
25 Years of Cryptographic Hardware Design
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25 Years of Cryptographic Hardware Design

• 1975-1977: Invention of Public-Key Cryptography

• Diffie-Hellman & RSA Algorithms

• Publication Dates: Nov 1976 & Feb 1978

• First hardware implementation:

R. L. Rivest. A Description of a Single-Chip Implementation of the RSA
Cipher. Lambda, vol. 1, pages 14-18, 1980.

• In 1984, I was a graduate student at UCSB’s ECE Department

• My interest started with Rivest’s hardware paper
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Essential Milestones

• This talk gives a brief summary of advanced algorithms for creating better
hardware realizations of public-key cryptographic algorithms: Diffie-
Hellman, RSA, elliptic curve cryptography

• Essential milestones:

– Naive algorithms, 1978-1985
– Montgomery algorithm, 1985
– Advanced Karatsuba algorithms, 1994
– Advanced Montgomery algorithms, 1996
– Montgomery algorithm in GF (2k), 1998
– Unified arithmetic, 2002
– Spectral arithmetic, 2006
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RSA Computation

• The RSA algorithm uses modular exponentiation for encryption

C := Me (mod n)

and decryption
M : Cd (mod n)

• The computation of Me mod n is performed using exponentiation
heuristics

• Modular exponentiation requires implementation of three basic modular
arithmetic operations: addition, subtraction, and multiplication
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Diffie-Hellman Computation

• Similarly, the Diffie-Hellman key exchange algorithm executes the steps

RA := ga (mod p)

RB := gb (mod p)

R′

B := Rb
A = gab (mod p)

R′

A := Ra
B = gba (mod p)

between two parties, Alice & Bob

• These computations are also modular exponentiations, requiring modular
addition, subtraction, and multiplication operations
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NIST Digital Signature Algorithm

• The signature computation on M and k is the pair (r, s)

r := (gk mod p) mod q

s := (M + xr)k−1 mod q

• The signature verification

w := s−1 mod q

u1 := Mw mod q

u2 := rw mod q

v := (gu1yu2 mod p) mod q

Check if r = v
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Ellliptic Curve Cryptography

• Elliptic curves defined over GF (p) or GF (2k) are used in cryptography

• The arithmetic of GF (p) is the usual mod p arithmetic

• The arithmetic of GF (2k) is similar to that of GF (p), however, there
are some differences

• Elliptic curves over GF (2k) are more popular due to the space and
time-efficient algorithms for doing arithmetic in GF (2k)

• Elliptic curve cryptosystems based on discrete logarithms seem to provide
similar amount of security to that of RSA, but with relatively shorter key
sizes
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Computations of Cryptographic Functions

• It is interesting to note that all public-key cryptographic algorithms are
based on number-theoretic and algebraic finite structures, such as groups,
rings, and fields

• In fact, most of them need modular arithmetic, i.e., the arithmetic of
integers in finite rings or fields

• The challenge is however that the sizes of operands are large, starting
from about 160 bits up to 16,000 bits

• Therefore, the algorithmic development of cryptographic hardware design
is essentially based on (exact) computer arithmetic with very large
integers

• Since exponentiations & multiplications are most time/energy/space
consuming computations, we will only study those in our talk
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Computing Exponentiations

• Given the integer e, the computation of Me or eP is an exponentiation
operation

• The objective is to use as few multiplications (or elliptic curve additions)
as possible for a given integer e

• This problem is related to addition chains

• An addition chain yields an algorithm for computing Me or eP given the
integer e

M1→M2→M3 →M5→M10→M11→M22→M44→M55

P → 2P → 3P → 5P → 10P → 11P → 22P → 44P → 55P
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Computing Exponentiations

• Finding the shortest addition chain is an NP-complete problem

• Lower bound: log2 e + log2 H(e)− 2.13 (Schönhage)

• Upper bound: ⌊log2 e⌋+ H(e)− 1, where H(e) is the Hamming weight
of e (the binary method, the SX method, Knuth)

• It turns out the oldest known algorithm for computing exponentiation is
not too far in efficiency to the best algorithm

