25 Years of Cryptographic Hardware Design

Çetin Kaya Koç

City University of Istanbul \&
University of California Santa Barbara

koc@cs.ucsb.edu
http://cryptocode.net
koc@cryptocode.net

25 AÑOS DE LA COMPUTACIÓN EN EL CINVESTAV

25 Years of Cryptographic Hardware Design

- 1975-1977: Invention of Public-Key Cryptography
- Diffie-Hellman \& RSA Algorithms
- Publication Dates: Nov 1976 \& Feb 1978
- First hardware implementation:
R. L. Rivest. A Description of a Single-Chip Implementation of the RSA Cipher. Lambda, vol. 1, pages 14-18, 1980.
- In 1984, I was a graduate student at UCSB's ECE Department
- My interest started with Rivest's hardware paper

Essential Milestones

- This talk gives a brief summary of advanced algorithms for creating better hardware realizations of public-key cryptographic algorithms: DiffieHellman, RSA, elliptic curve cryptography
- Essential milestones:
- Naive algorithms, 1978-1985
- Montgomery algorithm, 1985
- Advanced Karatsuba algorithms, 1994
- Advanced Montgomery algorithms, 1996
- Montgomery algorithm in $G F\left(2^{k}\right), 1998$
- Unified arithmetic, 2002
- Spectral arithmetic, 2006

RSA Computation

- The RSA algorithm uses modular exponentiation for encryption

$$
C:=M^{e} \quad(\bmod n)
$$

and decryption

$$
M: C^{d} \quad(\bmod n)
$$

- The computation of $M^{e} \bmod n$ is performed using exponentiation heuristics
- Modular exponentiation requires implementation of three basic modular arithmetic operations: addition, subtraction, and multiplication

Diffie-Hellman Computation

- Similarly, the Diffie-Hellman key exchange algorithm executes the steps

$$
\begin{aligned}
R_{A} & :=g^{a} \quad(\bmod p) \\
R_{B} & :=g^{b} \quad(\bmod p) \\
R_{B}^{\prime} & :=R_{A}^{b}=g^{a b} \quad(\bmod p) \\
R_{A}^{\prime} & :=R_{B}^{a}=g^{b a} \quad(\bmod p)
\end{aligned}
$$

between two parties, Alice \& Bob

- These computations are also modular exponentiations, requiring modular addition, subtraction, and multiplication operations

NIST Digital Signature Algorithm

- The signature computation on M and k is the pair (r, s)

$$
\begin{aligned}
r & :=\left(g^{k} \bmod p\right) \bmod q \\
s & :=(M+x r) k^{-1} \bmod q
\end{aligned}
$$

- The signature verification

$$
\begin{aligned}
w & :=s^{-1} \bmod q \\
u_{1} & :=M w \bmod q \\
u_{2} & :=r w \bmod q \\
v & :=\left(g^{u_{1}} y^{u_{2}} \bmod p\right) \bmod q \\
\text { Check if } r & =v
\end{aligned}
$$

Ellliptic Curve Cryptography

- Elliptic curves defined over $G F(p)$ or $G F\left(2^{k}\right)$ are used in cryptography
- The arithmetic of $G F(p)$ is the usual $\bmod p$ arithmetic
- The arithmetic of $G F\left(2^{k}\right)$ is similar to that of $G F(p)$, however, there are some differences
- Elliptic curves over $G F\left(2^{k}\right)$ are more popular due to the space and time-efficient algorithms for doing arithmetic in $G F\left(2^{k}\right)$
- Elliptic curve cryptosystems based on discrete logarithms seem to provide similar amount of security to that of RSA, but with relatively shorter key sizes

Computations of Cryptographic Functions

- It is interesting to note that all public-key cryptographic algorithms are based on number-theoretic and algebraic finite structures, such as groups, rings, and fields
- In fact, most of them need modular arithmetic, i.e., the arithmetic of integers in finite rings or fields
- The challenge is however that the sizes of operands are large, starting from about 160 bits up to 16,000 bits
- Therefore, the algorithmic development of cryptographic hardware design is essentially based on (exact) computer arithmetic with very large integers
- Since exponentiations \& multiplications are most time/energy/space consuming computations, we will only study those in our talk

