Model Checking

My 27 year quest to overcome the state explosion problem

Intel Pentium FDIV Bug

- Try 4195835 4195835 / 3145727 * 3145727.
 In 94' Pentium, it doesn't return 0, but 256.
- Intel uses the SRT algorithm for floating point division. Five entries in the lookup table are missing.
- Cost: \$500 million
- Xudong Zhao's Thesis on Word Level Model Checking

Recent Rumor: New AMD TLB Bug??

- AMD Family 10h revision B2 processors suffer from an issue in the processor TLB (Translation Lookaside Buffer).
- Launch date of these processors was delayed in September, 2007.
- AMD doesn't have official announcement yet, but you can google "AMD Barcelona bug" for plenty of discussion.

Temporal Logic Model Checking

- Model checking is an **automatic verification technique** for finite state concurrent systems.
- Developed independently by Clarke and Emerson and by Queille and Sifakis in early 1980's.
- Specifications are written in propositional temporal logic.
- Verification procedure is an exhaustive search of the state space of the design.

Advantages of Model Checking

- No proofs!!!
- Fast (compared to other rigorous methods such as theorem proving)
- Diagnostic counterexamples
- No problem with partial specifications
- Logics can easily express many concurrency properties

Main Disadvantage

State Explosion Problem:

Main Disadvantage Contd.

State Explosion Problem:

Unavoidable in worst case, but steady progress over the past 27 years using clever algorithms, data structures, and engineering

a	"a is true now"
Xa	"a is true in the neXt state"
Fa	"a will be true in the Future"
Ga	"a will be Globally true in the future"
a U b	"a will hold true Until b becomes true"

a	"a is true now"
Xa	"a is true in the neXt state"
Fa	"a will be true in the Future"
Ga	"a will be Globally true in the future"
a U b	"a will hold true Until b becomes true"

a	"a is true now"
Xa	"a is true in the neXt state"
Fa	"a will be true in the Future"
Ga	"a will be Globally true in the future"
a U b	"a will hold true Until b becomes true"

a	"a is true now"
Xa	"a is true in the neXt state"
Fa	"a will be true in the Future"
Ga	"a will be Globally true in the future"
a U b	"a will hold true Until b becomes true"

a	"a is true now"
Xa	"a is true in the neXt state"
Fa	"a will be true in the Future"
Ga	"a will be Globally true in the future"
a U b	"a will hold true Until b becomes true"

Branching Time

EF g

"g will possibly become true"

AF g "g will necessarily become true"

AG g "g is an invariant"

EG g "g is a potential invariant"

CTL uses the temporal operators

AX, AG, AF, AU EX, EG, EF, EU

CTL* allows complex nestings such as AXX, AGX, EXF, ...

CTL: linear model checking algorithm !

Model Checking Problem

- Let *M* be a state-transition graph.
- Let **f** be the **specification** in temporal logic.
- Find all states s of M such that M, s = f.

- CTL Model Checking: CE 81; CES 83/86; QS 81/82.
- LTL Model Checking: LP 85.
- Automata Theoretic LTL Model Checking: VW 86.
- CTL* Model Checking: EL 85.

Model of computation

Microwave Oven Example State-transition graph describes system evolving ~ Start ~ Close over time. ~ Heat ~ Error ~ Start Start ~ Start Close ~ Close Close ~ Heat Heat ~ Heat ~ Error Error ~ Error Start Start Start Close Close Close ~ Heat ~ Heat Heat **Error** ~ Error ~ Error

Temporal Logic and Model Checking

- The oven doesn't heat up until the door is closed.
- Not heat_up holds until door_closed
- (~ heat_up) U door_closed

Model Checking

Hardware Example: IEEE Futurebus+

- In 1992 we used Model Checking to verify the IEEE Future+ cache coherence protocol.
- Found a number of previously undetected errors in the design.
- First time that formal methods were used to find errors in an IEEE standard.
- Development of the protocol began in 1988, but previous attempts to validate it were informal.

Four Big Breakthroughs on State Space Explosion Problem!

Symbolic Model Checking

Burch, Clarke, McMillan, Dill, and Hwang 90;

Ken McMillan's thesis 92

• The Partial Order Reduction Valmari 90 Godefroid 90 Peled 94

Four Big Breakthroughs on State Space Explosion Problem (Cont.)

