Centro de Investigacion y de Estudios Avanzados del

Instituto Politécnico Nacional
Departamento de Ingenieria Eléctrica

Seccion de Computacion

Hardware Level Description
of

Dynamic Programming Algorithms

Tesis que presenta el M. en C. Arturo Diaz Pérez para obtener el
grado de Doctor en Ciencias dentro de la especialidad en Ingenieria
Eléctrica con opcién en Computacién. Trabajo dirigido por el Dr.
Guillermo Morales Luna.

Meéxico, D. F. 31 de julio de 1998

A Mary,
Carmelita,

y Lili

A mis padres,
a mis hermanos,

y a mis sobrinos

ACKNOWLEDGEMENT

Many people have been involved in the elaboration of this thesis. To all of them the only thing

I can say is thank you. However, some people deserve special considerations from me:

to Guillermo Morales Luna for having confidence on my research and helping me during all the
stages of this investigation. For accepting to mentor me and teach me, for working with me on a

day to day basis, and for being a very good friend;

to Mike Quinn for accepting me at his lab, for being willing to work with me under unusual
circumstances during that unforgettable year I spent at OSU. His multiple comments and opinions

have greatly influenced the results of this research;

to Sanjay Rajopadhye for introducing me the fundamental theory of systolic arrays;

to Sergio Rajsbaum, Adriano de Luca, Bill Taffe and Isidoro Gitler for accepting to serve on my

committee and for the time they spent in my behalf;

to Sergio Chapa for all support he offered me during my stay at the Seccién de Computacién;

to CINVESTAV for giving me facilites and support to finish this investigation;

to my little girls Carmelita and Lili for the time and love we sacrificed because of this research;

and finally to my wife Mary for her constant love and unconditional support.

This work was undirectly supported by CONACyT with the scholarship 68102.

Resumen

Los arreglos de compuertas programables (FPGAs por sus siglas en inglés), se han usado de manera
exitosa como procesadores configurables en algunas aplicaciones. Algunas aplicaciones han rebasado
el rendimiento ofrecido por sistemas de computo de propdsito general. Desafortunadamente, la tec-
nologfa actual de FPGAs presenta una serie de limitaciones de manera que éstos no pueden aplicarse
de forma arbitraria para cualquier tipo de algoritmos. Para implementar algoritmos en FPGAs uno
debe ir desde una descripcion de alto nivel del algoritmo hasta secuencias de digitos binarios (bits)
que representa el disefio para configurar uno o posiblemente varics FPGAs. La mayoria del trabajo
actual se ha enfocado a los aspectos de bajo nivel de este enfoque, esto es, al desarrollo de her-
ramientas para generar disenos de circuitos a implementarse en FPGAs. La entrada de este enfoque
es usualmente, una descripcién de un algoritmo a un nivel muy bajo. En esta tesis, presento una
metodologia de disefio para implementar algoritmos en FPGAs a partir de descripciones de alto
nivel. Dado que los FPGAs no pueden ser aplicados para implementar algoritmos arbitrarios, esta
metodologia se restringe a la clase de algoritmos de programacién dindmica cuya importancia ha
sido probada de manera extensa. La metodologia parte de un algoritmo de programacién dinamica
escrito en el lenguaje de programacién C* y termina produciendo un disefio de un circuito en el
lenguaje de descripcion de circuitos VHDL. En las etapas intermedias, se obtienen las ecuaciones
de recurrencia que describen el comportamiento funcional del programa y esta ecuaciones se llevan,
cuando es posible, a una forma uniforme. A partir de ecuaciones uniformes se obtienen representa-
ciones que configuran un arreglo de procesadores {espacio) en diferentes instantes de tiempo. El
disenio de un circuito en VHDL se obtiene a partir de las representaciones espacio-tiempo.

Abstract

Field programmable gate arrays (FPGAs) have been successfully applied as computing engines
for some applications. Some of them have outperformed large-scale general-purpose computing
systems. However, current FPGA technology imposes a number of limitations that severely restrict
the class of algorithms FPGAs are useful for. In implementing algorithms for FPGAs one must go
from an algorithmic description to binary files which represent a design to configure one, or possibiy
more, FPGAs. Most of the current work has been focused on the low-level.aspects of this approach,
i.e., in the tools to generate circuit design to implement algorithms in FPGAs. The input of this
approach is usually an enough low-level description of an algorithm. In this thesis, I present a
design methodology whose main concern is on the high-level aspects of algorithm implementation
for FPGAs. Since currently FPGAs cannot be used for implementing arbitrary algorithms, I restrict
myself to the class of dynamic programming algorithms. The importance of dynamic programming
has been proved elsewhere. I start from a dynamic programming program written in a parallel
language, C*, and a circuit design in a hardware description language, VHDL, is produced. In
the middle, it is obtained the recurrence equations that describe the functional behavior of the
program, these equations are transformed to a uniform shape, and, finally, space-time descriptions
are produced from which the design in VHDL is generated.

Contents

1 Introduction

1.1 FPGA Characteristics and Limitations
1.2 Custom Computing Review
1.3 Our Approach e
1.4 Summary of Major Contributions L
1.5 Overview of the Thesis

2 A Classification of Dynamic Programming Algorithms

2.1 Introduction
2.2 Dynamic Programming Formulations o L.
2.3 Classification of DP Algorithms
2.4 Some Examples of DP Problems
2.4.1 The Shortest-Path Problem
2.4.2 The Knapsack Problem
2.4.3 Longest Common Subsequence
244 Edit Distance e
245 Gap Problem
246 RNA Problem
2.4.7 Least Weight Subsequence L.
2.4.8 All-Pairs Shortest Paths
2.4.9 Optimal Matrix Parenthesization
2.5 Dynamic Programming Remarks o0
2.6 Conclusions -

3 Data-Parallel Dynamic Programming

3.1 General Guidelines
3.2 C* Programming Model L
3.3 A Straightforward Approach for Parallel Dynamic Programming
3.3.1 Data-parallel loops of DP problems.,
3.4 A Practical Approach for Parallel Dynamic Programming
3.4.1 Uniform Dependencies
3.4.2 Non-uniform Dependencies
3.5 A Block Decomposition Scheme for a Class of DP Algorithms
351 GapProblem
3.5.2 Block Decomposition for the Gap Problem
3.5.3 Homogeneous Block Decomposition
3.5.4 Non-Homogeneous Block Decomposition,
3.5.5 Discussion L e
3.6 Related Work L
3.7 Conclusions

il

=~ =~ Y Ut Qo

w0 O W

4 Recurrence Equations 41

4.1 Introductiono 41
4.2 Recurrence Equations oo 41
4.3 Equation and Identifier Domains oo 42
4.4 Notatlon o, 49
4.5 Dependence Relation L 43
4.6 Recurrence Equations Special Cases L. 43
4.7 Generating Space-Time Descriptions 43
4.8 Conclusions 45
5 Dataflow Analysis of Parallel Expressions in C* 47
5.1 Introduction 47
5.2 Definitions and Notation L 48
5.2.1 Affine C* Program Fragment 48
5.2.2 Notation. 48
5.2.3 Domain of Parallel Variables 49
5.2.4 Source Function 49
5.2.5 Flow Dependency 49
5.2.6 Sequencing Predicate. 50
5.2.7 Dataflow Dependency Relation 50

5.3 Deriving Recurrence Equations 50
5.3.1 Shortest-Path Problem 51
5.3.2 Longest Common Subsequence, 53
5.3.3 All-Pairs Shortest Path 54
5.3.4 Optimal Matrix Parenthesization 55

5.4 Related Worko 56
5.5 Conclusions L, 57
6 The Uniformization of Recurrence Equations 59
6.1 Introduction 59
6.2 A Transformation as The Basic Block 60
6.3 A Set of Useful Transformations, 60
6.3.1 Variable Manipulation 61
6.3.2 Domain manipulation 61
6.3.3 Computation manipulation 62

6.4 The Convolution Problem 63
6.5 The Transitive Closure Problem 66
6.6 Uniformization of the Gap Problem 72
6.7 A Tool for Manipulating Recurrence Equations 76
6.8 Conclusions 78
7 Generating VHDL Behavioral Models 81
7.1 Introduction. 81
7.2 Digital Design Process Review L. 81
7.3 VHDL Review 82
7.4 Space-Time Descriptions L 83
7.5 Important Issues in Generating Behavioral Descriptions 86
7.5.1 Control Signal Handling : e 86

7.5.2 Obtaining a Generic Processor 88

7.5.3 Processor Identification 89

7.5.4 Port Configuration and Processor Interconnect 89

7.5.5 Delay and Communication Management 90

7.5.6 Condition Evaluation 91

7.5.7 Generating the Regular Processor Array 91

iv

7.6 A Case Study: The Edit Distance. 91
7.7

Conclusions 94
Conclusions 97
8.1 Reviewof Goals. 7
8.2 Open Problems and Future Work a8
8.3 Final Considerations 99

A Acronyms 101

vi

List of Figures

1.1
1.2
1.3
1.4
1.5

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2
3.3
3.4
3.5
3.6
3.7

3.8

3.9

5.1

6.1
6.2

6.3
6.4
6.5

6.6

Translating C* to hardware description level.
A typical viewof an FPGA.
The configuration logic block of the Xilinx 4000 FPGA Series..
Approaches to custom computing.
Translation C* to hardware descriptionlevel.

Dynamic programming problems classification and examples.
A multistage graph for the shortest-path problem.
Dependencies of the knapsack problem.
An example of the longest common subsequence problem.
Dependencies in the Edit Distance Problem.
Dependencies of the gap problem.. o L
Dependencies of the RNA problem.
The least weight subsequence problem. o000
An example of the all-pairs shortest paths problem..
An instance of the optimal matrix parenthesization problem.

The C* Programming Model.
Organization of the shortest path problem by levels.
The longest common subsequence DP table and dependencies..
Wavefront for the optimal matrix parenthesization problem.
Dependencies of the gap problem. o000 oL
Block decomposition of the Gap Problem.
The parallel execution of the block decomposition scheme for the Gap Problem al-
lowing overlap of computations with communications.
Effect of the number of blocks int the execution time on the Meiko CS-2 a y b, and
on the CM-5 ¢ and d. a) and b) show homogeneous block decomposition. b) and d)
show non-homogeneous block decomposition. 0oL
Speedup of homogeneous and non-homogeneous decomposition schemes on the Meiko
CS-2 on the CM-5. a) and ¢) n=512. b)and d) n = 1024..

General shape of code segments being analyzed in the dataflow analysis algorithm. .

The data structure used to represent unions of polyhedra.
A linear transformation, image, of domain D into D' uses the parametric representa-
tion. The inverse transformation, pre-image, is computed from the implicit represen-
tation. L e e e
Serialization of an expression with a non-fixed number or parameters.
Pipelining of a value used in multiple domain points.
a) The initial index domain for each variable of the convolution problem. b) The

values required at each index pointof y;. oL
N

Serialization of 3 wyz;—x in the convolution problem..
k=1

vil

=] Oy o 2

13
15
15
16
17
18
19
20
21

24
26
27
28
32
32

33

38

39

48

61

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17
6.18

7.4

Pipelining z and w values for the convolution problem..
A different result for the convolution problem changing the positions of alignment and
directions of serialization and pipelining.00
a) A 3D view of the dependencies in the transitive closure problem. b) A view by
planes of the dependency graph.
Localization communications lying in the same k-plane. a) A view by planes. b) A
3D VIeW. . .
Domain splitting and translation proposed to uniformize the dependence directions
within each plane shown in Fig. 5a.
Dependency graph obtained first by applying the domain transformation (Fig. 6.11)
and then by applying the localization step (Fig. 6.10)
a) Changing in dependency vectors between subsequent k-planes. b) Localization
long communications (see text).
a) 3D view of the transformed dependency graph. b) A projection of the domain onto
the (1,1, 1)T direction.
Uniformization process of the gap problem. a) The extended 3D domain. b) Depen-
dencies obtained by the D[i-1,j-1] term. c) Propagation of the values along rows. d)
Propagation of values along columns 0oL
a) The transformation library, b) the navigation tree, and c} the graphical output.

The main screen of the tool to manipulate recurrence equations.
An example partitioning and translation transformations using direct manipulation.

A typical abstraction hierarchy of the digital design process.
A typical VHDL with alternative descriptions. oL
A VHDL working environment. 000
A typical VHDL simulator.
A typical behavioral VHDL description of a generic processor.
A generic parameter to indicate processor identification.
Use of temporal signals for handling delays.
A typical process model to compute the value of a variable in a clock cycle.
VHDL model for a linear processor array using the iterative features of VHDL.

Port configuration of the generic processor for the edit distance problem..
Port configuration of the generic processor for the edit distance problem..
Process model of variable R of the generic processor for the edit distance problem. .
Process model of variable D of the generic processor for the edit distance problem. .
Process model of variable @ of the generic processor for the edit distance problem. .

viil

79

List of Tables

1.1 Density and performance for common circuit functions

2.1 A set of dynamic programming algorithms.

Chapter 1

Introduction

Performance is a continuing concern in the design of computer-based systems. Advances to enhance
performance can be broadly placed into two main categories: technological and architectural. Tech-
nological advances involve finding new materials and techniques to make gates that switch faster
and memories that can be accessed faster. Architectural advances involve reorganizing these gates
and memories to allow more operations to occur at the same time. Until the mid 90’s, technolog-
ical advances dominated increases in speed. However, the technology is approaching fundamental
limits. Future increases in performance will be forced to rely more heavily on advances in computer
architecture.

One of the primary methods for gaining performance-improvement based on the possibilities of
the latest VLSI technologies is to migrate functions or parts of functions to auxiliary special purpose
processors and controllers dedicated to a specific application area or algorithm. The first examples
of such an approach were application-specific integrated circuits (ASICs). Their applications are
varied. They rank from digital signal processing applications to neural networks implementations
and special controllers. However, ASICs are inflexible which has limited their use. Moreover, the
time and cost to design and build an ASIC have prevented its applicability.

Some kind of circuits were proposed for general-purpose applications. The most successful exam-
ples of that are probably the-VLSI array processors used for signal processing [50]. Although array
processors have several advantages, ASICs restrictions have limited their use. Those restrictions
have been partially broken with the rise of field-programmable gate arrays (FPGA) [63]. Currently,
FPGA technology provides an alternative for implementing application-specific circuits without the
non-recurring engineering cost associated with ASICs.

An FPGA is an IC consisting of user-programmable logic blocks (CLBs) and interconnection
fabric that can be used in the design of a digital circuit {73]. Any kind of digital circuit can be
implemented using FPGAs. Each block in the circuit is user-programmable, meaning that the
functionality implemented by the block can be determined by the user after the block has been
fabricated. Many FPGAs providers exist, among the best known are Xilinx [82], Altera [5], Actel
[1] and Algotronix [4].

FPGAs were first applied to logic design. Hence numerous tools were provided for synthesizing
logic designs for FPGAs. Hardware description languages (HDL) and diagram editors have been used
as a starting point for such a process. Many hardware description languages exist; each company
has developed its own. Verilog and VHDL are among the most popular languages we can find [59].
To avoid implementing every design from scratch, most providers offer several libraries of predefined
devices or modules from which a design can be built.

Recently, FPGAs have been used for custom computing where the goal is obtaining improvements
in performance by implementing algorithms in hardware at reasonable cost. The main advantage
of FPGAs is their reconfigurability, i. e., they can be used for different purposes at different stages
of a computation. Numerous reconfigurable architectures based on FPGAs have already been built
(8, 14, 28, 36]. Some of them have outperformed large-scale general-purpose computing systems for
some applications [36]. Those applications have demonstrated that FPGAs can be integrated in

1

2 CHAPTER 1. INTRODUCTION

scalable architectures.

Each individual CLB of an FPGA has a limited logical complexity. Although FPGA density has
greatly increased in recent years®, the aggregate non-integral compute power of an FPGA chip is
relatively low. Current FPGA technology imposes several limitations that severely restrict the class
of algorithms FPGAs are useful for. DeHon [25] provided examples of algorithms well suited for
reconfigurable engines. For this reason, only some sets of applications—those working at the bit level
or using fixed point arithmetic—can lead to levels of performance superior to conventional, readily
available CPUs. An approach to overcome with this limitation is to have reconfigurable computing
engines organized with arrays of FPGAs. That exhibits new restrictions to make effective use
of FPGA area. Local and regular communications are desirable properties of FPGA algorithmic
applications.

In spite of the current limitations, I believe that FPGA density will increase in the future to allow
more complicated functions be implemented on them. When that technology eventually becomes
available, tools and techniques will be required to effectively use FPGAs as custom computing
engines.

As the number and the density of FPGAs increase, the task of developing custom circuits for
each FPGA in the system becomes enormous. In addition, the lack of knowledge and tools necessary
to develop reconfigurable applications further obstructs general purpose implementation. A strong
background in hardware development is required as well as expensive CAD and synthesis tools. Until
reconfigurable systems address the deficiencies of large-scale application development, reconﬂgurable
logic will remain in the application-specific realm.

In order for reconfigurable systems to become general purpose computing systems, they must be
easy to program and use. Although some early work has been done on automated software/hardware
co-synthesis [2], most reconfigurable systems are programmed using conventional hardware develop-
ment techniques such as schematic capture or hardware description languages. However, hardware
descripticn languages are very low level languages for describing algorithms, therefore, most of the
custom computing research has been focused on the low-level aspects of algorithm implementation
in FPGAs.

One way to reduce the problem of realizing custom circuitry on reconfigurable hardware systems
is to develop tools and techniques for the hardware implementation of algorithms starting from
high level descriptions. That involves on the one hand, developing compiling techniques for the
synthesis of programs to hardware description languages, and on the other hand, characterizing the
applications susceptible to take advantage of that approach. This research considers the high-level
aspects of algorithm implementation for reconfigurable engines and addrecs these two questions
providing a general framework to face those problems.

The main objective of this dissertation is to present a methodology for the synthesis of algorithms
from high-level specifications to hardware description level. It is considered, on the one hand, the
limitations of FPGAs, and on the other hand, some techniques developed for synthesizing processor
arrays.

I propose to use the C* parallel programming language as a high level specification of programs
to be implemented in FPGAs and to use VHDL as a target language as it is shown in Figure
1.1. C* is based on a synchronous SIMD model (data-parallel} of computation with a global name
addressing mechanism. VHDL has become a standard language for circuit implementation. On one
side, previous research has demonstrated that data-parallel programs can be compiled and efficiently
-executed on both SIMD and MIMD parallel computers [40]. On the other side, numerous commercial
tools exist to implement circuits from VHDL.

My main interest here is to determine how to apply the data-parallel paradigm to FPGA com-
puting. Some other works, dealing with bit-level applications, have tried to develop compilation
techniques to derive hardware descriptions from high level programming languages {37, 8]. Con-
sidering the FPGA scalability and characteristics, my goal here is showing how to derive regular
processor arrays for FPGA computing from some data-parallel algorithms expressed in the C* pro-
gramming language.