Computing Exponentiations

- Given the integer e, the computation of M^{e} or $e P$ is an exponentiation operation
- The objective is to use as few multiplications (or elliptic curve additions) as possible for a given integer e
- This problem is related to addition chains
- An addition chain yields an algorithm for computing M^{e} or $e P$ given the integer e

$$
\begin{gathered}
M^{1} \rightarrow M^{2} \rightarrow M^{3} \rightarrow M^{5} \rightarrow M^{10} \rightarrow M^{11} \rightarrow M^{22} \rightarrow M^{44} \rightarrow M^{55} \\
P \rightarrow 2 P \rightarrow 3 P \rightarrow 5 P \rightarrow 10 P \rightarrow 11 P \rightarrow 22 P \rightarrow 44 P \rightarrow 55 P
\end{gathered}
$$

Computing Exponentiations

- Finding the shortest addition chain is an NP-complete problem
- Lower bound: $\log _{2} e+\log _{2} H(e)-2.13$ (Schönhage)
- Upper bound: $\left\lfloor\log _{2} e\right\rfloor+H(e)-1$, where $H(e)$ is the Hamming weight of e (the binary method, the SX method, Knuth)
- It turns out the oldest known algorithm for computing exponentiation is not too far in efficiency to the best algorithm
- Heuristics, m-ary, adaptive m-ary, sliding windows, power tree methods offer only slight improvements

Computing Modular Multiplication - Naive Algorithms

- Given $a, b<n$, compute $P=a \cdot b \bmod n$
- Multiply and reduce:

Multiply: $P^{\prime}=a \cdot b$ (2k-bit number)
Reduce: $P=P^{\prime} \bmod n(k$-bit number)

- Reductions are essentially integer divisions
- However, multiply and reduce steps can be interleaved, but offering only slight improvements

Interleaved Multiply \& Reduce - Naive Algorithms

$$
\begin{aligned}
P^{\prime} & =a \cdot b=a \cdot \sum_{i=0}^{k-1} b_{i} 2^{i}=\sum_{i=0}^{k-1}\left(a \cdot b_{i}\right) 2^{i} \\
& =2\left(\cdots 2\left(2\left(0+a \cdot b_{k-1}\right)+a \cdot b_{k-2}\right)+\cdots\right)+a \cdot b_{0}
\end{aligned}
$$

1. $P:=0$
2. for $i=k-1$ downto 0

2a. $\quad P:=2 P+a \cdot b_{i}$
2b. $\quad P:=P \bmod n$
3. return P

- Unfortunately, Step 2b is highly time consuming (a full division for every bit of the operands)

Montgomery Multiplication - 1985

- Attempts to create good hardware to compute the RSA functions (sign, verify, encrypt, decrypt) in acceptable time have essentially failed because of the excessive requirements of the naive algorithms
- This includes Rivest's hardware proposal and all other implementations until the Montgomery multiplication algorithm came about
- Peter Montgomery discovered a method to replace Step 2 b with a step similar to Step 2a: an addition instead of a division
- It is brilliant and efficient
- Montgomery's algorithm changed cryptographic design in a way very much like the FFT algorithm changed the digital signal processing

Montgomery Multiplication

- Montgomery's method maps the integers $\{0,1,2, \ldots, n-1\}$ to the same set with the map $\bar{x}=x \cdot r \quad(\bmod n)$ using the integer $r=2^{k}$
- It then works in this set (numbers with the "bar" sign) and performs the multiplication

$$
\operatorname{MonPro}(\bar{a}, \bar{b})=\bar{a} \cdot \bar{b} \cdot 2^{-k} \quad(\bmod n)
$$

- The above operation turns out to be significantly simpler than the standard modular multiplication $a \cdot b(\bmod n)$ because the division by n in Step 2b (reduction) is avoided
- Transformation to and back from the "bar" domain is also quite easily done, i.e., $\bar{x}=\operatorname{MonPro}\left(x, r^{2}\right)$ and $x=\operatorname{MonPro}(\bar{x}, 1)$

