presented with a low number of fitness function evaluations and an analysis
of them is presented.

81

82 CHAPTER 5. CONVERGENCE: FITNESS APPROXIMATION

Knowledge Incorporation in
Fitness Evaluations

Problem
Approximation

Functional
Approximation

Evolutionary
Approximation

RSM

RBF SVM

ANN

Gaussian
Processes

Kriging

Figure 5.1: A taxonomy of approaches for incorporating knowledge into evo-
lutionary algorithms.

5.1 Knowledge incorporation

The high number of fitness evaluations often required by evolutionary al-
gorithms is normally expensive, time-consuming and problematic in many
real-world applications. Particularly in the following cases, a computation-
ally efficient approximation of the original fitness function reducing either
the number or duration of the fitness evaluations, is necessary:

• If the evaluation of the fitness function is computationally expensive.

• If the fitness function cannot be defined in an algebraic form (e.g., when
the fitness function is generated by a simulator).

• If additional physical devices must be used to determine the fitness
function and this requires human interaction.

Knowledge incorporation 83

• If parallelism is not allowed.

• If the total number of evaluations of the fitness function is limited by
financial constraints.

There exist some cases in which the approximation is used to predict
promising new solutions at a smaller evaluation cost than that of the original
problem. Jin [81] discusses various approximation levels or strategies adopted
for fitness approximation:

Problem approximation: Tries to replace the original statement of the
problem by one which is approximately the same as the original problem
but which is easier to solve. To save the cost of experiments, numerical
simulations instead of physical experiments are used to pseudo-evaluate
the performance of a design.

Functional approximation: In this approximation, a new expression is
constructed for the objective function based on previous data obtained
from the real objective functions. In this case, models obtained from
data are often known as meta-models or surrogates (see Section 5.2)

Evolutionary approximation: This approximation is specific for EAs and
tries to save function evaluations by estimating an individual’s fitness
from other similar individuals. A popular subclass in this category is
known as fitness inheritance.

Currently, there exist several evolutionary algorithms that use a meta-
model to approximate the real fitness function and reduce the total number of
fitness evaluations without degrading the quality of the results obtained. To
achieve this goal, meta-models should be combined with the original fitness
function in a proper manner. The mechanism adopted to balance the use
of the meta-model and the real objective function is known as evolution
control. Evolution control takes an important role when meta-models are
combined with the original fitness function. In such cases, most meta-models
could converge to a local optimum if they are provided incorrect knowledge
(or information) about the real function. There are two different forms to
combine the approximated model and the real function:

Individual-based evolution control: In this case, some individuals use
meta-models to evaluate their fitness value and others (in the same

84 CHAPTER 5. CONVERGENCE: FITNESS APPROXIMATION

generation) use the real fitness function. The main issue in individual-
based evolution control is to determine which individuals should use
the meta-model and which ones should use the real fitness function
during the present generation. They can be randomly chosen from the
current population, or one could simply choose the best individuals in
the population to be evaluated using the real function. In Figure 5.2, it
can be seen that from the same population: three individuals are eval-
uated with the real function and other three individuals are evaluated
with the meta-model

Generation-based evolution control: The main issue in generation-based
evolution control is to determine in which generations the meta-model
should be used and in which generations the real fitness function should
be used. In this control, the real fitness function is applied at every i
generations, where i is predefined and fixed throughout the evolution-
ary process. In Figure 5.3, we can see that all the solutions from the i
generation are evaluated with the real function and the solutions from
the i− 1 and i + 1 generations are evaluated with the meta-model.

In the above cases, the approximation is used to predict promising new so-
lutions at a smaller evaluation cost than that of the original problem. Current
functional approximation models include Polynomials (e.g., response sur-
face methodologies [126, 58]), neural networks (e.g., multi-layer perceptrons
(MLPs) [71, 73, 121]), radial-basis-function (RBF) networks [115, 158, 169],
support vector machines (SVMs) [144, 11], Gaussian processes [159, 15], and
Kriging [45, 127]; all of them can be used for constructing meta-models.

5.2 Surrogates

Surrogate models can perform a number of tasks in support of a compu-
tational analysis. Through interpolation, extrapolation and/or integration,
these models can be used to address complex problems involving experimen-
tal design, system analysis and prediction.

In a single-objective optimization context, surrogate models have been
successful in dealing with highly demanding problems where the cost of eval-
uating the real fitness function is very expensive (computationally speaking).

The accuracy of the surrogate model relies on the number of samples
provided in the search space, as well as on the selection of the appropriate

Surrogates 85

Meta-model

Meta-model

Meta-model

Real-function

Real-function

Gi Gi+1

Real-function

Meta-model

Meta-model

Meta-model

Real-function

Real-function

Real-function

Figure 5.2: Individual-based evolution control.

Meta-model

Meta-model

Meta-model

Gi-1 Gi

Real Function

Real Function

Real Function

Gi+1

Meta-model

Meta-model

Meta-model

Meta-model

Meta-model

Meta-model

Meta-model

Meta-model

Meta-model

Real Function

Real Function

Real Function

Figure 5.3: Generation-based evolution control.

86 CHAPTER 5. CONVERGENCE: FITNESS APPROXIMATION

model to represent the objective functions. There exist a variety of tech-
niques for constructing surrogate models (see for example [160]). One ap-
proach is least-square regression using low-order polynomials, also known as
response surface methods. A statistical alternative for constructing surrogate
models is Kriging, which is also referred to as “Design and Analysis of Com-
puter Experiments” (DACE) models [135] and Gaussian process regression
[166]. Comparisons of several surrogate modeling techniques are presented
by Giunta and Watson [56] and by Jin et al. [80].

A surrogate model is built when the objective functions are to be esti-
mated. This local model is built using a set of data points that lie on the
local neighborhood of the design. Since surrogate models will probably be
built thousands of times during the search, computational efficiency is the
main objective.

Chafekar et al. [17] proposed a multi-objective evolutionary algorithm
called OEGADO, which runs several Genetic Algorithms (GAs) concurrently
with each GA optimizing one objective function at a time, and forming a
reduced model (based on quadratic approximation functions) with this infor-
mation. At regular intervals, each GA exchanges its reduced model with the
others. This technique can solve constrained optimization problems in 3,500
and 8,000 evaluations and is compared with respect to the NSGA-II [39] and
the ǫ−MOEA [37, 38].

Emmerich et al. [46] presented a local Gaussian random field meta-model
(GRFM) to predict objective function values by exploiting information ob-
tained during previous evaluations. This scheme was created for optimizing
computationally expensive problems. This method selects the most promis-
ing population members at each generation so that they are evaluated using
the real objective function. This approach was tested on a 10 dimensional
airfoil optimization problem and was compared with respect to the NSGA-II
in the generalized Schaffer problems.

5.2.1 Polynomials: response surface methods (RSM)

The response surface methodology comprises regression surface fitting in or-
der to obtain approximate responses, design of experiments in order to obtain
minimum variances of the responses and optimizations using the approxi-
mated responses.

An advantage of this technique is that the fitness of the approximated
response surfaces can be evaluated using powerful statistical tools. Addi-

Surrogates 87

tionally, the minimum variances of the response surfaces can be obtained
using design of experiments with a small number of experiments.

For most response surfaces, the functions adopted for the approximations
are polynomials because of their simplicity, although other types of functions
are, of course, possible. For the cases of quadratic polynomials, the response
surface is described as follows:

ŷ = (β0) +
n
∑

i=1

(βi · xi) +
n
∑

i,j=1,i≤j

(βi,j · xi · xj) (5.1)

where n is the number of variables, and β0 and βi are the coefficients to be
calculated. To estimate the unknown coefficients of the polynomial model,
both the least squares method (LSM) and the gradient method can be used,
but either of them requires at least the same number of samples of the real
objective function than the βi coefficients in order to obtain good results.

Goel et al. [58] is one of the few works that has used RSM in multi-
objective problems. In this report, the NSGA-II [39] and a local search
strategy called “ǫ− constraint” are adopted to generate a solution set that
is used for approximating the Pareto optimal front by a response surface
method (RSM). This method is applied to a rocket injector design problem.

There are few applications of the use of surrogates in evolutionary multi-
objective optimization. Two of them are briefly discussed next.

Bramanti et al. [14] tried to reduce the computational cost of a multi-
objective evolutionary algorithm using neural networks interpolation for build-
ing an objective response surface in order to find multiple trade-off solutions
in electromagnetic design problems.

Wilson et al. [167] used two types of surrogate approximations (response
surfaces and Kriging models) in order to reduce the computational expense of
designing piezomorph actuators. The method shows that is flexible and can
accommodate a wide variety of experimental designs and approximations.
The authors also show that this method works well for both convex and
non-convex Pareto fronts.

5.2.2 Radial basis functions

Radial Basis Functions (RBFs) were first introduced by R. Hardy in 1971
[64]. This term is made up of two different words: radial and basis functions.
Each of these terms will be explained next:

88 CHAPTER 5. CONVERGENCE: FITNESS APPROXIMATION

g : R
d → R : (x1, . . . , xd) 7→ φ(‖x1, . . . , xd‖2)

for some function φ : R→ R. This means that the function value of g at
a point −→x = (x1, . . . , xd) only depends on the Euclidean norm of −→x :

‖−→x ‖2 =

√

√

√

√

d
∑

i=0

x2
i = distance of −→x to the origin

And this explains the term radial. The term basis function is explained
next. Let’s suppose we have certain points (called centers) −→x 1, . . . ,

−→x n ∈ R
d.

The linear combination of the function g centered at the points −→x is given
by:

f : R
d 7→ R : −→x 7→

n
∑

i=1

λig(−→x −−→xi) =
n
∑

i=1

λiφ(‖−→x −−→xi‖) (5.2)

where ‖−→x −−→xi‖ is the Euclidean distance between the points −→x and −→x i.
So, f becomes a function which is in the finite dimensional space spanned
by the basis functions:

gi : −→x 7→ g(‖−→x −−→xi‖)

Now, let’s suppose that we already know the values of a certain function
H : R

d 7→ R at a set of fixed locations −→xi , . . . ,
−→xn. These values are named

fj = H(−→xj), so we try to use the −→xj as centers in the equation 5.2. If we
want to force the function f to take the values fj at the different points −→xj ,
then we have to put some conditions on the λi. This implies the following:

∀j ∈ {1, . . . , n} fj = f(−→xj) =
n
∑

i=1

(λi · φ(‖−→xj −
−→xi‖))

In these equations, only the λi are unknown, and the equations are linear

Surrogates 89

Type of Radial Function
LS linear splines |r|
CS cubic splines |r|3

MQS multiquadrics splines
√

1 + (ǫr)2

TPS thin plate splines |r|2m+1 ln |r|

GA Gaussian e−(ǫr)2

Table 5.1: Radial basis functions

in their unknowns. Therefore, we can write these equations in matrix form:

φ(0) φ(‖x1 − x2‖) . . . φ(‖x1 − xn‖)
φ(‖x2 − x1‖) φ(0) . . . φ(‖x2 − xn‖)

...
...

...
φ(‖xn − x1‖) φ(‖xn − x2‖) . . . φ(0)

·

λ1

λ2
...

λn

=

f1

f2
...

fn

(5.3)
Typical choices for the basis function g(~x) include linear splines, cubic

splines, multiquadrics, thin-plate splines and Gaussian functions as shown in
Table 5.1.

Ong et al. [114] used surrogate models (RBFs) to solve computationally
expensive design problems with constraints. The authors used a combina-
tion of a parallel evolutionary algorithm coupled with sequential quadratic
programming in order to find optimal solutions of an aircraft wing design
problem. In this case, the authors construct a local surrogate model based
on radial basis functions in order to approximate the objective and constraint
functions of the problem.

Karakasis et al. [82] used surrogate models based on radial basis functions
in order to deal with computationally expensive problems. A method called
inexact pre-evaluation (IPE) is applied into a MOEA’s selection mechanism.
Such method helps to choose the individuals that are to be evaluated us-
ing the real objective function, right after a meta-model approximation has
been obtained by the surrogate. The results are compared against a conven-
tional MOEA in two test-problems, one from a benchmark and one from the
turbomachinery field.

Voutchkov & Keane [74] studied several surrogate models (RSM, RBF
and Kriging) in the context of multi-objective optimization using the NSGA-

90 CHAPTER 5. CONVERGENCE: FITNESS APPROXIMATION

II [39] as the MOEA that optimized the meta-model function given by the
surrogate. The surrogate model is trained with 20 initial points and the
NSGA-II is run on the surrogate model. Then, the 20 best resultant points
given by the optimization are added to the existing data pool of real func-
tion evaluations and the surrogate is re-trained with these new solutions. A
comparison of results is made in 4 test functions (from 2 to 10 variables),
performing 400 real fitness function evaluations.

5.2.3 Kriging

In Kriging, the meta-model prediction is formed by adding up two different
models as follows:

y(−→x) = a(−→x) + b(−→x)

where a(−→x) represents the “average” long-term range behavior and the ex-
pected value of the true function. This function can be modeled in various
ways, such as with polynomials or with trigonometric series as:

a(−→x) = a0 +
L
∑

i=1

R
∑

j=1

aij(xi)
j

where: R is the polynomial order with L dimensions and b(−→x) stands
for a local deviation term. b(−→x) is a Gaussian random function with zero
mean and non-zero covariance that represents a localized deviation from the
global model. This function represents a short-distance influence of every
data point over the global model. The general formulation for b(−→x) is a
weighted sum of N functions, Kn(~x) that represent the covariance functions
between the nth data point and any point ~x:

b(−→x) =
N
∑

n=1

bnK(h(x, xn)) and h(x, xn) =

√

√

√

√

L
∑

i=1

(
xi − xin

xmax
i − xmin

i

2

)

where xmin
i and xmax

i are the lower an upper bounds of the search space
and xin denotes the i − th component of the data point xn. However, the
shape of K(h) has a strong influence on the resulting aspect of the statistical
model. And that is why it is said that Kriging is used as a estimator or an
interpolator.

Surrogates 91

Knowles [86] proposed “ParEGO”, which consists of a hybrid algorithm
based on a single optimization model (EGO) and a Gaussian process, which
is updated after every function evaluation, coupled to an evolutionary algo-
rithm. EGO is a single-objective optimization algorithm that uses Kriging to
model the search landscape from the solutions visited during the search and
learns a model based on Gaussian processes (called DACE). This approach is
used to solve multi-objective optimization problems of low dimensionality (up
to 6 decision variables) with only 100 and 250 fitness function evaluations.

5.2.4 Artificial neural networks

Artificial neural network (ANN) implemented through a multilayer precep-
tron is a flexible scheme capable of approximating an arbitrary complex func-
tion [13]. An ANN basically builds a map between a set of inputs and the
respective outputs and are good to deal with nonlinear regression analysis
with noisy signals. A multilayer feedforward neural network consists of an
array of input nodes connected to an array of output nodes through suc-
cessive intermediate layers. Each connection between nodes has a weight,
which initially has a random value, and that is adjusted during a training
process. The output of each node of a specific layer is a function of the sum
on the weighted signals coming from the previous layer. The crucial points
in the construction of an ANN are the selection of inputs and outputs, the
architecture of the ANN, that is, the number of layers and the number of
nodes in each layer, and finally, the training algorithm.

The multi-layer perceptron (MLP) is a multilayered feedforward network
that has been widely used in function approximation problems, because it
has been often found to provide compact representations of mappings in real-
world problems. An MLP is composed of neurons and the output (y) of each
neuron is thus:

y = φ

(

n
∑

i=1

wi · ai + b

)

where ai are the inputs of the neuron, and wi is the weight associated with
the ith input. The nonlinear function φ is called the activation function as it
determines the activation level of the neuron.

In Figure 5.4, we show an MLP network with one layer of linear output
neurons and one layer of nonlinear neurons between the input and output

92 CHAPTER 5. CONVERGENCE: FITNESS APPROXIMATION

W W W

W = hidden layer

Y = output layer

Y Y Y Y

X X
X = input layer

Figure 5.4: A graphical representation of an MLP network with one hidden
layer

neurons. The middle layers are usually called hidden layers.
To learn a mapping R

n → R
m by an MLP, its architecture should be the

following: it should have n input nodes and m output nodes with a single
or multiple hidden layer. The number of nodes in each hidden layer are
generally a design decision.

5.2.4.1 Training an ANN

In general terms, supervised training consists of presenting to the network
patterns whose output we know (the training set) finding the output of the
net and adjusting the weights so as to make the actual output more like
the desired (or teaching signal). The two most useful training protocols are:
off-line and on-line. In off-line learning, all the data are stored and can
be accessed repeatedly. In on-line learning, each case is discarded after it
is processed and the weights are updated. With off-line learning, we can
compute the objective function for any fixed set of weights, so we can see
whether we are making progress in training.

Error back-propagation is the simplest and most widely used algorithm to
train feedforward neural networks. In this algorithm the training is performed
by minimizing a loss function, usually the sum of square errors over the N
elements of the training set. In this case we used a generalization of the
square error function given by:

J(W) =
1

2

N
∑

i=1

c
∑

k=1

(tki − zki)
2 =

1

2

N
∑

i=1

||
−→
ti −

−→zi ||
2

Surrogates 93

where ~ti and ~zi are the ith-target and the ith-network output vectors of length
c, respectively; W represents all the weights in the network. The backprop-
agation learning rule is based on a gradient descent. The weights are initial-
ized with random values, and are changed in a direction to reduce the error
following the next rule:

Wnew = Wold − η
∂J

∂W

The weight update for the hidden-output weights is given by:

∂Wkj = η(tk − zk)f
′(netk)yj

and the input-to-hidden weights learning rule is:

∂Wji = η · xi · f
′(netj)

n
∑

k=1

wkj∂k

where η is the learning rate, i, j, k are the corresponding node index for each
layer and netj is the inner product of the input layer with the weights wji at
the hidden unit.

Some applications of ANNs to evolutionary multi-objective optimization
are the following:

Farina [48] proposed “NN-GRS”, which is an extension of the single-
objective neural network-based GRS (generalized response surface) method.
The main idea of this approach is to maintain two different objective func-
tions, one real and another one which is an approximation (neural network
based).

Nain & Deb [113] proposed “NSGA-II-ANN”, which combines the NSGA-
II algorithm [39] with a new method based on neural networks as the basic
approximation technique for fitness computation. This meta-model is up-
dated at each generation, and it provides a more refined approximate model
to guide the search of the NSGA-II in subsequent generations.

5.2.5 Support vector machines

Support vector machines (SVM) have become popular in recent years for
solving problems in classification, regression and novelty detection. An im-
portant property of support vector machines is that the determination of the
model parameters corresponds to a convex optimization problem, and thus,

94 CHAPTER 5. CONVERGENCE: FITNESS APPROXIMATION

any local solution is also a global optimum. In SV M regression, our goal is
to find a function f(x) that has at most an ǫ deviation from the obtained
targets yi for all the training data, and at the same time is as flat as possible.
Let’s suppose we are given training data χ = (xt, yt)

N
t=1 where yt ∈ R. Then,

the f(x) is given by:

f(x) = 〈w, x〉+ b with w ∈ R
d, x ∈ R

d, b ∈ R

where 〈·, ·〉 denotes the dot product in χ. A small w means that the regression
is flat. One way to ensure this, is to minimize the norm, ||w||2 = 〈w,w〉. The
problem can be written as a convex optimization problem:

minimize 1
2
||w||2 (5.4)

subject to

{

yi − 〈w, xi〉 − b ≤ ǫ
〈w, xi〉+ b− yi ≤ ǫ

And one can introduce two slack variables ξi, ξ
∗
i , for positive and negative

deviations, where ξi > 0 corresponds to a point for which yi + ǫ and:

minimize C
∑l

i=1(ξi + ξ∗i) + 1
2
||w||2 (5.5)

subject to

yi − 〈w, xi〉 − b ≤ ǫ + ξi

〈w, xi〉+ b− yi ≤ ǫ + ξ∗i
ξi, ξ

∗
i ≥ 0

The constant C > 0 determines the trade-off between the flatness of f
and the amount up to which deviations larger than ǫ are tolerated. The ǫ-
insensitive loss function [161](see equation 5.6) means that we tolerate errors
up to ǫ and also that errors beyond that value have a linear effect and not
quadratic. This error function is therefore more tolerant to noise and is thus
more robust.

|ξ|ǫ =

{

0, if |ξ| ≤ ǫ;
|ξ| − ǫ, otherwise.

(5.6)

Figure 5.5, shows a graphic of the ǫ-insensitive loss function. Note that
only the points outside the shaded region contribute to the cost of the func-
tion. It turns out that in most cases, the optimization problem defined by
equation (5.5) can be solved more easily in its dual formulation. The dual

Surrogates 95

formulation also provides the capability for extending SVM to nonlinear func-
tions using a standard dualization method utilizing Lagrange multipliers, as
described by Fletcher [52]. So, optimizing the Lagrangian and substitute
ti = 〈w, xi〉 for simplicity we have:

L = C
N
∑

i=1

(ξi + ξ∗i) +
1

2
||w||2 −

N
∑

i=1

(µiξi + µ∗
i ξ

∗
i)

−

N
∑

i=1

αi(ǫ + ξi + yn − tn)−
N
∑

i=1

α∗
i (ǫ + ξ∗i + yn − tn) (5.7)

Then, we can substitute for y(x) using the linear model equation: y(x) =
wT φ(x) + b and set the derivatives of the Lagrangian with respect to 1) w,
2) b, 3) ξi and 4) ξ∗i to zero, giving:

∂L

∂w
= 0 ⇒ w =

N
∑

i=1

(αi − α∗
i)φ(xi) (5.8)

∂L

∂b
= 0 ⇒

N
∑

i=1

(αi − α∗
i) = 0 (5.9)

∂L

∂ξi

= 0 ⇒ αi + µi = C (5.10)

∂L

∂ξi

= 0 ⇒ α∗
i + µ∗

i = C (5.11)

(5.12)

Using these results to eliminate the corresponding variables from the La-
grangian, we see that the dual problem involves maximizing:

L′(a, a∗) = −
1

2

N
∑

i=1

N
∑

j=1

(αi−α∗
i)(αj−α∗

j)〈xi, xm〉−ǫ

N
∑

i=1

(αi+α∗
i)+

N
∑

i=1

(αi−α∗
i)tn

(5.13)
with respect to αi and α∗

i , where 〈xi, xm〉 is the kernel function. So,
the problem becomes in a constrained maximization problem with the box
constraints:

96 CHAPTER 5. CONVERGENCE: FITNESS APPROXIMATION

Figure 5.5: ǫ-insensitive loss function for SVM

0 ≤ αi ≤ C

0 ≤ α∗
i ≤ C

And the predictions for new inputs can be made using:

y(x) =
N
∑

i=1

(αi − α∗
i)〈xi, xm〉+ b (5.14)

The support vectors are those data points that contribute to predictions
given by equation 5.14, in other words those for which either αi 6= 0 or
α∗

i 6= 0. These are points that lie on the boundary of the ǫ-tube or outside
the tube. All points within the tube have αi = α∗

i = 0.

5.3 Results using surrogates

In the Figure 5.6, it is shown the diagram in which we try to reduce the
number of real function evaluation by training the meta-model using different
function approximation techniques to approximate all the functions involved
in the multi-objective optimization problem and optimizing this meta-model
using the PSO algorithm (Described in Section 4.2.2). The flowchart is de-
scribed in detail next:

Initialize population.- The initialization of the population will be done
using Latin-Hypercubes [104] (see Section 5.3.1) because they guaran-
tee a uniform distribution of the solutions in the search space. So, this
procedure can be chosen to this purpose as our approximation model

Results using surrogates 97

requires a good distribution of the sample points provided in order to
build a good approximation of the real functions.

Real function evaluation.- All the solutions are to be evaluated using the
real fitness function.

Add solutions to population.- It is important to determine which of these
solutions are good and keep them to help train (or re-train) the meta-
model.

Train meta-model.- The different surrogates that we used are:

• Radial Basis Function (see Section 5.2.2)

• Artificial Neural Networks (see Section 5.2.4)

• SVMs for regression (see Section 5.2.5)

to approximate the different functions with the same training points.

PSO optimization.- Once that the different meta-models are trained, we
solve a multi-objective problem using a PSO-based MOEA on the meta-
models instead of performing real function evaluations. As we are deal-
ing with multi-objective problems, we decided to train the multiple
objectives separately. Consequently, we obtain a different surrogate
model per each objective. Thus, these objectives are still in conflict
with each other as they are an approximate model of the real objec-
tives. This means that we have another multi-objective problem based
on the different surrogates obtained during the training process.

5.3.1 Latin-Hypercubes

A Latin cube [104] is a selection of one point from each row and column of a
square matrix. In k dimensions, the corresponding item is a set of P points,
where, in each dimension, there is exactly one point per column or range of
values. In k dimensions, these objects are called Latin-Hypercubes. Once a
Latin-Hypercube has been created, we choose the center of each hypercube
as the place where the initial P individuals are chosen. Then, we evaluate
these P individuals with the real functions, and train the meta-model using
the surrogate model.

98 CHAPTER 5. CONVERGENCE: FITNESS APPROXIMATION

Figure 5.6: Surrogate model adopted in this section.

Comparative study 99

5.4 Comparative study

Our main goal is to reduce the number of fitness function evaluations. Thus,
our experimental design considers that only a few function evaluations are
performed in several multi-dimensional test problems from the ZDT set. So,
in this case, we compare the results obtained by the surrogate-based MOEA
with only 600 real function evaluations.

For our experiments, we adopted the ZDT test problems [173], all of
which are bi-objective, unconstrained and have between 10 and 30 decision
variables each. The detailed description of these test functions are in Ap-
pendix A.

Three performance measures were adopted in order to allow a quantitative
assessment of our results: (1) Inverted generational distance (IGD), (2)
Two set coverage (SC), and (3) Spacing (S). For each test problem, 10
independent runs were performed.