" Altera has announced a new series of FPGA having until 200K reconfigurable gates

1.1. FPGA CHARACTERISTICS AND LIMITATIONS 3

Dynamic Programming Algorithm
t
|
E
1
C* Program

|
I
'
Hardware Description Level
!

P

|
!

'
FPGA Implementation

Figure 1.1: Translating C* to hardware description level.

NN O O

Programmable —T——— L [I nﬁ_} Iélofcl;

Interconnections < [] l ’ l }

b

AN O |
N 1 1 N

Figure 1.2: A typical view of an FPGA.

1.1 FPGA Characteristics and Limitations

As was pointed out before, the main feature of FPGAs is their re-programmability. FPGAs are
general-purpose circuits capable of implementing any digital circuit. The logic blocks of FPGAs may
consist of combinatorial or sequential logic elements. The blocks can be connected after fabrication
in a general way using a programmable routing fabric. This routing fabric consists of programmable
switches that connect various horizontal and vertical routing segments together with the pins from
logic blocks [78] (See Figure 1.2). The logic blocks architecture available in commercial FPGAs
ranges from fine grain to coarse grain blocks. The interconnection re-programmability is based on
either static RAM or antifuse technology [38].

In Figure 1.3 we show the CLB of the Xilinx 4000 FPGA series. Each CLB contains a pair of
flip-flops and two independent 4-input function generators. The flip-flops can be used to store the
function generators outputs or they can be used independently. A third function generator with
three inputs is provided. One or both of these inputs can be the outputs of the 4-input function
.generators; the other input(s) can be from outside the CLB. The CLB can therefore implement any
of the following functions: (1) two functions of up four variables, plus any third function of up three
unrelated variables, (2) any single function of up five variables, (3) any function of four variables
together with some functions of six variables, and (4) some functions of up nine variables.

Implementing wide functions in a single block reduces both the number of blocks required and
the delay in the signal path, achieving both increased density and speed. The versatility of the CLB

4 CHAPTER 1. INTRODUCTION

' 22 2 «
- o s &
LR
. M CowTarg
5d
o
S L0aC : .
wenon ¢ ° hd 3 p ¥
cT o
&2 oF o e w©
HP
®
oGk R
FUNCTION N o =0
= .
£ G H °
w0
Ht
X
5 %
5
CONTROL
. LG o
£
SLICTION . £ o
o £ * L] 1] o
fere . H a ?
*
*
€ o
1
H 3 .

{CLOCKY

Figure 1.3: The configuration logic block of the Xilinx 4000 FPGA Series.

function generators significantly improves system speed. In addition, design-software tools can deal
with each function generator independently which improves cell usage.

The XC4013E model of Xilinx FPGA series contains a matrix of 24 x 24 CLBs. That produces
567 CLBs which can store up to 13,000 gates and 1,536 flip-flops. In table 1.1 we show some common
circuit functions, the number of CLBs they occupy and the speed of the circuit.

As can be observed, the density and speed of different functions is varied. Currently, the main
disadvantage is the low density of logic blocks per area unit available with present VLSI technology.
Due to this there are some interesting circuits that can not be successfully implemented for array
processors. For example :

o Floating-point arithmetic is severely limited for FPGAs because it would require wide area on
the circuit. Trying to implement arrays of floating point functional units would not be easy.

o Large and variable interconnectivity would be restricted due to delays involved in the inter-
connection architecture of FPGAs.

o Extremely fast applications possibly would not be suitable for FPGAs due to delays present
in their architecture.

Regardless above restrictions, FPGAs can be properly used for rapid prototyping algorithms at
the hardware level. Considering the restrictions of FPGA applications, the desirable properties of
potential FPGAs applications would be:

1. To use only integer arithmetic or at most low precision fixed point arithmetic.

2. To consist of logical operations to make decisions. Comparators, selectors and multiplexers
are good examples of that. ‘

3. To be capable of being decomposed in independent and pipelined stages.

4. To have regularity in the way processing is applied.

1.2. CUSTOM COMPUTING REVIEW 5

Design Class | Function CLB used | Speed/Units
Memory 256x8 Single Port (read/modify /write) 72 63 Mhz
Memory 32x16 bit FIFO (simultaneous read/write) | 48 63 Mhz
Memory 32x15 bit FIFO (MUXed read/write) 32 63 Mhz
Logic 9 bit Shift Register {with enable) 5 170 Mhz
Logic 16 bit Pre-Scaled Counter 8 142 Mhz
Logic 16 bit Loadable Up/Down Counter 8 70 Mhz
Logic 16 bit Accumulator 9 70 Mhz
Logic 8 bit, 16 tap FIR filter (parallel) 400 55 Mhz
Logic 8 bit, 16 tap FIR filter (serial) 68 8.1 Mhz
Logic 8x8 Combinatorial Parallel Multiplier 68 22.8 ns
Logic 16 bit Address Decoder (internal decode) | 3 4.7 ns
Logic 9 bit Parity Checker 1 4.3 ns

Table 1.1: Density and performance for common circuit functions

5. To have locality in the interconnection network they require. That means that they have only
interconnections with their neighbors.

Considering FPGA capabilities and limitations some potential applications for FPGAs are:

1. Image processing algorithms such as point type operations (grey scale transformation, his-
togram equalization, requantization, etc.) and filtering (template matching, window tech-
niques, convolution/correlation, median filtering, etc.) seem to be good candidates for FPGA
implementation.

2. Dynamic programming algorithms requiring only integer arithmetic. Dynamic programming is
in essence a bottom up procedure in which solutions to all subproblems are first calculated and
the results used to solve the whole problem. A good example of this approach is the Floyd’s
shortest path algorithm.

3. Relaxation techniques requiring fixed point arithmetic. The relaxation technique is an iterative
approach to many problems, which makes updating in parallel at each point and in each
iteration based on the data available in the most recent updating or in the immediate preceding
iteration.

4. Associative retrieval operations. Filling and retrieving data by association appears to be
a powerful solution to many high volume information processing elements. An associative
processing system is very adequate for recognition and recall from partial information and
has remarkable error correcting capabilities. The major advantage of associative memory
over RAM is its capability of performing parallel search and parallel comparison operations.
There many examples of that kind of applications: pattern matching, artificial intelligence,
computer vision, data encoding, compression, and every application maintaining a dictionary
data structure.

1.2 Custom Computing Review

The general idea of custom computing is to add a co-processor to a common processor to serve
in the execution of some parts of a program. Given that co-processors built with FPGAs are
reconfigurable, then such co-processors can be configured to execute different functions at different
times of the program execution. Several custom computing machines have been proposed. They
can be classified in one of three different approaches as it is shown in Figure 1.4. In Figure 1.4a
we show the most common configuration for a custom computing machine. An array of FPGAs is

6 CHAPTER 1. INTRODUCTION

unified data and control flow individual control flow and data flow
external interface bus external interconnection resources
/

T

% Front End r/ /

{} .’ ro(r; n Array of FPGAS CPU 3 Array of FPGAs.

ost Computer
a) b)
FPGA-like

{—"individual control and

i reconfigurab
s data flow internal

resources) }
terconneclion resources

Figure 1.4: Approaches to custom computing.

used within a host computer; they are configured through the internal bus. In the same manner,
control signals, data and results flow through the host bus. Performance is limited here by the bus
bandwidth to transfer data. The best known and most successful machines have this configuration.
Some examples are Splash [36], DEC Perle [28], and AnyBoard [14].

In a natural way, it has been proposed to separate controi and data streams using different buses.
That is shown in Figure 1.4b. Some examples of this configuration are PRISM developed at Boston
University [8], and the University of Toronto’s reconfigurable processor. Performance is still limited
by the data and control buses bandwidth.

A third approach, showed in Figure 1.4c, is to have a circuit with a sea of reconfigurable gates
in which a part is dedicated to perform the function of a conventional processor and the rest is
devoted to implement algorithms through reconfigurable logic. It is intended to eliminate bandwidth
restrictions. However, it is still at research level and no prototype is known to be already implemented
[25).

1.3 Owur Approach

In implementing algorithms for FPGAs one must go from an algorithmic description to binary
files which represent a design to configure one, or possibly more, FPGAs. Hardware description
languages, although useful for digital design, are very low level languages for describing algorithms.
Moreover, although much effort has been devoted to develop tools for the automatic synthesis of
designs expressed in hardware description languages to FPGAs, there is a lack of techniques for
synthesizing high level algorithmic descriptions to low level descriptions for FPGA computing.

In this research we present a design methodology to synthesize algorithms for FPGAs. We con-
sider, on the one hand, the limitations of FPGAs, and on the other hand, the techniques developed
to synthesize regular processor arrays [68]. We start from a dynamic programming algorithm ex-
pressed in a C* program and we translate it to hardware description level in VHDL. Once we get
hardware level descriptions we can use standard tools to synthesize a design for FPGAs.

The process of synthesis to hardware description level is illustrated in Fig. 1.5. From nested
loops containing data-parallel statements in C* we obtain systems of recurrence equations (SRE)
which are translated, when possible, into systems of uniform recurrence equations (SURE). Although
there is no a general strategy to transform a SRE into a uniform shape, we explore how to address
that problem. Decisions about variable alignment, operation serialization and interprocessor com-
munication localization will be done through an interactive tool that applies transformations to the

equations obtained.
Once we have generated a SURE we can explore different scheduling and allocation functions.

1.4. SUMMARY OF MAJOR CONTRIBUTIONS

~F

Imperative Programs
Data-Parallel Programs

Dataflow analysis

Systems of Recurrence Equations
Alignment. Serialization.
Localization
Systems of Uniform Recurrence Equations

Scheduling and Allocation

Space-Time Representation
Control Signal Generation
and /O Mapping

Hardware Description Level

Figure 1.5: Translation C* to hardware description level.

Linear transformations can be applied to SUREs to obtain a space-time representation frop, Which

we can derive the structure of a systolic array. The hardware level description of the array i for cd

after generating the necessary control signals for the proper behavior of the array and after mappin
g

the I/O channels onto the arrav.

1.4 Summary of Major Contributions

Following is a summary of the important research contributions:

1. Determination of a class of algorithms for which FPGAs can be adequately used tg obtaj
better performance than that which can be obtained in general-purpose computers. C‘lrrexrtl
FPGA density prohibits their use for general purpose algorithms. The restrictions of FPGA
technology are considered in determining the type of algorithms which can be beneﬁted
being implemented in hardware. of

2. A general design strategy to implement that class of algorithms through the data_para“l
paradigm is proposed. As a first step, the C* programming language is used as a high level
description for the class of algorithms determined in step 1. Design strategies are Proposeq fs
implementing that class of algorithms for two target architectures: FPGA-based Compmmr
engine, and a general-purpose parallel computer. 8

3. Compilation tools to transform data-parallel programs in suitable form for hardware SY0thec:
A combination of automatic and manual techniques are provided for developing hardwg, l;\zsi
descriptions of data-parallel programs. ¢

4. A generic behavioral hardware description model is proposed which is based on reconfigyap
hardware and is adequate to implement the class of algorithms determined in step 1, ¢

5. All the previous parts are integrated to provide a general framework for the implementati
of algorithms in reconfigurable hardware based on FPGAs. I will propose a general framew‘ OZ
to the synthesis of algorithms for FPGA computing. o

1.5 Overview of the Thesis

The thesis is organized in 8 chapters. In chapter 2, we discuss dynamic programming Proble
and we present a classification of them. In chapter 3, we present a new approach to implemmzns
a

8 CHAPTER 1. INTRODUCTION

class of DP problems in a general-purpose multicomputer. In chapter 4 we introduce the concept
of recurrence equations which are fundamental to understand the rest of the work. In chapter 5,
we develop an algorithm to extract recurrence equations from C* program fragments. Chapter 6 is
devoted to discussing the uniformization process of recurrence equations and a tool to perform such
a job is described. In chapter 7 we present an approach to generate hardware level descriptions from
space-time representations. Finally, conclusions are drawn in Chapter 8.

Chapter 2

A Classification of Dynamic
Programming Algorithms

2.1 Introduction

Dynamic programming (DP) is a general problem solving strategy often applied to optimization
problems. The theory of dynamic programming was originally introduced by Richard Bellman to
solve mathematical problems arising from multistage decision processes [12]. Dynamic programming
has found numerous applications in computer science such as: optimal parenthesization [39], line and
curve detection [22], parsing of general context-free languages [21, 17], string matching [54, 55], hand-
written symbo! recognition [20]. Its application was particularly successful in speech recognition
(69, 75, 62, 79], and in image processing and computer vision [61, 9]. These are also applications in
which the running time is critical and in which parallel processing is required.

Many different approaches have been proposed to implement dynamic programming algorithms.
Some of them have tried to obtain general strategies for deriving implementations of various prob-
lems. However, currently there is not a general strategy to implement dynamic programming. To
understand the nature of DP problems we need to make some observations about their formulation.

In this chapter we explore general formulations of DP problems based on three type of classi-
fications. In the first type we determine if the formulation involves just one subproblem, a fixed
number of subproblems or a non-fixed number of subproblems. In the second aspect we will consider
whether the recursive formulation is inherently sequential or can be decomposed to ignore sequen-
tiality. In the third point of view, we will consider the dimensionality of the DP table as a clue to
the complexity order of the problem.

In section 2.1 we will review the formulation of dynamic programming problems. We will con-
sider the Principle of Optimality that all DP problems must obey. In section 2.2 we review the
classification of DP problems and we will extend that classification considering important aspects
of the formulations for its implementation. In section 2.3 we will present a set of problems that
illustrate each of the classes we will consider. A discussion about implementation issues can be

found in chapter 3.

2.2 Dynamic Programming Formulations

Dynamic programming (DP) is a general problem-solving strategy often applied to optimization
problems. The general formulation can be stated as follows: let

P°:p” = optzexq(z) (2.1)

be an optimization problem where X is the solution set and ¢ is a real valued function defined as
the objective function. Sneidovich [77] showed that P° will yield a dynamic programming optimality

9

PR

10 CHAPTER 2. A CLASSIFICATION OF DYNAMIC PROGRAMMING ALGORITHMS

equation if the solution set X is a subset of the Cartesian product of two sets, ¥ x Z, leading to
reformulate the problem in the following manner:

P’ = opt(y exqly. 3), XCcY«xZ (2.2)
Now, if we express X as the union of bundles {y} x Z(y) where y € Y and Z(y) C Z, 1. e
X = Uly x Z(y)]. we can reformulate Eq. (2.2) as follows:

p" = optyevply)

where,

Yy €Y :ply) = opticz(,9y, 2)

The decomposition of the original problem into two optimization problems is due to the Principle
of Optimality [13], which states that an optimal sequence of decisions has the property that what-
ever the initial state and decision are, the remaining decisions must constitute an optimal decision
sequence with regard to the state resulting from the first decision. An effort devoted to the rigorous
mathematical framework and effective evaluation of DP problems can be found in [77].

Clearly, dynamic programming problems can be formulated using a recurrence relation involving
a decision process. Dynamic programming decomposes a problem into a number of smaller subprob-
lems, each of which is further decomposed until subproblems have trivial solutions. For example,
a problem of size n may decompose into several problems of size n — 1, each of which decomposes
into several problems of size n - 2, etc. This decomposition seems to lead to an exponential-time
algorithm, which is indeed true for some problems, such as the traveling salesman problem. How-
ever, in many other problems there are only a polynomial number of distinct subproblems. Dynamic
programming gains its efficiency by avoiding solving common subproblems many times. It keeps
track of the solutions of subproblems in a table, and it performs table loockup whenever needed.

From the algorithmic design point of view, the development of a dynamic programming strategy
has four steps: (1) characterize the structure of an optimal solution, (2) recursively define the value
of an optimal solution, (3) compute the value of an optimal solution in a bottom-up fashion, and (4)
construct an optimal solution from the computed information [24]. Once this is known, a two-step
dynamic programming algorithm emerges: (1) construction of a table in a bottom-up fashion which
contains solutions to smaller subproblems of the given problem (forward step), and (2) construction
of a solution for the given problem (backward step). The big challenge in dynamic programming
strategies is how to build the DP table.

Each entry of a DP table corresponds to a subproblem. Thus, the size of the table is the total
number of subproblems including the problem itself. Because of the recurrent formulation, each entry
of the table depends on one or several subproblems. Therefore, the order to fill the table may be
chosen under the restriction of the table and the entry dependency. For sequential implementations
there is an obvious algorithm which fills the table according to the entry dependency. To exploit
parallel processing, we must examine the recurrence formulation.

2.3 Classification of DP Algorithms

In this section we will unify the classifications done by Li and Wah [53] and Galil and Park [35].

Li and Wah classified DP problems according to the form of their functional equations and the
nature of the recursion. That classification was first used to derive some systolic algorithms. Later
on, Kumar [49] used the same classification to show practical implementations of problems belonging
to each class.

In general, the solution to a DP problem is expressed as a minimum {or maximum) of possible
alternative solutions. Each of these alternative solutions is constructed by composing one or more

2.4. SOME EXAMPLES OF DP PROBLEMS 11

serial non-serial
® longest common
subsequence
monadic @ shortest-path ® GAP problem
© 0-1 knsapsack ® RNA problem
® [cast weight subsequence
. ® ail-pairs e optimal matrix
polyadic all-pairs shortest ® op atri
paths parenthesization

Figure 2.1: Dynamic programming problems classification and examples.

subproblems. A DP formulation is called monadic if its composition function involves only one
recursive term; otherwise it is called polyadic. A DP formulation is serial if the subproblems can be
grouped in levels, and the solution to any subproblem in a certain level can be found using subprob-
lems that belong only in the immediately preceding levels. Otherwise it is non-serial. As shown in
[53, 49] monadic-serial DP problems can be solved by a series of matrix-vector multiplications which
is easy to parallelize. On the other hand, there is no general parallel formulation for polyadic-serial
DP problems. In Figure 2.1 some example problems are presented according to their formulation.

Galil and Park [35] classified DP problems according the size of the table and the number of
dependencies in a single problem. A dynamic programming problem is called a tD/eD problem if
its table size is O(n') and a table entry depends on O(n®) other entries. Although Galil and Park
did not discuss the importance of the classification, the number of dependencies is of relevance to
derive efficient implementations.

In Table 2.1 we present a number of DP algorithms and their characteristics according to the
preceding discussion. We can see that problems with more than O(1) dependencies can be monadic
or polyadic, serial or nonserial. We can make various observations of the characteristics of DP
problems in considering them to derive efficient implementations.

As it will be evident in the next sections, the fact that a problem is serial or nonserial affects the
way in which we build the DP table. In a serial problem, only the current and the previous level
subproblems need to be stored. In a nonserial problem, solved subproblems on all previous levels
are required. When we write an imperative program to fill the table of a nonserial problem, we need
a scheduling policy.

Whether a problem is monadic or polyadic influences the way in which the solution of a specific
problem is built (the second stage in the algorithmic point of view). Solutions of monadic problems
are built in a serial fashion. Solutions of polyadic problems can be built by a divide-and-conquer

strategy.