Montgomery Multiplication

- In order to compute $u=\operatorname{MonPro}(a, b)=a \cdot b \cdot 2^{-k} \quad(\bmod n)$, we use the steps below

1. $u:=0$
2. for $i=0$ to $k-1$

2a. $u:=u+a_{i} \cdot b$
2b. if u_{0} is 1 then $u:=u+n$
3. $u:=u / 2$

- Now, Step 2b is only an addition!
- And, it is is done about half of the time!
- We remain in the Montgomery ("bar") domain of integers until the final step of the exponentiation, and then use the conversion routine to go back to the "no bar" domain

Karatsuba-Ofman Multiplication

- Algorithms Textbooks offer a few asymptotically faster multiplication algorithms: Karatsuba-Ofman, Toom-Cook, Winograd, and DFT-based algorithms
- These algorithms are all good: they help you to multiply faster
- But, they are no help in modular multiplication, i.e., they do not multiply-and-reduce (Montgomery's method is special)
- They also have large overhead, and start being faster only after a few thousand bits
- However, there has been significant algorithmic developments to bring down their break-even point to a few hundred bits

Advanced Montgomery Multiplication

- On the other hand, Montgomery algorithms also improved
- They can be made fit into specific archiectures, by changing the way they scan the bits of the multiplicand, the multiplier, and the product
- Separated Operand Scanning (SOS): First computes $t=a \cdot b$ and then interleaves the computations of $m=t \cdot n^{\prime} \bmod r$ and $u=(t+m \cdot n) / r$. Squaring can be optimized.

SOS requires $2 s+2$ words of space

- Finely Integrated Product Scanning (FIPS): Interleaves computation of $a \cdot b$ and $m \cdot n$ by scanning the words of m

It uses the same space to keep m and u, reducing the temporary space to $s+3$ words

Advanced Montgomery Multiplication

- Finely Integrated Operand Scanning (FIOS): The computation of $a \cdot b$ and $m \cdot n$ is performed in a single loop

FIOS also requires $s+3$ words of space

- Coarsely Integrated Hybrid Scanning (CIHS): The computation of $a \cdot b$ is split into 2 loops, and the second loop is interleaved with the computation of $m \cdot n$

CIHS also requires $s+3$ words of space

- Coarsely Integrated Operand Scanning(CIOS): Improves the SOS method by integrating the multiplication and reduction steps. It alternates between iterations of the outer loops for multiplication and reduction CIOS also requires $s+3$ words of space

Advanced Montgomery Multiplication

- All methods require $2 s^{2}+s$ multiplications
- Add, Read/Write and Space requirements are below

	Add	Read/Write	Space
SOS	$4 s^{2}+4 s+2$	$8 s^{2}+13 s+5$	$2 s+2$
FIPS	$6 s^{2}+2 s+2$	$14 s^{2}+16 s+3$	$s+3$
FIOS	$5 s^{2}+3 s+2$	$10 s^{2}+9 s+3$	$s+3$
CIHS	$4 s^{2}+4 s+2$	$9.5 s^{2}+11.5 s+3$	$s+3$
CIOS	$4 s^{2}+4 s+2$	$8 s^{2}+12 s+3$	$s+3$

- Depending on the availability of functional units (multipliers, adders, registers), one method can outperform another and thus should be selected

Montgomery Multiplication in $G F\left(2^{k}\right)$

- It turns out that the Montgomery multiplication can also be performed in the finite field $G F\left(2^{k}\right)$ if the polynomial basis representations of the field elements are employed
- It imitates the the Montgomery multiplication in $G F(p)$ by taking the modulus the irreducible polynomial $p(x)$ generating the field of 2^{k} elements
- It is not as fast as the normal basis, but it has some advantages