5.4.1 Surrogate phase analysis

This phase of our approach uses several parameters: main population size
P = 100, maximum number of evaluations = 600, multi-objective particle
swarm optimizer (MOPSO) internal population size (Pmopso = 100), maxi-
mum number of generations (Gmopso = 100), PSO flight equation (w= 0.1,
c1 = 1.4 and c2 = 0.1), turbulence rate = 1/n (n = number of decision vari-
ables). The number of hidden nodes is fixed to a value of 50 when we use
the ANN.

In this study, we perform 600 real function evaluations using different
surrogate methods: ANN, RBF and SVM. The results reported in Tables 5.2
and 5.3 correspond to the performance metrics adopted (SC, IGD and Spac-
ing). We show in boldface the best mean values per test function of 10 runs
per each test function for all the algorithms compared. We show the plot
of all the nondominated solutions generated by a single run of the different
algorithms in Figure 5.7. In all cases, we generated PFtrue, so we could
make a graphical comparison of the quality of the solutions produced by our
approach. The summary of our results is the following:

• ANN: When we use the neural network, the algorithm shows a poor
performance dealing with high-dimensional problems, but outperforms
the RBFs in all the performance measures, specially in IGD. It also

100 CHAPTER 5. CONVERGENCE: FITNESS APPROXIMATION

seems that the ANN needs more training points to make a better ap-
proximation of the function. Graphically, it can be seen that it ob-
tained a worse approximation to the true Pareto front than the two
other surrogate approaches. In ZDT2 and ZDT3, the ANN shows a
better performance than the RBF, but not with respect to the SVM
approach.

• RBF: When using the radial basis function, the algorithm shows the
worst overall performance with respect to IGD and Spacing. Graph-
ically, it can also be seen that this approach stays far away from the
true Pareto front.

• SVM: Using the support vector machines, the algorithm obtains the
best results in all the test functions with respect to the IGD perfor-
mance measure. With respect to Spacing, the algorithm shows a good
behavior, although in ZDT2 and ZDT4, it does not obtain the best
results.

From results obtained in the first phase of our approach, we can con-
clude that the SVM approach is the one that shows the best overall
performance in these particular multi-dimensional test functions. So, we
decided to choose the SVM approximation fitness to hybridize it with the
Rough Sets (see section 6.1 for further details).

5.5 Final remarks

We have presented an initial study of surrogate methods to solve multi-
objective problems with high dimensionality. Three different methods were
used in our comparative study: Artificial Neural Networks (ANNs), Radial
Basis Functions (RBFs) and Support Vector Machines (SVMs), all of them in
their regression form, in order to approximate the function using supervised
learning. From this study, we concluded that the SVMs were the most appro-
priate model for dealing with the type of problems of our interest, because it
provides a good approximation of the true Pareto front, although it is unable
to produce a good spread of the solutions. Thus, we decided to include a
local search procedure based on rough sets theory in order to intensify the
search around the solutions obtained by the SVMs. The publications derived
from this are: [97, 139, 140, 141].

Final remarks 101

ZDT1

Perf. Meas. - Algorithm mean St. dev. best worst
ANN 0.0782 0.0216 0.0402 0.1073

IGD RBF 0.1014 0.0133 0.0694 0.1145
SVM 0.0125 0.0050 0.0072 0.0210
ANN 0.8445 0.0444 0.7553 0.9045

S RBF 0.8874 0.0358 0.8176 0.9288
SVM 0.5793 0.0785 0.4697 0.7331

SC(A, B) B
ANN RBF SVM Mean

ANN – 0.8581 0.0 0.4290
A RBF 0.1033 – 0.0 0.0516

SVM 0.9561 0.9256 – 0.9408

ZDT2

Perf. Meas. - Algorithm mean St. dev. best worst
ANN 0.1040 0.0451 0.0392 0.1743

IGD RBF 0.1568 0.0225 0.1077 0.1803
SVM 0.0358 0.0007 0.0339 0.0365
ANN 0.2341 0.3609 0.0000 0.8781

S RBF 0.9445 0.0372 0.8589 0.9847
SVM 0.6953 0.4552 0.0000 0.9985

SC(A, B) B
ANN RBF SVM Mean

ANN – 0.75 0.0 0.375
A RBF 0.2667 – 0.0 0.1333

SVM 1.0 1.0 – 1.0

ZDT3

Perf. Meas. - Algorithm mean St. dev. best worst
ANN 0.1111 0.0201 0.0808 0.1491

IGD RBF 0.1788 0.0370 0.0732 0.2160
SVM 0.0262 0.0098 0.0162 0.0497
ANN 0.8479 0.0464 0.7770 0.9178

S RBF 0.8678 0.0434 0.7932 0.9162
SVM 0.7454 0.0500 0.6761 0.8585

SC(A, B) B
ANN RBF SVM Mean

ANN – 0.8584 0.0 0.4292
A RBF 0.1 – 0.0 0.05

SVM 0.9165 0.9150 – 0.9157

Table 5.2: Results of inverse generational distance (IGD), spacing (S) and
set coverage (SC) for ZDT1, ZDT2 and ZDT3.

102 CHAPTER 5. CONVERGENCE: FITNESS APPROXIMATION

ZDT4

Perf. Meas. - Algorithm mean St. dev. best worst
ANN 1.3725 0.1961 0.9999 1.5805

IGD RBF 1.4249 0.1439 1.1032 1.6187
SVM 1.1788 0.1957 0.8642 1.4998
ANN 0.8746 0.1368 0.5633 1.0381

S RBF 0.7931 0.4000 0.0000 1.1100
SVM 0.9900 0.0152 0.9574 1.0077

SC(A, B) B
ANN RBF SVM Mean

ANN – 0.2824 0.0250 0.1537
A RBF 0.6717 – 0.1 0.3858

SVM 0.83 0.7774 – 0.8037

ZDT6

Perf. Meas. - Algorithm mean St. dev. best worst
ANN 0.0914 0.0436 0.0351 0.1343

IGD RBF 0.1177 0.0301 0.0471 0.1390
SVM 0.0285 0.0031 0.0234 0.0325
ANN 0.9846 0.0673 0.9163 1.1582

S RBF 0.9602 0.0345 0.9062 1.0352
SVM 0.8411 0.0473 0.7517 0.9420

SC(A, B) B
ANN RBF SVM Mean

ANN – 0.2696 0.0 0.1348
A RBF 0.4582 – 0.0 0.2291

SVM 0.7864 0.7280 – 0.7572

Table 5.3: Results of inverse generational distance (IGD), spacing (S) and
set coverage (SC) for ZDT4 and ZDT6.

Final remarks 103

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

Fu
nc

tio
n

2

Function 1

 real_zdt1
 ANN
 RBF
 SVM

(a) ZDT1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Fu
nc

tio
n

2

Function 1

 real_zdt2
 ANN
 RBF
 SVM

(b) ZDT2

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

Fu
nc

tio
n

2

Function 1

 real_zdt3
 ANN
 RBF
 SVM

(c) ZDT3

0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

Fu
nc

tio
n

2

Function 1

 real_zdt4
 ANN
 RBF
 SVM

(d) ZDT4

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
-1

0

1

2

3

4

5

6

7

8

9

10

11

Fu
nc

tio
n

2

Function 1

 real_zdt6
 ANN
 RBF
 SVM

(e) ZDT6

Figure 5.7: Pareto fronts generated by the surrogate methods for the ZDT
test problems.

6
Exploitation: A Local Search
Based on Rough Sets Theory

In this chapter, we propose the use of rough sets to improve the approxi-
mation provided by a multi-objective evolutionary algorithm (MOEA). The
main idea is to hybridize the previous algorithms described in Chapter 4
with a local search procedure based on rough sets theory to approximate
the Pareto front of a multi-objective optimization problem with a low com-
putational cost. The proposed hybrid operates in two stages: in the first
one, a multi-objective version of differential evolution is used as our search
engine in order to generate a good approximation of the true Pareto front.
Then, in the second stage, rough sets theory is adopted in order to improve
the spread of the solutions found so far. To assess our proposed hybrid ap-
proach, we adopt a set of standard test functions and performance measures
taken from the specialized literature. Our results are compared with respect
to the NSGA-II, which is an approach representative of the state-of-the-art
in the area.

105

106

CHAPTER 6. EXPLOITATION: A LOCAL SEARCH BASED ON ROUGH SETS
THEORY

6.1 Rough sets theory

Rough sets theory is a new mathematical approach to deal with imperfect
knowledge. The problem of imperfect knowledge has been tackled for a
long time by philosophers, logicians and mathematicians. Recently, it also
became a crucial issue for computer scientists, particularly in the area of arti-
ficial intelligence (AI). There are many approaches to the problem of how to
understand and manipulate imperfect knowledge. The most used one is the
fuzzy set theory proposed by Lofti Zadeh [171]. Rough sets theory was pro-
posed by Pawlak [119], and presents another attempt to this problem. Rough
sets theory has been used by many researchers and practitioners all over the
world and has been adopted in many interesting applications. The rough
sets approach seems to be of fundamental importance to AI and cognitive
sciences, especially in the areas of machine learning, knowledge acquisition,
decision analysis, knowledge discovery from databases, expert systems, in-
ductive reasoning and pattern recognition. Basic ideas of rough set theory
and its extensions, as well as many interesting applications, can be found in
books (see [120]), special issues of journals (see [99]), proceedings of interna-
tional conferences, and in the internet (see www.roughsets.org).

Let’s assume that we are given a set of objects U called the universe and
an indiscernibility relation R ⊆ U × U , representing our lack of knowledge
about elements of U (in our case, R is simply an equivalence relation based
on a grid over the feasible set; this is just a division of the feasible set in
(hyper)-rectangles). Let X be a subset of U . We want to characterize the
set X with respect to R. The way rough sets theory expresses vagueness is
employing a boundary region of the set X built once we know a finite number
of points both inside X and outside X. If the boundary region of a set is
empty it means that the set is crisp; otherwise, the set is rough (inexact).
A nonempty boundary region of a set means that our knowledge about the
set is not enough to define the set precisely (see Figure 6.1).

Then, each element in U is classified as certainly inside X if it belongs
to the lower approximation or partially (probably) inside X if it belongs to
the upper approximation (see Figure 6.1). The boundary is the difference
of these two sets, and the bigger the boundary the worse the knowledge we
have of set X. On the other hand, the more precise is the grid implicity used
to define the indiscernibility relation R, the smaller the boundary regions
are. But, the more precise is the grid, the bigger the number of elements

Rough sets theory 107

Figure 6.1: Rough approximation

in U , and then, the more complex the problem becomes. Then, the less
elements in U the better to manage the grid, but the more elements in U the
better precision we obtain. Consequently, the goal is obtaining “small” grids
with the maximum precision possible. These two aspects are called density
and quality of the grid. Note however, that at this point we will face the
following problem:

• The more precise the grid is, the higher the computational cost required
to manage it.

• The less precise the grid is, the less knowledge we get about the Pareto
optimal set.

6.1.1 Use of rough sets in multi-objective optimization

For our MOPs we will try to approximate the Pareto front using a rough
set grid. To do this, we will use an initial approximation of the Pareto
front (provided by any other method) and will implement a grid in order
to get more information about the front that will let us improve this initial
approximation. Then, at this point we have to face the following problem:
the more precise the grid is, the higher the computational cost required to
manage it. Conversely, the less precise the grid is, the less knowledge we get
about the Pareto front. Thus, we need to design a grid that balances these
two aspects. In other words, a grid that is not so expensive (computationally
speaking) but that offers a reasonably good knowledge about the Pareto
front to be used to improve the initial approximation. To this aim, we must

108

CHAPTER 6. EXPLOITATION: A LOCAL SEARCH BASED ON ROUGH SETS
THEORY

Figure 6.2: Use of a rough approximation for unconstrained MOPs

design a grid and decide which elements of U (that we will call atoms and
will be just rectangular portions of decision variable space) are close to the
Pareto optimal set and which are not. Once we have the efficient atoms, we
could easily intensify the search over these atoms as they are built in decision
variable space.

To create the grid, we have two main possibilities, when we are dealing
with unconstrained MOPs and when we deal with the constrained MOPs.
Next we describe the creation of the grid for each case:

Unconstrained problems To create this grid, as an input we will have
several feasible points divided in two sets: the nondominated points
(NS) and the dominated ones (DS). Using these two sets we want to
create a grid to describe the set NS in order to intensify the search
on it in the decision variable space. This is, we want to describe the
Pareto set in decision variable space because then we could easily use
this information to generate more efficient points and then improve this
initial approximation. Figure 6.2 shows how information in objective
function space can be translated into information in decision variable
space through the use of a grid.

Constrained problems To create this grid, as an input we will have sev-
eral points divided in three sets: the nondominated points (NS), the
dominated ones (DS), and the infeasible solutions (IS) (when dealing

Rough sets theory 109

X1

X2
F

nondominated

dominated2

F1

infeasible

feasible region

infeasible region

Figure 6.3: Use of a rough approximation for constrained MOPs

with constrained problems). Using these three sets we want to create
a grid to describe the set NS in order to intensify the search on it.
This is, we want to describe the Pareto set in decision variable space
because then we could easily use this information to generate better so-
lutions and then improve this initial approximation. Figure 6.3 shows
how information in objective function space can be translated into in-
formation in decision variable space through the use of a grid, where
we deal with some dominated solutions, some infeasible solutions, and
some nondominated solutions. The new solutions correspond to the off-
spring generated inside the atoms. It can be observed that the use of
the dominated solutions and infeasible solutions help the grid to build
the atoms around the nondominated solutions and prevent building
dominated and/or infeasible solutions.

We must note the importance of the DS and IS sets as in a rough set
method the information comes from the description of the boundary of the
three sets. We do not pretend to precisely characterize all the sets: 1) non-
dominated set NS, 2) dominated set DS and 3) Infeasible set IS. Our
purpose is to delimit the nondominated solutions in such a way that the
atom built associated to each nondominated solution presents the same good
characteristics of the nondominated solution, causing that the offspring de-
rived from this nondominated solution will remain nondominated and thus
act as the local optimizer that we pretend to obtain. The way in which these
atoms are computed is described in Section 6.1.2.

110

CHAPTER 6. EXPLOITATION: A LOCAL SEARCH BASED ON ROUGH SETS
THEORY

Since the computational cost of managing the grid increases with the
number of points used to create it, we will try to use just a few points of
NS, DS, and IS. Moreover, such points must be as far from one another
as possible, because the better the distribution the points have in the initial
approximation the less points we need to build a reliable grid. On the other
hand, in order to diversify the search we build several grids using different
sets DS, IS and NS coming from the initial approximation. To ensure
these sets are really disjoint we will mark each point as explored or non-
explored (if it has been used or not to compute a grid) and we will not allow
repetitions. Algorithm 6 describes a Rough Sets iteration. To maintain a
good distribution along the solutions in all the sets mentioned before, we
use the scheme called Pareto-adaptive ǫ-dominance grid, that we describe in
detail in the Chapter 7.

Algorithm 6 Rough sets iteration
1: Input nondominated solutions from the first phase NS.
2: Input dominated solutions from the first phase DS.
3: Input Infeasible solutions from the first phase IS.
4: Output nondominated solutions found by the RS.
5: eval ← 0
6: repeat

7: Choose NumEff unexplored points of NS.
8: Choose NumDom unexplored points of DS.
9: Choose NumInfea unexplored points of IS.

10: for i = 0 to NumEff do ⊲ Generate NumEff efficient atoms.
11: for j = 0 to Offspring do

12: Generate (randomly) a new point in atomi

13: eval ← eval + 1
14: if new is infeasible then

15: Send new to IS

16: else

17: if new is efficient then

18: Include it in NS

19: end if

20: if A point old in NS is dominated by new then

21: Send old to DS

22: end if

23: end if

24: end for

25: end for

26: until MaxEval < eval

Rough sets theory 111

6.1.2 Atom construction in rough sets theory

As we have mentioned, the rough sets departs the search from the nondom-
inated set NS generated by some other algorithm. This set is contained
within the secondary population. We also need the dominated set (DS) and
the set of infeasible solutions (IS).

From the set NS we choose NumEff points previously unselected. If
we do not have enough unselected points, we choose the rest randomly from
the set NS. Next, we choose from the set DS, NumDom points previously
unselected (and in the same way if we do not have enough unselected points,
we complete them in a random fashion) and NumInfea unselected points
from the set IS. These points will be used to approximate the boundary
between the Pareto front and the rest of the feasible set in decision vari-
able space. What we want to do now is to intensify the search in the area
where the nondominated points reside, and avoid finding more points on the
area where the dominated or infeasible points reside. For this purpose, we
store these points on the set Items, where the set Items will contain all
the nondominated, dominated and infeasible points from NS, DS and IS
respectively; and then perform a rough sets iteration:
A rough sets iteration is described next:

1. Range initialization: For each decision variable i, we compute and
sort (from the smallest to the highest) the different values it takes in
the set Items. Then, for each decision variable i, we have a set of
Rangei values (where Rangei < |Items|), and combining all these sets
we have a (non-uniform) grid in decision variable space.

2. Compute atoms: We compute NumEff rectangular atoms centered
in the NumEff nondominated solutions selected. To build a rectangu-
lar atom associated to a nondominated point xe ∈ Items we compute
the following upper and lower bounds for each decision variable i:

• Lower bound i: Middle point between xe
i and the previous value

in the set Rangei.

• Upper bound i: Middle point between xe
i and the following value

in the set Rangei.

In both cases, if there are no previous or subsequent values in Rangei,
we consider the absolute lower or upper bound of variable i. This
setting allows the method to explore close to the feasible set boundaries.

112

CHAPTER 6. EXPLOITATION: A LOCAL SEARCH BASED ON ROUGH SETS
THEORY

3. Generate offspring: Inside each atom we randomly generate Off -
spring new points. Each of these points is sent to the set NS (that,
as indicated before, can be a paǫ-dominance grid) to check if it must
be included as a new nondominated point or to IS in case of being
infeasible. If any point in NS is dominated by this new point, it is sent
to the set DS.

It should be clear that the purpose of using rough sets in our approach
is to rebuild the Pareto front, departing from the solutions generated by the
search engine adopted for its first phase (see Chapter 4). Thus, we use a
local search engine based on rough sets theory.

6.1.3 Results of rough sets

In order to show that the inclusion of the local search algorithm based on
rough sets theory helps our approach to obtain a better approximation of
the true Pareto front with the same number of evaluations performed by
each approach, we compared: 1) The ǫ-MyDE algorithm (see Section 4.1.3
in page 61) and 2) The DEMORS algorithm (that combines ǫ-MyDE and
rough sets (RS)).

Our approach was validated using the ZDT set [173] which contains
unconstrained and high dimensional problems. We also used 7 constrained
test problems: Binh2 [12], Kita [85], Osyczka1 and Osyczka2 [116], Srinivas
[149], Tanaka [155] and the Welded beam problem [124]. All of them, except
for Kita problem, are minimization problems. The description of all the
problems are contained in Appendix A. In all cases, the parameters of our
approach were set as indicated in Table 6.1.

Three performance measures were adopted in order to allow a quanti-
tative assessment of our results: (1) Two set coverage (SC), (2) Inverted
generational distance (IGD), and (3) Spread (∆). For each test problem, 30
independent runs were performed. A detailed description of the test functions
are contained in Section 3.3.

Table 6.2 shows a summary of the results with the ZDT problems, whereas
the rest are shown in Table 6.3. The results reported are the mean values for
each of the three performance measures and the standard deviation of the 30
runs performed. The best mean values in each case are shown in boldface.

First, we will comment about the unconstrained problems. It can be
clearly seen in Table 6.2 that DEMORS produced the best mean values in

Final remarks 113

all cases for the convergence metrics (SC and IGD) for all the test functions
adopted, and obtained better results in ZDT2, ZDT3 and ZDT4 for the met-
ric ∆ which measures the distribution of solutions along the Pareto front.
The graphical results are shown in Figures 6.4 to 6.8, and they serve to re-
inforce our argument of the superiority of the results obtained by DEMORS
against ǫ-MyDE with the same number of function evaluations. These plots
correspond to the run in the mean value with respect to the inverted gen-
erational distance metric. In all the optimization problems, the true Pareto
front is shown with a continuous line and the approximation obtained by
each algorithm is shown with black circles. We can see from those plots, that
in all the cases, ǫ-MyDE is not able to converge to the true Pareto front with
5, 000 evaluations. In contrast, DEMORS was able to converge to the true
Pareto front in all cases.

With respect to the constrained MOPs, again DEMORS produced the
best mean values in all the convergence metrics for all the seven test functions,
and obtained the best results for the ∆ metric in almost all the functions
except for Osyczka. The graphical results are shown in Figures 6.9 to 6.15.
These plots correspond to the run in the mean value with respect to the
inverted generational distance performance measure. From the plots, it is
also clear that DEMORS outperforms ǫ-MyDE in all cases, and is able to find
all the true Pareto front with only 10, 000 evaluations, except for Osyczka’s
problem, in which DEMORS has some difficulties to find the extremes of the
Pareto front and Welded Beam in which a portion of the Pareto front is lost.

6.2 Final remarks

The experiments performed in this chapter led us to conclude that rough
sets is a suitable tool to be hybridized with a MOEA in order to improve
the local exploration around the nondominated solutions found so far. If
the search engine adopted to produce a coarse-grained approximation of the
Pareto front is efficient (as in our case), then a good approximation of the
true Pareto front can be achieved with a low computational cost.

What we try to do with the rough sets is to intensify the search over
the nondominated solutions found by another algorithm. To this aim, we
design a grid and decide which elements are nondominated (in which we
build atoms, that are rectangular portions in the decision variable space)
and which are not. Once we have the efficient atoms associated to the

114

CHAPTER 6. EXPLOITATION: A LOCAL SEARCH BASED ON ROUGH SETS
THEORY

nondominated solutions, we intensify the search over these atoms, generating
good offspring in the vicinity of the good solutions. The publication derived
from this chapter is [67].

Parameter ǫ-MyDE DEMORS
unconstrained constrained unconstrained constrained

P 25 25
Pexternal 100 100

Pm
1

nV ariables
1

nV ariables

Gmax 200 400 200 400
Pc 0.9 0.3 0.9 0.3

elitism 0.1 0.5 0.1 0.5

Offspring – – 1 1
NumEff – – 2 2
NumDom – – 10 5
NumInfea – – – 5

Evaluations 5,000 10,000 5,000 10,000

Table 6.1: Parameters of both approaches: ǫ-MyDE and DEMORS.

Final remarks 115

ZDT1

Metric - Algorithm mean σ best worst
DEMORS 0.9313 0.0739 0.6739 1.0000

SC ǫ-MyDE 0.0174 0.0247 0.0000 0.0976
DEMORS 0.0010 0.0008 0.0005 0.0044

IGD ǫ-MyDE 0.0030 0.0007 0.0019 0.0045
DEMORS 0.5858 0.1751 0.2561 0.8335

∆ ǫ-MyDE 0.5528 0.0591 0.4472 0.7067

ZDT2

Metric - Algorithm mean σ best worst
DEMORS 0.8917 0.2574 0.0000 1.0000

SC ǫ-MyDE 0.0841 0.2363 0.0000 0.9630
DEMORS 0.0011 0.0011 0.0003 0.0051

IGD ǫ-MyDE 0.0080 0.0062 0.0012 0.0201
DEMORS 0.4450 0.1453 0.2695 0.8252

∆ ǫ-MyDE 0.7446 0.2140 0.4596 1.1893

ZDT3

Metric - Algorithm mean σ best worst
DEMORS 0.4522 0.2825 0.0625 0.8889

SC ǫ-MyDE 0.1309 0.1309 0.0000 0.3611
DEMORS 0.0062 0.0026 0.0039 0.0148

IGD ǫ-MyDE 0.0075 0.0013 0.0054 0.0096
DEMORS 0.6718 0.0741 0.5595 0.8543

∆ ǫ-MyDE 0.6963 0.0645 0.5933 0.8212

ZDT4

Metric - Algorithm mean σ best worst
DEMORS 0.7683 0.3921 0.0000 1.0000

SC ǫ-MyDE 0.1743 0.3615 0.0000 1.0000
DEMORS 0.1166 0.1349 0.0006 0.4592

IGD ǫ-MyDE 0.3500 0.2453 0.0389 0.8202
DEMORS 0.8496 0.1647 0.3222 1.0296

∆ ǫ-MyDE 0.8902 0.0891 0.7043 1.0004

ZDT6

Metric - Algorithm mean σ best worst
DEMORS 0.4318 0.4777 0.0000 1.0000

SC ǫ-MyDE 0.4163 0.4469 0.0000 1.0000
DEMORS 0.0183 0.0170 0.0002 0.0535

IGD ǫ-MyDE 0.0198 0.0160 0.0001 0.0465
DEMORS 0.8376 0.2433 0.2753 1.1790

∆ ǫ-MyDE 0.7879 0.2782 0.3018 1.0974

Table 6.2: Performance measure results with respect to the two set cover-
age (SC), inverted generational distance (IGD) and spread (∆) for the ZDT
problems.