2.4 Some Examples of DP Problems
In this section we will present some problems and we will discuss their formulations and classifica-

tions.

2.4.1 The Shortest-Path Problem

The solution to the shortest-path problem was the original dynamic programming strategy proposed
by Bellman [12]. It considers computing the minimum path between a source and a destination point

12 CHAPTER 2. A CLASSIFICATION OF DYNAMIC PROGRAMMING ALGORITHMS

Problem Deps. | T. Size
Formulation
Shortest Path®d , 2
cl= min {d, + C17) monadic | senat) Ot} | O]
0-1 Knapsackiélg}
z22>0,1=0-— 0
» 1<0,i=0— -0 monadic serial O(1) O(n?)
Pl 2] = 1<i<n— max{F[li-11z],
Fli -1,z —w] + pi}
Longest Common Subsequence(ml
i=0Vj=0- 0
Fii gl = j>0Aa =b;— Fli-1,7-1+1 monadic | nonserial | O(1) O(n?)
'] ,7>0Aa; #b; » max{F[i—-1,7],
\ F[Z’] - 1}}
Edit Distanced
i=0Vj=0—= 0
i=0Aj>0- D[0,j-1]+K,
Flij) = i>0Aj=0- D[i-10+K, monadic | nonserial | O(1) O(n?)
’ i,7 >0— min{D[i — 1,7 — 1] + d(t;,7;),
Di,j -1+ K,
| Dt - 1,7] + K, }
a3
D[i—l,j—l}-i—s,']' . .
Dli.j] = min orgn;gj{D[z’ q) + wig, 7)} monadic | nonserial | O(n) O(n?)
Jain {Dlp, 5] +w'(p.1)}
RNA[TO! : . ,) ,
Dfi, j] = min {Dlp,q] + w(p,9,5,5)} monadic | nonserial | O(n®) | O(n?)

0<p<i 0<q<y

Least Weight Subsequencemm

Dlj] :OTin‘{D[i}er(ivj)} for 1<j<n monadic | nonserial | O(n) O(n)
Si1<y
All Pairs Shortest Paths!?¥
PO k=02 w polyadic serial o) O(n*)
97 k21— min{dl Y dTV +dlHy
(24

Optimal Matriz Parenthesization
1<i<j<n= _Lnkin‘{m(i,k)Jr
1<k<
- ﬂ”JL(k+1 i)+ polyadic | nonserial | O(n) | O(n?)
ri_lrkrj}
j=,0<i1<n- 0

m(i,j) =

Table 2.1: A set of dynamic programming algorithms.

2.4. SOME EXAMPLES OF DP PROBLEMS 13

Figure 2.2: A multistage graph for the shortest-path problem.

where the path passes a number of stages, in each stage several possibilities exist as it is shown in
Figure 2.2. Let G = (V, E) be a multistage graph in which V is the set of vertices and £ is the set
of edges. V = VouViU---UVy, where Vi, 0 <=1 <= N is the set of nodes in stage :, V5 = {s}
and Vi = {t}, and v;; is the j’th node in V;. We assume that there exist exactly m nodes in each
stage other than 0 and N. The cost of a path from the source node, s, to sink node, ¢, is the sum of
costs on the edges of the path. Let P be the set of all possible paths from s to t. A pathp e P is
of the form s — vy;, — vaj, — ... ~ Un_1y,_, — t. If the cost of edge (vij,, viz15,4,) 18 9i(viy, Vie1ji,,)
the minimum-cost path from s to ¢ is:

N-—-1
min = nlin Vi, Vig1s,,) 2.5
pePf(p) peng(j 411'71) (2.5)

Each term in optimization problems of this form shares one variable with its predecessor term
and another one with its successor term. This problem has a serial structure, and, consequently,
is called a serial optimization problem. Many practical problems can be formulated in this way:
traffic-control, circuit-design, fluid-flow and scheduling.

We can reformulate the problem as follows. Let us assume for simplicity that every stage consists
of exactly m nodes. Let c¢*(j},0 <~ < N,1 < j < m, be the minimum cost of going from node j in
stage k to the sink node, t. We can group the c*(j) values into a vector of the following form

C* = [c*0), F(1), ..., Fm -)T (2.6)

Let M* = gi(7,7) be the cost of going from node ¢, in stage k, to node j in stage k+1,1 < k < V.
M* is a m x m matrix. It can be seen that

Cr=MF+«CH 1<k<N (2.7)

which is a matrix-vector multiplication where products can be interpreted as additions and additions
as minimum selection operations. This formulation induces a sequence of N — 1 matrix-vector-style
multiplications. Then, the solution of the problem can be easily computed from the dot product

CO : Cl = [90(0>390<1)v “‘790(m - 1)]T ' Cl (28)

where, go(j) is the cost of going from source node, s, to node j in stage 1. Equations 2.7 and 2.8
provide us a recurrent formulation for this problem. Since the composition function involves only
one recursive term, this problem is monadic. For obvious reasons it is serial. It presents a fixed
number of dependencies and its table is of size N x m.

14 CHAPTER 2. A CLASSIFICATION OF DYNAMIC PROGRAMMING ALGORITHMS

2.4.2 The Knapsack Problem

This is a classical problem used to illustrate DP algorithmic formulations. It has received great
attention for many researchers looking for efficient implementations. See {7} for a novel approach.

Suppose that m types of objects are being considered for inclusion in a knapsack of capacity c.
Fori = 1,2,---,m, let p; be the profit and w; the weight of the i-th type of object, where w;, p;,
and c are all positive integer. The knapsack problem is to choose a collection of objects in such a
way that the total profit without exceeding the capacity is maximized, i.e.,

m m
max{Zpl:,»:ZwiztSc,ziEN,i: ,2.~~~5m} (2.9)

=1 1=1

where z; is the number of i-th type objects included in the knapsack. The problem, as specified above
is often called the unbounded knapsack problem, since the only constraint on the solution (other than
the capacity constraint) is that it is non-negative. There are many variations of the problem, such
as the bounded knapsack problem (here, additional constraints of the form z; < b; must be satisfied},
the 0/1 knapsack problem (a particular case of the bounded problem, where b; = 1: there is exactly
one copy of each type of object), the subset sum problem (a 0/1 problem with w; = p;), the change
making problem, etc. They arise in different application domains, and are all NP-complete.

Let us define the function f(j, k) which denotes the value of an optimal solution of the sub-
problem where only the first & objects are considered, and only a capacity of ; is available. It is well
known that the computation of f{7,) is specified recursively as follows:

0 ifj=00rk=0
fla,) =9 fG.k=1) ifk>0andj < we (2.10)
fG k=1 @+ f(7—wi,k—B)) ifk>0andj>w

where f(c,m) is the solution to the problem. The different variations of the knapsack problem
merely correspond to different choices of the operator & and the constant 5 in Eq. 2.10: in the
unbounded knapsack problem, & is max, and 8 = 0; in the 0/1 and subset-sum problems, & is max
and 8 = 1; in the change making problem & is min and § = 0.

An elegant, memory efficient implementation for the problem can be found in [43]. It is computed
in time O(c + m) time and ¢ space (only the last column needs to be saved, not the entire table).
Because of the dynamic dependencies existing in the knapsack problem, this problem has been
heavily studied. One instance of this problem can be observed in Figure 2.3. This is another
monadic-serial algorithm whose table is m? having constant non-fixed dependencies.

2.4.3 Longest Common Subsequence

The longest-common subsequence problem belongs to a class of widely studied problems related
to string-matching [76]. Finding the longest-common subsequence of two strings can be stated as
follows: a subsequence z = (zy, 22, -+, 2x) is a subsequence of z = (z,,x9, - ,z.) if there exists
a strictly increasing sequence (iy,1,--- ,ix) of indices of X such that for all j = 1,2,---,%, we
have z;; = z;. A common subsequence of A and B is a sequence Z that is a subsequence of both
A and B. For example the sequence {B,C, B) is a common subsequence of (B, D,C, A, B, A} and
(A,B,C,B,D, A, B). Given two sequences A = (a;,as, - ,0n) and B = (by,by, - ,bm) we wish
to find a maximum-length common subsequence of A and B. For the previous example the longest
common subsequence is (B, C, B, A).

The dynamic programming formulation of the problem computes F[i,;] (0 <17 <n,0<j < m),
where F[¢, ;] denotes the longest common subsequence of the first ¢ elements of A and the first ;
elements of B, and it is defined by the following recurrence equation.

2.4 SOME EXAMPLES OF DP PROBLEMS 15

— = K

\L - - -t

AT N) 1)1 -
NERY: /&C\ 4/ f1.3)
f2.0) 7X \l/ f2.3)
f13.0) \1/ f3.3)
f(4.0) /\é/ fi4.3)
£5,0) &\ \i/ f5.3)
f16.0) - \y /\ ft6.3)

J

Figure 2.3: Dependencies of the knapsack problem.

Wl W ro| o} bOf r] =] O} >

W | of W to| po|] ol to
]

PO S| DO]] | O SSH O

o] o ol rol ro] | ofl

o | O) O W)
ololololololo o
et |] bt | | e | =] O] O T
[N I e o e e e K= R R

Figure 2.4: An example of the longest common subsequence problem.

1=0vV)=0-— 0
Flijl=4{ 4,j>0Aa;=b; —» Fli-1,j-1]+1 (2.11)
5, >0Aa; #b; & max{F[i-1,j], Fli,j - 1]}

The goal is to find F[n,m'} One example of the computation of the table for a simple problem
is presented in Figure 2.4. Equation 2.11 presents a monadic formulation since the composition
function involves only one term. It is nonserial due to the case when both symbols match. Clearly,
the table is n x m and the dependencies are fixed.

2.4.4 Edit Distance

The edit distance problem is another member of the string matching ciass. In this problem instead

of computing the longest match, it calculates the cost of transforming one string to another one.
Let T = (ty,t3,... ,ti,... ,tn) and R = (ry,72,...,7j,... ,Trm) be two strings to compare. We

are interested in the cost of transforming string R to string T. We can apply successive comparisons

16 CHAPTER 2. A CLASSIFICATION OF DYNAMIC PROGRAMMING ALGORITHMS

1 2 3 4 N

to

N\
RRRR

Figure 2.5: Dependencies in the Edit Distance Problem.

between elements of R and elements of . When a mismatch occurs, we must consider the possibility
of replacing a character of T for one of R, of inserting a character of T, or deleting a character of R.
This problem can be well defined by the following recurrence relation stating a dynamic programming
problem:

(D(i-1,7-1)+d(t,r))
D(i,j) =min{ D(i - 1,j) + K, (2.12)
D(i,j-1) + K,

with the initial conditions:

D(0,0) = 0
D(E0) = DE-1,0)+ K, for1 <i<n
D(0,j) = DO,j-1)+ K, for1<j<m

where d(t;,r;) represents the cost of replacing r; by ¢;, K, the cost of adding t;, and K, the cost
of omitting r;. Note that in this formulation, the costs of insertion and suppression are constant,
independent from the specific characters. In a typical application, like spelling correction, this
calculation has to be repeated a lot of times since the same test string must be compared to many
reference strings (a full dictionary for example). Therefore the amount of computation can be very
large and prohibits the use of a conventional computer. In Figure 2.5, the dependencies between
elements in the table are shown. For the same reasons as the previous subsection problem, this is
monadic-nonserial with constant dependencies in a n? table.

2.4.5 Gap Problem

The gap problem is a generalization of the edit distance problem when costs of insertions and
suppressions are variable and when allowing gaps of insertions and deletions. It can be stated as
follows. Given w, w', s;;, and D[0,0], compute

D[‘L - 1,j - 1] + S,‘j
D[l,]} = min minOSQ<j{D{i7Q] + w(Qv])} for 0 2] <n (213)
minOSp(i{D[pvj] + w’(p’z)}

2.4. SOME EXAMPLES OF DP PROBLEMS 17

0 1 2 3 4 5
0 0 0 0 O O
I 0 0 0 O Ol0

\

2 O C 0O 0O O ‘\}é O
3 !
4
5.0 0 0 O O O

Figure 2.6: Dependencies of the gap problem.

The gap problem arises in molecular biology, geology, and speech recognition [33]. From Figure
2.6 we can observe that this problem describes a two dimensional table where a single subproblem
depends on its northwest neighbor and all previous problems along the same row and the same
column. '

It is easy to see that the computational effort to solve the entry (i,;) takes O(i + j) time.
Therefore, a sequential algorithm to compute the problem takes O(n®) time. It can proceed along
rows, columns, or diagonals. It is a monadic problem. It is nonserial since Equation 2.13 involves
several subproblems on the right hand side. For the same reason, its dependencies are nonconstant
(O(n)). It has a n? table.

2.4.6 RNA Problem

The RNA problem is the generalization of the two string matching problem. Here the cost function
allows insertions, suppressions, and loops with variable cost. Given w and D[z,0] and D[0, j] for
0 <1,7 <n, compute

Dli,j] = Osp<xl_nlgsq<j{D[p, q) +w(p,q,3,7)} for1<e,7<n (2.14)
This problem has been used to compute the secondary structure of RNA without multiple loops.
As can be seen from Figure 2.7, each subproblem depends on all the north-west subproblems.
Therefore, the computational effort to solve the entry (7,j) takes O(i x j) time. Given that we
have a two-dimensional table, a sequential algorithm to compute the problem takes O{n*) time. In
a similar way to the Gap Problem, the sequential algorithm can proceed along rows, columns, or
diagonals.
The RNA problem refers a monadic-nonserial problem in which the dependencies are variable
(O(n?) and describes a two dimensional table.

2.4.7 Least Weight Subsequence

Given a real-valued function w and D[0], compute

Dij} = min {Dfi] +w(i,j)} for 1< <n (2.15)

18 CHAPTER 2. A CLASSIFICATION OF DYNAMIC PROGRAMMING ALGORITHMS

0 l 2 3 4

O
O

30 O O

+ 0 O O O O

Figure 2.7: Dependencies of the RNA problem.

This problem was called the least weight subsequence problem by Hirschberg and Larmore [42].
Its applications include an optimum paragraph formation problem and the problem of finding a
minimum height B-tree.

The subproblem dependencies can be visualized in the Figure 2.8. In Figure 2.8a a two dimen-
sional view of the problem can be observed. An upper triangular table is constructed where the
D[i]'s values are produced along the main diagonal. Also, a graph representation can be generated
for this problem. A directed graph G is built from recurrence 2.15. The vertices of the graph are
0,1,---,n. The edges (7,7) for all i < j, and edge (7, j) has cost w(z, 7). If f(j) is the shortest path
from 0 to j in graph G, then, it can be shown that D[i] = f(¢). The directed graph view can be
observed in Figure 2.8b. It can be shown that the problem stated by recurrence 2.15 is similar to
the problem of finding the shortest paths in G from 0 to all vertices.

Recurrence 2.15 presents a monadic-nonserial problem with a variable number of dependencies
in a one-dimensional table.

2.4.8 All-Pairs Shortest Paths

The all-pairs shortest paths problem belongs to a more general class of problems known as algebraic
path problems. Some additional examples of problems belonging to this class are the transitive
closure problem, the matrix inversion problem and the generation of regular languages. All problems
belonging to this class share a common formulation. Variation among them depends on the semi-ring
in which a specific problem is defined.

We will review here only the all-pairs shortest path problem. We should be aware that all related
problems share the same formulation. Given a weighted, directed graph G = (V| E) with weight
function w : E — R mapping edges to real valued weights, we are interested in finding a shortest
path from u to v for every pair of vertices u and v. An example of this problem can be observed in
Figure 2.9.

The well known Floyd’s algorithm to solve this problem is based on the following dynamic
programming formulation. Let df;f) be the weight of a shortest path from vertex ¢ to vertex j with

all intermediate vertices in the set {1,2,--- ,k}. di;) can be computed from the following recurrence
equation.

. k=0-— w;;
(k) T _ _ 2.1
d {kzm min{d5~ 4 4 g5y (2.16)

2.4. SOME EXAMPLES OF DP PROBLEMS 19

|
O
D{1]

O Ow

wif 4}
w(2.5)

5
O
O
O

>0 O O .=
=0 O O

O

D/4/ w(l.5)

O
DI5]

a) b)

Figure 2.8: The least weight subsequence problem.

The matrix D) = df;) represents the solution to the problem, where n is the number of vertices
in the graph. This formulation belongs to the polyadic-serial class because its composition functions
involves more than one recursive term, but they are only on the previous level subproblems. It
exhibits a n® table involving constant dependencies.

2.4.9 Optimal Matrix Parenthesization

Consider the evaluation of the product of n matrices A, Ay, -+, A,, where each A; is a matrix
with r;_; rows and r; columns. The order in which the matrices are multiplied together can have
a significant effect on the total number of operations required to evaluate the product. Trying all
possible orderings in which to evaluate the product of n matrices, so as to minimize the number
of operations, is an exponential process which is impractical when n is moderately large. However,
dynamic programming provides an O(n®) sequential algorithm. Let m(4, j) be the cost of multiplying
the matrices A;, Aigy, -+, A;. The dynamic programming paradigm constructs the solution to this
problem based on the solutions to its subproblems. To compute m(z,7) computes the minimum
value of all possible parenthesization between A; and A;. This approach gives rise to the following
recurrence equation for the parenthesization problem:

i<k<j (2.17)

o 1<i<j<n—= min {m(i,k) + m{k + 1,7) + rioyrer;}
m(t,j) =
(%) i=i0<i<n-— 0

Given Eq. (2.17) the problem reduces to finding the value for m(1,n). This problem has been
heavily studied. One important aspect of this problem is the nature of interactions between sub-
problems for solving an specific problem. As can be seen in Figure 5, in order to solve a problem
corresponding to the table’s entry (7, j) we require all the problems in previous columns to be on the
same row and all the problems in down rows to be in the same column. Furthermore, considering
Eq. (2.17) they are required to be in a pairwise fashion as shown in Figure 2.10.

20 CHAPTER 2. A CLASSIFICATION OF DYNAMIC PROGRAMMING ALGORITHMS

"0 6 o 8 oo oo] 0 6 10 8 32 24
< 0 4 oo o ™ o~ 0 4 31 26 18
4= | >® > 0 o oo i4 g+ = | > 35 0 27 22 14
Tl o 8 T 0 oo o Tl 8 T 0 29 21
© oo o0 5 0 ™ oo 13 12 5 0 26

| o0 0 o oo 8 0 | Lo 21 20 13 8 0 |

Figure 2.9: An example of the all-pairs shortest paths problem.