• Heuristics, m-ary, adaptive m-ary, sliding windows, power tree methods
offer only slight improvements
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Computing Modular Multiplication - Naive Algorithms

• Given a, b < n, compute P = a · b mod n

• Multiply and reduce:

Multiply: P ′ = a · b (2k-bit number)

Reduce: P = P ′ mod n (k-bit number)

• Reductions are essentially integer divisions

• However, multiply and reduce steps can be interleaved, but offering only
slight improvements
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Interleaved Multiply & Reduce - Naive Algorithms

P ′ = a · b = a ·
k−1∑

i=0

bi2
i =

k−1∑

i=0

(a · bi)2
i

= 2(· · · 2(2(0 + a · bk−1) + a · bk−2) + · · ·) + a · b0

1. P := 0
2. for i = k − 1 downto 0
2a. P := 2P + a · bi

2b. P := P mod n
3. return P

• Unfortunately, Step 2b is highly time consuming (a full division for every
bit of the operands)
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Montgomery Multiplication - 1985

• Attempts to create good hardware to compute the RSA functions (sign,
verify, encrypt, decrypt) in acceptable time have essentially failed because
of the excessive requirements of the naive algorithms

• This includes Rivest’s hardware proposal and all other implementations
until the Montgomery multiplication algorithm came about

• Peter Montgomery discovered a method to replace Step 2b with a step
similar to Step 2a: an addition instead of a division

• It is brilliant and efficient

• Montgomery’s algorithm changed cryptographic design in a way very
much like the FFT algorithm changed the digital signal processing
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Montgomery Multiplication

• Montgomery’s method maps the integers {0, 1, 2, . . . , n−1} to the same
set with the map x̄ = x · r (mod n) using the integer r = 2k

• It then works in this set (numbers with the “bar” sign) and performs the
multiplication

MonPro(ā, b̄) = ā · b̄ · 2−k (mod n)

• The above operation turns out to be significantly simpler than the
standard modular multiplication a · b (mod n) because the division by
n in Step 2b (reduction) is avoided

• Transformation to and back from the “bar” domain is also quite easily
done, i.e., x̄ = MonPro(x, r2) and x = MonPro(x̄, 1)
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Montgomery Multiplication

• In order to compute u = MonPro(a, b) = a · b · 2−k (mod n), we use
the steps below

1. u := 0
2. for i = 0 to k − 1
2a. u := u + ai · b
2b. if u0 is 1 then u := u + n
3. u := u/2

• Now, Step 2b is only an addition!

• And, it is is done about half of the time!

• We remain in the Montgomery (“bar”) domain of integers until the final
step of the exponentiation, and then use the conversion routine to go
back to the “no bar” domain
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Karatsuba-Ofman Multiplication

• Algorithms Textbooks offer a few asymptotically faster multiplication
algorithms: Karatsuba-Ofman, Toom-Cook, Winograd, and DFT-based
algorithms

• These algorithms are all good: they help you to multiply faster

• But, they are no help in modular multiplication, i.e., they do not
multiply-and-reduce (Montgomery’s method is special)

• They also have large overhead, and start being faster only after a few
thousand bits

• However, there has been significant algorithmic developments to bring
down their break-even point to a few hundred bits
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Advanced Montgomery Multiplication

• On the other hand, Montgomery algorithms also improved

• They can be made fit into specific archiectures, by changing the way
they scan the bits of the multiplicand, the multiplier, and the product

• Separated Operand Scanning (SOS): First computes t = a · b and then
interleaves the computations of m = t · n′ mod r and u = (t + m · n)/r.
Squaring can be optimized.