116

CHAPTER 6. EXPLOITATION: A LOCAL SEARCH BASED ON ROUGH SETS
THEORY

Binh2

Metric - Algorithm mean σ best worst
DEMORS 0.4044 0.0680 0.2021 0.5647

SC ǫ-MyDE 0.1320 0.0351 0.0426 0.1935
DEMORS 1.1942 0.1050 1.0019 1.3766

IGD ǫ-MyDE 1.1988 0.1087 1.0020 1.3773
DEMORS 0.6600 0.0206 0.6209 0.7071

∆ ǫ-MyDE 0.6808 0.0216 0.6037 0.6917

Kita

Metric - Algorithm mean σ best worst
DEMORS 0.5853 0.1136 0.2603 0.7882

SC ǫ-MyDE 0.0327 0.0263 0.0000 0.1017
DEMORS 0.0038 0.0008 0.0026 0.0052

IGD ǫ-MyDE 0.0103 0.0044 0.0057 0.0227
DEMORS 0.5337 0.1644 0.3464 0.9646

∆ ǫ-MyDE 0.9640 0.1491 0.6442 1.2442

Osyczka

Metric - Algorithm mean σ best worst
DEMORS 0.8710 0.2241 0.0000 1.0000

SC ǫ-MyDE 0.0019 0.0058 0.0000 0.0222
DEMORS 0.0152 0.0139 0.0016 0.0552

IGD ǫ-MyDE 0.0556 0.0270 0.0155 0.1233
DEMORS 0.8121 0.3112 0.3874 1.8086

∆ ǫ-MyDE 0.3969 0.2888 0.0311 1.1559

Osyczka2

Metric - Algorithm mean σ best worst
DEMORS 0.8592 0.1202 0.5660 1.0000

SC ǫ-MyDE 0.0077 0.0137 0.0000 0.0526
DEMORS 0.1802 0.2053 0.0526 1.2204

IGD ǫ-MyDE 0.3041 0.2701 0.0834 1.2878
DEMORS 0.6562 0.1560 0.3586 1.0411

∆ ǫ-MyDE 1.0745 0.1362 0.7979 1.3300

Srinivas

Metric - Algorithm mean σ best worst
DEMORS 0.5072 0.0946 0.2447 0.6364

SC ǫ-MyDE 0.0829 0.0293 0.0319 0.1474
DEMORS 0.0173 0.0011 0.0151 0.0200

IGD ǫ-MyDE 0.0213 0.0025 0.0172 0.0315
DEMORS 0.2216 0.0292 0.1739 0.2746

∆ ǫ-MyDE 0.2652 0.0377 0.2121 0.3974

Tanaka

Metric - Algorithm mean σ best worst
DEMORS 0.6062 0.2433 0.2295 1.0000

SC ǫ-MyDE 0.0617 0.0581 0.0000 0.2889
DEMORS 0.0015 0.0007 0.0007 0.0039

IGD ǫ-MyDE 0.0106 0.0138 0.0020 0.0589
DEMORS 0.5638 0.1763 0.3546 1.0642

∆ ǫ-MyDE 0.9886 0.2833 0.3718 1.4192

Welbeam

Metric - Algorithm mean σ best worst
DEMORS 0.7982 0.2048 0.2532 1.0000

SC ǫ-MyDE 0.0063 0.0180 0.0000 0.0879
DEMORS 0.0242 0.0193 0.0084 0.0765

IGD ǫ-MyDE 0.0705 0.0577 0.0189 0.3204
DEMORS 0.7782 0.1933 0.4545 1.3390

∆ ǫ-MyDE 0.9692 0.1670 0.6784 1.3419

Table 6.3: Performance measure results with respect to two set coverage (SC),
inverted generational distance (IGD) and spread (∆) for the constrained
problems.

Final remarks 117

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2
 ZDT1 Pareto front
 -MyDE

Fu
nc

tio
n

2

Function 1

(a) ǫ-MyDE

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
 ZDT1 Pareto Front
 DEMORS

Fu
nc

tio
n

2

Function 1

(b) DEMORS

Figure 6.4: Pareto fronts obtained with ǫ-MyDE and DEMORS for ZDT1.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fu
nc

tio
n

2

Function 1

 ZDT2 Pareto front
 -MyDE

(a) ǫ-MyDE

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
 ZDT2 Pareto Front
 DEMORS

Fu
nc

tio
n

2

Function 1

(b) DEMORS

Figure 6.5: Pareto fronts obtained with ǫ-MyDE and DEMORS for ZDT2.

118

CHAPTER 6. EXPLOITATION: A LOCAL SEARCH BASED ON ROUGH SETS
THEORY

0.0 0.2 0.4 0.6 0.8 1.0
-1

0

1

2

Fu
nc

tio
n

2

Function 1

 ZDT3 Pareto front
 -MyDE

(a) ǫ-MyDE

0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.5

0.0

0.5

1.0 ZDT3 Pareto Front
DEMORS

Fu
nc

tio
n

2
Function 1

(b) DEMORS

Figure 6.6: Pareto fronts obtained with ǫ-MyDE and DEMORS for ZDT3.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Fu
nc

tio
n

2

Function 1

 ZDT4 Pareto front
 -MyDE

(a) ǫ-MyDE

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0
 ZDT4 Pareto Front
 DEMORS

Fu
nc

tio
n

2

Function 1

(b) DEMORS

Figure 6.7: Pareto fronts obtained with ǫ-MyDE and DEMORS for ZDT4.

Final remarks 119

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Fu
nc

tio
n

2

Function 1

 ZDT6 Pareto front
 -MyDE

(a) ǫ-MyDE

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

0.0

0.2

0.4

0.6

0.8

1.0 ZDT6 Pareto Front
 DEMORS

Fu
nc

tio
n

2

Function 1

(b) DEMORS

Figure 6.8: Pareto fronts obtained with ǫ-MyDE and DEMORS for ZDT6.

0 50 100 150 200

0

10

20

30

40

50

Fu
nc

tio
n

2

Function 1

 Binh2 Pareto Front
 -MyDE

(a) ǫ-MyDE

0 50 100 150 200

0

10

20

30

40

50

Fu
nc

tio
n

2

Function 1

 Binh2 Pareto Front
 DEMORS

(b) DEMORS

Figure 6.9: Pareto fronts obtained with ǫ-MyDE and DEMORS for Binh2.

120

CHAPTER 6. EXPLOITATION: A LOCAL SEARCH BASED ON ROUGH SETS
THEORY

-4 -2 0 2 4 6 8
7.4

7.6

7.8

8.0

8.2

8.4

8.6

Fu
nc

tio
n

2

Function 1

 Kita Pareto Front
 -MyDE

(a) ǫ-MyDE

-4 -2 0 2 4 6 8
7.4

7.6

7.8

8.0

8.2

8.4

8.6

Fu
nc

tio
n

2
Function 1

 Kita Pareto Front
 DEMORS

(b) DEMORS

Figure 6.10: Pareto fronts obtained with ǫ-MyDE and DEMORS for Kita.

26 27 28 29 30
9.16

9.18

9.20

9.22

9.24

9.26

9.28

9.30

9.32

9.34

Fu
nc

tio
n

2

Function 1

 Osyczka Pareto Front
 -MyDE

(a) ǫ-MyDE

26 27 28 29 30
9.16

9.18

9.20

9.22

9.24

9.26

9.28

9.30

Fu
nc

tio
n

2

Function 1

 Osyczka Pareto Front
 DEMORS

(b) DEMORS

Figure 6.11: Pareto fronts obtained with ǫ-MyDE and DEMORS for Osyczka.

Final remarks 121

-300 -250 -200 -150 -100 -50 0

0

10

20

30

40

50

60

70

80

Fu
nc

tio
n

2

Function 1

 Osyczka2 Pareto Front
 -MyDE

(a) ǫ-MyDE

-300 -250 -200 -150 -100 -50 0

0

10

20

30

40

50

60

70

80

Fu
nc

tio
n

2

Function 1

 Osyczka2 Pareto Front
 DEMORS

(b) DEMORS

Figure 6.12: Pareto fronts obtained with ǫ-MyDE and DEMORS for Osy-
czka2.

0 50 100 150 200 250
-250

-200

-150

-100

-50

0

Fu
nc

tio
n

2

Function 1

 Srinivas Pareto Front
 -MyDE

(a) ǫ-MyDE

0 50 100 150 200 250
-250

-200

-150

-100

-50

0

Fu
nc

tio
n

2

Function 1

 Srinivas Pareto Front
 DEMORS

(b) DEMORS

Figure 6.13: Pareto fronts obtained with ǫ-MyDE and DEMORS for Srinivas.

122

CHAPTER 6. EXPLOITATION: A LOCAL SEARCH BASED ON ROUGH SETS
THEORY

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fu
nc

tio
n

2

Function 1

 Tanaka Pareto Front
 -MyDE

(a) ǫ-MyDE

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fu
nc

tio
n

2
Function 1

 Tanaka Pareto Front
 DEMORS

(b) DEMORS

Figure 6.14: Pareto fronts obtained with ǫ-MyDE and DEMORS for Tanaka.

4 8 12 16 20 24 28

0.000

0.005

0.010

0.015

0.020

0.025

Fu
nc

tio
n

2

Function 1

 Welbeam Pareto Front
 -MyDE

(a) ǫ-MyDE

4 8 12 16 20 24 28

0.000

0.005

0.010

0.015

0.020

0.025

Fu
nc

tio
n

2

Function 1

 Welbeam Pareto Front
 DEMORS

(b) DEMORS

Figure 6.15: Pareto fronts obtained with ǫ-MyDE and DEMORS for Welded
Beam.

7
Distribution: PAǫ-dominance

Researchers have proposed several mechanisms to reduce the number of non-
dominated solutions generated by a MOEA (most of them applicable to ex-
ternal archives): clusters [175], adaptive grids [88], crowding [39] and relaxed
forms of Pareto dominance [98]. However, next we only mention those that
need an external archive to store nondominated solutions, namely:

• Adaptive grid: Proposed by Knowles & Corne [88], the adaptive grid
is really a space formed by hypercubes. Such hypercubes have as many
components as objective functions has the problem to be solved. Each
hypercube can be interpreted as a geographical region that contains an
n number of individuals. The adaptive grid allows us to store nondom-
inated solutions and to redistribute them when its maximum capacity
is reached. A graphical representation of the adaptive grid is shown in
Figure 7.1

• ǫ-dominance: This is a relaxed form of dominance proposed by Lau-
manns et al. [98]. The so-called ε-Pareto set is an archiving strategy
that maintains a subset of generated solutions. It guarantees con-
vergence and diversity according to well-defined criteria, namely the

123

124 CHAPTER 7. DISTRIBUTION: PAǫ-DOMINANCE

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

�
�
�

�
�
�

��
��
��
��

�
�
�

�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�
�

A

B

C

D
E

F

G
H

I
J

K

L
M

N

7

6

5

4

3

2

1

0

 0 1 2 3 4 5 6 7
f1

f2
Size

of objective 1

O
bjective 2

Si
ze

of
 o

bj
ec

tiv
e

2

Hypercube

extra room

corresponding component
to cover in the

Space that we need

Objective 1

objective 1

nDivs = 7

nDivs = 7

Individual with the worst
value in objective 2 and
best value in objective 1

Individual with the worst
value in objective 1 and
best value in objective 2

Figure 7.1: Graphic representation of the adaptive grid mechanism.

value of the ε parameter, which defines the resolution of the grid to be
adopted for the secondary population. The general idea of this mech-
anism is to divide objective function space into boxes of size ε. Each
box can be interpreted as a geographical region that contains a single
solution. The approach accepts a new solution into the ε-Pareto set if
any of the 3 cases holds: 1) it is the only solution in the box which
it belongs to, 2) it dominates to other(s) solution(s) or 3) it competes
against other nondominated solution inside the box, but it is closer to
the origin vertex of the box. This algorithm is very attractive both from
a theoretical and from a practical point of view. However, in order to
achieve the best performance, it is necessary to provide the size of the
box (the ε parameter) which is problem-dependent, and it’s normally
not known before executing a MOEA.

7.1 Pareto-adaptive ǫ-dominance

Laumanns et al. [98] proposed two different methods/schemes to implement
ǫ-dominance: the additive and the multiplicative approaches. We assume all
objectives are to be minimized. Then, given a vector f ∈ R

m and ǫ > 0, for

Pareto-adaptive ǫ-dominance 125

1
f

2
f

Dominated solution

e-dominated solution

Figure 7.2: ǫ-dominance relation example.

the additive scheme f is said to ǫ-dominate all points in the set

{g ∈ R
m : fi − ǫ ≤ gi, for all i = 1, ...,m}

whereas for the multiplicative scheme f is said to ǫ-dominate all points in
the set

{g ∈ R
m : fi(1− ǫ) ≤ gi, for all i = 1, ...,m} .

Although the above definitions assume the same ǫ value for all the objec-
tives, they can be easily generalized to consider a different value for each ob-
jective. In order to do this, we only have to take an ǫi for each i ∈ {1, 2, ...,m}.
Without loss of generality, we assume that 1 ≤ fi ≤ K, for all i.

Both schemes generate a hyper-grid in objective function space with
(

K−1
ǫ

)m
boxes in the additive scheme and

(

− log K
log(1−ǫ)

)m

for the multiplicative

one. As ǫ-dominance only allows one point in each box, these grids could

accommodate a maximum of
(

K−1
ǫ

)m−1
non ǫ-dominated points for the addi-

tive scheme and
(

− log K
log(1−ǫ)

)m−1

non ǫ-dominated points for the multiplicative

scheme. Another possibility would be to ask the decision maker for the num-
ber of desired solutions and adjust the ǫ values in order to achieve that num-
ber. For example, if the decision maker wants T points in the Pareto front,

for the additive scheme we can easily compute the value ǫ = (K − 1) /T
1

m−1 ,

126 CHAPTER 7. DISTRIBUTION: PAǫ-DOMINANCE

Figure 7.3: Uniform grid with 400 boxes (maximum capacity of 20 points)
for the curve x2+y2 = 1. This grid allows a maximum of 12 points (the other
8 points are lost) because either the extreme points are easily ǫ-dominated
or the precision of the grid is insufficient.

that will generate a hyper-grid with a maximum capacity of T points non ǫ-

dominated. Similarly, this leads to an ǫ = 1−K−T
1

1−m
for the multiplicative

scheme.

7.1.1 ǫ-dominance

ǫ-dominance has been found to be an efficient mechanism to maintain di-
versity in multi-objective optimization problems without losing convergence
properties towards the Pareto-optimal set [37, 38, 130]. Moreover, its imple-
mentation is quite easy and the decision maker can control the number of
obtained solutions in a very intuitive way. As it is shown in Laumanns et al.
[98], ǫ-dominance creates a hyper-grid in objective function space where each
box uniquely contains one point. In order to do this, a two-level selection
mechanism is implemented. The first checks a box-level dominance relation,
so that the algorithm always maintains a set of nondominated boxes. In the
second level, if two points share the same box, the traditional Pareto domi-
nance relation is applied, so that the dominating point is retained. If none
of these two points dominates the other, then the criterion normally adopted

Pareto-adaptive ǫ-dominance 127

Figure 7.4: Non-uniform grid with 400 boxes (maximum capacity of 20
points) for the curve x2 + y2 = 1. In this case, because the front is concave,
the grid only allows a maximum of 10 points, losing again both extreme
points of the Pareto front.

is to keep the point closest to the lower lefthand corner of the box (or to the
origin, for more than two objectives). Note that despite the use of this se-
lection mechanism inside each box, this does not affect the convergence rate,
because we are always maintaining the best solutions found so far (following
the ideas of [134]). These mechanisms are also used in our paǫ-dominance.
Thus, both our paǫ-dominance and ǫ-dominance guarantee convergence.

However, ǫ-dominance has some limitations such as the following:

1. We can lose a high number of efficient solutions if the decision maker
does not take into account (or does not know beforehand) the geo-
metrical characteristics of the true Pareto front of the problem to be
solved.

2. It is normally the case that we lose the extreme points of the Pareto
front, as well as points located in segments of the Pareto front that are
almost horizontal or vertical, as shown in Figure 7.3.

3. The upper bound for the number of points allowed by a grid is not easy
to achieve. For a non-adaptive grid, the upper bound is only achieved
when the true Pareto front is linear.

128 CHAPTER 7. DISTRIBUTION: PAǫ-DOMINANCE

4. When adopting a multiplicative scheme, the size of the region ǫ-domi-
nated by the point f ∈ R

m depends on the fi values. Then, the size of
this region is larger in the cases where the fi values increase. For the
same reason, if the fi values are close to zero, ǫ-dominance would be
similar to the traditional Pareto-dominance. This kind of grid is not
suitable, for instance, for concave Pareto fronts (see Figure 7.1).

In order to address some of the problems previously described, we propose
an alternative scheme for the additive ǫ-dominance. Our proposal is called
Pareto-adaptive-ǫ-dominance (paǫ-dominance). This scheme maintains the
good properties of ǫ-dominance while overcoming its main limitations.

In our proposal, we consider not only a different ǫ value for each objective
but also the vector ǫ = (ǫ1, ǫ2, ..., ǫm) associated to each f = (f1,f2, ..., fm) ∈
R

m depending on the geometrical characteristics of the Pareto-optimal front.
In other words, we consider different intensities of dominance for each objec-
tive according to the position of each point along the Pareto front. Then,
the size of the boxes will be adapted depending on the area in the objective
functions space so that boxes will be smaller where needed (normally at the
extremes of the Pareto front), and larger in other less problematic parts of
the front.

To this aim, each Pareto front (that we will assume normalized: 0 ≤ fi ≤
1 for any i) will be associated to one curve of the following family

{xp + yp = 1 : 0 ≤ x, y ≤ 1, 0 < p <∞} .

for bi-objective optimization problems,

{xp + yp + zp = 1 : 0 ≤ x, y, z ≤ 1, 0 < p <∞}

for three dimensional problems, or

{xp
1 + xp

2 + · · ·+ xp
n = 1 : 0 ≤ x1, x2, ..., xn ≤ 1, 0 < p <∞} .

for N -dimensional problems. These families have the following property:
for p > 1, the curve (or surface) is concave and the bigger the p value the
longer the almost horizontal (and almost vertical) parts of the front; and,
for p < 1, the curve (surface) is convex and the lower the p value the longer
the almost horizontal (and almost vertical) stretches in the front. Finally,
for p = 1 we get the linear front x + y = 1. For this last value, it will be

Pareto-adaptive ǫ-dominance 129

f2

f1

P=1

P=2

P=1/3

P=3

P=1/2

Figure 7.5: Curves in the reference set for p = 1
3
, 1

2
, 1, 2, 3. The ǫ values we

have to consider for p = 2 and p = 3 have to be different because x3 + y3 = 1
has longer horizontal and vertical stretches than x2 + y2 = 1. The same
happens for p = 1

3
and p = 1

2
.

shown that our scheme coincides with the additive ǫ-dominance. Thus, our
proposal generalizes the ǫ-dominance concept introduced by Laumanns et al.
[98] (just taking p = 1 in Figure 7.3).

In Figure 7.1.1, we show five different curves of this family for p ∈
{

1
3
, 1

2
, 1, 2, 3

}

.

In order to decide the value of p, we need an initial Pareto front approx-
imation, denoted by F , that will determine which value of p fits better to
our front. This is, we will use F to be the model where the p-curve should
fit. Then, the number of efficient points included in F can be critical for
the final performance, because if the value of p is not appropriate, then the
grid will not be appropriate neither. Obviously, the higher the number of
efficient points in F the better the performance of the grid generated. On the
other hand, if we want to maintain the diversity properties of ǫ-dominance,
we should generate the first grid as soon as possible. For example, for a grid
with a maximum capacity of 100 vectors, the different experiments performed
by the authors indicated that the best results are obtained when the number
of points in F is between 75 and 125 (we set it at 100 for our experiments).

130 CHAPTER 7. DISTRIBUTION: PAǫ-DOMINANCE

So, we store all the nondominated points found in the archive (or secondary
population) during the search process checking the Pareto dominance rela-
tion among them until reaching the number of desired nondominated points
to generate the first grid.

To compute the value of p, we calculate the area (hypervolume) under the
poligonal line (surface) formed by points in F (see Section 7.1.4 for further
details). Once we know this area, we estimate the value of p ∈ (0, +∞)
by means of an interpolation process. We choose p when the area under
xp + yp = 1 is as similar to the F hypervolume as desired (this precision is
set beforehand).

Although we are assuming that the Pareto front is symmetrical, this
method could be generalized using the sets

{xp + yq = 1 : 0 ≤ x, y ≤ 1, 0 < p, q <∞} ,

{xp + yq + zr = 1 : 0 ≤ x, y, z ≤ 1, 0 < p, q, r <∞}

or

{xp1

1 + xp2

2 + · · ·+ xpn
n = 1 : 0 ≤ x1, x2, ..., xn ≤ 1, 0 < p1, p2, ..., pn <∞} .

Nevertheless, the association procedure is more unstable, as it depends on F
to a higher degree and the error for the estimated p and q values could be
large.

Obviously, ǫ-dominance and paǫ-dominance work better for continuous
fronts. In the case of disconnected fronts, both schemes have to be han-
dled more carefully. The approximation of the p value could be less realistic
depending on the number of parts that conform the Pareto front and the
distance between them. Nevertheless, paǫ-dominance has been tested with
Kursawe’s problem with success, and this problem has a Pareto front con-
sisting of four (disconnected) segments.

7.1.2 ǫ computation

Once the p value is estimated and the number T of points desired by the
decision maker is known, we compute the sizes of the boxes for each objective
i ∈ {1, 2, ...,m}, that is, the vector ǫi = (ǫi

1, ǫ
i
2, ..., ǫ

i
T).

Pareto-adaptive ǫ-dominance 131

We use geometric sequences to do this1: we compute these values accord-
ing to a geometric sequence depending on p, T and the size of the first box
for each dimension, ǫi

1, so that, for n ≥ 2,

ǫi
n =

ǫi
n−1

pvi
=

ǫi
n−2

(pvi)2 = · · · =
ǫi
1

(pvi)n−1 (7.1)

where vi controls the speed of variation of the ǫ values in order to get a
uniform distribution in the Pareto front.

Then, for each objective i ∈ {1, 2, ...,m} we have to estimate the size of
the first box, ǫi

1, and the speed vi. To this end, we propose the following
system of nonlinear equations, for each i,

T
∑

n=1

ǫi
n = 1

T/2
∑

n=1

ǫi
n = 1

2
(1

p)

. (7.2)

The first equation represents the fact that the sum of the sizes of all boxes
must be equal to the range of fi. The second equation tries to spread the
obtained nondominated points along the front and forces the accommodation
of T/2 nondominated points in one half of the objective i, and the remain-
ing T/2 points in the other half. Taking into account that xp + yp = 1 is
symmetric, it is easy to obtain the middle point:

(

1
21/p , 1

21/p

)

.

As both series in (7.2) are geometric, it follows that

T
∑

n=1

ǫi
n =

∑T
n=1

ǫi
1

(pvi)n−1 = ǫi
1

1−(1
pvi

)T

1− 1
pvi

= ǫi
1

pTvi−1

(pvi−1)p(T−1)vi
= 1

T/2
∑

n=1

ǫi
n =

∑T/2
n=1

ǫi
1

(pvi)n−1 = ǫi
1

1−(1
pvi

)T/2

1− 1
pvi

= ǫi
1

p
T
2 vi−1

(pvi−1)p(T
2 −1)vi

= 1
21/p

. (7.3)

1Geometric sequences allow us to easily control the size of the boxes either for increasing
or for decreasing sizes (that is, for convex or concave problems). Also, they do not have to
be explicitly added, since the expression to compute its summation is known beforehand.

132 CHAPTER 7. DISTRIBUTION: PAǫ-DOMINANCE

Then, the solutions of (7.3) are

ǫi
1 = (pvi−1)p(T−1)vi

pTvi−1

(

1− 2
1
p

)

pTvi + 2
1
p p

T
2

vi − 1 = 0

. (7.4)

But ǫi
1 is already calculated in the first equation and it does not appear

in the second one. So, we only have to solve the second equation in (7.4).
Due to its nonlinearity, we propose to solve it using a numerical method,
for example, a dichotomy method [125]. Although this is not the fastest
numerical method available, we decided to use it because of the simplicity of
its implementation and the easy that results to control the precision required.
Along our experiments, we applied a dichotomy method for vi in the interval
[0.001, 0.1] because we set T = 100 and 1

12
≤ p ≤ 12.

7.1.3 Box index vector

As in the original ǫ-dominance, the dominance relation is generalized among
boxes. That is, at most one element is kept in each box and this representa-
tive vector can only be replaced by a dominating one. To this end, we asso-
ciate with each vector f ∈ R

m a box index vector b(f) = (b1, ..., bm) ∈ Z
m.

So, in a first level, the algorithm always maintains a set of nondominated
boxes (this is, a set of nondominated box index vectors). And in a second
level, if two vectors share the same box, the representative vector is elimi-
nated if the other one dominates it.

In order to calculate the box index vector of f = (f1, f2, ..., fm), we take
bi to be the only integer so that

bi
∑

n=1

ǫi
n ≤ fi <

bi+1
∑

n=1

ǫi
n.

for all i ∈ {1, 2, ...,m}. Again, because both series are geometric, the above
inequalities are equivalent to

ǫi
1

pvi −
(

1
pvi

)bi−1

pvi − 1
≤ fi < ǫi

1

pvi −
(

1
pvi

)bi

pvi − 1
.

Pareto-adaptive ǫ-dominance 133

If we assume that pvi − 1 > 0, it is equivalent to

pvi −

(

1

pvi

)bi−1

≤
fi (p

vi − 1)

ǫi
1

< pvi −

(

1

pvi

)bi

.

Then, by successive (elementary) operations, we have the following equivalent
expressions

ln

(

1

pvi

)bi−1

≥ ln

(

pvi −
fi (p

vi − 1)

ǫi
1

)

> ln

(

1

pvi

)bi

.

(bi − 1) ln

(

1

pvi

)

≥ ln

(

pvi −
fi (p

vi − 1)

ǫi
1

)

> bi ln

(

1

pvi

)

bi − 1 ≤
ln
(

pvi − fi(p
vi−1)

ǫi
1

)

ln
(

1
pvi

) < bi.

Finally, we choose

bi(f) =

log
(

ǫi
1pvi−(pvi−1)fi

ǫi
1

)

log
(

1
pvi

) + 1

 .