2.5 Dynamic Programming Remarks

From the set of examples we have presented we can see that dynamic prograrming is basically a
decomposition strategy. The general idea is to solve simple subproblems and progressively solve
larger problems composed of already solved problems. The computational effort to solve a single
subproblem is low, however, considering the dependencies each subproblem has, it seems to lead
to inherently sequential algorithms. Other approaches have been followed to overcome with the
sequential nature of DP algorithms. Parallel processing and hardware implementation are alterna-
tives. Particularly, hardware level implementation have been followed for several reasons. First, as
in the string matching problem, it is common to solve many instances of the problem which requires
fast execution. Second, the arithmetic involved in several problems is not so complex. Fiom the
examples we have reviewed we can observe that in many cases integer arithmetic with low precision
is enough. Finally, being able to re-organize the recursive formulations in such a way that we obtain
local and regular dependencies we can implement them in FPGA circuitry. Techniques to achieve
that will be discussed in chapter 5.

2.6 Conclusions

We have presented the general formulation of dynamic programming algorithms. We showed how
the decomposition of a problem into subproblems can lead to a DP formulation. We reviewed the
classifications of DP problems. From a set of examples, we have made some observations about
efficient implementations of DP formulations. It has been believed that dynamic programming is
adequate for sequential computers and not appropriate for parallel machines. In the next chapter
we will show how to exploit parallelism in dynamic programming formulations.

2.6. CONCLUSIONS

\\\‘b—-“/

a) b}

Figure 2.10: An instance of the optimal matrix parenthesization problem.

21

99 CHAPTER 2. A CLASSIFICATION OF DYNAMIC PROGHAMPNING ALGUNRLL 10w

Chapter 3

Data-Parallel Dynamic
Programming

In this chapter we describe general strategies for implementing parallel dynamic programming al-
gorithms. We start by making some observations about exploiting parallelism in DP algorithms.
Then, we present the C* programming model, our target programming language. Then we discuss
a straightforward approach for implementing DP algorithms in C*. Finally, we present a block
decomposition approach to implement DP algorithms with a variable number of dependencies.

3.1 General Guidelines

In the last chapter we presented a general classification of DP algorithms. In this section we discuss
general guidelines to exploit parallelism of DP algorithms according to their formulation.

e That a problem is serial or nonserial affects the way in which we build the DP table. In a serial
problem, only the current and the previous level subproblems need to be stored. In a nonserial
problem, solved subproblems on all previous levels are required. In general, all subproblems
must be kept for future references.

e The only source of parallelism for serial problems is among problems in the same level. All
of them can be computed in parallel, but no problems belonging to different levels can be
computed concurrently.

¢ The computation of nonserial formulations allows us to overlap computing problems from
different levels. This can be a great source of parallelism which can help us derive efficient
practical implementations. However, we need to derive a scheduling policy to establish the
order in which the entries of the table are going to be filled.

¢ For systolic processing, nonserial problems must be serialized. The way in which the serial-
ization is done greatly impacts the performance of the resulting systolic array. For example,
Guibas and colleagues [39] provided a clever mechanism for the OMP problem. Chen [18]
discussed a more systematic approach for that serialization.

o Whether a problem is monadic or polyadic influences the way in which the solution of a
specific problem is built (the second stage in the algorithmic point of view). Solutions of
monadic problems are built in serial fashion. Solutions of polyadic problems can be built by
searching AND trees.

¢ The number of dependencies is important to generate parallel programs. That a problem
depends in a variable number of subproblems implies that we need to serialize the optimization
operation {minimum or maximum). For serial problems, the necessary serialization cannot be

23

24 CHAPTER 3. DATA-PARALLEL DYNAMIC PROGRAMMING

bl L L o
> L emor femory
x| ==
z ! I
Routing Network

: i
=2
= Memory e SCRIAT
= | N)
e Control Afnvl metic
i Unit

Figure 3.1: The C* Programming Model.

done until the preceding level subproblems are computed. That implies necessarily a sequential
algorithm. For nonserial problems, the serialization can be performed by overlapping different
problems in different levels.

e The dimensionality of the table provides us a clue to the dimensionality of the processor
array to compute the algorithm. Using one processor per entry in the table gives us exactly
the number of dimensions of the processor array. Through a combination of scheduling and
mapping transformations we can reduce the dimensionality. For example, the longest common
subsequence problem has a 2D table. The preceding naive approach would underuse the
processors because only a limited number of them are active at the same time. Using a
hyperplane method to schedule the filling of the table, we obtain a 1D processor array.

We believe that three important features must be considered to derive parallel implementations:
the size of the table, the seriability of a recurrence formulation and the number of dependencies.
Based on that, we can find several algorithms for different problems.

3.2 C* Programming Model

Our target language is the C* programming language. The C* programming model is based on SIMD
computations consisting of a front-end uniprocessor attached to an adaptable back-end parallel
processor as it appears in Figure 3.1. The sequential portion of the C* program {consisting of
sequential code) is executed on the front-end. The parallel portion of the C* program is executed
on the back-end. A global name space is used to reference variables in the front-end by processors
in the back-end. C* executes programs using a single instruction stream in a synchronous way.

C* uses the shape keyword to describe the size and shape of parallel data. A virtual processor
per position, cell in the shape, is considered. A parallel variable is declared by tagging it with a
shape. The with keyword serves to choose the shape to be used for parallel operations, and the
where statement restricts operations to some positions {virtual processors).

3.3 A Straightforward Approach for Parallel Dynamic Pro-
gramming

In this section we describe a straightforward approach to exploit parallelism in implementing DP
algorithms. We consider a data-parallel approach consisting of an array of virtual processors with

i

3.3, A STRAIGHTFORWARD APPROACH FOR PARALLEL DYNAMIC PROGRAMMING 25

the same shape as the DP table. All processors perform the same computation. In this naive
approach we use a virtual processor per table entry whose role is to compute the value of the entry.
However, for serial problems we do not need as many processors as entries in the table because, as
we mentioned before, we need only the current and the preceding level of subproblems.

3.3.1 Data-parallel loops of DP problems

In the following sections we will examine specific cases for important parallel formulations.

Serial DP problems

In this section we are considering the case of loops used for serial, monadic or polyadic, formulations
of dynamic programming problems which we call serial data-parallel loops. Their structure is reduced
to the following scheme:

shape [] ... [1S;

...:S m;

with(§) { /* Current shape operation */
. /* initialization */

for(k = 1; k <= N; k++) {
m = ...m...
/* References and assignments to parallel vars. */

}
}

The implementation consists of a sequential loop with references to parallel variables in its body.
It is supposed that a level of subproblems is represented by the parallel variable m. The number of
iterations of the loop represents the number of levels in the DP table. All virtual processors perform
the paralle} operations in which m is involved. That means that in every iteration of the loop, the
values of m are updated with new values. Because of the SIMD model of C*, we can avoid explicitly
storing the previous level, given that any reference in the right hand side of an assignment is done
before the assignment is actually done.

One example of this type of code is obtained from the all-pairs shortest path problem. In Figure
3.2 we can observe the problem’s dependencies which can be complicated to understand all of them,
however, looking only at the k-dimension we easily recognize the serial nature of this problem. The
problem can be computed from the following code:

shape [N+1][N+1] Mesh;
int:Mesh M;

with(Mesh)
for(k = 1; k <= N; k++)
M= M <? (LI0RIM + [kI0.IM);

in which the operator <? selects the minimum of the two arguments and [.] refers to virtual
processor on the same row or column according the position it appears. Note that the composition
function is polyadic because it refers to two different subproblems.

Nonserial DP problems

Let us examine first the structure of nonserial problems applying an obvious scheme to serialize
operations. We do not start to compute any problem unless all problems in which it depends on

26 CHAPTER 3. DATA-PARALLEL DYNAMIC PROGRAMMING

ure 3.2: Qrganization of the shortest path problem by levels.

have been already computed. That implies a sequential organization of subproblems, where not all
of them are ready at any time. The structure of the naive implementation would be the following:

shape [] ... [1§;
...:S m;

with(§) { /% Current shape operation */
. /* initialization */

for(k = 1; k <= N; kt+)
where(P(...)) { /% Selection of active positions */
m=...m..
/* References and assignments to parallel vars. */

}

The where keyword is used here to select those virtual processes for which the predicate P is true.
This predicate establishes a scheduling policy which activates or deactivates virtual processors. In
section 3.4, we will see how to determine that predicate. For the moment let us consider the case
where we have a monadic or polyadic formulation in which the code enclosed by the where statement
consists only of a fixed number of instructions. For example, we obtain the following code for the
longest common subsequence problem.

shape [N+1][M+1] Table;
shape [] String;

int:Table F, ii, jj;
char:String sl, s2;

3.3, A STRAIGHTFORWARD APPROACH FOR PARALLEL DYNAMIC PROGRAMMING 27

! 2 3 4

(R

Figure 3.3: The longest common subsequence DP table and dependencies.

with(Table } {
where(pcoord(0) == 0) F = 0;
where(pcoord(i) == 0) F =0

for{ k = 1; k < M+N; k++) {
where(((pcoord(0) + pcoord(1)) == k) && (pcoord(0) > 0) && (pcoord(1) > 0)) {
ii = pcoord(0) - 1;
jj = peoord(1) - 1;
where([ii]sl == [jjls2)
F=[-1]0.-1]F + 1;
else

F=([.-1]0.]JF > [.10.-1]F);

i

In this case the predicate determines a wavefront for activating the virtual processors as is shown
in Figure 3.3. It involves the use of the function pcoord(d) which returns the position that
occupies a virtual processor in the coordinate d of the array.

For nonserial problems with a variable number of dependencies the code composing the where
statement consists of as many loops as indicated by the order of the dependencies. For example, we
obtain the following code for the optimal matrix parenthesization problem.

shape [N][N] Mesh;
shape [N+1] Dims;

int:Mesh m, ii, jj, kk;
int:Dims r;

with(Mesh) {
where(pcoord(0) = pcoord(l))
M= 0;

for(d =1; d <= N; k+t+) {
where((pcoord(1) - pcoord(0)) ==4d) {

28 CHAPTER 3. DATA-PARALLEL DYNAMIC PROGRAMMING

Figure 3.4: Wavefront for the optimal matrix parenthesization problem.

ii = pcoord(0); jj = pcoord(i) + 1; kk = pcoord(0) + 1;
M = [.Jlpcoord(0)I¥ + [.+1J0.IM + [iidrelkk]lz*[jjlx;
for(k = 1; k < d; k+#+) {
kk = pcoord(0)+k+1;
M <7 = [.J{pcoord(C+kIM + [.+k+1][.IM + [iilrs{kklr+[3jlr;
}
¥
}

}

Although a two-dimensional array is declared, only n{n + 1)/2 processors are really used; one
processor per entry in the triangular table. They only are active across diagonals, as shown in Figure
3.4. That is, each processor is active during only one iteration of the outermost loop. Note that the
outermost loop’s body is itself a loop, becanse of the O(n) dependencies which every subproblem
depends on. Because of that reason this implementation takes O(n?) time.

3.4 A Practical Approach for Parallel Dynamic Program-
ming

In this section we describe a more practical approach to implement DP algorithms. The naive
approach serves to point out the importance of the seriability, the size of the table and the nature
of dependencies in a problem. As Hatcher and Quinn [41] suggested, the use of virtual processors
makes programs simpler and shorter. However, in nonserial dynamic programming algorithms,
virtual processor emulation adds a great deal of overhead to the code generated. That is due to the
fact that only a subset of virtual processors are active at any one time. Our goal is to derive an
allocation function to map all the entries of the table to a limited number of processors and a timing
function to decide which entries are going to be filled at any time.

Let us consider a DP table, M, defined at every index point, 2z, of the domain D. Timing
functions must satisfy the causality property [30] which says that if index point z depends on z' then

t(z) > t(z")

In other words, the time at which a computation is done must be greater than the times at which
all its dependence points are computed. Allocation functions determine the set of virtual processors

3.4. A PRACTICAL APPROACH FOR PARALLEL DYNAMIC PROGRAMMING 29

that will fill the DP table. For every entry of the table, z, the virtual processor identified by a(z)
will be in charge of filling the entry z. Allocation functions must be conflict free, i.e., two different
entries scheduled at the same time have to be filled for different processors. That is,

Vz,u€e D: if t(z) = t(u), then a(z)# a(u)

We will defer the discussion about determining timing and allocation functions until Chapter
4. Now we will illustrate two cases: when we have fixed constant dependencies and when we have
non-fixed dependencies.

3.4.1 Uniform Dependencies

Let us consider the longest common subsequence problem that we introduced in Chapter 2. This
problem exhibits the fixed uniform dependencies, delta;, which means that point z depends on z ~§

6 =07, & =0,17, and & =[1,1)7

It can be easily seen that by scheduling entry (i,7) at time ¢ + 7 we can solve the causality
property of timing functions. That timing function is represented by the scheduling vector [1,1]7.

Now, if we always choose the shortest string to represent the j-dimension, then we can project
the DP table onto the [01]7 direction leading us to avoid scheduling conflicts. That means that
entry (i,7) is executed by processor j.

Representing this transformation in a matrix form we can obtain the direct and inverse transfor-
mation as:

t] [1 1 i [+] [1 -1 t

x| 10 1 il 7110 1 T
This mapping generates a linear processor array with as many processors as columns as the table
of the longest common subsequence problem has. The dependencies {1,0]7 and [1, 1]7 are mapped
to-the previous processor and the dependencies along the direction [0, 1]7 are mapped onto the same

processor. So, every processor should be able to maintain the last two values in addition to the
previous one. The code generated using a linear array is the following:

shape [M+1] Table;
shape [] String;

int:Table Fc, Foldl, Fold2, ii, jj;
char:String sl, s2;

with(Table } {

where(pcoord(0) == 0) F¢ = 0;
Fc = 0;

for(k = 0; k < M#N; k++) {
vhere{ (k - N) < pcoord(0) && pcoord(0) < k) {
Fold2 = Foldi;
Foldl = Fc;
ii = k - pcoord(0);
jj = peoord(0) - 1;
where([ii]si == [jjls2)
Fc = [.-1]Fold2 + 1;

30 CHAPTER 3. DATA-PARALLEL DYNAMIC PROGRAMMING

else
Fc = [.-1]Foldi >7 Foldi,;

3.4.2 Non-uniform Dependencies

Non-uniform dependencies appear in DP problems in the cases of the all-pairs shortest paths problem
and all problems with more than O(1) dependencies. When we have nonuniform dependencies. two
approaches can be considered to deal with this kind of problem: using dependency direction vectors
or uniformizing the recurrence formulation. For the moment, we are going to apply the first technique
to the OMP problem. The uniformization approach will be discussed in Chapter 6.

Dependency Direction Vectors

We can suppress the exact dependency vector with direction dependency vectors just as in the same
way parallelizing compilers use dependence direction instead of exact dependency vectors [81]. That
means that we are assuming that a problem depends on all subproblems lying along a direction
vector, including the previous level problems. Hence, we are implicitly transforming a nonserial
problem to a serial one. Then, we can apply the technique described in the preceding section to
determine a timing and an allocation function. This approach does not exploit the overlapping of
different level subproblems, so it leads inefficient implementations.

Let us examine the application of this approach to the optimal matrix parenthesization (OMP)
problem which we introduced in Chapter 2. In the OMP problem, every subproblem depends on
all subproblems lying in the same row in preceding columns and the same column in subsequent
rows (see Figure 3.4). The dependence direction vectors are [1,0]T and [0, ~1]7. A timing function
satisfying the causality property can proceed along diagonals that can be represented by the following
function:

ti,5) = -1+

To avoid scheduling conflicts, we can project the table along rows using the following allocation
function

a(t,j) =1

The direct and inverse transformation are given in matrix form as:

t] [-1 1][+] _[o 1 t
I Bl]

That mapping yields a linear array of processors. After applying the allocation function, the
dependency vector [—1,0]7 implies a communication between a processor and the next one in the
array. The dependency vector [0,1]7 is mapped onto the same processor so it implies that every
processor stores the results generated along the same row. At every diagonal step we accumulate

the results generated in the same row and we pass them to the next processor.
The following code uses the timing and allocation functions generated before.

shape [MAXN] Rows;

struct col_results {
int value [MAXN];

32 CHAPTER 3. DATA-PARALLEL DYNAMIC PROGRAMMING

ot 2 3 4 5
0 C ° o C O 0
3y

1 © © O O \

@)

ts
Q
O
O

O O\ @]

O
C

= i

/ ~’FT§7 ! ;-a»'~+i >
¥ r Y LYLTLY
M M—# i
ik ';‘fi EERERAK]
1t p: B
1y ?E?ian i Ll
VoY [YL

i { !
[R
aYututy

3 B o

Figure 3.6: Block decomposition of the Gap Problem.

D[l -1,7— 1] + 8ij
. 0<1<m
D[i,j] = min{ mine<q<; {D[i,q] +w(q,j)} for 0 g ; g n (3.1)

mino<p<i{Dp, j] + w'(p, i)}

From Figure 3.5 we can observe that this problem describes a two dimensional table where a
single subproblem depends on its northwest neighbor and all previous problems along the same row
and the same column. -

It is easy to see that the computational effort to solve the entry (i,7) takes O(¢ + j) time.
Therefore, a sequential algorithm to compute the problem takes O(n?®) time. It is easy to see that
if we process the table along diagonals we can solve in parallel all the problems along the same
diagonal.

3.5.2 Block Decomposition for the Gap Problem

We can observe that as soon as a single subproblem is computed it can be used to partially solve the
subsequent problems in the same column and in the same row. However, that approach would lead
to a great number of communications in a multicomputer (a parallel computer with a distributed
memory). Given that communications costs are at least one order greater than computations costs,
we need to balance their effects in a parallel algorithm.

A common approach to balance communications with computations is to partition the table
into blocks in such a way that communications occur only when complete blocks are solved (see
Figure 3.6a). Considering now dependencies between blocks, the partitioned table would show the
same shape as the original table. Taking into account that an acceptable schedule proceeds along
diagonals, we can avoid long communications by mixing messages and communicating only neighbor
blocks as shown in Figure 3.6b. Note that mapping a single column of blocks to a single processor
as long as we use the diagonal schedule would provide a valid parallel algorithm (Figure 3.6c).