- Bounded Model Checking

 Biere, Cimatti, Clarke, Zhu 99
 - Using Fast SAT solvers
 - Can handle thousands of state elements

Can the given property fail in k-steps?

BMC in practice: Circuit with 9510 latches, 9499 inputs BMC formula has 4 ± 10^6 variables, 1.2 ± 10^7 clauses Shortest bug of length 37 found in 69 seconds

Four Big Breakthroughs on State Space Explosion Problem (Cont.)

Localization Reduction
 Bob Kurshan 1994

- Counterexample Guided Abstraction Refinement (CEGAR)
 - Clarke, Grumberg, Jha, Lu, Veith 2000
 - Used in most software model checkers

From Hardware to Software:

Natural Question: Is it possible to model check software?

According to **Wired News** on Nov 10, 2005:

"When Bill Gates announced that the technology was under development at the 2002 Windows Engineering Conference, he called it the holy grail of computer science"

Grand Challenge: Model Check Software !

What makes **Software Model Checking** different ?

What Makes Software Model Checking Different ?

- Large/unbounded base types: int, float, string
- User-defined types/classes
- Pointers/aliasing + unbounded #'s of heap-allocated cells
- Procedure calls/recursion/calls through pointers/dynamic method lookup/overloading
- Concurrency + unbounded #'s of threads

What Makes Software Model Checking Different ?

- Templates/generics/include files
- Interrupts/exceptions/callbacks
- Use of secondary storage: files, databases
- Absent source code for: libraries, system calls, mobile code
- Esoteric features: continuations, self-modifying code
- Size (e.g., MS Word = 1.4 MLOC)

1. Combine static analysis and model checking Use static analysis to extract a model K from a boolean abstraction of the program.

Then check that f is true in K (K ² f), where f is the specification of the program.

- SLAM (Microsoft)
- Bandera (Kansas State)
- MAGIC, SATABS (CMU)
- BLAST (Berkeley)
- F-Soft (NEC)

- 1. Simulate program along all paths in computation tree
 - ² Java PathFinder (NASA Ames)
 - ² Source code + backtracking (e.g., Verisoft)
 - ² Source code + symbolic execution + backtracking (e.g., MS/Intrinsa Prefix)

 Use finite-state machine to look for patterns in control-flow graph [Engler]

- **1. Design with Finite-State Software Models** Finite state software models can act as "missing link" between transition graphs and complex software.
 - ² Statecharts
 - ² Esterel

- Use Bounded Model Checking and SAT [Kroening]
 - ² Problem: How to compute set of reachable states? Fixpoint computation is too expensive.
 - ² Restrict search to states that are reachable from initial state within fixed number n of transitions
 - ² Implemented by unwinding program and using SAT solver

Key techniques for Software Model Checking

- Counterexample Guided Abstraction Refinement
 - Kurshan, Yuan Lu, Clarke et al JACM, Ball et al
 - Uses counterexamples to refine abstraction

• Predicate Abstraction

- Graf and Saidi, Ball et al, Chaki et al, Kroening
- Keeps track of certain predicates on data
- Captures relationship between variables

Counterexamples

Counterexamples

Counterexamples

Existential Abstraction

Given an abstraction function $\alpha : S \rightarrow S_{\alpha}$, the concrete states are grouped and mapped into abstract states :

Preservation Theorem

 Theorem (Clarke, Grumberg, Long) If property holds on abstract model, it holds on concrete model

- Technical conditions
 - \succ Property is universal i.e., no existential quantifiers
 - \succ Atomic formulas respect abstraction mapping
- Converse implication is not valid !

Spurious Behavior

AGAF red

"Every path necessarily leads back to red."

Spurious Counterexample: <go><go><go>... Artifact of the abstraction !

How to define Abstraction Functions?

Abstraction too fine

State Explosion

Abstraction too coarse Information Loss

Automatic Abstraction Methodology

Automatic Abstraction

CEGAR CounterExample-Guided Abstraction Refinement

Spurious counterexample

Software Example: Device Driver Code

Also according to Wired News:

"Microsoft has developed a tool called Static Device Verifier or SDV, that uses 'Model Checking' to analyze the source code for Windows drivers and see if the code that the programmer wrote matches a mathematical model of what a Windows device driver should do. If the driver doesn't match the model, the SDV warns that the driver might contain a bug."