It is easy to check that the same bi is obtained if pvi − 1 < 0.
In that way, although the whole objective function space is discretized

into boxes, the nondominated vectors are allocated into boxes whose box
index vectors range from (0, 0, ..., 0) to (T −1, T −1, ..., T −1). Nevertheless,
if vectors outside the above limits are found, we must include them in the
grid (if their box index vectors are non-paǫ-dominated) in one of the two
following ways:

1. Update the grid re-computing new box limits. In this case, a new p
value would be also calculated. This does not ensure the convergence
property of ǫ-dominance [98] and the behavior could be worse.

2. Do not change any of the box limits (the assignment of the elements
to the boxes must remain the same). This guarantees the same con-
vergence properties of ǫ-dominance but the number of nondominated
points could be larger than T . In this case, a larger ǫ value can be
chosen, but the grid would have to be updated again.

134 CHAPTER 7. DISTRIBUTION: PAǫ-DOMINANCE

In our proposed approach we follow the second choice shown above, and,
once the grid is generated, its boundaries are never modified. Note however,
that the grid depends on the quality of the first set of nondominated points,
F , as such set determines the value of p. The best performance is attained
if there is no need to re-adjust this initial grid. We only update the grid
when some of the coordinates of the new box index vector are sufficiently
far to require it, this is, when bi < −3 or bi > T + 3 for some i. The best
results have been obtained when the first grid is generated once F contains at
least 100 nondominated points, as the hyper-grid is almost never re-adjusted
with this setting. This minimum value has been empirically derived after
numerous experiments for the curves xp + yp = 1. In all the cases that the
authors empirically tested, with values close to 100, the value of p that was
obtained was very close to the simulated curve.

Finally, if two vectors f and g share the same box (so, b(f) = b(g))
and neither dominates the other, we choose the one closer (using Euclidean
distance, for example) to the lower lefthand corner of the box,2 denoted by
c(b) = (c1, ..., cm). In order to calculate ci, we sum the size of all the previous
boxes, that is

ci =

bi
∑

n=1

ǫi
n = ǫi

1

pvibi

(pvi − 1)pvi(bi−1)

for all i = 1, 2, ...,m.
In Figure 7.1.3 we can see the grid obtained for x2 + y2 = 1. The figure

clearly indicates how the grid adapts the size of the boxes as needed.

7.1.4 Algorithm for the hypervolume

As we mentioned above, each Pareto front is associated to one curve in

{xp + yp = 1 : 0 ≤ x, y ≤ 1, 0 < p <∞}

by estimating the area (hypervolume) under the polygonal line (surface)
formed by the points in F in objective function space.

Let us assume a bi-objective optimization problem and F = {f j =
(f j

1 , f
j
2) : j = 1, 2, ..., |F |} is the set of nondominated vectors obtained before

2For more than two objectives, a reference point could always be selected in each
hypercube, bearing in mind the characteristics of the problem. As long as the mechanism
used to select this reference point does not change, the convergence properties still hold.

Pareto-adaptive ǫ-dominance 135

Figure 7.6: Alternative grid with 400 boxes (maximum capacity of 20 points)
using paǫ-dominance for the curve x2 + y2 = 1. In this case the grid allows a
maximum of 19 points.

generating the hyper-grid. Obviously, if we rank points in F in ascending
order of magnitude in the first objective, f2 values are ranked in descend-
ing order. Then, the area under the polygonal, A(F), is calculated by the
mean value of the following lower, LA(F), and upper, UA(F), approximation
areas:

LA(F) =

|F |−1
∑

i=1

(

f i+1
1 − f i

1

)

f i+1
2 ,

and

UA(F) =

|F |−1
∑

i=1

(

f i+1
1 − f i

1

)

f i
2.

From these areas, A(F) is

A(F) =
LA(F) + UA(F)

2
.

For the three-dimensional case, the difficulty increases because points
cannot be fully ranked. So, we propose the following procedure:

Initially, the nPoints points are sorted by their values in the third ob-
jective value. These values are then used to make slices. Each slice has a

136 CHAPTER 7. DISTRIBUTION: PAǫ-DOMINANCE

hypervolume in the first 2 objectives (Area). This area is calculated and it is
multiplied by its depth in the third objective; then, the values obtained are
summed up to obtain the total hypervolume of the nPoints points.

Each slice in the hypervolume contains a different number of points, be-
cause we iteratively remove the lowest value point in the third objective.
However, not all the points in each slice contribute to the Area in that slice.
Some points may be dominated in the first two objective values and con-
tribute nothing. So, it is important to re-check dominance (as a maximization
problem) in the first two objective values (not including the third objective)
by each slice to calculate the hypervolume (Area).

7.1.5 Acceptance scheme on paǫ-dominance grid

The identification array divides the whole objective space into hyper-boxes,
each having ǫj size in the j-th objective. With the identification arrays cal-
culated for the offspring c1 and each archive member a, we use the procedure
illustrated in Figure 7.7 and described next:

1. If the identification array Ba of any archive member a dominates that
of the offspring ci, then it means that the offspring is ǫ-dominated by
this archive member and so the offspring is not accepted. Case (a) in
Figure 7.7.

2. If Bci
of the offspring dominates the Ba of any archive member a, the

archive member is deleted and the offspring is accepted. Case (b) in
Figure 7.7.

If neither of the above two cases occur, then it means that the off-
spring is ǫ-non-dominated with respect to the archive contents. There
are two further possibilities in this case:

(a) If the offspring shares the same B vector with an archive member
(meaning that they belong to the same hyper-box), then they
are first checked for the usual non-domination. If the offspring
dominates the archive member or the offspring is nondominated
with respect to the archive member but is closer to the B vector
(in terms of the Euclidian distance) than the archive member,
then the offspring is retained. This is case (c) in Figure 7.7.

paǫ-Dominance results 137

A
f2

f1

B
f2

f1

C
f2

f1

D
f2

f1

Or

Figure 7.7: Four cases of accepting an offspring into the external archive

(b) In the event of an offspring not sharing the same B vector with
any archive member, the offspring is accepted. This is case (d) in
Figure 7.7.

Using the above procedure, we can guarantee the generation of a well-
distributed set of nondominated solutions. Also, the value of ǫ adopted
(defined by the user) regulates the size of the external archive. Thus, there
is no need to pre-fix an upper limit on the size of the archive as done in most
traditional MOEAs.

7.2 paǫ-Dominance results

In order to validate our proposed paǫ-dominance, we adopted three algo-
rithms: Two of them use ǫ-dominance, and in one of them, such a mecha-
nism is replaced by our paǫ-dominance to make the third algorithm. This
will allow us to show also the performance of the same algorithm with and

138 CHAPTER 7. DISTRIBUTION: PAǫ-DOMINANCE

without paǫ-dominance. The three multi-objective evolutionary algorithms
adopted for our experimental study are the following:

1. ǫ-MyDE: This approach was proposed earlier in this thesis (see Sec-
tion 4.1.3 for further details), which uses the ǫ-dominance concept to
retain the nondominated solutions obtained during the evolutionary
process.

2. ǫ-MOEA: This approach was proposed by Deb et al. [37, 38], and it
consists of a steady-state genetic algorithm which maintains an archive
of nondominated individuals. Note however, that this algorithm does
not use the Pareto dominance relation when updating the archive. In-
stead, it uses the ǫ-dominance relation. One parent is selected from
the main population and other from the archive. Then, an offspring is
produced and it is allowed to enter into the archive if ǫ-dominates at
least one element of the archive, and if no archive member ǫ-dominates
it.

3. paǫ-MyDE: This is a modification of the ǫ-MyDE approach indicated
above, in which we include paǫ-dominance instead of the regular ǫ-
dominance concept.

Table 7.1 summarizes the parameter settings adopted for all the algo-
rithms compared. In Table 7.1, P refers to the population at each genera-
tion, Gmax is the total number of generations (or iterations) to be performed.
Note that all the algorithms perform the same number of objective function
evaluations: 7,500 for all test problems. NP is the number of solutions ex-
pected by each algorithm; this parameter is controlled by the value of ~ǫ (~ǫ
values for ǫ-MyDE and ǫ-MOEA have been selected to this end following the
guidelines provided by Laumanns et al. [98]). F is a parameter applicable
only to differential evolution. Pc and Pm are the crossover and mutation
rates, respectively.

7.2.1 Test functions and metrics

We chose five continuous (unconstrained) test problems with different ge-
ometrical characteristics for our experimental study. Note that our choice
of problems was directed by the geometrical characteristics of the Pareto
fronts rather than by the difficulty of solving each test problem, since our

paǫ-Dominance results 139

Parameter ǫ-MyDE ǫ-MOEA paǫ-MyDE
P 100 100 100

NP 100 (approx) 100(approx) 100 (approx)
Gmax 75 75 75
Pc 0.95 1.0 0.95
Pm 1/n 1/n 1/n
F 0.5 – 0.5

Table 7.1: Parameters used by the algorithms compared.

Function k n Type Characteristics
Deb11 2 2 min(f1, f2) Convex, bimodal
Deb52 2 2 min(f1, f2) Concave
Kursawe 2 3 min.(f1, f2) Disconnected
ZDT1 2 30 min.(f1, f2) Multimodal
DTLZ2 3 12 min(f1, f2, f3) Concave, three-dimensional

Table 7.2: k denotes the number of objectives, n the number of decision
variables, Type specifies the type of optimization problem (maximization or
minimization) and Characteristics provides a summary of the geometrical
characteristics of the Pareto front.

goal is to show the advantages of our paǫ-dominance scheme over the original
ǫ-dominance.

The problems selected are the following: Deb11 (convex and bimodal)
and Deb52 (the Pareto front is concave) from [34]; Kursawe’s problem [94]
(the Pareto front is disconnected); ZDT1 (multimodal problem) from [173];
and DTLZ2 from [41] (a three-objective problem). Tables 7.2 and A.2 show
further details of these problems.

7.2.2 Results

In this section, we compare the performance of our proposed paǫ-dominance
using the aforementioned algorithms and five different test functions. Ta-
bles 7.3, 7.4, 7.5, 7.6 and 7.7 show, for each performance measure considered,

140 CHAPTER 7. DISTRIBUTION: PAǫ-DOMINANCE

Algorithm No. of points Chi-Square Spread Crowding
paǫ-MyDE Mean 99.833 7.714 0.230 0.009

SDev 1.003 0.209 0.016 0.001
Max 101 8.255 0.273 0.011
Min 98 7.280 0.191 0.009

ǫ-MyDE Mean 46.433 8.125 0.490 0.042
SDev 1.086 0.216 0.016 0.001
Max 50 8.668 0.526 0.047
Min 45 7.832 0.464 0.038

ǫ-MOEA Mean 49.900 8.581 0.559 0.038
SDev 6.730 1.680 0.120 0.003
Max 60 11.010 0.734 0.041
Min 45 7.317 0.461 0.033

Table 7.3: Mean, standard deviation, maximum and minimum values over
30 runs for the first test problem (Deb11).

its mean value, standard deviation and the maximum and minimum value
over 30 independent runs. We emphasize the best values using boldface.

Table 7.3 shows the results for the first problem considered (Deb11). It
is worth mentioning that paǫ-MyDE achieved the best results in this case,
not only regarding the distribution of solutions, but also with respect to
the number of solutions retained (its average was 99.8 from a maximum of
100). In fact, the paǫ-MyDE obtained the best results with respect to all the
performance measures considered. In Figure 7.8, we show the Pareto fronts
obtained by the three algorithms. This figure graphically shows that our
approach (paǫ-MyDE) has benefited from adopting paǫ-dominance instead
of ǫ-dominance.

Table 7.4 shows the results for the second test problem (Deb52). In this
case, due to an almost horizontal region in the Pareto front, ǫ-dominance
loses a big number of points. Although the number of points generated by
paǫ-MyDE is also far from 100, it finds more than twice the number of points
obtained by the two other algorithms adopting ǫ-dominance. Again, the paǫ-
MyDE obtained the best results with respect to all the performance measures
considered. Regarding the Chi-square metric, paǫ-MyDE is significantly bet-
ter than ǫ-MyDE and ǫ-MOEA, but there are no differences between these

paǫ-Dominance results 141

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8 Deb 11 Pareto Front
 pa -MyDE

Fu
nc

tio
n

2

Function 1

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8 Deb 11 Pareto Front
 -MyDE

Fu
nc

tio
n

2

Function 1

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8
 Deb 11 Pareto Front
 -MOEA

Fu
nc

tio
n

2

Function 1

Figure 7.8: Nondominated solutions generated by paǫ-MyDE (top), ǫ-MyDE
(middle) and ǫ-MOEA (bottom) for the first test problem (Deb11).

142 CHAPTER 7. DISTRIBUTION: PAǫ-DOMINANCE

Algorithm No. of points Chi-Square Spread Crowding
paǫ-MyDE Mean 75.033 6.875 0.377 0.056

SDev 1.494 0.1942 0.046 0.006
Max 78 7.461 0.474 0.068
Min 72 6.510 0.328 0.048

ǫ-MyDE Mean 34.800 8.385 0.502 0.073
SDev 0.833 0.100 0.031 0.007
Max 37 8.646 0.585 0.083
Min 33 8.165 0.452 0.058

ǫ-MOEA Mean 33.600 8.494 0.534 0.105
SDev 0.663 0.188 0.049 0.001
Max 35 8.799 0.580 0.106
Min 33 8.105 0.390 0.101

Table 7.4: Mean, standard deviation, maximum and minimum values over
30 runs for the second test problem (Deb52).

two. In Figure 7.9, we show the Pareto fronts obtained by the three al-
gorithms. Notice that paǫ-MyDE and ǫ-MOEA were both able to find the
extreme points despite the difficult geometrical characteristics of this Pareto
front. Although paǫ-dominance presents the best distribution, there is a gap
in the horizontal part of the front due to the strong asymmetry of the Pareto
front.

Table 7.5 shows the results for the third test problem (Kursawe). In this
case, the performance measures are very similar for the three approaches
compared, although our paǫ-MyDE outperformed the others with respect to
two of them. The reason for this similar performance is that the p value
associated to this problem is close to 1 and, as previously mentioned, ǫ-
dominance and paǫ-dominance are almost the same as the p value gets close to
1. The number of points found is around 60 because this front is disconnected.
In Figure 7.10 we show the Pareto fronts obtained by the three methods. In
this case, paǫ-dominance and ǫ-dominance generate similar grids.

Table 7.6 shows the results for the fourth test problem (ZDT1). Also,
our paǫ-MyDE obtained the best results with respect to all the performance
measures considered. Again, the number of points retained is close to 100
and their distribution is quite good. In Figure 7.11 we show the Pareto fronts

paǫ-Dominance results 143

0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

 Deb 52 Pareto Front
 pa -MyDE

Fu
nc

tio
n

2

Function 1

0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

 Deb 52 Pareto Front
 -MyDE

Fu
nc

tio
n

2

Function 1

0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

 Deb 52 Pareto Front
 -MOEA

Fu
nc

tio
n

2

Function 1

Figure 7.9: Efficient solutions generated by paǫ-MyDE (top), ǫ-MyDE (mid-
dle) and ǫ-MOEA (bottom) for the second test problem (Deb52).

144 CHAPTER 7. DISTRIBUTION: PAǫ-DOMINANCE

Algorithm No. of points Chi-Square Spread Crowding
paǫ-MyDE Mean 63.733 6.113 0.351 0.036

SDev 1.711 0.275 0.025 0.001
Max 68 6.739 0.404 0.040
Min 60 5.645 0.303 0.034

ǫ-MyDE Mean 60.933 6.682 0.300 0.035
SDev 1.031 0.207 0.022 0.001
Max 63 7.303 0.339 0.039
Min 59 6.401 0.241 0.033

ǫ-MOEA Mean 57.433 6.653 0.327 0.035
SDev 0.761 0.224 0.016 0.001
Max 59 7.273 0.358 0.037
Min 56 6.298 0.287 0.033

Table 7.5: Mean, standard deviation, maximum and minimum values over
30 runs for the third test problem (Kursawe).

obtained by the three methods. Notice that paǫ-MyDE was able to find the
extreme points despite the almost vertical region of this Pareto front.

Finally, Table 7.7 shows the results for the fifth test problem (DTLZ2).
Again, best mean values are obtained by paǫ-dominance except for the Chi-
square metric. In Figure 7.12 we show the Pareto fronts obtained. Note that
the graphical results may be misleading in this case, since the distribution
obtained by ǫ-MOEA may appear to have the best spread. However, that
seems to be due to the lower number of points that it obtains. Nevertheless,
the new grid finds more points specially on the extreme areas of the Pareto
front.

7.3 Final remarks

In our proposed scheme, we considered different ǫ-dominance regions depend-
ing on the geometrical characteristics of the Pareto-optimal front. In order
to do this, each Pareto front is associated to one curve of the family

{xp + yp = 1 : 0 ≤ x, y ≤ 1, 0 < p <∞} .

Final remarks 145

Algorithm No. of points Chi-Square Spread Crowding
paǫ-MyDE Mean 93.366 4.684 0.158 0.009

SDev 2.057 0.650 0.013 0.001
Max 98 5.788 0.200 0.011
Min 90 3.401 0.141 0.006

ǫ-MyDE Mean 77.233 5.611 0.211 0.014
SDev 1.605 0.317 0.015 0.002
Max 81 6.392 0.240 0.023
Min 74 5.067 0.181 0.010

ǫ-MOEA Mean 75.266 5.975 0.220 0.012
SDev 0.512 0.189 0.007 0.0005
Max 77 6.505 0.242 0.014
Min 75 5.675 0.205 0.011

Table 7.6: Mean, standard deviation, maximum and minimum values over
30 runs for the fourth problem (ZDT1).

Algorithm No. of points Chi-Square Spread Crowding
paǫ-MyDE Mean 82.633 11.592 0.461 0.043

SDev 16.113 0.442 0.060 0.011
Max 123 12.673 0.598 0.076
Min 61 10.775 0.367 0.026

ǫ-MyDE Mean 69.433 10.944 0.560 0.060
SDev 3.008 0.127 0.065 0.010
Max 77 11.300 0.664 0.081
Min 64 10.786 0.444 0.046

ǫ-MOEA Mean 60.033 10.838 0.523 0.067
SDev 2.168 0.092 0.049 0.007
Max 64 11.199 0.633 0.086
Min 56 10.688 0.426 0.057

Table 7.7: Mean, standard deviation, maximum and minimum values over
30 runs for the fifth test problem (DTLZ2).

146 CHAPTER 7. DISTRIBUTION: PAǫ-DOMINANCE

for bi-objective optimization problems, or

{xp + yp + zp = 1 : 0 ≤ x, y, z ≤ 1, 0 < p <∞}

for three dimensional problems. This way, we take advantage of the pos-
itive aspects of ǫ-dominance (already shown), while addressing some of its
limitations.

On the one hand, paǫ-dominance finds a higher number of efficient points
because the size of the boxes are adjusted specially in those areas where the
Pareto front needs less solutions in any of its dimensions (almost horizontal
or vertical regions of the Pareto front). Also, these solutions are better uni-
formly distributed along the Pareto front because the new grid balances the
size of the boxes being more precise in those areas of the objective function
space in which more solutions are needed. The publication derived from this
chapter is [68].

Final remarks 147

Algorithm 7 The paǫ-dominance algorithm - Part 1

Require: T ← number of solutions given by user
1: procedure paǫ-dominance grid (PnPoints, nPoints, nObjectives)
2: maxV aluef [i]← PnPoints ⊲ maximum values per each nObjectives
3: minV aluef [i]← PnPoints ⊲ minimum values per each nObjectives
4: if nObjectives == 2 then
5: area← Area(PnPoints, nPoints) ⊲ Calculate area
6: p ← get P(area, nObjectives)
7: else
8: hyper ← HyperVolume(PnPoints, nPoints, nObjectives) ⊲

Hypervolume
9: p ← get P(hyper, nObjectives)

10: end if
11: v ← Speed variation(p, T) ⊲ Calculate Speed of Variation
12: aux ← {(pv − 1) · p(T−1)·v}/{p(T ·v) − 1}
13: for i← 0, nObjectives do ⊲ Calculate First ǫ1 in each dimension
14: ǫi

1 ← abs ‖maxV aluef [i]−minV aluef [i]‖· aux;
15: end for
16: end procedure

17: procedure get P(hyper, nObjectives)
18: if nObjectives == 2 then
19: fp ← openFile p.txt ⊲ The file p.txt associates the correct value

of p that corresponds to a specific value of hyper, only for 2 objectives
20: else
21: fp ← openFile 3p.txt ⊲ The file p.txt associates the correct value

of p that corresponds to a specific value of hyper, only for 3 objectives
22: end if
23: repeat ⊲
24: line← ReadNextLine (fp) ⊲ read line. eg: {0.5, 0.1667}
25: if hyper < line2 then ⊲ line2 = Second value of line. eg: 0.1667
26: return lastline1 + (hyper−lastline2)·(line1−lastline1)

(line2−lastline2)

27: end if
28: lastline← line
29: until ¬ (endofFile fp)
30: end procedure

148 CHAPTER 7. DISTRIBUTION: PAǫ-DOMINANCE

Algorithm 8 The paǫ-dominance algorithm - Part 2

31: procedure Speed Variation(p, T)
32: low ← 0.001
33: up ← 1.0
34: lowsign ← Dichotomy fun (p, T , low);
35: repeat
36: medium ← ((up + low) / 2.0)
37: auxsign ← Dichotomy fun (p, T , medium)
38: if (auxsign == lowsign) then
39: low ← medium
40: else
41: up ← medium
42: end if
43: until ((up - low) < 10−4)
44: return ((up + low) / 2.0);
45: end procedure
46: procedure Dichotomy fun(p, T , x)
47: fun ← ((1− 2(1/p)) · p(T∗x)) + 2(1/p) · p(T∗x/2) − 1
48: if (0 < fun) then
49: return 1
50: else
51: return 0
52: end if
53: end procedure

Final remarks 149

-20 -18 -16 -14

-12

-10

-8

-6

-4

-2

0
 Kursawe Pareto Front
 pa -MyDE

Fu
nc

tio
n

2

Function 1

-20 -18 -16 -14

-12

-10

-8

-6

-4

-2

0
 Kursawe Pareto Front
 -MyDE

Fu
nc

tio
n

2

Function 1

-20 -18 -16 -14

-12

-10

-8

-6

-4

-2

0
 Kursawe Pareto Front
 -MOEA

Fu
nc

tio
n

2

Function 1

Figure 7.10: Efficient solutions generated by paǫ-MyDE (top), ǫ-MyDE (mid-
dle) and ǫ-MOEA (bottom) for the third test problem (Kursawe).

150 CHAPTER 7. DISTRIBUTION: PAǫ-DOMINANCE

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
 ZDT1 Pareto Front
 pa -MyDE

Fu
nc

tio
n

2

Function 1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
 ZDT1 Pareto Front
 -MyDE

Fu
nc

tio
n

2

Function 1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
 ZDT1 Pareto Front
 -MOEA

Fu
nc

tio
n

2

Function 1

Figure 7.11: Efficient solutions generated by paǫ-MyDE (top), ǫ-MyDE (mid-
dle) and ǫ-MOEA (bottom) for the fourth test problem (ZDT1).

Final remarks 151

0

10.0
0.4

0.8
1.2

0.0

0.4

0.8

 F
un

ct
io

n
3

 F
un

ct
io

n
1

 pa -MyDE

Function 2

0

10.0
0.4

0.8

0.0

0.4

0.8

 F
un

ct
io

n
3

 F
un

ct
io

n
1

-MYDE

Function 2

0

10.0
0.4

0.8
1.2

0.0

0.4

0.8

 F
un

ct
io

n
3

 F
un

ct
io

n
1

 -MOEA

Function 2

Figure 7.12: Efficient solutions generated by paǫ-MyDE (top), ǫ-MyDE (mid-
dle) and ǫ-MOEA (bottom) for the fifth test problem (DTLZ2).

8
Results

This chapter presents the results that we have obtained using the different
algorithms that we have discussed in previous chapters. First, we present the
comparison of results of our first proposal (the DEMORS algorithm) using
both unconstrained and constrained functions. After that, we present the
results that we get using the SVM-based multi-objective evolutionary algo-
rithm (MOEA) combined with our proposed MOPSO. All the comparisons
are made against a MOEA representative of the state-of-the-art: NSGA-II
[39].

8.1 DEMORS: unconstrained problems

8.1.1 Methodology

Our proposed approach was validated using 9 test problems: five bi-objective
problems from the ZDT set [173] and four problems with three objectives
from the DTLZ set [41]. The definition and characteristics of these test
functions are provided in Appendix A. Our proposed approach is compared

153

154 CHAPTER 8. RESULTS

with respect to those generated by NSGA-II1 [39] and SPEA22 [174], which
are MOEAs representative of the state-of-the-art in the area. In order to
allow a quantitative comparison of results, we adopted the three following
performance measures (a detailed description of these performance measures
is provided in Section 3.3):

• Unary additive epsilon indicator (I1
ε+).

• Inverted generational distance (IGD).

• Spread (∆).

8.1.2 Parameters

In all cases, the parameters are shown in Table 8.1. In order to allow a fair
comparison of results, all the approaches adopted real-numbers encoding and
performed 5000 fitness function evaluations per run.

Parameter DEMORS NSGA-II SPEA2
P 25 100 100

Psecondary 100 – 100
Gmax 200 50 50

Pc 0.7 0.9 0.9
Pm 1/n 1/n 1/n

elitism 0.2 – –
Offspring 1 – –
NumEff 2 – –
NumDom 10 – –

Table 8.1: Parameters used by DEMORS, NSGA-II and SPEA2 for the un-
constrained problems.