Another way to improve speedup is to overlap computations with communications. Although the
limitations of such an approach have been reported by Quinn and Hatcher [66], we can use it here to
slightly improve the speedup of the parallel algorithm. In Figure 3.7, we can observe the execution

3.5. A BLOCK DECOMPOSITION SCHEME FOR A CLASS OF DP ALGORITHMS 33

Py Py P3
B0.0) T receive [recelve Creceive) ¥

I
g { s:né
Lo f«‘
. BULDY |
i M -
v / { receive |
L osend !
Time | O
1 B H
I { sendmﬁ ! by
[send | receive
(T
{ B(3.0) L__z__ﬁ B(I.1) receive
scnd send) ‘
..... !
LB
send !
LB
send

Figure 3.7: The parallel execution of the block decomposition scheme for the Gap Problem allowing
overlap of computations with communications.

of this scheme when the communications do not take more time than computing a single block plus
executing the primitive for receiving a message. It is expected that this is the real situation for most
of the cases because it is unexpected that the number of processors increases with the size of the
problem. Furthermore, to exploit more parallelism, we can reduce the size of blocks by making more
horizontal divisions in our decomposition scheme. To finish this discussion, this problem belongs
to the class of problems that Quinn and Hatcher discussed as having a computational complexity
greater than the communication complexity. It is clear that the communication requirements are
O(n?) while the computation ones are O(n?)
In summary, each processor performs the following pseudocode:

if(pid > 1) receive();
for(i = 1; i <= Number of blocks; i++) {
if(pid > 1) {
while(not received message) ;
if(1 < Number of blocks)
receive(); /* next block #*/
¥
/* Process block i */
if(pid < Number of blocks)
send(); /* received messagetblock i to next processor */

34 CHAPTER 3. DATA-PARALLEL DYNAMIC PROGRAMMING

Two important characteristics should be realized to implement the block decomposition for the
gap problem. First, as we proceed solving problems, it takes more time to solve the remaining
ones. Second, the size of communications increases from processor to processor proportionally to
the macrocolumn position that each processor computes. So let us now develop a model to predict
the expected execution time of the algorithm.

3.5.3 Homogeneous Block Decomposition

To allow overlap of computation with communication, we consider a non-blocking communication
model where the time to send a message of size n is given by L(n) + T(n). L(n) is the message
latency which is expressed by the function A + Gn, where A is the constant term representing the
time required to handle the call to send or receive, 3 is inversely proportional to the speed at which
the system can buffer or unbuffer the message. T(n) is the time spent to transmit a message of size
n by the communication network. Usually, it is a linear function xn where x is the inverse of the
fixed bandwidth of the routing network. We assume also that the time to compute a single selection
operation of the optimization process takes 7, time.

A standard compiler would divide the DP table equally among processors, so if we have as many
macrocolumns as processors, we are assuming that a table of size n x m is divided into b x p blocks
of size n/b x m/p.

From Figure 3.7 we can observe that the overall execution time of this parallel algorithm is
dominated by the latency time of the last processor and its own execution time. The execution time
for this homogeneous block decomposition is given by

TH(n,p, b) = LHp + Hyp

where L, means the latercy time of the last processor and H, means the throughput of the last
processor. Both components involve a computation and a communication part. The computation
part is determined by the blocks involved in computation, and the communication time indicates
the communication primitives involved. We can express,

Ly =1L + Ly

» = LHeomy,

and
Hy, = Hy

For the latency component we have to compute the first (p — 1)n/p columns of the first n/b rows.
Therefore, the computation part of the p processor latency is:

+ Hy

compy

commp

N/ (p—1)}N/p

Ly = Talp, D, i+]
1=x] j=1

3 (p-1%+(p-lp , p—-1,
- (o n o (32)

Regarding the communication part, (p— 1) messages are sent, causing p— 1 calls to send. The size
of each message is q%‘—%, with 1 € g < p. There are done p — 2 receiving calls during the computation
and communication overlapping processes. The communication part of the latency time is expressed
as follows:

p—1
nn nn
= b L b e — L — — -
Lcomm;7 Z +ﬁ7' bp+X2 bp +(p 2))‘
i=1
p—l 2 N
= (2p=-3r+——(B+x)n (3.3)

2b

3.5. A BLOCK DECOMPOSITION SCHEME FOR A CLASS OF DP ALGORITHMS 35

Now let us consider the throughput of the last processor. It computes the 1ast n/p columns of
the table. Its computation time is:

N
2 it
{p—11N/p+1
- 1
Ta (i‘-’—z—-)-rﬁ + —n2> (3.4)
2p p

-

1l
—

HHcmp,, = Ta

1

[N

Let us assume that messages received by the last processor are short enough to completely
overlap their transmission time with the computation of a block. Hence only b — 1 calls to receive
are required. The time spent in communication by the last processor is:

Hy

comm

= (b= 1)A (3.5)

Adding together Egs. 3.2 - 3.5, we obtain the execution time for the homogeneous block decom-
position scheme:

_..1 Y
Typp = (2P+b—4)/\+%‘b—(ﬁ+x)n“
(p— 1%+ (p-1p 3(P“1)) 3 p—1 1 2}
+Tq K b2 + 27 /n + T +p nJ (3.6)

As can be seen from Equation 3.6, the execution time is dominated by the computation time
of the last processor. It is important to see that this homogeneous block decomposition does not
evenly distribute the computational work among processors because the hardest n/p columns are
assigned to processor p.

3.5.4 Non-Homogeneous Block Decomposition

Let us now develop a non-homogeneous block decomposition scheme where the computation work
is evenly distributed among processors. Let us assume that we have a N x M table to distribute
among p processors. The total number of operations for the gap problem is proportional to

N . N?
YN itj=sM 4+ N|M
i=1 j=1 2 2

We would like that each processor would compute

N3 4+ N?
D

amount of computational work. In other words, let us assume that the first K columns are computed
by p — 1 processors. We need that

1
~——

N K

- N?
oS i+ Li(—j!Man(-—JrN)M) (3.
i=1 j=1 P 2 2

(%[—Kz + (i\; + N>> K p—;—i <%M2 + (1—\/2—2 + N) M) ‘ (3.8)

It can be seen that by choosing the positive solution of the equation:

o

36 CHAPTER 3. DATA-PARALLEL DYNAMIC PROGRAMNANG

NK?+ (N*+2N)K - 13-; (NM? + (N?+2N) M) =0

we can find the value for K that separates the work for the last processor from the others. Re.
cursively applying the equation and reducing the number of processors we can find the sequence
K Ky, -, Ky of columns which partitions the dynamic programming table of the gap problem
letting each processor perform the same amount of computational work.

The model to predict the performance of the non-homogeneous block decomposition has similar
components to the homogeneous one.

The execution time for the non-homogeneous block decomposition is given by

‘T[\“'(nw P-b) = L.IVP + f‘{Np

We can express the computation and the communication part of each component in the following
way:

Ly, =Ly + LNconim,

compy

HNp = Hy + Hpy

compp commy

A good approximation for the number of columns assigned to p-1 processors is

2p—1
2p

K= N

The computation time of the latency component can be approximated by

N/b(2p—1)N/p

LN""'“”V = Ta Z Z ’l +]
izl j=1
2p—-1/(1 2p~1\ 5 2p—-1,
= 7, - + 4
T, [pen (b + o > n 200 n (3.9)

Regarding the communication part, (p— 1) messages are sent, requiring p~1 calls to send. Longer
messages are required for the non-homogeneous block decomposition. In the average, the messages
are of size 0.6n. Note that p — 2 calls to receive are done in the process of overlapping computation
and communication. The communication part of the latency time is expressed as follows:

Ly

commg

- (2p—3)A+0.6£~g—1~ (B+x)n? (3.10)

According to the decomposition scheme, the computation time of the last processor is:

13 1,
HNepy, = Ta (57? + ot (3.11)

Finally, assuming again that the computation time is large enough to completely overlap the com-
munication time of the messages which the last processor receives, the time spent in communication
by the last processor is:

F
1

3.6. RELATED WORK ' 37

Hy =(b=1)A (3.12)

commp

Adding together Eqs. 3.9 - 3.12, we obtain the execution time for the non-homogeneous block
decomposition scheme:

-1)
Twep = (2p+b—4)A+o.69—T(ﬁ+x)n'
b+1 1Y L1y 5
, 1 L 3.13
Tra[(ﬂ)?‘ij)n +<b+p>n} (3.13)

3.5.5 Discussion

From Equation 3.6 and 3.13 we can see that the significant part of the execution time in both
schemes is given by the cubic power of the problem size. Although the latency time is greater for
the non-homogeneous block decomposition, the difference in computation time is of order 1.5 times
more on the homogeneous block decomposition scheme.

In Figure 3.8 we present the execution time vs number of blocks for a problem of size n = 512.
Parts a) and b) correspond to the Meiko CS-2 system for 2, 4, 8, and 16 processors and parts c)
and d) correspond to the CM-5 parallel computer with 2, 4, 8, 16, and 32 processors. Figures 3.8a,c
present the execution times for the homogeneous block decomposition, and Figure 3.8b,d presents
the same for the non-homogeneous block decomposition scheme. The dashed lines show the observed
execution times. The solid lines show the predicted execution times based on the models derived in
previous sections. The parameters observed for the Meiko CS-2 were: 7, = 0.9usecs, A = 30usecs,
B = .001usecs/integer, and § = 0.lusecs/integer. The parameters observed for the CM-5 were:
7, = 3.8usecs, A = 100usecs, 3 = 0.5usecs/integer, and § = 0.1usecs/integer.

From those figures we realize that after certain number of blocks, the gain in execution time is
negligible. By increasing the number of blocks, we reduce the latency of the last processor. However,
that is compensated by the greater number of messages that the last processor must receive. In any
case, the best execution time was observed when the number of blocks was equal to the size of
the problem making blocks of single rows. Andonov and Rajopadhye found similar curves for a
homogeneous block decomposition of the knapsack problem [6]. They obtained analytical solutions
for the optimal block’s size for that problem. Considering all possible cases, they found that the
optimal solution is when the number of columns is equal to the number of processors or when the
number of rows is one.

In Figure 3.9 we compare the speedup obtained for the homogeneous and non-homogeneous block
decomposition schemes for the Meiko CS-2 and the CM-5. The a and ¢ parts show the speedup for a
problem of size n = 512 and b and d parts show the speedup for n = 1024. Again, dashed lines show
observed speedup and solid lines show predicted speedup. In both cases, an important improvement
can be observed by using the non-homogeneous scheme.

When the problem’s size increases, cache and vector unit effects avoid to follow the model 7, (N +
N?) for the sequential algorithm. That explains the shift between the predicted and the observed

speedup.

3.6 Related Work

Sequential algorithms based on the dynamic programming paradigm have been proposed for in-
dividual problems [24, 33, 35, 42, 76]. However, due its large computational requirements, the
applicability of DP has been somewhat limited. Different approaches has been proposed to deal
with DP complexity.

Galil et al derived effective sequential implementations where the cost function associated with
some DP problems exhibits properties such as concavity, convexity and sparsity [35, 26, 27]. In [35],

38 CHAPTER 3. DATA-PARALLEL DYNAMIC PROGRAMMING

Homegrusrw Black Ducsmpouitiva Neow-Homopomorm Sleck Decompesitios

i

&

5

g e T

[
1

F

1
Execution Time in secs,
b1

Execution Time in secs.
5

&

Numbser of Blocks Number of Blocks

a) b)

Homegrasrm block Decompecicion Nea-Hemegwasens Siock Decompenices

8

8

13

g
‘
'
'
'
'
v
'
'
1
)
'
t
t
T
t
'
v
!
v
t
1
¢
f
'
'
s
'
¢
¥
'
'
'
v
'
'
'
'
'
v
'
'
1
|
1
'
'
'
'
T eweo
3

#

P
g

Execution Time in aecs
§ & %
i gpa——
Exezution Time In secs
3

Number of Blocks Numbar of Biocks

c) d)

Figure 3.8: Effect of the number of blocks int the execution time on the Meiko CS-2 a y b, and on the
CM-5 c and d. a) and b) show homogeneous block decomposition. b) and d) show non-homogeneous
block decomposition.

Galil and Park discussed the classification DP problems considering the order of the DP table size
and the order of the dependencies to solve a single subproblem.

Guibas et al proposed a VLSI algorithm to solve the optimal matrix parenthesization (OMP)
problem [39]. Li and Wah [53] proposed a classification of DP problems for parallel processing. They
classified DP problems according their recursive formulation to distinguish between serial and nonse-
rial problems, and between monadic and polyadic formulations. They discussed the implementation
of systolic algorithms for problems in different classes.

Recently, parallel algorithms based on PRAM models have been proposed for the optimal matrix
parenthesization problem (OMP). Bradford developed an algorithm requiring O(n®/log n) processors
to solve the OMP problem in time O(log” n) [15]. Huang and colleagues [44] modified an algorithm
proposed by Rytter [74] to solve the OMP problem in the same time using O(n®/ log® n) processors.
Galil and Park proposed an optimal algorithm solving the problem in O(n3/%logn) time using
O(n*/logn) processors [34]. These last authors went beyond that problem, considering problems
having more than O(1) dependency, that is, problems whose formulations involve a variable number
of subproblems. Although efficient PRAM algorithms have been provided, they are not suitable for
implementation on actual parallel computers.

Practical parallel implementations have also been derived for individual problems. Kumar et al
[49] describe practical implementations of some DP problems according the classification previously
proposed by Li and Wah. In [46], Karipys and Kumar discussed three different mappings of the

3.7. CONCLUSIONS 39

:? " N Biock D v Xea-H Seck D
" . .
- e i
- “"/; T n g cne s [E e Pomogenans
5
A’\
5
N -~ B -
& - - & .
3 o - 3 P
a o - -
o PRI 1
¢ e - hoamogenaia Aot
- -) R -
L) O .t B2 LT e T e L%
[d . - s L
- vy - redcims
. - “ L -
. . Pate
H 2 e
o -
Q 1 4 L] 3 1 1 e " 2 1 + L] * o 2 4 i
Processors Processors
a) b)
s Noa-H Bleck P 1 New-tiomeg Blaek
% - ® - .

oL T aoa homageanug

Speedup

Processors Processors

) d)

Figure 3.9: Speedup of homogeneous and non-homogeneous decomposition schemes on the Meiko
(CS-2 on the CM-5. a) and ¢) n= 512. b) and d) n = 1024.

systolic algorithm for the OMP. problem onto multicomputers. The OMP problem has been the
favorite DP problem for many researchers because it is isomorphic to a number of problems such as
the optimal convex polygon triangulation problem and the optimal binary search tree construction
problem [24]. However, little attention has been focused on generating design strategies to build
practical parallel implementations for general dynamic programming problems.

3.7 Conclusions

We have discussed the main requirements to generate data-parallel programs for dynamic program-
ming algorithms. We extracted the important characteristics in generating data-parallel implemen-
tations. Data-parallelism is quite natural for DP problems because their recurrent formulations
establish the same computation for all entries in a DP table.

The seriability, the number of dependencies and the size of the table are useful to generate
naive data-parallel programs of DP problems. We presented the general structure of C* programs
implementing serial and nonserial DP formulations. The naive approach was further elaborated
to generate more effective implementations for nonserial problems. These elaborations are based
on overlapping the computation of problems in different levels. The goal is to design a scheduling
function for filling the entries of the DP table and an allocation mapping to design a virtual processor
array in charge of doing that job.

40 CHAPTER 3. DATA-PARALLEL DYNAMIC PROGRAMMING

We applied previous results from the synthesis of systolic arrays and automatic loop paralleliza-
tion in the process of designing algorithms for DP problems. We proposed the use of dependence
direction vectors and the uniformization of the formulation. The first approach does not produce
the best algorithm in terms of execution time but it always produce correct answers. The second
approach produces better algorithms in terms of execution time and efficiency but it cannot be
arbitrarily applied.

The design of efficient algorithms for specific problems and architectures has been already ad-
dressed and it continuos being matter of significant research. We think that there must exist a
balance between algorithm design and parallel implementation. We showed that the efficient use of
virtual processor arrays can be a good midpoint for dynamic programming algorithms.

Problems with variable number of dependencies presents some drawbacks to obtain efficient
practical implementation. First, they require a great deal of communication. Second, applying
standard block decomposition schemes to that kind of problems leads to unbalanced algorithms
where more computational work relies on the processor assigned with the last positions of the DP
table.

We suggested to mix communications between processors to obtain only local communications.
Also, we have taken advantage of overlapping computation with communication. Finally, by using a
non-homogeneous block decomposition approach our experimental results confirm the improvement
of the speedup of standard block decomposition techniques for parallel algorithms.

We develop models to predict the performance of homogeneous and non-homogeneous block
decomposition schemes. Second order effects, like cache memory and vector units, cause a shift
between the observed and the predicted measures. These models need to be further elaborated to
accurately predict the performance of very large problems.

There still remain open questions about the mapping of virtual processors to a finite set of
physical processors. However, it can be expected that current parallel languages and compiling
technology will possitively evolve to provide an effective response to this problem.

Chapter 4

Recurrence Equations

4.1 Introduction

Recurrence equations are important because they are used as the starting specification for paral-
lel algorithms {47] and regular array circuits can be derived by the transformation of recurrence
equations (67, 70].

In this chapter we define precisely the concept of recurrence equations. We start with the
general case, then we introduce specific cases such as affine recurrence equations, uniform recurrence
equations and space-time descriptions. We also define the concept of dependence relations which is
of importance for the synthesis of regular array circuits.

4.2 Recurrence Equations

Recurrence equations arefre well known to mathematicians for expressing a large class of functions
over a domain D (usually a subset of integers). A recurrence equation specifies f(n) at a pointn € D
in terms of f at other points in the domain. That describes a sequence of numbers ag, a1, ... ,a,,. ..
relating a, to some of its predecessors. In combinatorial mathematics the primary concern is solving
- recurrence relations, i.e., addressing the following problem. Given a recurrence equation describing
an in terms of some other a's, determine a ‘closed-form’ expression for a,, i.e., an expression for a,
that does not involve any a terms. Our objective here is using the recurrence as an algorithm for
computing the function and implementing it in a parallel environment.

Let XY, Z,... be identifiers (also called variables or functions as we will see later).

A recurrence equation defining an identifier X over a domain D} is an equation of the form

X(z) = g(Y1(d1(2)), ... , Ym(dm(z))) Vz € DY (4.1)
where

) Df is the domain of definition of the equation. If two or more recurrence equations all have
the same identifier X on the left-hand-side of the equation, then their respective domains of
definitions are disjoint.

¢ d;,1 <j<m, are dependency mapping functions (also called indez mapping functions) which
map z in D¥ to d;(z)

o ¥, 1 <j <, are identifiers which can be considered as inputs or can be defined by their own
recurrence equations.

¢ g; is a strict single-valued function defining the right-hand-side of the equation.

41

49 CHAPTER 4. RECURRENCE EQUATIONS

In describing systems of recurrence equations, there are two equally valid points of view which
can be taken:

1. A purely functional point of view in which every identifier is a function. A recurrence equation
defines a function on the left-hand-side in terms of function in the right-hand-side.

2. Each identifier can be thought of as a single assignment variable and equations equate the
variable on the left-hand-side to a function of variables on the right.

4.3 Equation and Identifier Domains

Let DY . D, .. DY be the domains of recurrence equations in whose left-hand-sides the identifier
X appears. Then the domawn of identifier X is DX = U, DX. As we pointed before, it has to be
accomplished that

vi,j. 1<ij<ni#j, DF¥nDf=9¢

Domains of definition for recurrence equations of an identifier represent a partition of the domain
of the identifier. Since it is typical that all identifiers are defined over the same domain. we will
denote it simply as D. That does not necessarily imply that all identifiers are defined over the same
partition of the domain.