SOS requires 2s + 2 words of space

• Finely Integrated Product Scanning (FIPS): Interleaves computation of
a · b and m · n by scanning the words of m

It uses the same space to keep m and u, reducing the temporary space
to s + 3 words
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Advanced Montgomery Multiplication

• Finely Integrated Operand Scanning (FIOS): The computation of a · b
and m · n is performed in a single loop

FIOS also requires s + 3 words of space

• Coarsely Integrated Hybrid Scanning (CIHS): The computation of a · b is
split into 2 loops, and the second loop is interleaved with the computation
of m · n

CIHS also requires s + 3 words of space

• Coarsely Integrated Operand Scanning(CIOS): Improves the SOS method
by integrating the multiplication and reduction steps. It alternates
between iterations of the outer loops for multiplication and reduction

CIOS also requires s + 3 words of space
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Advanced Montgomery Multiplication

• All methods require 2s2 + s multiplications

• Add, Read/Write and Space requirements are below

Add Read/Write Space

SOS 4s2+4s+2 8s2+13s+5 2s+2

FIPS 6s2+2s+2 14s2+16s+3 s+3

FIOS 5s2+3s+2 10s2+9s+3 s+3

CIHS 4s2+4s+2 9.5s2+11.5s+3 s+3

CIOS 4s2+4s+2 8s2+12s+3 s+3

• Depending on the availability of functional units (multipliers, adders,
registers), one method can outperform another and thus should be
selected
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Montgomery Multiplication in GF (2k)

• It turns out that the Montgomery multiplication can also be performed
in the finite field GF (2k) if the polynomial basis representations of the
field elements are employed

• It imitates the the Montgomery multiplication in GF (p) by taking
the modulus the irreducible polynomial p(x) generating the field of 2k

elements

• It is not as fast as the normal basis, but it has some advantages
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Montgomery Multiplication in GF (2k)

• In order to compute

u(x) = MonPro(a(x), b(x)) = a(x) · b(x) · x−k mod p(x) ,

we use the steps below

1. u(x) := 0
2. for i = 0 to k − 1
2a. u(x) := u(x) + ai · b(x) mod 2
2b. if u0 is 1 then u(x) := u(x) + p(x) mod 2
3. u := u/2

• Now Steps 2a and 2b use mod 2 additions (XOR gates)
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Unified Arithmetic

• One advantage of the Montgomery multiplication in GF (2k) is that a
single arithmetic unit can be used to handle both kinds of fields: GF (p)
and GF (2k): This is called unified arithmetic (or, dual-field arithmetic)

• Advantages of the unified arithmetic are low manufacturing cost,
compatibility, parallelism, and scalability

• Furthermore, unified arithmetic is impartial: it does not favor one prime
against another or one irreducible polynomial against another

• The building block of the unified architecture is the unified full adder: a
1-bit adder that handles both GF (p) and GF (2k)
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Unified Full Adder
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Scalability

• Scalability is an important concept: it allows to make small changes
in the hardware to handle larger operands without a complete redesign
(such as switching from 1024-bit RSA keys to 1536-bit RSA keys)

PE 1 PE 2 PE 3 PE k

Buffer
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Dependency Graph of Montgomery Multiplication
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Pipelined Montgomery Multiplication

An example of pipeline computation for 7 bit operands 

where w=1
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Pipelined Architecture with Fewer Units

Pipeline stalls when fewer 

i i il blprocessing units are available

m=7, w=1, k=3
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General Pipelined Architecture

PU1 PU2 PUt
Latch
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Spectral Arithmetic

• We use FFT-based arithmetic to implement modular multiplication

• However, we are interested in performing the reduction inside the spectral
(frequency) domain

• We utilize finite ring and field arithmetic (avoid real or complex arithmetic
because of the roundoff errors in using floating-point or fixed-point
arithmetic)

• We also want to bring down the break-even point of efficiency for
FFT-based multiplication

• Furthermore, we utilize the properties of the DFT and Montgomery
algorithm to perform modular multiplication
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Spectral Arithmetic

Modular 
Reduction

Modular 
Multiplication

Convolution

DFT Inverse DFT 
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DFT over a Finite Ring: Definition

Let ω be a primitive d-th root of unity in Zq and, let x(t) and X(t) be
polynomials of degree d− 1 having entries in Zq. The DFT map over Zq is
an invertib le set map sending x(t) to X(t) given by

Xi = DFT ω
d (x(t)) :=

d−1∑

j=0

xjω
ij mod q,

with the inverse

xi = IDFT ω
d (X(t)) := d−1 ·

d−1∑

j=0

Xjω
−ij mod q,

for i, j = 0, 1, . . . , d− 1.
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DFT over a Finite Ring: Existence

We write

x(t)
DFT

←→
X(t)

and say x(t) and X(t) are transform pairs; x(t) is called a time polynomial

and sometimes X(t) is named as the spectrum of x(t).