1The NSGA-II was obtained from http://www.iitk.ac.in/kangal/codes.shtml and the
parameters suggested in the source code where the same used for these test functions.

2The SPEA2 was obtained from http://www.tik.ee.ethz.ch/sop/pisa/selectors/spea2/

DEMORS: unconstrained problems 155

8.1.3 Results

Table 8.2 shows a summary of our results for all the bi-objective problems
and Table 8.3 shows the results for the problems with three objectives. For
each test problem, we performed 30 independent runs per algorithm. The
results reported in Tables 8.2 and 8.3 are the mean values for each of the
three performance measures, the standard deviation, the best and the worst
value of the 30 runs performed; the best mean values in each case are shown
in boldface. The graphical results are shown in Figures 8.1, 8.2, 8.3, 8.4
and 8.5 for the ZDT set problems and in Figures 8.6, 8.7, 8.8 and 8.9 for the
DTLZ set problems. These plots correspond to the run in the mean value
with respect to the unary additive epsilon indicator. In all the bi-objective
optimization problems, the true Pareto front is shown with a continuous line
and the approximation obtained by each algorithm is shown with circles.

8.1.3.1 ZDT set problems

It can be clearly seen in Table 8.2 that the performance measures show
that our DEMORS produced the best mean values in most cases in the bi-
objective problems. Regarding IGD, there were only two cases in which
the SPEA2 outperformed our approach. With respect to the unary additive
epsilon indicator and spread metrics, our DEMORS outperformed the NSGA-
II and SPEA2 in all cases.

The graphical results shown in Figures 8.1, 8.2, 8.3, 8.4 and 8.5. We can
clearly see that in problems ZDT2, ZDT3, ZDT4 and ZDT6, the NSGA-
II is very far from the true Pareto front; and in ZDT3, ZDT4 and ZDT6,
SPEA2 obtains results that are not close to the true Pareto front, whereas
our DEMORS has already converged to the true Pareto front after only 5000
fitness function evaluations in all the test problems.

Conclusion: ZDT set

If we were asked to sort the MOEAs compared based on their performance
when using the ZDT set problems the order would be the following:

1 2 3
DEMORS SPEA2 NSGA-II

156 CHAPTER 8. RESULTS

ZDT1

Metric - Algorithm mean Std. Desv. best worst
DEMORS 0.3180 0.1900 0.0102 0.5980

I1
ε+ NSGA-II 0.5968 0.4634 0.1376 1.8928

SPEA2 0.8180 0.4330 0.1457 2.0039
DEMORS 0.0010 0.00082 0.0005 0.0044

IGD NSGA-II 0.0003 0.0003 0.0002 0.0004
SPEA2 0.0002 0.0001 0.0002 0.0003

DEMORS 0.5857 0.1750 0.2561 0.8334
∆ NSGA-II 0.6566 0.1835 0.4143 1.0673

SPEA2 0.6352 0.1723 0.2835 0.8877

ZDT2

Metric - Algorithm mean Std. Desv. best worst
DEMORS 0.0297 0.0377 0.0025 0.1538

I1
ε+ NSGA-II 0.2044 0.2644 0.0030 0.7833

SPEA2 0.5430 0.3843 0.0101 1.3142
DEMORS 0.0119 0.0008 0.0113 0.0141

IGD NSGA-II 0.0305 0.0140 0.0114 0.0408
SPEA2 0.0217 0.0140 0.0114 0.0410

DEMORS 0.4461 0.1448 0.2713 0.8255
∆ NSGA-II 0.8472 0.2205 0.4104 1.0331

SPEA2 0.7605 0.2084 0.4185 1.0270

ZDT3

Metric - Algorithm mean Std. Desv. best worst
DEMORS 0.1337 0.0383 0.0869 0.2377

I1
ε+ NSGA-II 1.6298 0.2871 1.1293 2.1879

SPEA2 1.9444 0.5866 1.1597 3.8751
DEMORS 0.0084 0.0007 0.0072 0.0101

IGD NSGA-II 0.0138 0.0001 0.0136 0.0140
SPEA2 0.0139 0.0001 0.0136 0.0142

DEMORS 0.7734 0.0469 0.6866 0.8599
∆ NSGA-II 0.8003 0.0716 0.6987 0.9178

SPEA2 0.8278 0.1118 0.6012 1.0789

ZDT4

Metric - Algorithm mean Std. Desv. best worst
DEMORS 2.6054 2.6306 0.0135 9.1621

I1
ε+ NSGA-II 4.4173 4.1008 0.0350 15.8153

SPEA2 15.2087 15.7190 1.0714 50.7055
DEMORS 0.0119 0.0008 0.0113 0.0141

IGD NSGA-II 0.0305 0.0140 0.0114 0.0408
SPEA2 0.0217 0.0140 0.0114 0.0410

DEMORS 0.4461 0.1448 0.2713 0.8255
∆ NSGA-II 0.8472 0.2205 0.4104 1.0331

SPEA2 0.7605 0.2084 0.4185 1.0270

ZDT6

Metric - Algorithm mean Std. Desv. best worst
DEMORS 2.1209 2.2593 0.0020 6.3006

I1
ε+ NSGA-II 5.4218 1.8146 0.8527 7.7676

SPEA2 5.8388 1.7322 0.1736 8.2088
DEMORS 0.0463 0.0348 0.0116 0.1242

IGD NSGA-II 0.0166 0.0013 0.0140 0.0187
SPEA2 0.0156 0.0010 0.0142 0.0172

DEMORS 0.8748 0.1787 0.4688 1.1747
∆ NSGA-II 1.0880 0.1113 0.7711 1.3080

SPEA2 1.1091 0.1256 0.6700 1.2521

Table 8.2: Performance measures: I1
ε+, IGD and Spread for the ZDT test

problems, comparing: DEMORS, NSGA-II and SPEA2.

DEMORS: unconstrained problems 157

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
 ZDT1 Pareto Front
 DEMORS

Fu
nc

tio
n

2

Function 1

(a) DEMORS

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
 ZDT1 Pareto Front
 NSGA-II

Fu
nc

tio
n

2
Function 1

(b) NSGA-II

0.0 0.2 0.4 0.6 0.8 1.0
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 ZDT1 Pareto Front
 SPEA2

Fu
nc

tio
n

2

Function 1

(c) SPEA2

Figure 8.1: Pareto fronts obtained for ZDT1: DEMORS, NSGA-II and
SPEA2.

158 CHAPTER 8. RESULTS

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
 ZDT2 Pareto Front
 DEMORS

Fu
nc

tio
n

2

Function 1

(a) DEMORS

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.4

0.8

1.2

1.6

2.0
 ZDT2 Pareto Front
 NSGA-II

Fu
nc

tio
n

2

Function 1

(b) NSGA-II

0.0 0.2 0.4 0.6 0.8 1.0
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
 ZDT2 Pareto front
 SPEA2

Fu
nc

tio
n

2

Function 1

(c) SPEA2

Figure 8.2: Pareto fronts obtained for ZDT2: DEMORS, NSGA-II and
SPEA2.

DEMORS: unconstrained problems 159

0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.5

0.0

0.5

1.0 ZDT3 Pareto Front
DEMORS

Fu
nc

tio
n

2

Function 1

(a) DEMORS

0.0 0.2 0.4 0.6 0.8 1.0
-1

0

1

2

3

4
 ZDT3 Pareto front
 NSGA-II

Fu
nc

tio
n

2
Function 1

(b) NSGA-II

0.0 0.2 0.4 0.6 0.8 1.0
-1

0

1

2

3 ZDT3 Pareto front
 SPEA2

Fu
nc

tio
n

2

Function 1

(c) SPEA2

Figure 8.3: Pareto fronts obtained for ZDT3: DEMORS, NSGA-II and
SPEA2.

160 CHAPTER 8. RESULTS

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0
 ZDT4 Pareto Front
 DEMORS

Fu
nc

tio
n

2

Function 1

(a) DEMORS

0.0 0.2 0.4 0.6 0.8 1.0
-1

0

1

2

3

4

5
 ZDT4 Pareto Front
 NSGA-II

Fu
nc

tio
n

2

Function 1

(b) NSGA-II

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

Fu
nc

tio
n

2

Function 1

 ZDT4 Pareto front
 SPEA2

(c) SPEA2

Figure 8.4: Pareto fronts obtained for ZDT4: DEMORS, NSGA-II and
SPEA2.

DEMORS: unconstrained problems 161

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

0.0

0.2

0.4

0.6

0.8

1.0 ZDT6 Pareto Front
 DEMORS

Fu
nc

tio
n

2

Function 1

(a) DEMORS

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

0

1

2

3

4

5

6

Fu
nc

tio
n

2
Function 1

 ZDT6 Pareto front
 NSGA-II

(b) NSGA-II

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

0.0

0.5

1.0

1.5

2.0
 ZDT6 Pareto Front
 SPEA2

Fu
nc

tio
n

2

Function 1

(c) SPEA2

Figure 8.5: Pareto fronts obtained for ZDT6: DEMORS, NSGA-II and
SPEA2.

162 CHAPTER 8. RESULTS

8.1.3.2 DTLZ set problems

With respect to the performance measures (see Table 8.3), DEMORS ob-
tained the best results in all the test functions, showing that the distance
that DEMORS needs to get the Pareto front is closer than the other algo-
rithms. With respect to the IGD metric, DEMORS obtained the best results
in most of the test functions, except for DTLZ1, in which SPEA2 obtains the
best result in DTLZ1. With respect to the diversity metric, DEMORS is out-
performed only in DTLZ2 and DTLZ4. It is clear, that when the algorithms
deal with these problems with three objectives, the difficulty is increased, and
none of them could reach the true Pareto front in DTLZ1, in which is much
harder to reach the true Pareto front with only 5,000 function evaluations.

Graphically, we can see in Figures 8.6, 8.7, 8.8 and 8.9 the different plots
obtained from the three different algorithms. We can see that none of the
algorithms could reach the true Pareto front in DTLZ1, but DEMORS gets
closer than the others. In DTLZ2 and DTLZ3, DEMORS is also closer to
the true Pareto front. In DTLZ4, SPEA2 shows a better distribution of
solutions.

Conclusion: DTLZ set
The spread of solutions of our DEMORS is evidently not the best possible,
but we argue that this is a good trade-off (and the performance measures
back up this statement) if we consider the low computational cost achieved.
Evidently, quality of the spread of solutions is sacrificed at the expense of
reducing the computational cost required to obtain a good approximation of
the Pareto front.

If we were asked to sort the MOEAs compared based on their perfor-
mance when using the DTLZ set problems the order would be the following:

1 2 3
DEMORS SPEA2 NSGA-II

8.2 DEMORS: constrained problems

8.2.1 Methodology

Our approach was validated using seven constrained test problems: Binh2
[12], Kita [85], Osyczka1 and Osyczka2 [116], Srinivas [149], Tanaka [155] and

DEMORS: constrained problems 163

DTLZ1

Metric - Algorithm mean Std. Desv. best worst
DEMORS 80.59 32.4032 61.02 189.43

I1
ε+ NSGA-II 407.31 30.8137 346.37 487.66

SPEA2 383.30 34.8352 316.01 433.37
DEMORS 0.6629 0.0245 0.6219 0.7046

IGD NSGA-II 0.5255 0.1185 0.2161 0.6955
SPEA2 0.4873 0.0983 0.2726 0.6786

DEMORS 0.6077 0.0409 0.5406 0.7058
∆ NSGA-II 0.9131 0.0448 0.8275 1.0169

SPEA2 0.9096 0.0384 0.8331 0.9777

DTLZ2

Metric - Algorithm mean Std. Desv. best worst
DEMORS 0.1672 0.1357 0.0489 0.5430

I1
ε+ NSGA-II 0.9580 0.2109 0.6322 1.4049

SPEA2 0.7255 0.1648 0.4733 0.9976
DEMORS 0.0130 0.0001 0.0129 0.0132

IGD NSGA-II 0.0138 0.0002 0.0136 0.0142
SPEA2 0.0135 0.0001 0.0133 0.0136

DEMORS 0.4803 0.0302 0.4108 0.5254
∆ NSGA-II 0.6127 0.0365 0.5447 0.6794

SPEA2 0.2951 0.0224 0.2643 0.3571

DTLZ3

Metric - Algorithm mean Std. Desv. best worst
DEMORS 166.89 29.49 117.41 225.73

I1
ε+ NSGA-II 1380.38 103.77 1168.54 1540.6

SPEA2 1306.95 134.65 972.52 1590.6
DEMORS 2.5107 0.2001 2.1526 3.0404

IGD NSGA-II 4.6846 0.5199 3.9746 5.7531
SPEA2 4.8363 0.7413 3.2458 6.2143

DEMORS 0.7469 0.0752 0.5755 0.8904
∆ NSGA-II 0.9347 0.0433 0.8187 0.9858

SPEA2 0.8941 0.0666 0.7453 1.0493

DTLZ4

Metric - Algorithm mean Std. Desv. best worst
DEMORS 0.1078 0.0954 0.0497 0.4796

I1
ε+ NSGA-II 0.4504 0.1995 0.1172 0.8690

SPEA2 0.5767 0.2501 0.0517 1.0716
DEMORS 0.0132 0.0004 0.0128 0.0143

IGD NSGA-II 0.0141 0.0011 0.0134 0.0174
SPEA2 0.0136 0.0009 0.0132 0.0174

DEMORS 0.7107 0.0645 0.6094 0.8238
∆ NSGA-II 0.5753 0.1119 0.4821 0.8028

SPEA2 0.3178 0.1286 0.2170 0.7283

Table 8.3: Performance measures: I1
ε+, IGD and Spread for the DTLZ test

problems, comparing: DEMORS, NSGA-II and SPEA2.

164 CHAPTER 8. RESULTS

0
10
20
30

40
50

60
70

0

10

20

30

40

50

60

70

0
10

20
30

40

 DEMORS

Fu
nc

tio
n

3

Function 2

Function 1

(a) DEMORS

0

100

200

300

0
100

200
300

400

0

100

200

300

400

 F
un

ct
io

n
3

 F
un

cti
on

 1

NSGA-II

Function 2

(b) NSGA-II

-50 0 50
100

150
200

250
300

350
400

0

50

100

150

200

0
50

100
150

200
250

300

 SPEA2

Fu
nc

tio
n

3

Functio
n 2Function 1

(c) SPEA2

Figure 8.6: Pareto fronts obtained for DTLZ1: DEMORS, NSGA-II and
SPEA2.

DEMORS: constrained problems 165

0.0
0.2

0.4
0.6

0.8
1.0

1.2

0.0
0.2

0.4
0.6

0.8
1.0

1.2

0.0

0.2

0.4

0.6

0.8

1.0

 Fun
cti

on
 1

 F
un

ct
io

n
3

Function 2

 DEMORS

(a) DEMORS

0.0
0.5

1.0

1.5

2.0

0.0
0.5

1.0
1.5

2.0

0.0

0.5

1.0

1.5

2.0

 F
un

ct
io

n
3

 Function 1

 NSGA-II

Function 2

(b) NSGA-II

0

1
0

1

2

0

1

 F
un

ct
io

n
3

 Function 1

 SPEA2

Function 2

(c) SPEA2

Figure 8.7: Pareto fronts obtained for DTLZ2: DEMORS, NSGA-II and
SPEA2.

166 CHAPTER 8. RESULTS

0
50

100

150

200

0

50

100

150

0
20
40
60
80
100
120
140
160
180
200

 F
un

ct
io

n
3

 Fun
cti

on
 1

Function 2

 DEMORS

(a) DEMORS

0
200

400
600

800
1000

0
200

400
600

800
1000

1200
1400

0

100

200

300

400

500

600

700

800

 F
un

ct
io

n
3

 Functio
n 1

 NSGA-II

Function 2

(b) NSGA-II

0
400

800

1200

1600

0
200

400
600

800
1000

1200

0

200

400

600

800

1000

 F
un

ct
io

n
3

 Function 1

 SPEA2

Function 2

(c) SPEA2

Figure 8.8: Pareto fronts obtained for DTLZ3: DEMORS, NSGA-II and
SPEA2.

DEMORS: constrained problems 167

0.0
0.2

0.4
0.6

0.8
1.0

-0.20.00.20.4
0.6

0.8
1.0

1.2
1.4

1.6

0.0

0.5

1.0

 F
un

ct
io

n
3

 Function 1
Function 2

 DEMORS

(a) DEMORS

0

1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 Function 1

 F
un

ct
io

n
3

NSGA-II

Function 2

(b) NSGA-II

0

1

0

1

0.0

0.5

1.0

1.5

 F
un

ct
io

n
3

 Function 1

 SPEA2

Function 2

(c) SPEA2

Figure 8.9: Pareto fronts obtained for DTLZ4: DEMORS, NSGA-II and
SPEA2.

168 CHAPTER 8. RESULTS

the Welded beam problem [124]. All of them, except for Kita, are minimiza-
tion problems. The definitions of these problems can be found in Appendix A.
The problems have been selected trying to cover all different complexities:
convex, non-convex and disconnected Pareto fronts, linear and nonlinear ob-
jective functions and constraints and different number of decision variables
(from 2 to 6).

In order to allow a quantitative comparison of results, we adopted the
three following performance measures (a detailed description of the perfor-
mance measures can be seen in Section 3.3):

• Size of the space covered (SSC).

• Unary additive epsilon indicator (I1
ε+).

• Spread (∆).

8.2.2 Parameters

In all cases, the parameters are shown in Table 8.4. In order to allow a fair
comparison of results, both approaches adopted real-numbers encoding and
performed 10,000 fitness function evaluations per run. It is important to
mention that the parameter elitism used for DEMORS to handle constraint
problems is increased (from 0.2 to 0.5) due the necessity to find more non-
dominated solutions during the random selection in the first phase of the
algorithm.

8.2.3 Results

Table 8.5 shows a summary of the performance measures results for all the
constrained problems. For each test problem, we performed 30 independent
runs per algorithm. The results reported in Table 8.5 are the mean values for
each of the three performance measures and the standard deviation of the 30
runs performed; the best mean values in each case are shown in boldface.
The graphical results are shown in Figures 8.10, 8.11, 8.12 and 8.13. These
plots correspond to the run in the mean value with respect to the unary
additive epsilon indicator. In all the optimization problems, the true Pareto
front is shown with a continuous line and the approximation obtained by
each algorithm is shown with circles.

DEMORS: constrained problems 169

Parameter DEMORS NSGA-II
P 25 100

Psecondary 100 –
Gmax 400 100

Pc 0.8 0.9
Pm 1/n 1/n

elitism 0.5 –
Offspring 1 –
NumEff 2 –
NumDom 5 –

NumInfea 5 –

Table 8.4: Parameters used by DEMORS and NSGA-II for the constrained
problems.

It can be clearly seen in Table 8.5 that our DEMORS produced the best
mean values in 3 cases (Binh2, Kita and Srinivas) for all the performance
measures, although NSGA-II obtained similar results. For the other 4 prob-
lems (Osyczka1, Osyczka2, Tanaka and Welded beam), NSGA-II obtained
the best mean values for the SSC and I1

ε+ performance measures but DE-
MORS improved all its ∆ values, while results on the first two performance
measures are very similar, too. This is, the results with respect to the SSC
and I1

ε+ performance measures are very similar for all the problems, but DE-
MORS performed better according to the distribution performance measure
∆ for all the problems. These results led us to conclude that the hybridiza-
tion of Differential Evolution and Rough Sets Theory is a competitive al-
ternative to deal with constrained problems. While Differential Evolution
rapidly converges to the Pareto optimum, Rough Sets Theory demonstrated
to be a good local optimizer able to improve the convergence and spread of
the initial approximation obtained in constrained problems.

Conclusion: Constrained Problems

Our results indicate that DEMORS is a competitive MOEA for constrained
multi-objective optimization problems when performing only 10,000 fitness
function evaluations, and it is also able to produce a good spread of solutions
within such a reduced number of evaluations.

170 CHAPTER 8. RESULTS

0 50 100 150 200

0

10

20

30

40

50

Fu
nc

tio
n

2

Function 1

 Binh2 Pareto Front
 DEMORS

(a) DEMORS

0 50 100 150 200

0

10

20

30

40

50

Fu
nc

tio
n

2

Function 1

 Pareto Front
 NSGA-II

(b) NSGA-II

-4 -2 0 2 4 6 8
7.4

7.6

7.8

8.0

8.2

8.4

8.6

Fu
nc

tio
n

2

Function 1

 Kita Pareto Front
 DEMORS

(c) DEMORS

-4 -2 0 2 4 6 8
7.4

7.6

7.8

8.0

8.2

8.4

8.6

Fu
nc

tio
n

2

Function 1

 Kita Pareto Front
 NSGA-II

(d) NSGA-II

Figure 8.10: Pareto fronts for Binh2 and Kita: DEMORS and NSGA-II.

DEMORS: constrained problems 171

26 27 28 29 30
9.16

9.18

9.20

9.22

9.24

9.26

9.28

9.30

Fu
nc

tio
n

2

Function 1

 Osyczka Pareto Front
 DEMORS

(a) DEMORS

26 27 28 29 30
9.16

9.18

9.20

9.22

9.24

9.26

9.28

9.30

Fu
nc

tio
n

2
Function 1

 Osyczka Pareto Front
 NSGA-II

(b) NSGA-II

-300 -250 -200 -150 -100 -50 0

0

10

20

30

40

50

60

70

80

Fu
nc

tio
n

2

Function 1

 Osyczka2 Pareto Front
 DEMORS

(c) DEMORS

-300 -250 -200 -150 -100 -50 0

0

10

20

30

40

50

60

70

80

Fu
nc

tio
n

2

Function 1

 Osyczka2 Pareto Front
 NSGA-II

(d) NSGA-II

Figure 8.11: Pareto fronts for Osyczka 1 and 2: DEMORS and NSGA-II.

172 CHAPTER 8. RESULTS

0 50 100 150 200 250
-250

-200

-150

-100

-50

0

Fu
nc

tio
n

2

Function 1

 Srinivas Pareto Front
 DEMORS

(a) DEMORS

0 50 100 150 200 250
-250

-200

-150

-100

-50

0

Fu
nc

tio
n

2

Function 1

 Srinivas Pareto Front
 NSGA-II

(b) NSGA-II

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fu
nc

tio
n

2

Function 1

 Tanaka Pareto Front
 DEMORS

(c) DEMORS

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fu
nc

tio
n

2

Function 1

 Tanaka Pareto Front
 NSGA-II

(d) NSGA-II

Figure 8.12: Pareto fronts for Srinivas and Tanaka: DEMORS and NSGA-II.

SVM+RS: unconstrained bi-objective problems 173

SSC I1
ε+

Function DEMORS NSGA-II DEMORS NSGA-II

Mean σ Mean σ Mean σ Mean σ
Binh2 0.808 0.000 0.806 0.000 0.007 0.001 0.013 0.002
Kita 0.879 0.002 0.879 0.001 0.013 0.006 0.013 0.003

Osyczka1 0.821 0.084 0.875 0.021 0.107 0.099 0.051 0.027
Osyczka2 0.946 0.012 0.963 0.000 0.034 0.022 0.009 0.003
Srinivas 0.557 0.000 0.556 0.000 0.012 0.003 0.013 0.002
Tanaka 0.718 0.008 0.749 0.001 0.021 0.012 0.012 0.002

Welded Beam 0.953 0.020 0.974 0.003 0.030 0.021 0.009 0.003

∆
Function DEMORS NSGA-II

Mean σ Mean σ
Binh2 0.452 0.018 0.492 0.036
Kita 0.964 0.068 1.038 0.060

Osyczka 0.716 0.164 0.816 0.062
Osyczka2 0.771 0.287 1.210 0.068
Srinivas 0.165 0.015 0.277 0.015
Tanaka 0.918 0.115 1.140 0.045

Welded Beam 0.732 0.188 0.898 0.133

Table 8.5: Comparison of results between DEMORS and the NSGA-II for
constrained problems adopted. The best values are in boldface. σ refers to
the standard deviation over the 30 runs performed.

8.3 SVM+RS: unconstrained bi-objective

problems

After our first experiments with the surrogate methods (see Section 5.4) and
the election of the appropriate leader in PSO (see Section 4.2.3), it became
clear that despite the fact that a good convergence was achieved, this was
obtained at the expense of a poor distribution of the results. Thus, we decided
to use rough sets as a local search engine (see Section 6.1), in order to find
the solutions that are missing in the approximations obtained during the first
phase of our approach performing only 600 evaluations. So, we decided to
perform another 1,400 fitness function evaluations, aiming to fill up the gaps
along the Pareto front.

174 CHAPTER 8. RESULTS

4 8 12 16 20 24 28

0.000

0.005

0.010

0.015

0.020

0.025

Fu
nc

tio
n

2

Function 1

 Welbeam Pareto Front
 DEMORS

(a) DEMORS

4 8 12 16 20 24 28

0.000

0.005

0.010

0.015

0.020

0.025

Fu
nc

tio
n

2

Function 1

 Welbeam Pareto Front
 NSGA-II

(b) NSGA-II

Figure 8.13: Pareto fronts for Welded Beam: DEMORS and NSGA-II.

8.3.1 Methodology

Our approach was validated using five bi-objective problems from the ZDT
set [173]. The definition and characteristics of these test functions are pro-
vided in Appendix A. Our proposed approach is compared with respect to
those generated by NSGA-II, which is a MOEA representative of the state-
of-the-art in the area. In order to allow a quantitative comparison of results,
we adopted the three following performance measures and (a detailed de-
scription of the performance measures can be seen in Section 3.3):

• Two Set coverage (SC).

• Inverted generational distance (IGD).

• Spread (∆).