Montgomery Multiplication in $G F\left(2^{k}\right)$

- In order to compute

$$
u(x)=\operatorname{MonPro}(a(x), b(x))=a(x) \cdot b(x) \cdot x^{-k} \bmod p(x)
$$

we use the steps below

1. $u(x):=0$
2. for $i=0$ to $k-1$

2a. $u(x):=u(x)+a_{i} \cdot b(x) \bmod 2$
2b. \quad if u_{0} is 1 then $u(x):=u(x)+p(x) \bmod 2$
3. $u:=u / 2$

- Now Steps 2a and 2b use mod 2 additions (XOR gates)

Unified Arithmetic

- One advantage of the Montgomery multiplication in $G F\left(2^{k}\right)$ is that a single arithmetic unit can be used to handle both kinds of fields: $G F(p)$ and $G F\left(2^{k}\right)$: This is called unified arithmetic (or, dual-field arithmetic)
- Advantages of the unified arithmetic are low manufacturing cost, compatibility, parallelism, and scalability
- Furthermore, unified arithmetic is impartial: it does not favor one prime against another or one irreducible polynomial against another
- The building block of the unified architecture is the unified full adder: a 1-bit adder that handles both $G F(p)$ and $G F\left(2^{k}\right)$

Unified Full Adder

Scalability

- Scalability is an important concept: it allows to make small changes in the hardware to handle larger operands without a complete redesign (such as switching from 1024-bit RSA keys to 1536 -bit RSA keys)

Dependency Graph of Montgomery Multiplication

Pipelined Montgomery Multiplication

An example of pipeline computation for 7 bit operands where $\mathrm{w}=1$

Pipelined Architecture with Fewer Units

* Regular computation

O Pipeline stall
(C) Extra Pipeline Stages Computation

Pipeline stalls when fewer processing units are available

$$
\mathrm{m}=7, \mathrm{w}=1, \mathrm{k}=3
$$

General Pipelined Architecture

Spectral Arithmetic

- We use FFT-based arithmetic to implement modular multiplication
- However, we are interested in performing the reduction inside the spectral (frequency) domain
- We utilize finite ring and field arithmetic (avoid real or complex arithmetic because of the roundoff errors in using floating-point or fixed-point arithmetic)
- We also want to bring down the break-even point of efficiency for FFT-based multiplication
- Furthermore, we utilize the properties of the DFT and Montgomery algorithm to perform modular multiplication

Spectral Arithmetic

DFT over a Finite Ring: Definition

Let ω be a primitive d-th root of unity in \mathbb{Z}_{q} and, let $x(t)$ and $X(t)$ be polynomials of degree $d-1$ having entries in \mathbb{Z}_{q}. The DFT map over \mathbb{Z}_{q} is an invertib le set map sending $x(t)$ to $X(t)$ given by

$$
X_{i}=D F T_{d}^{\omega}(x(t)):=\sum_{j=0}^{d-1} x_{j} \omega^{i j} \bmod q
$$

with the inverse

$$
x_{i}=I D F T_{d}^{\omega}(X(t)):=d^{-1} \cdot \sum_{j=0}^{d-1} X_{j} \omega^{-i j} \bmod q
$$

for $i, j=0,1, \ldots, d-1$.

DFT over a Finite Ring: Existence

We write

$$
x(t) \stackrel{\text { DFT }}{\longleftrightarrow} X(t)
$$

and say $x(t)$ and $X(t)$ are transform pairs; $x(t)$ is called a time polynomial and sometimes $X(t)$ is named as the spectrum of $x(t)$.

- (Convention) In the literature, DFT over a finite ring spectrum is also called as Number Theoretical Transform (NTT)
- (Existence) In order to have a DFT map over \mathbb{Z}_{q} :
- The multiplicative inverse of DFT length d must exist in \mathbb{Z}_{q} which requires that $\operatorname{gcd}(d, q)=1$.
- d has to divide $p-1$ for every prime p divisor of q

DFT over a Finite Ring: Efficiency

In order to have simple arithmetic

- q should be chosen as
a Mersenne number $q=2^{v}-1$, or
a Fermat number $q=2^{v}+1$
- The principal root of unity ω should be selected as a power of 2 to simplify the multiplications with roots of unity