Usual domains are n-dimensional integer polyhedrons. Whereas a polyhedron is a region con-
taining an infinite number of rational points, a polyhedral domain refers to the set of integral points
which are inside a polyhedron (or unions of polyhedra). A polyhedral domain of dimension n is
defined as

D:{ieZ™icP}=L"NP (4.2)

where P is a union of polyhedra of dimension n. A polyhedron, P, is a subspace of Q' bounded by
a finite number of hyperplanes. The so called implicit definition of a polyhedron is stated as

P = {z]Az =b,Cz > d} (4.3)

given in terms of equations (rows of A, b) and inequalities (rows of C, d), where A, ' are matrices
and b, d, and z are vectors. 7 has an equivalent dual parametric representation:

P = {aelz=LA+Ru+Vv, pv>0, Y v=1} (4.4)

in terms of a linear combination of lines (columns of matrix L), a convex combination of vertices
(columns of matrix V), and a positive combination of extreme rays (columns of matrix R).

Since a specific instance of problem in a finite domain is of no interest at all, we consider here a
family of recurrence equations describing a problem with some parameters which can take values in
a infinite domain.

4.4 Notation

We use the following compact notation for describing X:

z€ DY = g1(Yul(du(z),. ., Yim, (din, (2)))

X(z)={ * €DF = ga(Yar(da1(2)), -, Yam,(dam, (2))) (45)

2€DX =+ gulYur(dut (D)), Yam, (du. (2)))

4.5. DEPENDENCE RELATION 43

[t is common to write the conditions Yz € D,-X, 1 <1 < n, as predicates, pf(z), which take true
or false value (1 or 0) and Zip,-x(z) =1, 1. e., one and only one of the predicates, pX, takes a true
value in a point z. Then, we can rewrite Equation 4.5 as

pi(z) = g1(Mi(di(2)),.. ., Yim, (dim, (2)))
Xiz)={ P2 (z) = g2(Yar(da1(2)), .- Yom, (d2m,(2))) (4.6)

pi(z) = ga(Yar(dni(2),. . Yam, (dum, (2)))

indicating that if p;* (z) takes a true value, then, X (z) is evaluated to the corresponding g, function.

4.5 Dependence Relation

For a system of recurrences, we say that a variable X at a point u in D requires variable ¥ at point
v, if 3¢, 7, such that, di;(u) = v and Y (d;;{u)) occurs on the right-hand-side of an equation defining
X (u). The transitive closure of this relation is called the dependence relation and is denoted by the
symbol <.

If we ignore variables and we relate points in the domain we can state the dependence relation
between points in the domain. We say that a point u requires the point d(u), whenever d(u} occurs on
the right-hand-side of an equation of our system. For this reason, functions d;; are called dependency
mapping functions. As before, the transitive closure of this relation is called the dependence relation
and is also denoted by the symbol <

4.6 Recurrence Equations Special Cases

A recurrence equation is called an affine recurrence equation (ARE) if all dependence functions are
of the form d{z) = Az + b, where A is a constant matrix, and b is a constant n-vector.

A recurrence equation is called a uniform recurrence equation (URE) if all dependence functions
are of the form d(z) = z + 4, where 4 is a constant n-dimensional vector. One can see that uniform
recurrenice equations are a special case of affine recurrence equations.

A system of affine recurrence equations (SARE) is a finite set of mutually recursive affine re-
currence equations defining the system variables X,Y,... over their respective domains. Variables
are designed as either input, output, or local variables of the system. Each variable which is not a
system input is defined by a finite set of disjoint recurrence equations in which the variable appears
on the left-hand-side. Any variable may appear on the right-hand-side of any equation as often as
needed.

In a similar way, a system of uniform recurrence equations (SURE) is a finite set of mutually
recursive uniform recurrence equations defining the system variables X, Y, ... over their respective
domains with the same considerations as above.

Space-time descriptions are a special case of systems of uniform recurrence equation in which
the domain of the system can be written as D = T x S™~! where points z of the domain can be
written as z = (t,s) = (¢,51,82,... ,8n-1), t is a 1-dimensional value interpreted as time and s is a
{n — 1)-dimensional vector interpreted as space. The space describes an (n — 1)-dimensional array
of points which are considered as virtual processors. The uniform dependencies described by the
constant vectors 81,d,...,04 are interpreted as communications between virtual processors of the
array. They are n-dimensional values which written in the form § = (At, Asy, Asy, ..., As,1), At
indicates delays and the n — 1 remaining values indicate communication to a neighbor processor of
z in the direction (Asy, Asg, ... ,Asp—1).

4.7 Generating Space-Time Descriptions

Space-time descriptions are used to describe regular array circuits whose implementation is straight-
forward from that point. To obtain a space-time description from a recurrence equation we have

44 CHAPTER 4. RECURRENCE EQUATIONS

to derive an allocation function to map all the index point of the domain to a number of virtual
processors and a timing function to decide the order in which the index points are going to be
computed.

Let us consider a domain defined by an integer polyhedron P as defined in Equation 4.2. A valid
timing function is a function ¢ : P — Z that satisfies the causality rule

‘VIZ‘“ZQ c P Zy j Zy => f(Zl) > t(Zg) (47)

i.e. the time at which a computation is done must be greater than the time at which all its dependence
points are computed. A valid timing function must have a “beginning time”, that is, for all z € P,
t(z) > 0.

Allocation functions determine the set of virtual processors that will perform the computations
represented by each point of the polyhedral domain. For every index point of P, z, the virtual
processor identified by a(z) will do the computation represented at z. Allocation functions must
be conflict free, i.e., two different index points scheduled at the same time have to be mapped to
different processors. That is,

Vzi1,20 € P tHzy) = t(z2) = alz) # a(z2) (4.8)

The most common timing and allocation functions are affine functions which correspond to a
geometric transformation of the dependency structure of the original domain. One of the axes in
this projected domain is reserved to be the time axis and the remaining ones determine the target
(processor) domains.

For uniform recurrence equations is easy to derive affine timing and allocation functions. We can
express both functions as a transformation given by the matrix

t: P17 and A.p—oznt

t represents the time and A represent the processor array where all the index point of the domain
are mapped. -

Let 61,02,84 be the set of dependencies on each index point. Every point z depends on z—4,,
for 1 <1 < d. We can find a linear timing function of the form t(z) = ATz + a. In order to find the
components of A we need to solve the constraints obtained by

AT, >0 for 1<i<d (4.9)

Lamport described this method as finding a set of hyperplanes with the same normal direction
which partition the entire domain in isotemporal regions; index points scheduled at the same time
[51]. The vector A give us precisely the normal of the hyperplanes. .

Once the timing function is determined, possibly several valid allocation functions may exist. We
can find linear allocation functions of the form A(z) = Sz. It has been shown that valid allocation
functions are those which project the domain into a direction different from one orthogonal to the
hyperplane normal [68]. Desirable directions of projection are those which project the domain into
fewer number of index domains.

When we have an affine recurrence equation we can follow one of two approaches. As Rajopadhye
and Fujimuto suggested [70] we still can look for affine timing and allocation functions solving the
restrictions obtained by applying the causality property to affine dependencies. Then, we apply a
pipelining technique to obtain a regular array. This approach does not always succeed. In their
paper, these authors show an example with an affine recurrence equation with no affine timing
function at all. The other approach deals with restating the recurrence equation in such a way that
uniform dependencies can be obtained. This process called uniformization is more general. However,
at present there is no general procedure make arbitrary recurrence equations uniform.

4.8. CONCLUSIONS 45

4.8 Conclusions

We have shown a general definition for recurrence equations over index domains. We have distin-
guished between domain of definition and domain of an identifier. An identifier can be defined by
several recurrence equations. The union of domains of definition represent the domain of a vari-
able. Common domains are restricted to n-dimensional integer polyhedrons. Since special cases
of recurrence equations depend on the shape of dependency mapping functions, we introduced the
dependence relation between variables and between points in the domain. Special cases, affine,
uniform and space-time recurrence equations, were defined. Finally, we have shown how to obtain
space-time descriptions from uniform recurrence equations. In chapter 6 we will discuss the process
of making recurrence equations uniform.

46 CHAPTER 4. RECURRENCE EQUATIONS

Chapter 5

Dataflow Analysis of Parallel
Expressions in C*

5.1 Introduction

Dataflow analysis is more or less the estimation of the eflects caused by program statements. This
estimation is based on two things: an abstraction of the information needed as pre-requisite for the
optimization transformation, and the propagation of the informzation along the statements of the
source program. Generally speaking, dataflow analysis-determines if one value written (defined) to
a variable in some part of a program is read (used) in another part of the program.

Dataflow information can be used to convert imperative programs to single assignment code. In
this chapter we focus on applying dataflow analysis to parallel statements made in C* in order to
obtain the recurrence equations that describe the computations performed by some nested loops
of parallel statements. It has been shown that recurrence equations are an essential intermediate
step to describe algorithms suitable for hardware implementation [16]. The variety of loops that
can be expressed with parallel statements is wide, so we restrict here ourselves to the class of loops
used to program dynamic programming algorithms in C*. We have focused on the C* programming
language for two reasons. First, it allows us to express that kind of computation in a clean and
compact way. Second, its syntax allows us to restrict the analysis to specific parts of the code,
avoiding spending time in other parts.

The general process of obtaining SREs from data-parallel code requires of a thoroughgoing
dataflow analysis. The first step of the technique is determining the flow dependencies between
parallel data in C* programs. Therefore, we need to port the dataflow analysis technique for imper-
ative sequential code to parallel loops consisting of data-parallel statements. Since we are dealing
now with parallel code we need to make some observations about the sequencing of instructions, and
we have to restate some definitions commonly used in sequential programming. The second step
uses the flow dependency information for building recurrence equations describing the functional
behavior of the program.

Therefore, we present here a dataflow analysis technique to obtain SREs from loops consisting of
data-parallel statements. The wide variety of loops that can be generated following such a general
statement forces us to restrict our analysis to the class of loops obtained implementing dynamic
programming solutions of some problems. That class of problems is of importance because problems
belonging to it have been successfully implemented as systolic algorithms and the process to do that
has been widely studied.

In section 5.2 we present all the machinery needed for our data flow analysis technique. In section
5.3 we show some results of it. Finally, some conclusions are made at the end of this chapter.

47

48 CHAPTER 5. DATAFLOW ANALYSIS OF PARALLEL EXPRESSIONS IN C*

shape [J...[] Shape; /% Shape definition =/
...:Shape var; /* parallel variable declaration e/
with(Shape) { /* Current shape operation */

. /* initialization */

for(k = 1; k <= N; k++) {
where(....) { /* hctive positions selection */

/% References and assignments to parallel vars. #/

b
}
}

Figure 5.1: General shape of code segments being analyzed in the dataflow analysis algorithm.

5.2 Definitions and Notation

Let us make some definitions of terms we need to explain both steps of the algorithm to obtain
recurrence equations from parallel code which will be explained in the next section. First, let us
start explaining the general structure of the loops that we will consider which is shown in Figure

-

5.1
We declare a parallel variable of a given shape. The use of the parallel variable is delimited

by the statement with. The body of this code segment consists of an initialization block typically
done by every data of the parallel variable. The next part consists of a sequential loop in whose
body reference to the parallel data is made. Sometimes we restrict the activation of parallel data by
introducing the statement where which indicates a condition. All positions satisfying this condition
perform the code delimited by the statement.

In the following we define precisely the code fragments that we will analyze, the iteration vector
for parallel variables, the flow dependency between parallel variable statements, the source function
of a data reference, the sequencing predicate in parallel code and the dependency relation in parallel
variable statements.

5.2.1 Affine C* Program Fragment

The kind of loops that we can describe with the general shape above is broad and sometimes complex
to analyze. Therefore, we need to make some restrictions on program fragments in order for they
to be analyzable. Fortunately, even with this restriction the scope of programs we can describe is
broad and of relevance for scientific applications. The definition we are going to give is similar to
that presented in [29] with some arrangements to parallel code.

An affine C* program fragment (ACPF) is a code segment enclosed within a with statement
consisting of a initialization part followed by a loop nest such that in every statement explicit or
implicit subscript functions, conditions in where statements, and loop bounds are affine functions
of loop variables and symbolic constants.

A recurrence equation per parallel variable which is defined and used within the an ACPF will
be constructed. Variables used, but not written, within the ACPF will be considered as symbolic

constants.

5.2.2 Notation

Before we proceed to describe the problem and how to solve it, it is necessary to introduce some
notation.

A vector (also called a tuple) is simply an ordered set of integers. Vectors are denoted with bold
letters, such as w, r, s. They are used to represent points in an n-dimensional space. The smallest
unit of computation that we consider in this chapter is a statement instance W{w, s] that 1s specified

5.2. DEFINITIONS AND NOTATION 49

by W —statement of the program, w - vector of loop variables values (loops which surround the
statement W are included), and by s -vector of symbolic constants. We call a variable a symbolic
constant if it is not a loop variable and it is not assigned in the fragment of the program we analyze.
We say that vector w is lexicographically less than vector r, denoted by w < r, iff 3j such that
w; =Tj, for 1 <7 <1, and wi <1y,
A relation is a set of ordered pairs of vectors. {(w — r) € R means that pair (w,r) belongs to
the relation R.

5.2.3 Domain of Parallel Variables

In an ACPF we are interested in parallel variables being defined. The first thing we need to consider
is that parallel variables hold many values, one per entry in the shape declaration. In each point, a
parallel variable can itself be an array of values or scalar. Finally, given the imperative nature of C*
programs, parallel variables can be multiply assigned within an ACPF. Typically, when they appear
in loops, they are assigned in every iteration, possibly holding different values at different iterations.
Informally, the domain of a parallel variable is the space in which the variable can take values.

Let us consider all statements of the form

S:Pp=. . . Q.

which appear inside a nest loop body. To determine the domain in which variable P is defined we
will consider

e an index per nest loop embedding,
e an index per shape dimension of P, and
¢ as many indexes as array parallel variables were declared

in the recurrence equation for P. Then, a point, z of the domain for P, is described as

z = (I,s,a) = {1, ity lsys- rismslays--- la,}

where 4,15, and 1,4, refer to loop nest, shape indexes and array dimensions, respectively. Vector
7 is the iteration vector of the statement recognized as the dynamic domain of P, and (s,a) is
considered as the static (declared) domain of P.

5.2.4 Source Function

In general, for any reference to a parallel variable, we have to determine which statement produced
the value that is being read.

For a given statement instance Sp(r] the source function produces the coordinates, iteration
vector, of the statement instance S;[w] such that Si[w] supplies the value used in S[r].

The source function can be represented in several ways. For example, Feautrier used quasi-affine
selection tree [29]. Maydan et al defined last write tree to represent the same information [56].
Mazlov [58] and Pugh [65] separately defined dependence relations as another way to represent this
information. Given that dependence relations are close to the notation used in recurrence equation,
we will used them to describe dataflow information.

5.2.5 Flow Dependency

Let us consider the following program fragment
A: P =,

BQ=. . . P,

50 CHAPTER 5. DATAFLOW ANALYSIS OF PARALLEL EXPRESSIONS IN C*
we say there exists a flow dependency from a parallel variable access A(Z) to a paralle] variable
access B(Z') if

o Ais executed with iteration vector 7,

e B is executed with iteration vector I,

e A(I) writes to the same location as is read by B(I'),

o A(Z) is executed before B(I'), and

o There is no write to the location read by B(Z') between the execution of A(Z) and B(Z').

5.2.6 Sequencing Predicate

We say that instance of statement W specified by loop variables vector w and symbolic constants
vector s is erecuted before instance of statement R specified by loop variables vector r and symbolic
constants vector s, denoted by W[w,s] « Rlr,s], iff

w(l.n] < r[l.n]Vv (w[l.n] =r[l.n] AW < R)

5.2.7 Dataflow Dependency Relation

The dataflow dependence relation df Rel that describes the dependencies coming to the read reference
R.A of statement R is defined by the following:

vr,s: (V]v,s] = R.Alr,s]) € df Rel(w,1,s) &
V[v,s] = maxe(W{w,sllw e [W,s]A Arr(W.B) = Arr(R.A) A
W.B(w,s) = R.A(w,s) A W[w,s] < Rr,s])

Since this definition is constructive, we can use it to compute the dataflow relation. When the
lexicographical maximum is computed, the result is a dataflow relation which is represented as a
union of the following m simple dataflow relations:

df Rel = {W,[w,s] - R.A[r,s]| forsome ¢ andany w,r,s suchthat dfRel;(w,r,s)}

(5.1)
where each df Rel; is a conjunction of constraints and
| 7es(df Reli(w,1,5)) C [R, 5] (5.2)

=1

Since source functions may involve integer division by a constant and we want to keep conjuncts
df Rel; affine, we use wild-card variables to represent the integer division. That is, we replace the
constraint i = [k/c]| with the affine constraint (ct +a =k)A (0 <a <c-1).

5.3 Deriving Recurrence Equations

In this section we will show how to obtain recurrence equations from C* code implementing solutions
to dynamic programming problems. We begin by showing that all such C* programs have the
following basic structure:

5.3. DERIVING RECURRENCE EQUATIONS 51

shape []...[] Shape; /* Shape definition */
...:Shape var; /* parallel variable declaration */
vith(Shape) { /#* Curren* shape operation */

. /* initialization */

Pkt) o

for(k = 0; k¥ <N
) A /* Active positions selection */

where(

L. /* References and assignments to parallel vars. «/
}
}
}

The research done by Feautrier [29] describes a dataflow analysis algorithm for array and scalar
references in imperative code consisting of sequential loops with static control. It can be extended
to include parallel variables like C* introduces. The advantage of using data-parallel code instead
of sequential imperative code is that the former restricts the loop’s depths for the dataflow analysis.
" Furthermore, because C* operates on parallel data from only one shape at a time, the dataflow
analysis can be restricted to the scope of the corresponding with statement. Feautrier’s algorithm
can be briefly summarized as follows. For a given reference to an array, scalar or parallel variable
M in a statement s, construct the candidate list from all pairs (r,p) where r is a statement which
modifies M and p is the dependence depth. Order the candidate list by decreasing depth. For each
candidate, test if there is a possibility that it will contribute to the final source function. If not,
discard the candidate. Otherwise, compute the direct dependence by applying a linear programming
algorithm known as Parameteric Integer Programming. Feautrier describes a technique to combine
direct dependencies to obtain recurrence equations. The details of the algorithm can be found in
[29].

To obtain recurrence equations from C* we use the following rules:

1. A recurrence equation per variable which is both defined and used within a loop will be
considered.

2. Variables read, but not written, within loops will be considered as constants.

3. An index per shape dimension of a parallel variable will be considered in the recurrence equa-
tion.

4. Array variables will add to the recurrence equation as many indices as were declared.

An index per nested loop embedding the definition of a variable will be considered in the
recurrence equation.

[

6. Constraints for recurrence equations are determined by the bounds in the nested loops and
the bounds on the shape declaration.

. Conjunctive constrains will be added every time a where statement is found.