Back to Hardware!

Register Level Verilog:

```
always @(posedge clk) begin
// value = (value + carry_in) % 2;
    case(value)
        0: value = carry_in;
        1: if (carry_in ==0)
            value = 1;
        else value = 0;
    endcase
end
endmodule
```

Gate Level (netlist):

.model counter_cell .inputs carry_in .outputs carry_out

```
.names value carry in n2
.def 0
111
.names n2 carry out$raw n1
- = n2
.names value$raw n3
0
.names n6
\mathbf{0}
.names value n6 n7
.def 0
011
101
.r value$raw n3 value
00
1 1
     (120 lines)
```

Lack of verification support

Model Checking at the Register Level

Abstraction-Refinement loop (CEGAR)

Spurious counterexample

Benchmarks

- Ethernet MAC from opencores.org
- 5000 lines of RTL Verilog

Transmit Module In Ethernet MAC (self-loop on each state not shown)

Checked three properties:

- 3. Transmit module simulates state machine on left. (ETH0)
- 4. Checks transitions out of state BackOff (ETH1)
 - Checks transitions out of state Jam (ETH2)

Experimental Results

Benchmark	Latches	Time (sec)	#Preds	#Iters
ETH0	359	44	21	55
ETH1	359	127	93	51
ETH2	359	161	94	111

Challenges for the Future

- Exploiting the Power of SAT, Satisfiability Modulo Theories (SMT)
- **Compositional Model Checking** of both Hardware and Software
- Software Model Checking, Model Checking and Static Analysis
- Verification of Embedded Systems (Timed and Hybrid Automata)
- Model Checking and Theorem Proving (PVS, STEP, SyMP, Maude)
- Probabilistic and Statistical Model Checking
- Interpreting Counterexamples
- Scaling up even more!!

My goal: Verification of Safety-Critical Embedded

Do you trust your car?

Embedded Systems are as important in Europe as Computer Security is in the U.S.!

Students, Post-docs, and **isutors**

- **Sergey Berezin**
- **Michael Browne** •
- Jerry Burch ٠
- ٠ Sergio Campos
- ٠ Sagar Chaki
- Pankaj Chauhan ٠
- **David Dill** ٠
- Allen Emerson •
- ٠ **Alex Groce**
- **Anubhav Gupta** •
- Vicki Hartonas-Garmhausen ٠
- Himanshu Jain ٠
- ٠ Sumit Jha
- William Klieber ٠
- **David Long** •
- Yuan Lu •
- ٠ Dong Wang
- Will Marrero •
- Ken McMillan ٠
- Marius Minea ٠
- **Bud Mishra** ٠
- ٠ Christos Nikolaou
- Nishant Sinha ٠
- **Prasad Sistla** •
- **Muralidhar Talupur** ٠
- **Xudong Zhao** •

Post-docs:

- **Constantinos Bartzis**
- **Armin Biere**
- Lei Bu
- **David Deharbe**
- **Alexandre Donze**
- Azadeh Farzan
- **Ansgar Fehnker**
- **Wolfgang Heinle**
- **Tamir Heyman**
- James Kapinski
- Daniel Kroening
- **Axel Legay**
- **Daniel Milam**
- Alaexandar Nanevski
- Joel Ouaknine
- **Karsten Schmidt**
- Subash Shankar
- **Ofer Strichman**
- Prasanna Thati
- **Micheal Theobald**
- **Tayssir Touili**
- **Helmut Veith**
- Silke Wagner
- **Karen Yorav**
- Haifeng Zhu
- Yunshan Zhu

Visitors:

- Y. Chen
- Y. Feng
- T. Filkorn
- M. Fujita
- P. Granger
- O. Grumberg •
- H. Hamaguchi
- H. Hiraishi
- S. Kimura
- S. Krischner
- G.H. Kwon
- X. Li
- A. Platzer
- R. Raimi
- H. Schlingloff
- S. Shanker
- Y.Q. Sun
- T. Tang
- F. Tiplea
- Y. Tsay
- J.P. Vidal
- **B. Wang**
- F. Wang
- P. Williams
- W. Windsteiger
- Kwang Yi
- T. Yoneda