• (Convention) In the literature, DFT over a finite ring spectrum is also
called as Number Theoretical Transform (NTT)

• (Existence) In order to have a DFT map over Zq:

– The multiplicative inverse of DFT length d must exist in Zq which
requires that gcd(d, q) = 1.

– d has to divide p− 1 for every prime p divisor of q
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DFT over a Finite Ring: Efficiency

In order to have simple arithmetic

• q should be chosen as
a Mersenne number q = 2v − 1, or
a Fermat number q = 2v + 1

• The principal root of unity ω should be selected as a power of 2 to
simplify the multiplications with roots of unity
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Properties of DFT

• Under certain conditions, the Fourier transform preserves some properties
of the time sequences, e.g., linearity and convolution.

• The existence conditions of these properties differ when working in finite
ring spectrums

• Let φ and Φ be operations on time and spectral domains respectively.
We write

φ
DFT

←→
Φ

and say φ and Φ are transform pairs on x(t) and sometimes declare that
the map DFT ω

d respects the operation φ on point x(t) if following
equation is satisfied

φ(x(t)) = IDFT ω
d ◦ Φ ◦DFT ω

d (x(t))
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Time-Frequency Dictionary

• Time and frequency shifts correspond to circular shifts Let

x(t) = x0 + x1t + . . . + xd−1t
d−1

and
X(t) = X0 + X1t + . . . + Xd−1t

d−1

be a transform pair.

The one-term right circular shift is defined as x(t) 	 1

x1 + x2t + . . . + xd−2t
d−1 + x0t

d−1

l DFT

X(t)⊙ Γ(t)

where ⊙ stands for component-wise multiplication and

Γ(t) = 1 + ω−1t + . . . + ω−(d−1)td−1
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Time-Frequency Dictionary

• Sum of sequence and first value: The sum of the coefficients of a time
polynomial equals to the zeroth coefficient of its spectral polynomial.
Conversely the sum of the spectrum coefficients equals to d−1 times the
zeroth coefficient of the time polynomial

x0 = d−1 ·
d−1∑

i=0

Xiω
−i and X0 =

d−1∑

i=0

xiω
i

(x0, x1, …, xd-1) (X0, X1, …, Xd-1)
DFT

sum equals to X0

sum multiplied by d-1 
equals to x0
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Time-Frequency Dictionary

• Left and right logical shifts: By using the previous properties, it is
possible to perform logical left and right digit shifts x(t)≪ 1 as follows:

(x(t)− x0)/t = x1 + . . . + xd−1t
d−2

l DFT

(X(t)− x0(t))⊙ Γ(t)

where
x0(t) = x0 + x0t + x0t

2 + . . . + x0t
d−1

• The right shifts are similar, where one then uses the

Ω(t) = 1 + ω1t + . . . + ω(d−1)td−1

polynomial instead of Γ(t)
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A Time Simulation for Spectral Modular Multiplication

We would like to compute 8592 · 4−9 (mod 1337).
Signal x(t) representing 859 = x(4) in base 4.
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A Time Simulation for SMP

Convolving x(t) with itself, we find x2(t) = 8592 = 737881.
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A Time Simulation for SMP

The modulus m = 1337 is represented as m = 1 + 2t + 3t2 + t4 + t5.We
add 3m to the sum to anhilate the least significant b bits of the least digit.
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A Time Simulation for SMP

Carry goes to the next digit.
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A Time Simulation for SMP

We then shift the digits.
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A Time Simulation for SMP

After 9 iterations, we find the result: 914 ≡ 8592 · 4−9 (mod 1337).
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Unending Quest for Efficiency

• Conclusions?

• Challenges remain: Make faster but low-area and low-energy hardware
for cryptography

• Platforms are diverse: Huge SSL and IPSec boxes versus tiny Bluetooth
earphones, cellphones and PDAs

• New challenges: We need to build countermeasures in order to circumvent
attacks by adversaries to obtain hardware-hidden secrets

• Questions?

Email: koc@cryptocode.net
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