-]

5.3.1 Shortest-Path Problem

In Chapter 2 we introduce the shortest-path problem. Here we present an ACPF to solve the
problem. We need to recall that the solution to this problem can be computed from a sequence
of matrix-vector multiplications. A well known data-parallel algorithm for matrix-vector product
distributes each row of the matrix and the corresponding element of the vector to each processor. m
processors are required in this case. Each processor computes a single element of the resulting vector,
but it requires all the elements of the input vector. So, each processor initially computes the term
associated with the vector element it contains and then this vector element is moved to the previous
processor. Processors are connected in a ring, so the first processor moves its element to the last

52 CHAPTER 5. DATAFLOW ANALYSIS OF PARALLEL EXPRESSIONS IN C*

processor. After m steps, each vector element has visited every processor so the final matrix-vector
product has been computed. Given that the result is distributed among m processors, the next
matrix-vector product can be initiated after updating the matrix elements in each processor.

A piece of a C* program to compute this sequence of matrix-vector products is:

shape [N] Rows;
struct cell_data {
int r{N];
int a;
int b;
};

struct cell_data:Rows P;

with{ Rows) {
for(k = 0; k < N-1; k++) {
/* Mk matrix initialization */
P.r= ...

/* Ck computation */
P.a = 0;
for(i = 0; 1 < M; i++) {
/* Single term computation */
F.a += (P.r((i+pcoord(0)) %% NI*P.b);

/* Vector element communication */
P.b = [(.+1) 4% NIP.b;
}

P.b = P.a;

What information can a compiler extract from this program 7 First, note that references to
parallel variables are explicitly made by the construct with. It consists of a loop whose body updates
and uses the values of parallel variables. So every time a parallel variable is found, an index in a
recurrence equation should be introduced.

Three main variables are used in the program. There is an array per processor, P.r, defined
within the outmost nested loop and is used inside the most nested loop. It is used to stored a
single row of the corresponding stage’s matrix. Given that it is only used within the second loop
and its reference is based on a affine transformation of the second loop’s index, there exists an
alignment between this array and the second loop’s index. As we will show later, this alignment can
be explicitly defined in the array assignment in order to simplify the recurrence equations.

The variable P.a is used to compute a dot product between a single row and the input vector. It
is initialized outside the second loop and it is redefined inside the second loop. The variable P.a is
originally defined outside the outmost nested loop and it is redefined inside the inmost nested loop.
Its redefinition is based in a communication to the next processor, assuming that the processors
are ring interconnected. Applying data-flow analysis to these variables we can obtain the following
recurrence equations where the indexes represent the nested loop’s indexes and the parallel variable
index:

. 1=0- ct
Prik,i.p) = { 0<i< M- Prik,i-1,p)

5.3. DERIVING RECURRENCE EQUATIONS 53

i=0—-10

O<i+p-1< M-
Palk,i,p) = Palk,i—1.p)+ Prlk,i +p.p) = Pblk,i—1,p) (54)

i+p— I1>M -
Palk,i—1,p)+ Prlk,i+p—~Mp) = Pblk,i—1,p)

1=1-
k=0— c
{O<k<M—> Pb(k - 1,M +1,p)
Pblkip)=< 1<i< M= {5.5)
JO<p+1<M—= Pbki-1p-1)
| p+1=M= Pblk,i—1,0

i=M+1-= Palk, M, p)

where ¢ means a constant value. It is easy to see the inherently sequential nature of the & loop,
so nothing can be done to extract parallelism at this level. So, now we have to consider only the
recurrence equations defined over the © — p plane. Note that P.r does not change during i’s loop. To
simplify the equation we can consider it as a constant. Our recurrence equation can now be written
as:

1=0—=0
PaliP) =0 1cicm o (5.6)
Pa(i~1,p)+ Pr.* Pb{i — 1,p)
1=1—=ct
1<i< M~
Pb(i,p) = 0<p+l<M= Pbli-1,p-1) (5.7)
p+1l=M— Pb(i—1,0)
i=M+1—= Pa(i - 1,p)

Except for the dependency (i-1,0), all dependencies are now local. If we assume that the array
has wraparound connections, we can think of this dependency as uniform.

5.3.2 Longest Common Subsequence

Let us now consider the longest common subsequence problem introduced in Chapter 2. Let us try
to see what a data-parallel program looks like for this example.

Although there are more efficient ways to implement the construction of the F' table [49], the
following code is a clear way to express such that process

shape [N+1]1([M+1] Table;
shape [] String;

int:Table F, ii, jj;

54 CHAPTER 5. DATAFLOW ANALYSIS OF PARALLEL EXPRESSIONS IN C*

char:String si, s2;

with(Table } {
vhere(pcoord(0) == 0) F = 0;
where(pcoord(i) == 0) F
for{ k = 0; k < M+N; k++) {
where(((pcoord(0) + pcoord(l)) == k) &&
(pcoord(0) > 0) && (pcoord{(1) > 0)) {
i1 = pcoord(0) - 1;
jj = peoord(1) - 1;
vhere([iils1 == [jjls2)
F=[.-110.-1]F + 1,
else

F=([.-110.JF >? [.J[.-1IF)

Note that a two-dimensional array of virtual processors is used. A processor is used for each
table entry. Initially, all processors along the first row and the first column are set to zero. Then,
all the entries are filled. The first where statement restricts the active processors in each step. It
selects those processors along the diagonal i + j = ¢, excluding the processors in the first row and
the first column. In Figure 4a. we can view the the wavefront scheduling policy used for filling the
table.

Using our dataflow analysis technique to obtain recurrence equations we have to use one index
per processor dimension and one index per loop. Given that F is a scalar variable per processor, no
index is required for it.

p=0-0
g=0-0
Flk,p,q] = 1<ESMAENALISPpSMALLgSN =

p+qg=kAnsipl=s2[g)— Flk-2,p-1,g-1]+1
i+7=kAslp] #s2q] = max{Flk-1,p-1,q],Flk-1,p.q-1]}
(5.5)

This is a uniform recurrence equation, but it is defined over three dimensions. From the program
it can be seen that the k-direction represents a schedule. Given that the domain is a plane, at any
single value of k there is a line lying in the plane, p + ¢ = k. So, we can project this domain onto
the k — g plane to obtain the following recurrence equation.

1=0-0
J=0-90
Flkgl=9 1<k<M+NAmax{l,N -k} <qg<min{k,M} = (5.9)

{sl[k——q]:s?[q}—) Flk~2,qg-1+1
sllk — q] # s2[¢g] = max{Flk~-1,¢g-1],Flk - 1,4]}

Eq. (5.9) is itself a uniform recurrence equation where k can be interpreted as time and ¢ can
be interpreted as space.

5.3.3 All-Pairs Shortest Path

Putting the recurrence equation of the all-pairs shortest path problem (seen in Chapter 2) in a data-
parallel program using n? virtual processors is straightforward. The following C* code computes
such a recurrence equation.

(@1
[l

5.3. DERIVING RECURRENCE EQUATIONS

shape [N+1][N+1] Mesh;
int:Mesh M;

with(Mesh)
for(k = 1; k <= N; k++)
M= (M <2 (0T0KIM + xI0.IM);

The recurrence equation obtained from this code is

k=0-ct
M(k,pg)=q 1 SE<N = (5.10)
min{M(k - 1,p,q), Mk~ 1,p, k) + M(k -1,k q)}

which is just the single assignment version of the algorithm presented in [50].

5.3.4 Optimal Matrix Parenthesization

Efficient mappings of the systolic algorithm to 2D meshes can be found in [46] for this problem.
However, for clarity we will start with a straightforward implementation in a C* program of the
recurrence equation of the OMP problem shown in Chapter 2.

shape [N][N] Mesh;
shape [N+1] Dims;

int:Mesh m, 1i, jj, kk;
int:Dims r;

with(Mesh) {
where(pcoord(0) = pcoord(1))
M= 0;

for(d = 1; 4 <= N; k++) {
where((pcoord(1) - pcoord(0)) ==d) {
ii = pcoord(0); jj = pcoord(l) + 1; kk = pcoord(0) + i;
M = [.1[pcoord(0)IM + [.+11[.IM + [iilr*x[xk]lr#{jjlr;
for(k = 1; k < d; k++) {
kk = pcoord(0)+k+1;
M <? = [.J[pcoord(0)+kIM + [.+k+1]1[.IM + [iiJr#(kklr+(jjlr;
}
h
}

}

Several criticisms can be made of the previous program. First, note that although a two-
dimensional array is declared, only n(n + 1)/2 processors are really used; one processor per entry
in the triangular table. They are used only across diagonals. That means that those processors for
which j — 7 = d are active only once during the outermost loop. During subsequent iterations of the
outermost loop, fewer processors are active, and it takes more time to compute their results in the
innermost loop. Finally, because of restrictions on the C* language, we have to use three parallel
variables (ii, jj, kk) to parallel index the array of dimensions r.

In obtaining the system of recurrence equations from this C* code we require four indices for
the expressions: two for array dimensions, and one per nested loop. Because M is a scalar value per
processor, no additional index is required. Although a simple dataflow analysis would generate a

56 CHAPTER 5. DATAFLOW ANALYSIS OF PARALLEL EXPRESSIONS IN C*

recurrence equation per ii, kk, jj, and M variables. a more sophisticated analysis would simplify
the equations eliminating those for ii, kk, and jj variables. Such an analyisis would obtain:

:q~—+0

<d<NAg-p=d

k=0—= M0 kpp+Md-1.d-1p+1g+

r(p) «r(p+1) =r(q)

1 <k<d-min{M({dkt-1p4q),

Mk k.pp+k)+M(d-k-1d-k+1p+k+1lg+
r(p)«r(p+k+1)xrig)}

k=d— M({dk-1p9q)

p
1

—
Ut
—
—

R

Mid, k.p.q) =

A careful examination of the previous equation can show us that although it is defined over a
4-dimensional space, all points satisfy g—p=d,0 <d < N, 0 < k < ¢—p. Projecting along (1000)7
direction and reindexing we can obtain the following recurrence equation:

p=qg—10
1<qg-p< N
k=p— M(p.p,p)+Mlg.p+1g)+
- (p+ 1
A/f(k’pvq) _ T'(p) *7(17)*T’(q) (512)

p<k<d-— min{M(k -1,p.9),
Mk, p k) + Mgk +1,9)+
r(p) o (k) * 7(q)}

k=d-s Mk -1,p.q

Here, the scheduling along diagonals is ignored and the serialization of the min computation is
done by varying k exactly from p to g — 1.

5.4 Related Work

Dataflow analysis of scalar variables has been performed by compilers to optimize the code generated
by them [3]. When parallel processing emerged, many techniques were proposed to automatic
parallelize sequential programs. Dependence analysis was proposed as a way to determine if different
instances of loops could be executed in parallel [10]. Since dependence analysis only determines if
two different references access the same memory location, it results were somewhat limited [57].
Recently, dataflow analysis of array references has been proposed as a technique to determine if
sequential loops can be parallelized using array privatization. Feautrier [29] developed a method to
analyze sequential affine program segments with static control. He showed that his method, based on
linear integer programming, can be used for array privatization, for converting imperative sequential
code to single assignment code, and to program checking and parallel program construction.

Maydan el al [56] developed a new algorithm to obtain the same information in simplified cases.
Based upon known benchmarks, they demonstrated that a high percentage of dataflow array refer-
.ences can be expressed or derived from simplified cases.

Recently, Pugh and Wannacot [65] developed an algorithm to perform the same optimizations
based on the techniques that the first author developed for dependency analysis [64]. Their method
simplifies expressions, Pressburguer formulas, that model value based dependencies. Mazlov [58]
developed a method whose main characteristic is the order in which a given reference can deter-
mine the source function, i.e., the statement producing the value read by the reference. Although,
previous methods had similar objectives, the kind of information they used to achieve them, was
different. Feautrier introduced some expressions he called quasts, Quasi-affine selection trees. May-
dan designed a data structure to hold the same information, last write trees. Pugh and Mazlov used
dependency relations to model the same information.

-3

(W3

5.5. CONCLUSIONS

5.5 Conclusions

A dataflow analysis technique for parallel expression in C* has been presented. It is based on the
concept of dataflow dependence relation. This technique is used to obtain the recurrence equations
that model the behavior of affine C* program fragments. Besides these restrictions, the technique
is general enough to be applied to a broad class of problems. Program fragments for dynamic
programming algorithms are simple and can be of one of two types: serial and non-serial data-parallel
loops. The application of the dataflow analysis technique to dynamic programming algorithms is
effective. Recurrence equations are obtained converting C* program fragments into single assignment

code.

58 CHAPTER 5. DATAFLOW ANALYSIS OF PARALLEL EXPRESSIONS IN C*

Chapter 6

The Uniformization of Recurrence
Equations

Systems of recurrence equations have been used as high level descriptions of computations suitable
for systolic processing. The first step in systolic synthesis is to transform a system of recurrence
equations into one where all the dependencies have constant displacements. This process cannot be
achieved in the general case. Furthermore, even when such a transformation is possible, it usually
involves some clever steps requiring human expertise. In chapter 4 we introduced the concept of
recurrence equation and its special cases. In this chapter we examine the uniformization process
for recurrence equation through some examples. We propose the use of a set of mathematical
transformations working over polyhedral domains combined with visualization facilities to explore
and derive the right set of transformations.

6.1 Introduction

Recurrence equations describe computations to be performed on index points belonging to a certain
domain. In the process of systolic synthesis one of the important steps is to transform a recurrence
equation into a shape in which all its dependencies are uniform [67].

The uniformization process cannot be achieved for arbitrary recurrence equations. Rajopadhye
and Fujimoto showed that recurrence equations with affine dependencies, i.e. where each d(z) is
of the form Az + b, 4 and b constants, can be effectively transformed to a uniform shape [70].
However, even when this process is feasible, the set of transformations usually requires clever steps
requiring human intervention.

The uniformization process involves alignment of variables to a suitable reference point, localiza-
tion of long communications between index points in the recurrence equation, and serialization of
long computation to allow a single index point to perform a fixed amount of computations depend-
ing only on a fixed number of inputs. Generally, those steps are done by transforming the original
domain into a new one preserving the dependencies among index points, and by manipulating the
computations performed in the index points. Many types of transformations can be used to achieve
that goal. Important ones include transformations over polyhedral domains such as domain shifting,
skewing, splitting, and projecting, and transformations to manipulate abstract syntax trees, such as
adding new variables and pipelining values along certain directions.

To derive the right set of transformations, the designers frequently draw graphical representa-
tions of the problem’s dependency graph. Several tools have been proposed to aid in the process of
systolic design {19, 52]. Some of them have shown that as soon as a system of uniform recurrence
equations can be obtained, systematic transformations can be applied to obtain different systolic
implementations [60]. Crystal {19] and ALPHA [52] are approaches based on functional program-
ming. Both provide the designer an equational language to specify recurrence equations and a set
of transformations to transform an input program into an equivalent output one. However, in both

59

60 CHAPTER 6. THE UNIFORMIZATION OF RECURRENCE EQUATIONS

cases little help is provided to the user to determine the right transformation to be applied at any
point. That makes them suitable only for experienced users familiar with the problem.

A third approach followed by Ribas [72] and Barnett [11] is based on the derivation of systolic
programs from input programs composed, generally, of nested loops. If the input program contains
only uniform dependencies, Ribas’ process is automatic. On the other hand, Barnett assumes that
a program and a valid systolic schedule are given and his compiler generates systolic programs for
multicomputers. Currently there are no general purpose tools to perform the job of uniformizing a
system of recurrence equations in a completely automatic way, and the existing ones provide little
help to decide the right transformation to apply at each step.

As can be inferred, once we get uniform recurrence equations we can apply automatic methods,
such as Ribas’ and Barnett’s approaches, to derive systolic algorithms. Therefore the main goal is
to obtain uniform recurrence equations from arbitrary ones.

In this chapter we present some examples of the uniformization process of recurrence equations.
We highlight the key steps in doing such a process to exhibit the difficulty of doing the general
process in automatic ways. We propose the use of an adequate set of mathematical transformations
combined with some visualization facilities that allow exploring different transformations before we
derive the right set of transformations.

We briefly discuss a set of useful transformations for the uniformization process. Then, we
examine the uniformization process for the transitive closure problem and we generate a space-time
representation for it. The necessity for visualization facilities will be evident as well as the experience
of the user in performing such a process. Finally, we present the uniformization process for the gap
problem which, to the best of our knowledge, no previous work on such a problem has been reported.

6.2 A Transformation as The Basic Block

In chapter 4 we introduced recurrence equations. From Eq. 4.1, we can see that a recurrence
equation can be described by variables, domains and computations. Variables represent values
which are associated with each point within its domain. Domains are usually restricted to unions of
polyhedra. Computations represent the operations performed at each point of the domain with its
associated variables.

QOur primary concern is to determine (when it is possible) a sequence of transfermations, T, T»,
..., Ty, such that when applied to a recurrence equation RE, we obtain a sequence of new recurrence
equations, RE,,RE,,... ,RE,, trying to give RE, a uniform shape. '

T T: T Ta- T,
RE =% RE, =% RE, =% -~ 2% RE, | = RE, = URE
Transformations between recurrence equations can manipulate variables and/or computations.

That implies that useful transformations must include mappings to manipulate variables, abstract
syntax trees and polyhedral domains. In general, we can consider a transformation as a mapping

T:-{(F,v(D)} = {(F,V(D)}
where F stands for computations and V(D) stands for variables defined over domain D.

Before we describe some efficient ways to represent variables, domains and computation, we
present the most frequently used transformations to manipulate recurrence equations.

6.3 A Set of Useful Transformations

The set of transformations are referred to variable, domain, and computation manipulation.

6.3. A SET OF USEFUL TRANSFORMATIONS 61

——4 next @
dimension ' 1 . "
NbConstraints T o 0| Equality E
NbRays g | ® 01 Equality Z
NbEqualities é o 1| Inequality §
NbLines { %y il chquali{l ‘
Constraint ® = 0] Line
Ray © —1(Q| Line .
X) Z
plnit o 11 Ray |z
¢ = || Ray l Z
0 = 1| Ray]
e

Figure 6.1: The data structure used to represent unions of polyhedra.

6.3.1 Variable Manipulation

Usually we need the following transformation to handle variables:

o New Variables. We must introduce new variables over some domains.

e Alignment. It is common to place original variables according some points of the domain;
usually, points located near the domain’s boundary.

6.3.2 Domain manipulation

A useful set of domain transformations would require a useful set of manipulating operations over
polyhedra. Since implicit and parametric representation are useful for different transformations, a
suitable data structure is required to represent unions of polyhedra; in Figure 6.1 we show the data
structure used for that. Both contraints and rays are included, which makes the representation
redundant. However, they are used to perform different operations. There are some functions that
allow us to transform between representations.