8.3.2 Parameters

In all cases, the parameters are shown in Table 8.6. In order to allow a
fair comparison of results, both approaches adopted real-numbers encoding
and performed 2,028 fitness function evaluations per run in total3. We de-

3We performed 2,028 fitness function evaluations because the NSGA-II requires a pop-
ulation size which is multiple of 4. Using P = 52 and Gmax = 39, we get 2,028 evaluations.

SVM+RS: unconstrained bi-objective problems 175

cided to use a population of 52 for the NSGA-II to give an opportunity to
develop te solutions for more generations, in this case 39, and get a better
approximation.

Parameter SVM+RS NSGA-II
P 100 52

Gmax – 39
Internal Pmopso 100 –
Internal Gmopso 100 –

PSO Flight w, c1, c2 0.1, 0.1, 1.4 –
Pc – 0.9
Pm 1/n 1/n

Offspring 1 –
NumEff 2 –
NumDom 10 –

Evaluations 2,028 2,028

Table 8.6: Parameters used by SVM+RS and NSGA-II for the ZDT test
problems.

8.3.3 Results

The results reported in Table 8.7 are the mean values for each of the three
performance measures adopted (SC, IGD and ∆) and the standard deviation
of the 10 runs performed with 2028 evaluations in total for both approaches
(SVM+RS and NSGA-II). The best mean values in each case are shown in
boldface in Table 8.7. The graphical results are shown in Figures 8.14, 8.15
and 8.16. These plots correspond to the run in the mean value with respect to
the inverted generational distance metric. In all the optimization problems,
the true Pareto front is shown with a continuous line and the approximation
obtained by each algorithm is shown with circles.

It can be observed that in the ZDT test problems, our approach pro-
duced the best results with respect to the SC performance measure in all
cases except for ZDT4. The same applies for the IGD performance measure.
Also, our approach outperformed the NSGA-II with respect to the spread

176 CHAPTER 8. RESULTS

performance measure in three cases (ZDT2, ZDT3 and ZDT4). Graphically,
it can be seen that our approach gets closer than the NSGA-II to the true
Pareto front in ZDT1, ZDT2, ZDT3 and ZDT6, but not in ZDT4. The poor
performance of both approaches in ZDT4 might be attributed to the bad
scalability presented by both approaches.

Conclusion: Surrogate Methods
Our results indicate that the NSGA-II, despite being a highly competitive
MOEA, is not able to converge to the true Pareto front in most of the test
problems adopted when performing only 2,000 fitness function evaluations.
This hybrid algorithm (SVM+RS) provides competitive results in most of
the test problems adopted. We believe that our approach can be a good
choice in real-world problems in which each evaluation of the fitness function
is very expensive (computationally speaking).

8.4 Final remarks

These results seem to indicate that our approaches could be a viable alterna-
tive for real-world applications in which each evaluation of the fitness func-
tion is very expensive (computationally speaking). In such applications, we
can afford sacrificing a good distribution of solutions for the sake of obtain-
ing a reasonably good approximation of the Pareto front with a low num-
ber of evaluations. However, there exists a well-known theorem, the “NO
FREE LUNCH THEOREM” (NFL) proposed by Wolpert and Macready
[168], which states that: “any two optimization algorithms are equivalent
when their performance is averaged across all possible problems.” If the con-
dition for NFL holds approximately, then all algorithms yield approximately
the same results over all the test functions.

So, we can conclude that our algorithms are suitable to deal with the
multi-objective problems in which a low number of fitness evaluations are
required. But, we can not conclude that our algorithms will perform always
better than those representative of the state-of-the-art, as eventually the
other algorithms will get a comparable or better performance than ours when
the number of fitness function evaluations is increased.

Final remarks 177

SC IGD

Function SVM+RS NSGA-II SVM+RS NSGA-II

Mean σ Mean σ Mean σ Mean σ
ZDT1 0.8755 0.1785 0.0725 0.1676 0.0061 0.0046 0.0168 0.0021
ZDT2 0.9690 0.0505 0.0000 0.0000 0.0026 0.0027 0.0382 0.0062
ZDT3 0.6453 0.3343 0.0372 0.0668 0.0145 0.0071 0.1190 0.0113
ZDT4 0.0167 0.0500 0.7937 0.2512 0.7397 0.1554 0.1511 0.0405
ZDT6 0.9208 0.1886 0.0000 0.0000 0.0135 0.0025 0.0548 0.0092

∆
Function DEMORS NSGA-II

Mean σ Mean σ
ZDT1 0.8308 0.1987 0.8194 0.0324
ZDT2 0.5684 0.2338 0.9711 0.0696
ZDT3 0.8684 0.0943 0.9475 0.0296
ZDT4 0.9572 0.0411 1.0795 0.1026
ZDT6 1.1000 0.1297 0.9588 0.0274

Table 8.7: Comparison of results between the SVM+RS algorithm and the
NSGA-II for the five test problems adopted (2000 evaluations). The best val-
ues are in boldface. σ refers to the standard deviation over the 30 performed
runs.

0.0 0.2 0.4 0.6 0.8 1.0
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 ZDT1 Pareto front
 SVM+RS

Fu
nc

tio
n

2

Function 1

(a) SVM+RS

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Fu
nc

tio
n

2

Function 1

 ZDT1 Pareto front
 NSGA-II

(b) NSGA-II

Figure 8.14: Pareto fronts obtained for ZDT1: SVM+RS and NSGA-II.

178 CHAPTER 8. RESULTS

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fu
nc

tio
n

2

Function 1

 ZDT2 Pareto Front
 SVM+RS

(a) SVM+RS

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Fu
nc

tio
n

2

Function 1

 ZDT2 Pareto Front
 NSGA-II

(b) NSGA-II

0.0 0.2 0.4 0.6 0.8 1.0
-1

0

1

2

Fu
nc

tio
n

2

Function 1

 ZDT3 Pareto Front
 SVM+RS

(c) SVM+RS

0.0 0.2 0.4 0.6 0.8 1.0
-1

0

1

2

Fu
nc

tio
n

2

Function 1

 ZDT3 Pareto Front
 NSGA-II

(d) NSGA-II

Figure 8.15: Pareto fronts obtained for ZDT2 and ZDT3: SVM+RS and
NSGA-II.

Final remarks 179

0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

50

60

70

80

90

Fu
nc

tio
n

2

Function 1

 ZDT4 Pareto Front
 SVM+RS

(a) SVM+RS

0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

50

Fu
nc

tio
n

2
Function 1

 ZDT4 Pareto Front
 NSGA-II

(b) NSGA-II

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

0

1

2

3

4

5

6

Fu
nc

tio
n

2

Function 1

 ZDT6 Pareto Front
 SVM+RS

(c) SVM+RS

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Fu
nc

tio
n

2

Function 1

 ZDT6 Pareto Front
 NSGA-II

(d) NSGA-II

Figure 8.16: Pareto fronts obtained for ZDT4 and ZDT6: SVM+RS and
NSGA-II.

9
Final Remarks

9.1 Summary

The main goal of this research has been to design techniques that improve the
efficiency (defined in terms of the number of fitness function evaluations per-
formed) of a multi-objective evolutionary algorithm when solving problems
of relatively high dimensionality (up to 30 decision variables). When solv-
ing a multi-objective problem, it is very important to do a good exploration
at the beginning of the search and find quickly. After that, an exploitation
of those good solutions is needed to accelerate the convergence and finally
get the true Pareto front of the multi-objective problem. Additionally, a
mechanism to keep the nondominated solutions is normally used to retain a
well-distributed set of solutions along the Pareto front. We have presented
different mechanisms that tackle each of these problems: exploration, ex-
ploitation and distribution. In Figure 9.1, we show the different approaches
that were proposed in this work, and a brief description of them is provided
next:

• We have introduced an approach that uses differential evolution to
solve both unconstrained and constrained multi-objective optimization

181

182 CHAPTER 9. FINAL REMARKS

Proposed Approach:

- Differential Evolution

- Surrogate based
with MOPSO

Proposed Approach:

- Rough Sets Theory

Proposed Approach:

- pa - Dominanceε

Figure 9.1: Different mechanisms proposed to deal with efficiency on MOEAs.

problems. The high convergence rate that characterizes the differential
evolution algorithm was controlled using two elitist selection schemes.
Our proposed approach was able to produce good results and was able
to find good solutions with a high convergence rate in a low number of
fitness function evaluations. The constraint-handling scheme adopted
in our algorithm allowed a successful exploration of the search space
even when the optimum lies on the boundary between the feasible and
infeasible regions (refer to Section 4.1.3 in page 61 for further details).

• We used four different schemes to select a leader in the PSO flight
equation in combination with the surrogate model to approximate the
functions using supervised learning. From the initial comparison, we
concluded that the PSO scheme based on selecting a leader that dom-
inates the particle was the most appropriate model to use as a search
engine, because it provides a good (although insufficient) approxima-
tion of the Pareto front. (refer to Section 4.2.2 in page 71 for further
details).

• We have presented a study of surrogate methods to solve multi-objective
problems with high dimensionality. Three different methods were used
in our comparative study: artificial neural networks (ANNs), radial ba-
sis function (RBFs) and support vector machines (SVMs), all of them
in their regression form, in order to approximate the function using su-

Conclusions 183

pervised learning. From this study, we concluded that the SVMs were
the most appropriate model for dealing with the type of problems of
our interest, because they provide a good approximation of the true
Pareto front, although they are unable to produce a good spread of the
solutions. (refer to Section 5.3 in page 96 for further details).

• We have introduced a local search mechanism based on rough sets
theory in order to intensify the search around the solutions obtained
by the previous phase that is able to find good solutions near the Pareto
front. We did an hybridization with both approaches: 1) differential
evolution and 2) surrogate based MOEA, in order to improve the local
exploration around the nondominated solutions found so far. If the
search engine adopted to produce a coarse-grained approximation of
the Pareto front is efficient (as in our case), then a good approximation
of the true Pareto front can be achieved with a low computational cost.
(refer to Section 6.1.1 in page 107 for further details).

• We have proposed an alternative approach for the ǫ-dominance (which
we call paǫ-dominance). In our proposed scheme, we considered differ-
ent ǫ-dominance regions depending on the geometrical characteristics
of the Pareto-optimal front. We took advantage of the positive aspects
of ǫ-dominance, while addressing some of its limitations. On the one
hand, paǫ-dominance finds a higher number of nondominated solutions
because the size of the boxes are adjusted to the shape of the Pareto
front. Also, these solutions are better uniformly distributed along the
Pareto front because the new grid balances the size of the boxes being
more precise in those areas of the objective function space in which
more solutions are needed. (refer to Chapter 7 in page 123 for further
details).

9.2 Conclusions

The high number of fitness evaluations performed by EAs are often com-
putationally expensive, time-consuming and problematic in many real-world
applications. Thus, our main purpose was to develop different techniques
aimed to improve efficiency, trying to reduce the number of fitness function
evaluations performed by a MOEA. We observed that the use of a hybrid

184 CHAPTER 9. FINAL REMARKS

algorithm was a suitable way to obtain a good approximation of the uncon-
strained and constrained MOP problems with a few number of fitness eval-
uations. We used an algorithm with a fast convergence rate to find quickly
promising solutions. After that, a local optimizer was used to exploit those
good solutions to accelerate the convergence and finally get to the true Pareto
front of the multi-objective problem.

The following conclusions were obtained during the development process
of the approach, its experimental validation, as well as its application in
multi-objective optimization:

• We have presented a new hybrid multi-objective optimization algorithm
for unconstrained and constrained MOP problems based on the use of a
fast differential evolution and a local search engine based on rough sets.
The proposed approach was found to provide very competitive results
with respect to other previous works (NSGA-II and SPEA2) in a variety
of test problems, in spite of the fact that it performed only 5,000 and
10,000 fitness function evaluations for unconstrained and constrained
MOP problems, respectively. Our comparison of results indicated that
our approach clearly outperforms the NSGA-II and SPEA2, which are
two of the most competitive MOEAs known to date.

• The hybridization of a fast MOEA with a local search engine is a suit-
able and powerful tool. If the search engine adopted to produce a
coarse-grained approximation of the Pareto front is efficient (as in our
case), then a good approximation of the true Pareto front can be finally
achieved with an small extra additional cost by using the rough sets
based local optimizer.

• We used the surrogate models in combination with a local search pro-
cedure based on rough sets to solve multi-objective problems. These
results seem to indicate that our hybrid approach SVM+RS can be a
viable alternative for real-world applications in which each evaluation
of the fitness function is very expensive (computationally speaking).
In such applications, we can afford sacrificing a good distribution of
solutions for the sake of obtaining a reasonably good approximation of
the Pareto front with a low number of evaluations.

• In order to assess the performance of our proposed paǫ-dominance, we
solved five test problems with different geometrical characteristics and

Future Work 185

used three standard metrics designed to measure diversity properties
and one more measure related to the number of points found. In all
cases, paǫ-dominance has been found to be more efficient in getting a
higher number of nondominated solutions with a better spread. Thus,
we conclude that paǫ-dominance is an advantageous alternative to ǫ-
dominance, particularly when the Pareto front has geometrical char-
acteristics (such as convex, concave, connected, or/and disconnected)
that cause difficulties to ǫ-dominance.

9.3 Future Work

As part of our future work, we intend to improve the performance of the
differential evolution algorithm adopted, by exploring alternative differen-
tial evolution models and operators. Additionally, we are also interested in
coupling the local search mechanisms to different search engines.

We will intend to improve the performance of the surrogate-based al-
gorithm adopted, refining the interaction mechanism between the surrogate
method and the MOEA, such that the interleaving of these two approaches
maximizes performance. We are also interested in including another scheme
to retain solutions in the training set, helping the surrogate models to get a
better approximation of the real functions.

We are interested in validating our proposed scheme with other MOPs (in-
cluding more real-world applications). We also want to refine the hybridiza-
tion scheme, such that a larger reduction in the total number of evaluations
can be achieved.

With respect to the paǫ-dominance method, we plan to generalize our
proposal, so that we can drop our symmetry hypothesis assumed in the curves
of the form xp + yp = 1, considering xp + yq = 1 or xp + yq + zr = 1 for two
and three objective problems respectively. This would certainly be more
unstable than the current proposal, but we believe that such instability can
be controlled using a different way of determining the values of p, and q
(and r, if dealing with a three-objective problem), for a given Pareto front.
Disconnected Pareto front also require a more in-depth analysis, since they
deserve a special treatment when using relaxed forms of Pareto dominance
such as ǫ-dominance or our proposed scheme.

186 CHAPTER 9. FINAL REMARKS

9.4 Publications

The different papers that have been derived from this thesis are the following:

1. Luis V. Santana-Quintero, Carlos A. Coello Coello, Alfredo G.
Hernández-Dı́az and Jesús Moisés Osorio Velázquez, Surrogate-based
Multi-Objective Particle Swarm Optimization, in Proceedings of the
2008 IEEE Swarm Intelligence Symposium (SIS 2008), IEEE Press,
St. Louis, Missouri, USA, September 2008.

2. Luis V. Santana-Quintero, Carlos Coello Coello and Alfredo G.
Hernández-Dı́az, Hybridizing Surrogate Techniques, Rough Sets and
Evolutionary Algorithms to Efficiently Solve Multi-Objective Optimiza-
tion Problems, in Maarten Keijzer et al. (editors), Genetic and Evolu-
tionary Computation Conference (GECCO’2008), pp. 763-764, ACM
Press, Atlanta, Georgia, USA, July 2008.

3. Ricardo Landa-Becerra, Luis V. Santana-Quintero and Carlos Co-
ello Coello, Knowledge Incorporation in Multi-Objective Evolutionary
Algorithms, in Ashish Ghosh et al. (editors), Multi-objective Evolution-
ary Algorithms for Knowledge Discovery from Data Bases, pp. 23–46,
Springer, Berlin, 2008.

4. Alfredo G. Hernández-Dı́az, Luis V. Santana-Quintero, Carlos A.
Coello Coello, Rafael Caballero, and Julián Molina, Rough Sets Theory
for Muli-Objective Optimization Problems, in Carlos Cotta, Simeon
Reich, Antoni Ligeza and Robert Schaefer (editors), Knowledge-Driven
Computing, pp. 81 – 98, ISBN 978-3-540-77474-7 Springer, 2008.

5. Alfredo G. Hernández-Dı́az, Luis V. Santana-Quintero, Carlos A.
Coello Coello and Julián Molina, Pareto-adaptive ǫ-dominance, Evolu-
tionary Computation, Vol. 15, No. 4, pp. 493–517, Winter, MIT Press,
2007.

6. Luis V. Santana-Quintero, Vı́ctor A. Serrano-Hernández, Carlos
A. Coello Coello, Alfredo G. Hernández-Dı́az and Julián Molina, Use
of Radial Basis Functions and Rough Sets for Evolutionary Multi-
Objective Optimization, in Proceedings of the 2007 IEEE Symposium
on Computational Intelligence in Multicriteria Decision Making (MCDM
2007), pp. 107–114, IEEE Press, Honolulu, Hawaii, USA, April 2007.

Publications 187

7. Luis V. Santana-Quintero, Noel Ramı́rez-Santiago, Carlos A. Coello
Coello, Julián Molina Luque and Alfredo Garcia Hernández-D́ıaz, A
New Proposal for Multiobjective Optimization using Particle Swarm
Optimization and Rough Sets Theory, Parallel Problem Solving from
Nature (PPSN IX). 9th International Conference, Springer, pp. 483-
492, LNCS Vol. 4193, Reykjavik, Iceland, September 2006

8. Alfredo G. Hernández-Dı́az, Luis V. Santana-Quintero, Carlos Co-
ello Coello, Rafael Caballero and Julián Molina, A New Proposal for
Multi-Objective Optimization using Differential Evolution and Rough
Sets Theory, in Maarten Keijzer et al. (editors), Genetic and Evolu-
tionary Computation Conference (GECCO’2006), pp. 675-682, Vol. 1,
ACM Press, Seattle, Washington, USA, July 2006, ISBN 1-59593-186-
4.

9. Luis Vicente Santana-Quintero and Carlos A. Coello Coello, An Al-
gorithm Based on Differential Evolution for Multi-Objective Problems,
International Journal of Computational Intelligence Research, Vol. 1,
No. 2, pp. 151-169, 2005 ISSN 0973-1873.

10. Luis Vicente Santana-Quintero and Carlos A. Coello Coello, An
Algorithm Based on Differential Evolution for MultiObjective Prob-
lems, ANNIE Artificial Neural Networks in Engineering, Vol. 15, pp.
211-220, ASME Press, St. Louis, 2005.

A
Test Functions Adopted:
Definitions

189

190 APPENDIX A. TEST FUNCTIONS ADOPTED: DEFINITIONS

Function Objectives Bounds Characteristics

ZDT1
f1(~x) = x1 and g(~x) = 1 + 9

n−1

n
P

i=2
xi

f2(~x, g) = 1 −
p

f1/g(~x)

n = 30
0 ≤ xi ≤ 1,
i = 1, 2, . . . , 30

convex,
connected

ZDT2
f1(~x) = x1 and g(~x) = 1 + 9

n−1

n
P

i=2
xi

f2(~x, g) = 1 − (f1/g(~x))2

n = 30
0 ≤ xi ≤ 1,
i = 1, 2, . . . , 30

nonconvex,
connected

ZDT3
f1(~x) = x1 and g(~x) = 1 + 9

n−1

n
P

i=2
xi

f2(~x, g) = 1 −
p

f1/g(~x) − (f1/g(~x)) sin(10πf1)

n = 30
0 ≤ xi ≤ 1,
i = 1, 2, . . . , 30

discontinuos

ZDT4

f1(~x) = x1

g(~x) = 1 + 10(n − 1) +
n
P

i=2
(x2

i − 10 cos(4πxi))

f2(~x, g) = 1 −
p

f1/g(~x)

n = 10
0 ≤ x1 ≤ 1,
−5 ≤ xi ≤ 5,
i = 2, 3 . . . , 10

nonconvex,

exists 219 local
Pareto-optimal fronts

ZDT6

f1(~x) = 1 − exp(−4x1) sin6(6πx1)

g(~x) = 1 + 9[(
10
P

i=2
xi)/9]

f2(~x, g) = 1 − (f1/g(~x))2

n = 10
0 ≤ xi ≤ 1,
i = 2, 3 . . . , 10

nonconvex

DTLZ1

f1(~x) = 1
2

x1x2(1 + g(~x))

f2(~x) = 1
2

x1(1 − x2)(1 + g(~x))

f3(~x) = 1
2
(1 − x1)(1 + g(~x))

g(~x) = 100[5 +
n
P

i=3
(xi − 0.5)2 − cos(20π(xi − 0.5))]

n = 7
0 ≤ xi ≤ 1
i = 1, ..., 7

linear Pareto front,

contains 115 − 1 local
Pareto-optimal fronts

DTLZ2

f1(~x) = cos(π
2

x1) cos(π
2

x2)(1 + g(~x))
f2(~x) = cos(π

2
x1) sin(π

2
x2)(1 + g(~x))

f3(~x) = sin(π
2

x1)(1 + g(~x))

g(~x) =
n
P

i=3
(xi − 0.5)2

n = 12
0 ≤ xi ≤ 1
i = 1, ..., 12

convex,
connected

DTLZ3

f1(~x) = cos(π
2

x1) cos(π
2

x2)(1 + g(~x))
f2(~x) = cos(π

2
x1) sin(π

2
x2)(1 + g(~x))

f3(~x) = sin(π
2

x1)(1 + g(~x))

g(~x) = 100[10 +
n
P

i=3
(xi − 0.5)2 − cos(20π(xi − 0.5))]

0 ≤ xi ≤ 1
i = 1, ..., 12

nonconvex

contains 310 − 1 local
Pareto-optimal fronts

DTLZ4

f1(~x) = cos(π
2

xα
1) cos(π

2
xα
2)(1 + g(~x))

f2(~x) = cos(π
2

xα
1) sin(π

2
xα
2)(1 + g(~x))

f3(~x) = sin(π
2

xα
1)(1 + g(~x))

g(~x) =
12
P

i=3
(xi − 0.5)2

n = 12;
α = 100
0 ≤ xi ≤ 1
i = 1, ..., 12

convex,
connected

Table A.1: Definition and description of each of the 9 unconstrained test
problems adopted in this thesis.

191

Function Objectives Bounds

Deb11

f1(x1) = x1

f2(x1, x2) = 1
x1

0

@2 − e
−

„

x2−0.2
0.004

«2

− 0.8e
−

„

x2−0.6
0.4

«2 1

A

0.1 ≤ xi ≤ 1
i = 1, 2

Deb52

f1(x1) = 1 − e−4x1 sin4(10πx1)
f2(x1, x2) = g(x2) ∗ h(x1),

where g(x2) = 1 + x2
2 and

h(x1) =

8

<

:

1 −
“

f1(x1)
g(x2)

”10

0

if f1(x1) ≤ g(x2)

otherwise.

0 ≤ xi ≤ 1
i = 1, 2

Kursawe
f1(x1, x2) =

2
P

i=1
−10e

−0.2
q

x2
i
+x2

i+1

f2(x1, x2) =
2

P

i=1

“

|xi|0.8 + 5 sin(x3
i)

”

−5 ≤ xi ≤ 5
i = 1, 2, 3

Table A.2: Objective functions and bounds of the decision variables for each
of the test problems adopted for our experimental study in paǫ-dominance.

192 APPENDIX A. TEST FUNCTIONS ADOPTED: DEFINITIONS

Function Objectives and Constraints Bounds Characteristics

Binh (2) [12]

f1(x, y) = 4x2 + 4y2,

f2(x, y) = (x − 5)2 + (y − 5)2

subject to:

0 ≥ (x − 5)2 + y2 − 25

0 ≥ −(x − 8)2 − (y + 3)2 + 7.7

0 ≤ x ≤ 5,
0 ≤ y ≤ 3

connected,
convex

Kita [85]

Maxf1(x, y) = −x2 + y,

Maxf2(x, y) = 1
2

x + y + 1
subject to:

0 ≥ 1
6

x + y − 13
2

,

0 ≥ 1
2

x + y − 15
2

,
0 ≥ 5x + y − 30

0 ≤ x ≤ 7,
0 ≤ y ≤ 7

connected,
concave

Osyckza [116]

f1(x, y) = x + y2,

f2(x, y) = x2 + y
subject to:
0 ≤ 12 − x − y,

0 ≤ x2 + 10x − y2 + 16y − 80

2 ≤ x ≤ 7,
5 ≤ y ≤ 10

disconnected,
convex

Osyckza (2) [116]

f1(~x) = −25(x1 − 2)2 + (x2 − 2)2 + (x3 − 1)2

+ (x4 − 4)2 + (x5 − 1)2,

f2(~x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6
subject to:
0 ≤ x1 + x2 − 2,
0 ≤ 6 − x1 − x2,
0 ≤ 2 − x2 + x1,
0 ≤ 2 − x1 + 3x2,

0 ≤ 4 − (x3 − 3)2 − x4,

0 ≤ (x5 − 3)2 + x6 − 4

0 ≤ x1, x2, x6 ≤ 10,
1 ≤ x3, x5 ≤ 5,
0 ≤ x4 ≤ 6

disconnected,

Srinivas [149]

f1(x, y) = (x − 2)2 + (y − 1)2 + 2,

f2(x, y) = 9x − (y − 1)2

subject to:

0 ≥ x2 + y2 − 225,
0 ≥ x − 3y + 10

−20 ≤ x ≤ 20,
−20 ≤ y ≤ 20

connected

Tanaka [155]

f1(x, y) = x,
f2(x, y) = y
subject to:

0 ≥ −x2 − y2 + 1 + 0.1 ∗ cos(16 arctan x
y

)
1
2

≥ (x − 1
2
)2 + (y − 1

2
)2

0 ≤ x ≤ π,
0 ≤ y ≤ π

disconnected

Welded beam [124]

f1(~x) = 1.10471h2l + 0.04811tb(14.0 + l),

f2(~x) = 4·F ·L3

Et3b
subject to:
g1(~x) ≡ τmax − τ ≥ 0,
g2(~x) ≡ ρmax − ρ ≥ 0,
g3(~x) ≡ b − h ≥ 0,
g4(~x) ≡ 0.125 − h ≥ 0
g5(~x) ≡ Pc − F ≥ 0
where:
F = 6, 000 lb L = 14 in
E = 30e6 psi G = 12e6 psi
τmax = 13, 600 psi ρmax = 30, 000 psi

α = 1
(3G·t·b3)

I = 1
(12·t·b3)

Pc = (4013
√

EIα/L2) · (1 − (t/2L) ·
p

EI/α)

ρ = (6FL)/(bl2)

J = 2 · (0.707hl · (l2/12 + ((h + b)/2)2)

R =
p

l2/4 + ((h + l)/2)2

M = F (L + l/2)
cost = l/2R
τ ′′ = MR/J

τ ′ = F/(
√

2 + hl)

τ =
p

(τ ′2 + 2τ ′τ ′′cost + τ ′′2)

0 ≤ h, b ≤ 2.0,
0 ≤ l, t ≤ 10.0

convex,

Table A.3: Definition and description of the constraint test problems adopted
in this thesis.