Properties of DFT

- Under certain conditions, the Fourier transform preserves some properties of the time sequences, e.g., linearity and convolution.
- The existence conditions of these properties differ when working in finite ring spectrums
- Let ϕ and Φ be operations on time and spectral domains respectively. We write

and say ϕ and Φ are transform pairs on $x(t)$ and sometimes declare that the map $D F T_{d}^{\omega}$ respects the operation ϕ on point $x(t)$ if following equation is satisfied

$$
\phi(x(t))=I D F T_{d}^{\omega} \circ \Phi \circ D F T_{d}^{\omega}(x(t))
$$

Time-Frequency Dictionary

- Time and frequency shifts correspond to circular shifts Let

$$
x(t)=x_{0}+x_{1} t+\ldots+x_{d-1} t^{d-1}
$$

and

$$
X(t)=X_{0}+X_{1} t+\ldots+X_{d-1} t^{d-1}
$$

be a transform pair.
The one-term right circular shift is defined as $x(t) \circlearrowleft 1$

$$
\begin{aligned}
x_{1}+x_{2} t+\ldots+ & x_{d-2} t^{d-1}+x_{0} t^{d-1} \\
& \mathfrak{\downarrow} \text { DFT } \\
X(t) & \odot \Gamma(t)
\end{aligned}
$$

where \odot stands for component-wise multiplication and

$$
\Gamma(t)=1+\omega^{-1} t+\ldots+\omega^{-(d-1)} t^{d-1}
$$

Time-Frequency Dictionary

- Sum of sequence and first value: The sum of the coefficients of a time polynomial equals to the zeroth coefficient of its spectral polynomial. Conversely the sum of the spectrum coefficients equals to d^{-1} times the zeroth coefficient of the time polynomial

$$
x_{0}=d^{-1} \cdot \sum_{i=0}^{d-1} X_{i} \omega^{-i} \quad \text { and } \quad X_{0}=\sum_{i=0}^{d-1} x_{i} \omega^{i}
$$

Time-Frequency Dictionary

- Left and right logical shifts: By using the previous properties, it is possible to perform logical left and right digit shifts $x(t) \ll 1$ as follows:

$$
\begin{aligned}
& \left(x(t)-x_{0}\right) / t=x_{1}+\ldots+x_{d-1} t^{d-2} \\
& \uparrow \text { DFT } \\
& \left(X(t)-x_{0}(t)\right) \odot \Gamma(t)
\end{aligned}
$$

where

$$
x_{0}(t)=x_{0}+x_{0} t+x_{0} t^{2}+\ldots+x_{0} t^{d-1}
$$

- The right shifts are similar, where one then uses the

$$
\Omega(t)=1+\omega^{1} t+\ldots+\omega^{(d-1)} t^{d-1}
$$

polynomial instead of $\Gamma(t)$

A Time Simulation for Spectral Modular Multiplication

We would like to compute $859^{2} \cdot 4^{-9}(\bmod 1337)$. Signal $x(t)$ representing $859=x(4)$ in base 4 .

A Time Simulation for SMP

Convolving $x(t)$ with itself, we find $x^{2}(t)=859^{2}=737881$.

A Time Simulation for SMP

The modulus $m=1337$ is represented as $m=1+2 t+3 t^{2}+t^{4}+t^{5}$. We add $3 m$ to the sum to anhilate the least significant b bits of the least digit.

A Time Simulation for SMP

Carry goes to the next digit.

A Time Simulation for SMP

We then shift the digits.

A Time Simulation for SMP

After 9 iterations, we find the result: $914 \equiv 859^{2} \cdot 4^{-9} \quad(\bmod 1337)$.

Unending Quest for Efficiency

- Conclusions?
- Challenges remain: Make faster but low-area and low-energy hardware for cryptography
- Platforms are diverse: Huge SSL and IPSec boxes versus tiny Bluetooth earphones, cellphones and PDAs
- New challenges: We need to build countermeasures in order to circumvent attacks by adversaries to obtain hardware-hidden secrets
- Questions?

Email: koc@cryptocode.net