B
Test Functions Adopted: Figures

The following figures present the real Pareto front for each function in Ap-
pendix A.

193

194 APPENDIX B. TEST FUNCTIONS ADOPTED: FIGURES

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

ZDT1 Pareto Front

Fu
nc

tio
n

2

Function 1

Figure B.1: ZDT1 Pareto front

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

ZDT2 Pareto Front

Fu
nc

tio
n

2

Function 1

Figure B.2: ZDT2 Pareto front

0.0 0.2 0.4 0.6 0.8 1.0
-1

0

1

ZDT3 Pareto Front

Fu
nc

tio
n

2

Function 1

Figure B.3: ZDT3 Pareto front

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

ZDT4 Pareto Front

Fu
nc

tio
n

2

Function 1

Figure B.4: ZDT4 Pareto front

195

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

0.0

0.2

0.4

0.6

0.8

1.0 ZDT6 Pareto Front

Fu
nc

tio
n

2

Function 1

Figure B.5: ZDT6 Pareto front

0.0
0.1

0.2
0.3

0.4
0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0
0.1

0.2
0.3

0.4
0.5

DTLZ1 Pareto Front

Fu
nc

tio
n

3

Function 2

Function 1

Figure B.6: DTLZ1 Pareto
front

0.0
0.2

0.4
0.6

0.8
1.0

0.0
0.2

0.4
0.6

0.8
1.0

0.0

0.2

0.4

0.6

0.8

1.0

 F
un

ct
io

n
3

 Fu
nc

tio
n 1

Function 2

DTLZ2 Pareto Front

Figure B.7: DTLZ2 Pareto
front

0

1

0

1

0.0

0.4

0.8

 F
un

ct
io

n
3

 Function 1

 F
un

ct
io

n
2

DTLZ3 Pareto Front

Figure B.8: DTLZ3 Pareto
front

196 APPENDIX B. TEST FUNCTIONS ADOPTED: FIGURES

0

1

0

1

0.0

0.4

0.8

 F
un

ct
io

n
3

 F
un

cti
on

 1

DTLZ4 Pareto Front

Function 2

Figure B.9: DTLZ4 Pareto
front

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

7

8 DEB 1 - 1 Pareto Front

Fu
nc

tio
n

2

Function 1

Figure B.10: Deb 1 - 1 Pareto
front

0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2 DEB 5 - 2 Pareto Front

Fu
nc

tio
n

2

Function 1

Figure B.11: Deb 5 - 2 Pareto
front

-20 -19 -18 -17 -16 -15 -14

-12

-10

-8

-6

-4

-2

0

Fu
nc

tio
n

2

Function 1

Kursawe Pareto Front

Figure B.12: Kursawe Pareto
front

197

0 50 100 150 200

0

10

20

30

40

50
Binh2 Pareto Front

Fu
nc

tio
n

2

Function 1

Figure B.13: Binh (2) Pareto
front

-4 -2 0 2 4 6 8
7.4

7.6

7.8

8.0

8.2

8.4

8.6 Kita Pareto Front

Fu
nc

tio
n

2

Function 1

Figure B.14: Kita Pareto front

27.0 27.5 28.0 28.5 29.0
9.16

9.18

9.20

9.22

9.24

9.26

9.28

9.30
Osyczka Pareto Front

Fu
nc

tio
n

2

Function 1

Figure B.15: Osyczka Pareto
front

-300 -250 -200 -150 -100 -50 0

0

10

20

30

40

50

60

70

80 Osyczka 2 Pareto Front

Fu
nc

tio
n

2

Function 1

Figure B.16: Osyczka (2)
Pareto front

198 APPENDIX B. TEST FUNCTIONS ADOPTED: FIGURES

0 50 100 150 200 250
-250

-200

-150

-100

-50

0

Srinivas Pareto Front

Fu
nc

tio
n

2

Function 1

Figure B.17: Srinivas Pareto
front

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Tanaka Pareto Front

Fu
nc

tio
n

2

Function 1

Figure B.18: Tanaka Pareto
front

Bibliography

[1] Abbass, H. A. The Self-Adaptive Pareto Differential Evolution Algo-
rithm. In Congress on Evolutionary Computation (CEC’2002) (Piscat-
away, New Jersey, May 2002), vol. 1, IEEE Service Center, pp. 831–836.

[2] Abbass, H. A., and Sarker, R. The Pareto Differential Evolution
Algorithm. International Journal on Artificial Intelligence Tools 11, 4
(2002), 531–552.

[3] Abido, M. Two-Level of Nondominated Solutions Approach to Mul-
tiobjective Particle Swarm Optimization. In 2007 Genetic and Evolu-
tionary Computation Conference (GECCO’2007) (London, UK, July
2007), D. Thierens, Ed., vol. 1, ACM Press, pp. 726–733.

[4] Alvarez-Benitez, J. E., Everson, R. M., and Fieldsend, J. E.

A MOPSO Algorithm Based Exclusively on Pareto Dominance Con-
cepts. In Evolutionary Multi-Criterion Optimization. Third Interna-
tional Conference, EMO 2005 (Guanajuato, México, March 2005),
C. A. C. Coello, A. H. Aguirre, and E. Zitzler, Eds., Springer. LNCS
Vol. 3410, pp. 459–473.

[5] Babu, B., and Jehan, M. M. L. Differential Evolution for Multi-
Objective Optimization. In Proceedings of the 2003 Congress on Evo-
lutionary Computation (CEC’2003) (Canberra, Australia, December
2003), vol. 4, IEEE Press, pp. 2696–2703.

199

200 BIBLIOGRAPHY

[6] Bäck, T., Fogel, D. B., and Michalewicz, Z., Eds. Handbook of
Evolutionary Computation. Institute of Physics Publishing and Oxford
University Press, 1997.

[7] Bäck, T. A. Evolutionary Algorithms in Theory and Practice. Oxford
University Press, New York, 1996.

[8] Baker, J. E. Reducing bias and inefficiency in the selection algorithm.
In Proceedings of the Second International Conference on Genetic Al-
gorithms on Genetic algorithms and their application (Mahwah, NJ,
USA, 1987), Lawrence Erlbaum Associates, Inc., pp. 14–21.

[9] Bartz-Beielstein, T., Limbourg, P., Parsopoulos, K. E.,

Vrahatis, M. N., Mehnen, J., and Schmitt, K. Particle Swarm
Optimizers for Pareto Optimization with Enhanced Archiving Tech-
niques. In Proceedings of the 2003 Congress on Evolutionary Compu-
tation (CEC’2003) (Canberra, Australia, December 2003), vol. 3, IEEE
Press, pp. 1780–1787.

[10] Baumgartner, U., Magele, C., and Renhart, W. Pareto Opti-
mality and Particle Swarm Optimization. IEEE Transactions on Mag-
netics 40, 2 (March 2004), 1172–1175.

[11] Bhattacharya, M., and Lu, G. A dynamic approximate fitness
based hybrid ea for optimization problems. In Proceedings of IEEE
Congress on Evolutionary Computation (2003), pp. 1879–1886.

[12] Binh, T. T., and Korn, U. MOBES: A multiobjective evolution
strategy for constrained optimization problems. In The Third Inter-
national Conference on Genetic Algorithms (Mendel 97) (Brno, Czech
Republic, 1997), pp. 176–182.

[13] Bishop, C. M. Neural Networks for Pattern Recognition. Oxford
University Press, UK, 1995.

[14] Bramanti, A., Barba, P. D., Farina, M., and Savini, A. Com-
bining response surfaces and evolutionary strategies for multiobjective
pareto-optimization in electromagnetics. In International Journal of
Applied Electromagnetics and Mechanics (2001), vol. 15, pp. 231 – 236.

BIBLIOGRAPHY 201

[15] Bueche, D., Schraudolph, N., and Koumoutsakos, P. Ac-
celerating evolutionary algorithms with gaussian process fitness func-
tion models. IEEE Trans. on Systems, Man, and Cybernetics: Part C
(2004).

[16] Cai, Z., Gong, W., and Huang, Y. A novel differential evolu-
tion algorithm based on ǫ-domination and orthogonal design method
for multiobjective problem. In Evolutionary Multi-Criterion Opti-
mization. Fourth International Conference, EMO 2007 (Matsushima,
Japan, March 2007), S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, and
T. Murata, Eds., Springer. Lecture Notes in Computer Science Vol.
4403, pp. 286–301.

[17] Chafekar, D., Shi, L., Rasheed, K., and Xuan, J. Multi-
objective ga optimization using reduced models. IEEE Trans. on Sys-
tems, Man, and Cybernetics: Part C (2004).

[18] Charnes, A., and Cooper, W. W. Management models and in-
dustrial applications of linear programming. John Wiley, New York,
1961.

[19] Coello Coello, C. A., Christiansen, A. D., and Hernández

Aguirre, A. Using a New GA-Based Multiobjective Optimization
Technique for the Design of Robot Arms. Robotica 16, 4 (July–August
1998), 401–414.

[20] Coello Coello, C. A., and Cruz Cortés, N. Solving Multi-
objective Optimization Problems using an Artificial Immune System.
Genetic Programming and Evolvable Machines 6, 2 (June 2005), 163–
190.

[21] Coello Coello, C. A., and Lamont, G. B., Eds. Applications of
Multi-Objective Evolutionary Algorithms. World Scientific, Singapore,
2004. ISBN 981-256-106-4.

[22] Coello Coello, C. A., Lamont, G. B., and Van Veldhuizen,

D. A. Evolutionary Algorithms for Solving Multi-Objective Problems,
second ed. Springer, New York, September 2007. ISBN 978-0-387-
33254-3.

202 BIBLIOGRAPHY

[23] Coello Coello, C. A., and Salazar Lechuga, M. MOPSO:
A Proposal for Multiple Objective Particle Swarm Optimization. In
Congress on Evolutionary Computation (CEC’2002) (Piscataway, New
Jersey, May 2002), vol. 2, IEEE Service Center, pp. 1051–1056.

[24] Coello Coello, C. A., and Toscano Pulido, G. A Micro-
Genetic Algorithm for Multiobjective Optimization. In First Inter-
national Conference on Evolutionary Multi-Criterion Optimization,
E. Zitzler, K. Deb, L. Thiele, C. A. C. Coello, and D. Corne, Eds.
Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001,
pp. 126–140.

[25] Coello Coello, C. A., Toscano Pulido, G., and Salazar

Lechuga, M. Handling Multiple Objectives With Particle Swarm
Optimization. IEEE Transactions on Evolutionary Computation 8, 3
(June 2004), 256–279.

[26] Coello Coello, C. A., Van Veldhuizen, D. A., and Lamont,

G. B. Evolutionary Algorithms for Solving Multi-Objective Problems.
Kluwer Academic Publishers, New York, May 2002. ISBN 0-3064-6762-
3.

[27] Cohon, J., and Marks, D. A review and evaluation of multiobjec-
tive programming techniques. Water Resources Research 11, 2 (1975),
208–220.

[28] Dantzig, G. B. Linear Programming and Extensions. Princeton
University Press, New Jersey, 1963.

[29] Das, I., and Dennis, J. A closer look at drawbacks of minimizing
weighted sums of objectives for pareto set generation in multicriteria
optimization problems. Structural Optimization 14, 1 (1997), 63–69.

[30] Dawkins, R. The Selfish Gene. Oxford University Press, September
1990.

[31] de Castro, L. N., and Timmis, J. Artificial Immune Systems: A
new Computational Intelligence Approach. Springer Verlag, 2002.

[32] De Jong, K. An Analysis of the behavior of a class of genetic adaptive
systems. PhD thesis, University of Michigan, 1975.

BIBLIOGRAPHY 203

[33] Deb, K. Multi-Objective Genetic Algorithms: Problem Difficulties
and Construction of Test Problems. Tech. Rep. CI-49/98, Dortmund:
Department of Computer Science/LS11, University of Dortmund, Ger-
many, 1998.

[34] Deb, K. Multi-Objective Genetic Algorithms: Problem Difficulties
and Construction of Test Problems. Evolutionary Computation 7, 3
(Fall 1999), 205–230.

[35] Deb, K. Multi-Objective Optimization using Evolutionary Algorithms.
John Wiley & Sons, Chichester, UK, 2001. ISBN 0-471-87339-X.

[36] Deb, K., Agrawal, S., Pratab, A., and Meyarivan, T. A Fast
Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective
Optimization: NSGA-II. In Proceedings of the Parallel Problem Solving
from Nature VI Conference (Paris, France, 2000), pp. 849–858.

[37] Deb, K., Mohan, M., and Mishra, S. Towards a Quick Com-
putation of Well-Spread Pareto-Optimal Solutions. In Evolutionary
Multi-Criterion Optimization. Second International Conference, EMO
2003 (Faro, Portugal, April 2003), pp. 222–236.

[38] Deb, K., Mohan, M., and Mishra, S. Evaluating the ǫ-Domination
Based Multi-Objective Evolutionary Algorithm for a Quick Computa-
tion of Pareto-Optimal Solutions. Evolutionary Computation 13, 4
(Winter 2005), 501–525.

[39] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. A
Fast and Elitist Multiobjective Genetic Algorithm: NSGA–II. IEEE
Transactions on Evolutionary Computation 6, 2 (April 2002), 182–197.

[40] Deb, K., Thiele, L., Laumanns, M., and Zitzler, E. Scalable
Multi-Objective Optimization Test Problems. In Congress on Evolu-
tionary Computation (CEC’2002) (Piscataway, New Jersey, May 2002),
vol. 1, IEEE Service Center, pp. 825–830.

[41] Deb, K., Thiele, L., Laumanns, M., and Zitzler, E. Scalable
Test Problems for Evolutionary Multiobjective Optimization. In Evo-
lutionary Multiobjective Optimization. Theoretical Advances and Appli-
cations, A. Abraham, L. Jain, and R. Goldberg, Eds. Springer, USA,
2005, pp. 105–145.

204 BIBLIOGRAPHY

[42] Dhingra, A., and Lee, B. A genetic algorithm approach to sin-
gle and multiobjective structural optimization with discrete-continuous
variables. International Journal for Numerical Methods in Engineering
37 (1994), 4059–4080.

[43] Dorigo, M., Maniezzo, V., and Colorni, A. The ant system:
Optimization by a colony of cooperating agents. IEEE Transactions
on Systems, Man, and Cybernetics-Part B 26 (1996), 29–41.

[44] Eberhart, R. C., and Shi, Y. Comparison between Genetic Algo-
rithms and Particle Swarm Optimization. In Proceedings of the Seventh
Annual Conference on Evolutionary Programming (March 1998), V. W.
Porto, N. Saravanan, D. Waagen, and A. Eibe, Eds., Springer-Verlag,
pp. 611–619.

[45] Emmerich, M., Giotis, A., Özdenir, M., Bäck, T., and Gian-

nakoglou, K. Metamodel-assisted evolution strategies. In Parallel
Problem Solving from Nature (2002), no. 2439 in Lecture Notes in Com-
puter Science, Springer, pp. 371–380.

[46] Emmerich, M. T., Giannakoglou, K. C., and Naujoks, B.

Single- and Multiobjective Evolutionary Optimization Assisted by
Gaussian Random Field Metamodels. IEEE Transactions on Evolu-
tionary Computation 10, 4 (August 2006), 421–439.

[47] Evans, G. W. An overview of techniques for solving multiobjective
mathematical programs. Management Science 30, 11 (November 1984),
1268 – 1282.

[48] Farina, M. A neural network based generalized response surface mul-
tiobjective evolutionary algorithms. In Congress on Evolutionary Com-
putation (2002), IEEE Press, pp. 956–961.

[49] Fieldsend, J. E., and Singh, S. A Multi-Objective Algorithm
based upon Particle Swarm Optimisation, an Efficient Data Structure
and Turbulence. In Proceedings of the 2002 U.K. Workshop on Com-
putational Intelligence (Birmingham, UK, September 2002), pp. 37–44.

[50] Fishburn, P. C. Lexicographic orders, utilities and decision rules: A
survey. Management Science 20, 11 (1974), 1442 – 1471.

BIBLIOGRAPHY 205

[51] Fleming, P. J., and Pashkevich, A. P. Computer aided control
system design using a multiobjective optimization approach. In Proc.
of the IEE Control ’85 Conference (1985), pp. 174 – 179.

[52] Fletcher, R. Practical Methods of Optimization. John Wiley and
Sons, New York, 1989.

[53] Fogel, D. B. An introduction to simulated evolutionary optimization.
IEEE Transactions on Neural Networks 5, 1 (January 1994), 3–14.

[54] Fonseca, C. M., and Fleming, P. J. Genetic Algorithms for Mul-
tiobjective Optimization: Formulation, Discussion and Generalization.
In Proceedings of the Fifth International Conference on Genetic Algo-
rithms (San Mateo, California, 1993), S. Forrest, Ed., University of
Illinois at Urbana-Champaign, Morgan Kauffman Publishers, pp. 416–
423.

[55] Fu, J., Liu, Q., Zhou, X., Xiang, K., and Zeng, Z. An adap-
tive variable strategy pareto differential evolution algorithm for multi-
objective optimization. In 2008 IEEE Congress on Evolutionary Com-
putation (CEC’2008) (Hong Kong, June 2008), IEEE Press, pp. 648–
652.

[56] Giunta, A., and Watson, L. A comparison of approximation mod-
eling techniques: Polynomial versus interpolating models. Tech. Rep.
98-4758, AIAA, 1998.

[57] Glover, F., and Laguna, M. Tabu Search. Kluwer Academic
Publishers, Norwell, Massachusetts, 1998.

[58] Goel, T., Vaidyanathan, R., Haftka, R., Shyy, W., Queipo,

N., and Tucker, K. Response surface approximation of pareto opti-
mal front in multiobjective optimization. Tech. Rep. 2004-4501, AIAA,
2004.

[59] Goldberg, D. E. Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley Publishing Company, Reading,
Massachusetts, 1989.

206 BIBLIOGRAPHY

[60] Goldberg, D. E., and Deb, K. A comparative analysis of selec-
tion schemes used in genetic algorithms. In Foundations of Genetic
Algorithms (1991), Morgan Kaufmann, pp. 69–93.

[61] Goldberg, D. E., Deb, K., and Korb, B. Don’t worry. be messy.
In Proceedings of the Fourth International Conference on Genetic Algo-
rithms (1991), R. K. Belew and L. B. Booker, Eds., Morgan Kaufmann,
pp. 24–30.

[62] Grefenstette, J. J. Genesis: A system for using genetic search pro-
cedures. In Proceedings of the 1984 Conference on Intelligent Systems
and Machines (1984), pp. 161 – 165.

[63] Haimes, Y. Y., Lasdon, L. S., and Wismer, D. A. On a bi-
criterion formulation of the problems integrated system identification
and system optimization. IEEE Transactions on Systems, Man. and
Cybernetics 1, 3 (July 1971), 296 – 297.

[64] Hardy, R. L. Multiquadric equations of topography and other irreg-
ular surfaces. J. Geophys. res 76 (1971), 1905–1915.

[65] Hedayat, A. S., Sloane, N. J. A., and Stufken, J. Orthogonal
Arrays: Theory and Applications. Springer - Verlag, New York, 1999.

[66] Hernández-Dı́az, A. G., Santana-Quintero, L. V., Coello

Coello, C., Caballero, R., and Molina, J. A New Proposal for
Multi-Objective Optimization using Differential Evolution and Rough
Sets Theory. In 2006 Genetic and Evolutionary Computation Confer-
ence (GECCO’2006) (Seattle, Washington, USA, July 2006), M. K.
et al., Ed., vol. 1, ACM Press. ISBN 1-59593-186-4, pp. 675–682.

[67] Hernández-Dı́az, A. G., Santana-Quintero, L. V., Coello

Coello, C. A., Caballero, R., , and Molina, J. Rough Sets
Theory for Multi-Objective Optimization Problems. In Knowledge-
Driven Computing, C. Cotta, S. Reich, R. Schaefer, and A. Ligȩza,
Eds. Springer-Verlag, Berlin, 2008, pp. 81–98. ISBN 978-3-540-77474-
7.

[68] Hernández-Dı́az, A. G., Santana-Quintero, L. V.,

Coello Coello, C. A., and Molina, J. Pareto-adaptive ǫ-
dominance. Evolutionary Computation 15, 4 (Winter 2007), 493–517.

BIBLIOGRAPHY 207

[69] Holland, J. H. Evolutionstrategie: Optimierung technisher nach
Prinzipien der biologischen Evolution. Fromman-Holzboog, Stuttgart,
Alemania, 1973.

[70] Holland, J. H. Adaptation in Natural and Artificial Systems. Uni-
versity of Michigan Press, 1975.

[71] Hong, Y.-S., H.Lee, and Tahk, M.-J. Acceleration of the conver-
gence speed of evolutionary algorithms using multi-layer neural net-
works. Engineering Optimization 35, 1 (2003), 91–102.

[72] Horn, J., Nafpliotis, N., and Goldberg, D. E. A Niched Pareto
Genetic Algorithm for Multiobjective Optimization. In Proceedings of
the First IEEE Conference on Evolutionary Computation, IEEE World
Congress on Computational Intelligence (Piscataway, New Jersey, June
1994), vol. 1, IEEE Service Center, pp. 82–87.

[73] Hüscken, M., Jin, Y., and Sendhoff, B. Structure optimiza-
tion of neural networks for aerodynamic optimization. Soft Computing
Journal 9, 1 (2005), 21–28.

[74] I., V., and A.J., K. Multiobjective Optimization using Surrogates. In
Proceedings of the 7th International Conference on Adaptive Computing
in Design and Manufacture (Holland, 2006), pp. 167 – 175.

[75] Ijiri, Y. Management Goals and Accounting for Control. North Hol-
land Publishing Company, Amsterdam, 1965.

[76] Iorio, A. W., and Li, X. Solving rotated multi-objective opti-
mization problems using differential evolution. In AI 2004: Advances
in Artificial Intelligence, Proceedings (2004), Springer-Verlag, Lecture
Notes in Artificial Intelligence Vol. 3339, pp. 861–872.

[77] Iorio, A. W., and Li, X. Incorporating Directional Information
within a Differential Evolution Algorithm for Multi-objective Opti-
mization. In 2006 Genetic and Evolutionary Computation Conference
(GECCO’2006) (Seattle, Washington, USA, July 2006), M. K. et al.,
Ed., vol. 1, ACM Press. ISBN 1-59593-186-4, pp. 691–697.

[78] Jakob, W., Gorges-Shleuter, M., and Blume, C. Applica-
tion of genetic algorithms to task planning and learning. In Parallel

208 BIBLIOGRAPHY

Problem Solving from Nature—PPSN 2 (Amsterdam, North-Holland,
1992), R. Männer and B. Manderick, Eds., pp. 291–300.

[79] Jensen, M. T. Reducing the Run-Time Complexity of Multiobjective
EAs: The NSGA-II and Other Algorithms. IEEE Transactions on
Evolutionary Computation 7, 5 (October 2003), 503–515.

[80] Jin, R., Chen, W., and Simpson, T. Comparative studies of meta-
modeling techniques under miltiple modeling criteria. Tech. Rep. 2000-
4801, AIAA, 2000.

[81] Jin, Y. Fitness approximation in evolutionary computation - bibliog-
raphy. http://www.soft-computing.de/amec.html, July 2005.

[82] Karakasis, M. K., and Giannakoglou, K. C. Metamodel-
Assisted Multi-Objective Evolutionary Optimization. In EUROGEN
2005. Evolutionary Methods for Design, Optimization and Control
with Applications to Industrial Problems (Munich, Germany, 2005),
R. Schilling, W. Haase, J. Periaux, H. Baier, and G. Bugeda, Eds.

[83] Karush, W. Minima of functions of several variables with inequali-
ties as side conditions. Master’s thesis, Department of Mathematics,
University of Chicago, 1939.

[84] Kennedy, J., and Eberhart, R. C. Swarm Intelligence. Morgan
Kaufmann Publishers, California, USA, 2001.

[85] Kita, H., Yabumoto, Y., Mori, N., and Nishikawa, Y. Multi-
Objective Optimization by Means of the Thermodynamical Genetic Al-
gorithm. In Parallel Problem Solving from Nature—PPSN IV (Berlin,
Germany, September 1996), H.-M. Voigt, W. Ebeling, I. Rechenberg,
and H.-P. Schwefel, Eds., Lecture Notes in Computer Science, Springer-
Verlag, pp. 504–512.

[86] Knowles, J. ParEGO: A hybrid algorithm with on-line landscape ap-
proximation for expensive multiobjective optimization problems. IEEE
Transactions on Evolutionary Computation 10, 1 (January 2006), 50–
66.

BIBLIOGRAPHY 209

[87] Knowles, J. D. Local-Search and Hybrid Evolutionary Algorithms
for Pareto Optimization. PhD thesis, The University of Reading, De-
partment of Computer Science, Reading, UK, January 2002.

[88] Knowles, J. D., and Corne, D. W. Approximating the Nondomi-
nated Front Using the Pareto Archived Evolution Strategy. Evolution-
ary Computation 8, 2 (2000), 149–172.

[89] Koza, J. R. Genetic Programming: On the Programming of Comput-
ers by Means of Natural Selection. MIT Press, Cambridge, MA, USA,
1992.

[90] Kuhn, H. W., and Tucker, A. W. Nonlinear programming. In
Proceedings of the Second Berkeley Symposium (1951), J. Neyman, Ed.,
University of California Press, Berkeley, pp. 481 – 492.

[91] Kukkonen, S., and Lampinen, J. An Extension of Generalized Dif-
ferential Evolution for Multi-objective Optimization with Constraints.
In Parallel Problem Solving from Nature - PPSN VIII (Birmingham,
UK, September 2004), Springer-Verlag. Lecture Notes in Computer
Science Vol. 3242, pp. 752–761.

[92] Kukkonen, S., and Lampinen, J. GDE3: The third Evolution Step
of Generalized Differential Evolution. In 2005 IEEE Congress on Evo-
lutionary Computation (CEC’2005) (Edinburgh, Scotland, September
2005), vol. 1, IEEE Service Center, pp. 443–450.

[93] Kung, H., Luccio, F., and Preparata, F. On finding the maxima
of a set of vectors. Journal of the Association for Computing Machinery
22, 4 (1975), 469–476.

[94] Kursawe, F. A Variant of Evolution Strategies for Vector Optimiza-
tion. In Parallel Problem Solving from Nature. 1st Workshop, PPSN
I (Berlin, Germany, October 1991), H. P. Schwefel and R. Männer,
Eds., vol. 496 of Lecture Notes in Computer Science Vol. 496, Springer-
Verlag, pp. 193–197.

[95] Laguna, M., and Mart́ı, R. Scatter Search: Methodology and Im-
plementations in C. Kluwer Academic Publishers, 2003.

210 BIBLIOGRAPHY

[96] Land, A. H., and Doig, A. G. An automatic method of solving
discrete programming problems. Econometrica 28, 3 (1960), 497–520.

[97] Landa-Becerra, R., Santana-Quintero, L. V., and Coello

Coello, C. A. Knowledge Incorporation in Multi-Objective Evo-
lutionary Algorithms. In Multi-objective Evolutionary Algorithms for
Knowledge Discovery from Data Bases, A. Ghosh, S. Dehuri, and
S. Ghosh, Eds. Springer, Berlin, 2008, pp. 23–46.

[98] Laumanns, M., Thiele, L., Deb, K., and Zitzler, E. Combining
Convergence and Diversity in Evolutionary Multi-objective Optimiza-
tion. Evolutionary Computation 10, 3 (Fall 2002), 263–282.

[99] Lin, T. Special issue on rough sets. Journal of the Intelligent Automa-
tion and Soft Computing 2/2 (1996).

[100] Luenberger, D. G. Linear and Nonlinear Programming, second ed.
Springer, 1984.

[101] M. Maxfield, A. C., and Fogel, L., Eds. Artificial Intelligence
through a Simulation of Evolution (Washington D.C., 1965), Biophysics
and Cybernetics Systems: Proceedings of the Second Cybernetics Sci-
ences, Spartan Books.

[102] Madavan, N. K. Multiobjective Optimization Using a Pareto Differ-
ential Evolution Approach. In Congress on Evolutionary Computation
(CEC’2002) (Piscataway, New Jersey, May 2002), vol. 2, IEEE Service
Center, pp. 1145–1150.

[103] Mahfouf, M., Chen, M.-Y., and Linkens, D. A. Adaptive
Weighted Particle Swarm Optimisation for Multi-objective Optimal
Design of Alloy Steels. In Parallel Problem Solving from Nature - PPSN
VIII (Birmingham, UK, September 2004), Springer-Verlag. LNCS Vol.
3242, pp. 762–771.

[104] McKay, M., Beckman, R., and Conover, W. A comparison of
three methods for selecting values of input variables in the analysis of
output from a computer code. Technometrics 21, 2 (1979), 239–245.

BIBLIOGRAPHY 211

[105] Mezura-Montes, E., and Coello, C. A. C. A Simple Evolu-
tion Strategy to Solve Constrained Optimization Problems. In Pro-
ceedings of the Genetic and Evolutionary Computation Conference
(GECCO’2003) (Heidelberg, Germany, July 2003), E. Cantú-Paz, J. A.
Foster, K. Deb, L. D. Davis, R. Roy, U.-M. O. Reilly, H.-G. Beyer,
R. Standish, G. Kendall, S. Wilson, M. Harman, J. Wegener, D. Das-
gupta, M. A. Potter, A. C. Schultz, K. A. Dowsland, N. Jonoska, and
J. Miller, Eds., Chicago, Illinois, Springer Verlag, pp. 640–641. Lecture
Notes in Computer Science Vol. 2723.

[106] Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution
Programs, third ed. Springer-Verlag, 1996.

[107] Michalewicz, Z., and Fogel, D. B. How to Solve It: Modern
Heuristics, second ed. Springer, 2004.

[108] Miettinen, K. Nonlinear Multiobjective Optimization. Kluwer Aca-
demic Publishers, 1999.

[109] Monarchi, D., Kisiel, C. C., and Duckstein, L. Interactive
multiobjective programming in water resources: A case study. Water
Resources Research 9, 4 (August 1973), 837 – 850.

[110] Moore, J., and Chapman, R. Application of Particle Swarm to
Multiobjective Optimization. Department of Computer Science and
Software Engineering, Auburn University. (Unpublished manuscript),
1999.

[111] Morse, J. N. Reducing the size of the nondominated set: Pruning by
clustering. Computers and Operations Research 7, 1-2 (1980), 55–66.

[112] Moscato, P. On evolution, search, optimization, genetic algorithms
and martial arts. Tech. Rep. C3P Report 826, Caltech, Pasadena,
California, 1989.

[113] Nain, P. K. S., and Deb, K. Computationally effective search and
optimization procedure using coarse to fine approximation. In Congress
on Evolutionary Computation (2003), pp. 2081–2088.

212 BIBLIOGRAPHY

[114] Ong, Y., Nair, P., and Keane, A. Evolutionary optimization of
computationally expensive problems via surrogate modeling. AIAA
Journal 41, 4 (2003), 687–696.

[115] Ong, Y. S., Nair, P. B., Keane, A. J., and Wong, K. W.

Surrogate-assisted evolutionary optimization frameworks for high-
fidelity engineering design problems. In Knowledge Incorporation in
Evolutionary Computation, Y. Jin, Ed., Studies in Fuzziness and Soft
Computing. Springer, 2004, pp. 307–332.

[116] Osyczka, A., and Kundu, S. A new method to solve generalized
multicriteria optimization problems using the simple genetic algorithm.
Structural Optimization 10 (1995), 94–99.

[117] Parsopoulos, K., Taoulis, D., Pavlidis, N., Plagianakos, V.,

and Vrahatis, M. Vector Evaluated Differential Evolution for Mul-
tiobjective Optimization. In 2004 Congress on Evolutionary Compu-
tation (CEC’2004) (Portland, Oregon, USA, June 2004), vol. 1, IEEE
Service Center, pp. 204–211.

[118] Parsopoulos, K., Tasoulis, D., and Vrahatis, M. Multiob-
jective Optimization Using Parallel Vector Evaluated Particle Swarm
Optimization. In Proceedings of the IASTED International Conference
on Artificial Intelligence and Applications (AIA 2004) (Innsbruck, Aus-
tria, February 2004), vol. 2, ACTA Press, pp. 823–828.

[119] Pawlak, Z. Rough sets. International Journal of Computer and
Information Sciences 11, 1 (Summer 1982), 341–356.

[120] Pawlak, Z. Rough Sets: Theoretical Aspects of Reasoning about Data.
Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991. ISBN
0-471-87339-X.

[121] Pierret, S. Turbomachinery blade design using a Navier-Stokes
solver and artificial neural network. ASME Journal of Turbomachinery
121, 3 (1999), 326–332.

[122] Price, K., and Storn, R. Differential evolution web site.
http://www.icsi.berkeley.edu/storn/code.html, 2004.

BIBLIOGRAPHY 213

[123] Purshouse, R. C., and Fleming, P. J. Evolutionary Multi-
Objective Optimisation: An Exploratory Analysis. In Proceedings of
the 2003 Congress on Evolutionary Computation (CEC’2003) (Can-
berra, Australia, December 2003), vol. 3, IEEE Press, pp. 2066–2073.

[124] Ragsdell, K. M., and Phillips, D. T. Optimal design of a class
of welded structures using geometric programming. Journal of Engi-
neering for Industry Series B B, 98 (1975), 1021–1025.

[125] Rao, S. S. Engineering Optimization: Theory and Practice, third ed.
John Wiley & Sons, 1996.

[126] Rasheed, K., Ni, X., and Vattam, S. Comparison of methods
for developing dynamic reduced models for design optimization. Soft
Computing Journal (2003).

[127] Ratle, A. Accelerating the convergence of evolutionary algorithms
by fitness landscape approximation. In Parallel Problem Solving from
Nature (1998), A. Eiben, T. Bäck, M. Schoenauer, and H.-P. Schwefel,
Eds., vol. V, pp. 87–96.

[128] Reklaitis, G. V., Ravindran, A., and Ragsdell, K. M. Engi-
neering Optimization: Methods and Applications. John Wiley & Sons,
1983.

[129] Reyes Sierra, M., and Coello Coello, C. A. Fitness Inheri-
tance in Multiobjective Particle Swarm Optimization. In 2005 IEEE
Swarm Intelligence Symposium (SIS’05) (Pasadena, California, June
2005), IEEE Press, pp. 146–123.

[130] Reyes Sierra, M., and Coello Coello, C. A. Improving PSO-
Based Multi-objective Optimization Using Crowding, Mutation and
ǫ-Dominance. In Evolutionary Multi-Criterion Optimization. Third
International Conference, EMO 2005 (Guanajuato, México, March
2005), C. A. Coello Coello, A. Hernández Aguirre, and E. Zitzler, Eds.,
Springer. Lecture Notes in Computer Science Vol. 3410, pp. 505–519.

[131] Reyes-Sierra, M., and Coello Coello, C. A. Multi-Objective
Particle Swarm Optimizers: A Survey of the State-of-the-Art. Inter-
national Journal of Computational Intelligence Research 2, 3 (2006),
287–308.

214 BIBLIOGRAPHY

[132] Reynolds, R. G., Michalewicz, Z., and Cavaretta, M. Using
cultural algorithms for constraint handling in GENOCOP. In Proceed-
ings of the Fourth Annual Conference on Evolutionary Programming,
J. R. McDonnell, R. G. Reynolds, and D. B. Fogel, Eds. MIT Press,
Cambridge, Massachusetts, 1995, pp. 298–305.

[133] Robič, T., and Filipič, B. DEMO: Differential Evolution for
Multiobjective Optimization. In Evolutionary Multi-Criterion Opti-
mization. Third International Conference, EMO 2005 (Guanajuato,
México, March 2005), C. A. C. Coello, A. Hernández, and E. Zitzler,
Eds., Springer. Lecture Notes in Computer Science Vol. 3410, pp. 520–
533.

[134] Rudolph, G., and Agapie, A. Convergences Properties of Some
Multi-Objective Evolutionary Algorithms. In Congress on Evolution-
ary Computation (CEC 2000) (Piscataway, NJ, 2000), A. Zalzala and
R. Eberhart, Eds., IEEE Press, Vol. 2, pp. 1010–1016.

[135] Sacks, J., Welch, W., Mitchell, T., and Wynn, H. Design
and analysis of computer experiments (with discussion). In Statistical
Science (1989), vol. 4, pp. 409 – 435.

[136] Santana-Quintero, L. V., and Coello, C. A. C. An Algorithm
Based on Differential Evolution for Multiobjective Problems. In Smart
Engineering System Design: Neural Networks, Evolutionary Program-
ming and Artificial Life (St. Louis Missouri, USA, November 2005),
C. H. Dagli, A. L. Buczak, D. L. Enke, M. J. Embrechts, and O. Ersoy,
Eds., vol. 15, pp. 211–220.

[137] Santana Quintero, L. V., Coello Coello, C., Hernández-

D́ıaz, A. G., and Osorio Velázquez, J. M. Use of Particle
Swarm to accelerate convergence in a Surrogate-based algorithm to
solve Multi-objective Optimization Problems. In IEEE Swarm Intel-
ligence Symposium 2008 (St. Louis, Missouri, USA, September 2008),
IEEE Press.

[138] Santana-Quintero, L. V., and Coello Coello, C. A. An
Algorithm Based on Differential Evolution for Multi-Objective Prob-
lems. International Journal of Computational Intelligence Research 1,
2 (2005), 151–169.

BIBLIOGRAPHY 215

[139] Santana-Quintero, L. V., Coello Coello, C. A., and

Hernández-Dı́az, A. G. Hybridizing Surrogate Techniques, Rough
Sets and Evolutionary Algorithms to Efficiently Solve Multi-Objective
Optimization Problems. In 2008 Genetic and Evolutionary Compu-
tation Conference (GECCO’2008) (Atlanta, USA, July 2008), ACM
Press, pp. 763–764. ISBN 978-1-60558-131-6.

[140] Santana-Quintero, L. V., Raḿırez-Santiago, N., Coello

Coello, C. A., Molina Luque, J., and Hernández-Dı́az, A. G.

A New Proposal for Multiobjective Optimization Using Particle Swarm
Optimization and Rough Sets Theory. In Parallel Problem Solving from
Nature - PPSN IX, 9th International Conference, T. P. Runarsson, H.-
G. Beyer, E. Burke, J. J. Merelo-Guervós, L. D. Whitley, and X. Yao,
Eds. Springer. Lecture Notes in Computer Science Vol. 4193, Reyk-
javik, Iceland, September 2006, pp. 483–492.

[141] Santana-Quintero, L. V., Serrano-Hernandez, V. A.,

Coello, C. A. C., Hernández-Dı́az, A. G., and Molina, J.

Use of Radial Basis Functions and Rough Sets for Evolutionary Multi-
Objective Optimization. In Proceedings of the 2007 IEEE Sympo-
sium on Computational Intelligence in Multicriteria Decision Mak-
ing (MCDM’2007) (Honolulu, Hawaii, USA, April 2007), IEEE Press,
pp. 107–114.

[142] Schaffer, J. D. Multiple Objective Optimization with Vector Eval-
uated Genetic Algorithms. In Genetic Algorithms and their Applica-
tions: Proceedings of the First International Conference on Genetic
Algorithms (1985), Lawrence Erlbaum, pp. 93–100.

[143] Schaffer, J. D., and Grefenstette, J. J. Multiobjective Learn-
ing via Genetic Algorithms. In Proceedings of the 9th International
Joint Conference on Artificial Intelligence (IJCAI-85) (Los Angeles,
California, 1985), AAAI, pp. 593–595.

[144] Schoenauer, K. A. M. Surrogate deterministic mutation. In Arti-
ficial Evolution’01 (2002), Springer, pp. 103–115.

[145] Schoenauer, M., and Michalewicz, Z. Evolutionary Computa-
tion at the Edge of Feasibility. In Proceedings of the Fourth Conference

216 BIBLIOGRAPHY

on Parallel Problem Solving from Nature (PPSN IV) (Heidelberg, Ger-
many, September 1996), H.-M. Voigt, W. Ebeling, I. Rechenberg, and
H.-P. Schwefel, Eds., Berlin, Germany, Springer-Verlag, pp. 245–254.

[146] Schott, J. R. Fault Tolerant Design Using Single and Multicrite-
ria Genetic Algorithm Optimization. Master’s thesis, Department of
Aeronautics and Astronautics, Massachusetts Institute of Technology,
Cambridge, Massachusetts, May 1995.

[147] Smith, A. E., and Coit, D. W. Constraint Handling Techniques—
Penalty Functions. In Handbook of Evolutionary Computation, T. Bäck,
D. B. Fogel, and Z. Michalewicz, Eds. Oxford University Press and In-
stitute of Physics Publishing, 1997, ch. C 5.2.

[148] Smith, R. E., Dike, B. A., and Stegmann, S. A. Fitness In-
heritance in Genetic Algorithms. In SAC ’95: Proceedings of the 1995
ACM Symposium on Applied Computing (Nashville, Tennessee, USA,
1995), ACM Press, pp. 345–350.

[149] Srinivas, N., and Deb, K. Multiobjective Optimization Using Non-
dominated Sorting in Genetic Algorithms. Evolutionary Computation
2, 3 (Fall 1994), 221–248.

[150] Steuer, R. E. Multiple Criteria Optimization: Theory, Computation,
and Applications. John Wiley, New York, 1986.

[151] Storn, R., and Price, K. Differential evolution - a simple and effi-
cient adaptative scheme for global optimization over continuous spaces.
Technical Report TR-95- 12, International Computer Science, Berke-
ley, California, March 1995.

[152] Storn, R., and Price, K. Differential evolution - a fast and efficient
heuristic for global optimization over continuous spaces. Journal of
Global Optimization 11 (1997), 341–359.

[153] Syswerda, G. Uniform crossover in genetic algorithms. In Proceed-
ings of the 3rd International Conference on Genetic Algorithms (San
Francisco, CA, USA, 1989), Morgan Kaufmann Publishers Inc., pp. 2–
9.

BIBLIOGRAPHY 217

[154] Tan, K. C., Khor, E. F., Lee, T. H., and Sathikannan, R. An
Evolutionary Algorithm with Advanced Goal and Priority Specification
for Multi-objective Optimization. Journal of Artificial Intelligence Re-
search 18 (2003), 183–215.

[155] Tanaka, M., Watanabe, H., Furukawa, Y., and Tanino, T.

GA-Based Decision Support System for Multicriteria Optimization. In
Proceedings of the International Conference on Systems, Man, and Cy-
bernetics (Piscataway, NJ, 1995), vol. 2, IEEE, pp. 1556–1561.

[156] Toscano Pulido, G., and Coello Coello, C. A. Using Clus-
tering Techniques to Improve the Performance of a Particle Swarm
Optimizer. In Genetic and Evolutionary Computation–GECCO 2004.
Proceedings of the Genetic and Evolutionary Computation Confer-
ence. Part I (Seattle, Washington, USA, June 2004), K. D. et al.,
Ed., Springer-Verlag, Lecture Notes in Computer Science Vol. 3102,
pp. 225–237.

[157] Tripathi, P. K., Bandyopadhyay, S., and Pal, S. K. Adap-
tive multi-objective particle swarm optimization algorithm. In 2007
IEEE Congress on Evolutionary Computation (CEC’2007) (Singapore,
September 2007), IEEE Press, pp. 2281–2288.

[158] Ulmer, H., Streicher, F., and Zell, A. Model-assisted steady-
state evolution strategies. In Proceedings of Genetic and Evolutionary
Computation Conference (2003), LNCS 2723, pp. 610–621.

[159] Ulmer, H., Streichert, F., and Zell, A. Evolution startegies
assisted by gaussian processes with improved pre-selection criterion.
In Proceedings of IEEE Congress on Evolutionary Computation (2003),
pp. 692–699.

[160] Vapnik, V. Statistical Learning Theory. Wiley, 1998.

[161] Vapnik, V. N. The Nature of Statistical Learning. Springer, 1995.

[162] Veldhuizen, D. A. V. Multiobjective Evolutionary Algorithms: Clas-
sifications, Analyses, and New Innovations. PhD thesis, Department of
Electrical and Computer Engineering. Graduate School of Engineering.
Air Force Institute of Technology, Wright-Patterson AFB, Ohio, May
1999.

218 BIBLIOGRAPHY

[163] Veldhuizen, D. A. V., and Lamont, G. B. Multiobjective Evo-
lutionary Algorithm Research: A History and Analysis. Tech. Rep.
TR-98-03, Department of Electrical and Computer Engineering, Grad-
uate School of Engineering, Air Force Institute of Technology, Wright-
Patterson AFB, Ohio, 1998.

[164] Veldhuizen, D. A. V., and Lamont, G. B. On Measuring Mul-
tiobjective Evolutionary Algorithm Performance. In 2000 Congress on
Evolutionary Computation (Piscataway, New Jersey, July 2000), vol. 1,
IEEE Service Center, pp. 204–211.

[165] Wetzel, A. Evaluation of Effectiveness of Genetic Algorithms in
Combinatorial. PhD thesis, University of Pittsburgh, 1983.

[166] Williams, C. K. I., and Rasmussen, C. E. Gaussian processes for
regression. In Advances in Neural Information Processing Systems 8,
D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo., Eds. MIT Press,
1996.

[167] Wilson, B., Cappelleri, D. J., Simpson, T. W., and Frecker,

M. I. Efficient pareto frontier exploration using surrogate approxima-
tions. In Symposium on Multidisciplinary Analysis and Optimization
(Long Beach, CA,, September 2000).

[168] Wolpert, D. H., and Macready, W. G. No free lunch theorems
for optimization. IEEE Transactions on Evolutionary Computation 1
(1997), 67–82.

[169] Won, K., and Ray, T. Performance of kriging and cokriging based
surrogate models within the unified framework for surrogate assisted
optimization. In Congress on Evolutionary Computation (2004), IEEE,
pp. 1577–1585.

[170] Xue, F., Sanderson, A. C., and Graves, R. J. Pareto-based
Multi-Objective Differential Evolution. In Proceedings of the 2003
Congress on Evolutionary Computation (CEC’2003) (Canberra, Aus-
tralia, December 2003), vol. 2, IEEE Press, pp. 862–869.

[171] Zadeh, L. Fuzzy sets. Information and Control 8, 1 (Fall 1965),
338–353.

BIBLIOGRAPHY 219

[172] Zadeh, L. A. Optimality and nonscalar-valued performance criteria.
IEEE Transactions on Automatic Control AC-8, 1 (1963), 59–60.

[173] Zitzler, E., Deb, K., and Thiele, L. Comparison of Multiobjec-
tive Evolutionary Algorithms: Empirical Results. Evolutionary Com-
putation 8, 2 (Summer 2000), 173–195.

[174] Zitzler, E., Laumanns, M., and Thiele, L. SPEA2: Improv-
ing the Strength Pareto Evolutionary Algorithm. In EUROGEN 2001.
Evolutionary Methods for Design, Optimization and Control with Ap-
plications to Industrial Problems (Athens, Greece, 2002), K. Gian-
nakoglou, D. Tsahalis, J. Periaux, P. Papailou, and T. Fogarty, Eds.,
pp. 95–100.

[175] Zitzler, E., and Thiele, L. Multiobjective Evolutionary Algo-
rithms: A Comparative Case Study and the Strength Pareto Ap-
proach. IEEE Transactions on Evolutionary Computation 3, 4 (Novem-
ber 1999), 257–271.

[176] Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., and

da Fonseca, V. G. Performance assessment of multiobjective opti-
mizers: an analysis and review. IEEE Transactions on Evolutionary
Computation 7, 2 (Summer 2003), 117–132.

	Abstract
	Resumen
	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Optimization
	Basic definitions
	Karush-Kuhn-Tucker conditions

	Optimization problems
	Evolutionary algorithms
	Paradigms
	Evolution strategies
	Evolutionary ¨programming
	Genetic algorithms
	Memetic algorithms
	Other approaches

	Advantages and disadvantages of evolutionary algorithms

	Multi-objective Optimization
	Pareto dominance
	Pareto optimality
	Pareto front

	Decision making process
	A priori techniques
	Progressive techniques
	A posteriori techniques

	Evolutionary algorithms for multi-objective optimization
	Population based evolutionary algorithms
	VEGA

	Pareto based evolutionary algorithms
	MOGA
	NPGA
	NSGA
	SPEA
	PAES
	NSGA-II
	SPEA2
	-GA
	-MOEA

	Performance measures
	Test functions
	Deb's test functions
	The ZDT test functions
	The DTLZ test functions

	Exploration: Differential Evolution and Particle Swarm Optimization
	Differential evolution (DE)
	Different strategies of DE
	Previous related work
	Proposed algorithm based on DE

	Particle swarm optimization (PSO)
	Previous related work
	Proposed algorithm based on PSO
	MOPSO results

	Final remarks

	Convergence: Fitness Approximation
	Knowledge incorporation
	Surrogates
	Polynomials: response surface methods (RSM)
	Radial basis functions
	Kriging
	Artificial neural networks
	Training an ANN

	Support vector machines

	Results using surrogates
	Latin-Hypercubes

	Comparative study
	Surrogate phase analysis

	Final remarks

	Exploitation: A Local Search Based on Rough Sets Theory
	Rough sets theory
	Use of rough sets in multi-objective optimization
	Atom construction in rough sets theory
	Results of rough sets

	Final remarks

	Distribution: PA-dominance
	Pareto-adaptive -dominance
	-dominance
	 computation
	Box index vector
	Algorithm for the hypervolume
	Acceptance scheme on pa-dominance grid

	pa-Dominance results
	Test functions and metrics
	Results

	Final remarks

	Results
	DEMORS: unconstrained problems
	Methodology
	Parameters
	Results
	ZDT set problems
	DTLZ set problems

	DEMORS: constrained problems
	Methodology
	Parameters
	Results

	SVM+RS: unconstrained bi-objective problems
	Methodology
	Parameters
	Results

	Final remarks

	Final Remarks
	Summary
	Conclusions
	Future Work
	Publications

	Test Functions Adopted: Definitions
	Test Functions Adopted: Figures
	Bibliography