Wilde [80] reports a library of useful operations for manipulating polyhedra. Three kinds of
operations are useful:

o Transformation between representations. A kind of operation particularly important is that of
dealing between different ways of polyhedral representation. For example, we can describe a
polyhedral domain in terms of linear equalities and inequalities, and later on we might wish to
obtain a description of the same domain based on geometric features of the polyhedron (lines,
rays, vertices). The convex hull problem is a well known problem dealing with computing the
facets of the convex hull surrounding a given set of points.

o QOperation between domains. Typical operations to manipulate sets; unions, intersections and
differences are required to compute more complex operations.

o Projections. Transformations applied to change a given domain D into another domain D'
Image and preimage of affine mapping functions, Tz + ¢ are the basic projections to build more
complicated projections like domain shifting and skewing.

In Figure 6.2 we show the most frequent domain transformations, image and pre-image compu-
tation. The way to do it is based on the different types of representing a polyhedron.

62 CHAPTER 6. THE UNIFORMIZATION OF RECURRENCE EQUATIONS

Conpute U Conarants Lad Eouatines Eaquatitics Conanin Lad £ ites

Lanes

Bud = Rapxe | P78 Pt Radwe

Trasstoenwad

A Bt Lincs Lines

1

Rays Fod Ry Ravs

Laney

Tramstormed

Computation of lmuge Crmputation of Prdmige

Figure 6.2: A linear transformation, image, of domain D into D’ uses the parametric representation.
The inverse transformation, pre-image, is computed from the implicit representation.

A=z, @4, A

=]

X{H X2t XiNJ

Figure 6.3: Serialization of an expression with a non-fixed number or parameters.

6.3.3 Computation manipulation

Two kinds of manipulations are useful: pipelining and serialization. Both seem to be the same, but
their difference appears in the context where they are applied.

o Serialization. It is used to distribute a variable size computation performed in a single index
point along different points lying in a certain direction in such a way that each single point
computes a fixed computation from a fixed number of arguments (inputs). This operation
involves a communication pattern among all the points lying in the specified direction. A
typical serialization operation is showed in Figure 6.3.

e Pipelining. It is used to communicate values required in a certain index point produced by
index points separated by non-fixed distances. Normally, it is done by nearest neighbor com-
munications along index points specified in a certain direction. At difference with serialization,
intermediate index points do not perform any computation on pipelined values as can be ob-
served in Figure 6.4.

6.4. THE CONVOLUTION PROBLEM 63

1 J J
xp=0'""07 00
| 1>2—= X[i-1]
Al = - X[1] - X @0 -0-6-6-6-0-9

X{tp X{2 X{N]

Figure 6.4: Pipelining of a value used in multiple domain points.

n n+/ n+2 n+i
.
Y
1 b 1
ol ual
w X w X w X WX
a)
. o)

Figure 6.5: a) The initial index domain for each variable of the convolution problem. b) The values
required at each index point of y;.

6.4 The Convolution Problem

Let us consider the familiar example of the convolution problem. Given a sequence of values
21,23, -, and a vector of weights w;,wq,- - ,wy, the convolution probiem is to determine the
values y; for ¢ > N, given by

N
Yi = ZWin~k . (6.1)
k=1

First, note that we have three different variables, z, y, and w, defined over three different one-
dimensional domains, as illustrated in Fig. 6.5a. Considering each index point of y’s domain as the
computation value for the corresponding y;, each index point requires the whole set of w’s values
and a subset of N z values. That is illustrated in Fig. 6.5b. According to our definition of a uniform
recurrence equation we require each index point to perform a fixed computation independent of the
problem’s size. The first transformation that we need is the serialization of the sum operation. We
will need several steps before actually we can do that. Let us introduce a new variable Y defined
over the two-dimensional space {0 < 4,0 < 7 < N + 1}. This can be accomplished by a function
AddVariable(Y, {0<:,0<j <N +1}).

Every index point of Y variable is used to compute a single term of the sum for a y; variable in
such a way that the final result for y; is obtained in Y (i, N + 1) for 1 > N. In order to do that we
need to align variable y with the N + 1 row of variable Y. This can be accomplished with a function
like Align(y;, Y (i, N + 1)). The serialization of the sum operation can be done, indicating the
direction along Y’s domain in which we wish the computation be distributed. For our example, let

64 CHAPTER 6. THE UNIFORMIZATION OF RECURRENCE EQUATIONS

N

W 1 " :
4 4 o

20t AT a4

‘.1'[' ‘.ré 483 ‘_(_“ FRES
Wa My W
A%y 4T3 Ary g ‘rg
W M

!
%) "‘d ‘,Ks Al’é | Wy

N
o
~J
<0

0 ! 2 3 4

N
Figure 6.6: Serialization of 3" wiz,-k in the convolution problem.
k=1

us consider that we distribute the computation of a sing\lje y; along the corresponding column of Y.
The call to the function would look like Serialize(Y., _, wizi—k, (0,1)), where (0, 1) indicates
in this case the direction of the serialization. At this point our recurrence equation would look like

((k=0-— 0
Y(Z,k): 1> N, 1 < k < N = wizi_p + Y(Z,k - 1) (62)
k=N+1- Y, k-1)
1 >N sy, =Y, N+1) (6.3)

This is illustrated in Fig. 6.6. Note that every index point in the domain {t > N, 1 < K < N}
actually uses the w and z values indicated in Fig. 6.6, but at this point we have not said how
to feed each node with the required values. Observing the pattern shown in the figure, it would
be easy to show that we need to pipeline w values along the k-direction and = values along the
(i + 1,k + 1)-direction. To dc that we will require introduce two new variables X and W over the
same domain that Y and to align ¢ and w values as is shown in Fig. 6.7. Applying the following
transformations:

AddVariable(X, {1 >0,0< k<N +1})
Align(z;, X(:,0))

Pipeline(z, (1,1))

AddVariable(W, {i>0,0<k <N +1})
Align(wg, W(0,k))

Pipeline(w, (0,1))

will allow to express our system of recurrence equations in the following manner:

v [i=0,1<k<N = w
W(Z,k)*{ i>0,1<k<N-—> W(@E-1L1Lk) o
, i>0,k=0- z;

6.4. THE CONVOLUTION PROBLEM 65

A
vy Ve Y6 \7)8
4 [[y Iy i
e} » > > P > . - .
vy 4 ‘% ‘i L4 L 4
Wq > . - > > > > > B
- v L4 i % i) v
‘2 - [- - - > > [,
v v i v i 7 ‘i 4
W
! v Y 7 @4 W w wa a9
-
YooYt 2 F f4 S5 fe T7 fg

1 >N k=0- 0
Y(ik)={ i>N1<k<N—o W@k X(ik)+Y(ik-1) (6.6)
k=N+1— Y.k~ 1)

At this point Eqs. (6.4)-{6.6) represent a system of recurrence equatxons where all dependencies
are uniform. They are represented by the following direction vectors:

(3] o[o (1]

It is obvious that we can choose A = [1 1]7 for the scheduling function and [0 1]7 for the
allocation function. Therefore, we can get the following transformation representing space and time:

[4]-[a 4] (4]

The previous transformation maps the dependency vector to the following directions:

=[3] <[1] 5= (1)

It should be evident that we have made some important decisions about variable alignment and
the directions of serialization and pipelining of variables. In Fig. 6.8 we present another approach
where the alignment and serialization correspond to the following steps:

AddVariable(Y, {0<i,0<j<N+1})
Align(y;, Y(i+1,0))

Serialize(S p_, wikZi—x, (1,-1))
AddVariable(X, {i>0,0<k< N +1})
Align(z;, XL, N +1))

Pipeline(z, (0,-1))

AddVariable(W, {i>0,0<k<N+1})
Align(wy, W(0,k))

Pipeline(w, (0,1))

66 CHAPTER 6. THE UNIFORMIZATION OF RECURRENCE EQUATIONS

Wy AT AT AT AT AT Y s
o O N AT AT 4T At 4
v >Y »Y ;V NN :Y :V :V A
S A

Figure 6.8: A different result for the convolution problem changing the positions of alignment and
directions of serialization and pipelining.

That sequence of transformations would produce the following system of uniform recurrence
equations:

L [i=01<k<N = wy 7

”\z’”"{z>01§k§1v—> W(i-1k) o7
. 120k=N+1—> z

X(Z'k):{iEOOSkSN") X(i,k+1) (6.8)
l‘zj\;"k:j\f+1—> 0

V(i k) =< i2h 1<k<N = Wk Xk +Y(@-1LE+1) (69

For this example the changes in both results are minor, but it should be clear that the decisions
taken at different steps would produce different results, and in some cases they would greatly impact
the final systolic design.

6.5 The Transitive Closure Problem

In Chapter 2 we introduced the all-pairs shortest path problem. Here we are considering a simplified
version of the same algorithm which determines for a given a directed graph G =< V, E > and for
each pair of vertices (u,v), if there exists a path joining them. The well known Warshall’s algorithm
solves this problem based on the following dynamic programming formulation [24]. Let mif) be
equal to 1 if there exists a path from vertex i to vertex j with all intermediate vertices in the set
.{1,2, -~ ,k}. Let it be equal to 0 otherwise. mgf) can be computed from the following recurrence
equation.

T k> 1 mlY v Y AmiEY) (610

(k)_{k:O"} e;']‘

where e;; is equal to 1 if there exists an edge from vertex ¢ to vertex j, 0 otherwise. The matrix
M = mg‘) represents the solution to the problem, where n is the number of vertices in the graph.

6.5. THE TRANSITIVE CLOSURE PROBLEM 67

¢ o © o - & [.
. : ¢ ¢ o . .
. ¢ - L R S .
° . . ¢ ¢ o o

b)

Figure 6 9: a) A 3D view of the dependencies in the transitive closure problem. b) A view by planes
of the dependency graph.

According to recurrence 6.10, we have to deal with a three dimensional domain defined by the
following inequalities: 1 <1< n,1 <7 <n,and 1 < k < n. If we draw a picture of the whole
domain with all of its dependencies, we would obtain a figure like the one shown in Fig. 6.9a (for
n = 4). We can realize that every index point (k,7,7) depends on (k — 1,1, 7), but it would be very
difficult to have an insight into dependencies in each plane & = constant. Obtaining a view by planes,
k =1,2,3,4, like that presented in Fig. 6.9b we can notice immediately the dependencies lying in
every plane. It can be observed that in plane k, the kth column is required in every column, and
similarly the kth row is required in every row. Following this observation, our first transformation
would try to localize these long communications in each plane. :

The localization can be done by pipelining the desired values along rows and columns. That
involves the introduction of the following variables defined over the same domain.

j<k— clkij+1)
ki j) =4 j>k—= clkij-1) (6.11)
=k olkij)

1<k—= rlki+1,7)
rlkij) =< i>k—= r(ki-1j) (6.12)
t=k— z(k,1,j)

Introducing these two variables we can express our original recurrence equation in the following way.

Ly k:()—)e,-j
m“*”*{lgnga mlk = 1,,4) v (elk,i,3) Ar(k,i.5) (613

This transformation can lead us to a dependency graph like that shown in Figure 6.10a. At this
point we have eliminated the long communications, and we would have a local dependency graph

68 CHAPTER 6. THE UNIFORMIZATION OF RECURRENCE EQUATIONS

k=1 k=2 k=3 k=4
e © o © @ [L]
& ¢ o @ € 4 ®
é- | 4 ¢ & ¢ ©]
® ® L4 e & & ¢

a)

b)

Figure 6.10: Localization communications lying in the same k-plane. a) A view by planes. b} A 3D
view.

like shown in Figure 6.10b. However, the direction of dependency vectors varies from plane to plane.
To uniformize the dependency directions, we first split the domain in four subdomains, as is shown
in Fig. 6.11. Each subdomain can be defined by the following relations:

A={(k,i,)1<k<n1<i<kl1<j<k}
B={(ki)l<k<nl<i<kk<j<n}
C={k,i,)))1<k<nk<i<n1<j<k}
D={(ki,j)1<k<nk<i<nk<j<n}

Inside each domain the dependencies are uniform, and they move in the same directions. Let us
translate subdomains A, B and C' as shown in the Fig. 6.11. This can be expressed by the following
transformations: '

(k,n+i-1,n+7-1)
TB(k,i,j) = (k7n+i" 1’])
TC(k,i,j) = (kvi1n+j - 1)

After applying the above transformations we obtain the dependency graph of Fig. 6.12a. Now
we can apply the localization step to obtain the dependency graph shown in Fig. 6.12b. We
should note that the translations have also moved some dependencies between subsequent planes
along k-direction, particularly those k-dependencies lying in the first column and first row of every
transformed k-plane. In Fig. 6.13a, we can observe only k-dependencies between two subsequent
planes. The transformed set of recurrence equation is the following:

o 1<kSNE<Li<n+kk<j<n+k—= clkij-1)
C(k’”)"{ 1<k<Nk<i<n+kj=k— m(k, 7, 5) (6.14)

6.5. THE TRANSITIVE CLOSURE PROBLEM 69

k

Figure 6.11: Domain splitting and translation proposed to uniformize the dependence directions
within each plane shown in Fig. ba.

o [1<k<Nk<j<n+kk<i<n+hko rlki-1j))
TMJJ”‘{1§k§N$gj§n+k@=ka m(k.i,7) (6.15)
k=0-—> €i;
1<k<N—
k<i<n+k-1LAhk<j<n+k-1-
m(k = 1,4,7) V (c(k,2,5) Ar(k,4,5))
m(k.i.7) = i=n+k-lj=n+k-1- (6.16)

m{k -1 k—=1,k=1)V(c(k,i,j) Ar(k,2,7))
k<i<n+k-1lj=n+k-1-

m{k = 1,4,k = 1)V (c(k,1,5) Ar(k,i,7))
k<j<n+k-li=ntk-1-

m(k - 1L,k—1,7)V (clk,i,7) Ar(k,i,3))

Although these long communications shown in Fig. 6.13a are uniform and similar for every pair
of subsequent k-planes, we would like to replace them by local communications. It can be seen that
the actual m values required at the last column and the last row of plane k are the same as the
values propagated along columns and rows in the previous plane through variables ¢ and r. So we
can take these values from the nearest index point of the previous k-plane. Furthermore, the value
m(k — 1,k — 1,k — 1) required at m{k,n + k — 1,n + k — 1) never changes. It always is equal to I,
saying that there exists a path from vertex k — 1 to itself. So, instead of a long propagation of this
value we can merely replace this dependency by feeding index points (k,n + &k — 1,n + k — 1) with
1. Both changes can be observed in Fig. 6.13b. We can rewrite Eq. 6.16 in the following way.

70 CHAPTER 6. THE UNIFORMIZATION OF RECURRENCE EQUATIONS

k=1 k=2 k=3 k=4
e e © ©
é - ’ e @ © @
[o - ¢ © © @
Py ® e - e @ © ©®
° e ®
e o
[
a)
k= k=2 k=23 k=4
o © °
'y ¢ © @ 9
® ® e ¢ © @
® 4 e % o
[

» o o

* & o o

b}

Figure 6.12: Dependency graph obtained first by applying the domain transformation (Fig. 6.11)

and then by applying the localization step (Fig. 6.10)
. Bach diagram corresponds to a projection to the 7 — j plane for different value of k£ as is indicated.

k k+l kK4l

® w ‘s ® » ® v @

. w . o v e v e

> e 8 ® * v s e

e o o o s o o @
a) b)

|

Figure 6.13: a) Changing in dependency vectors between subsequent k-planes. b) Localization long
communications (see text).

k=0 €ij
1<k<N—
k<i<n+k~lLk<j<n+k-1-

m(k —1,1,7) V (c(k,1,7) Ar(k,i,7))

o i=n+k—-1l,j=n+k-1-=

mik,,j) = 1V (c(k,i,5) Ar(k,3, 7)) (6.17)
k<i<n+k-l,j=n+k-1-

mk —1,1,7 = D)V (clk,i,7) Ar{k,i,7))
k<j<n+k-li=n+k-1-

m(k - 1,1—1,7) V{c(k,i,7) Anr{k,i, 7))

In the Fig. 6.14a we show a view of the whole transformed dependency graph. The dependency
vectors can be easily recognized. According to the recurrence 6.14, 6.15, and 6.17, they are rep-
resented by the following directions §; = (1,0,0)7, &, = (0,1,O)T, 6 = (0,0,1)7, 64 = (1,1,0)7,
64 = (1,0,1)T. We can see that a valid allocation function is a(k,i,7) = (¢ — k,j — k) and hence a

6.5. THE TRANSITIVE CLOSURE PROBLEM 71

k
4
| e e @ ¢ e
VP St)
i /‘.“'."., x> Qﬂ“‘.
P ".’.‘:, ww N
| e = e T IR ¢ & @ ¢
i P T, T »
L N
< e e 2= ¢ o o o
~ = - =
\\---
\‘-
! aj b)

Figure 6.14: a) 3D view of the transformed dependency graph. b) A projection of the domain onto
the (1,1, 1)T direction.

valid timing function is t(k,i,7) = 2k + i + j. That is described hy the following direct and inverse
transformations:

t] 2 1 1 k
l—J: :[‘—110 T,
L ¥ | | -1 0 1 7

U 1 (1/4 ~1/4 -1/4 t
il =1 1/4 3/4 -1/4 T
i | 1/4 -1/4 3/4 y

Fig. 6.14b shows a projection of the 3D domain into the (7, j) plane along the direction (1,1, 1).
Applying previous transformations to the dependency vectors we transform them into the following
directions 6, = (2,~1,-1)T, & = (1,1,0)7, &5 = (1,0,)7, &y = (3,0, -1)T, &, = (3,-1,0)7.
Finally, Egs. 6.14, 6.15, and 6.17 can be transformed to the following system where time and space
are made explicit. -

) 4<t—(z+y) <4N
Clt,z,y) = 0<z<NO<y<N-— Clt-1lz,y-1) (6.18)
0<z<N,y=0—= M(t, z,y)

4<t-{(z+y) <4N

Rit,z,y)=q [0<y<NO<z<N-— R(t-lz-Lly) (6.19)
0<y<Nz=0- Mt z,y)
t=z+y— €ij

4<t—(z+y) <4N >

0<z<N-1A0<Sy<N-1-
M(t-2,z+1,y+1)V(C(t,z,y) ARt z,y))

- =N-1Ay=N-

ey = | T TSN

0<z<N-1IAy=N-1—
M(t‘3,3+1:1/)V(C(tyzyy)/\ﬁf(t»$,y))

0<y<N-1Az=N-1-

M(t-3,z,y+ 1) V(C(t,z,y) A R(t,z,1))

(6.20)

CHAPTER 6. THE UNIFORMIZATION OF RECURRENCE EQUATIONS

-3
[\

The set of transformations for the transitive-closure problem can be summarized in the following

way:

/* Input */

S = Domain({(k,i.j)|1 <k <n,1<ilen, 1<y <n})
AddVariable(m, S)

assign(m(k,1,7), m(k = 1,%,7) Vv (m(k, k, j) Amlk.t, k))
/* Splitting domain S */

A = SubDomain(S, {(k,i,/)][1<k<n 1<i<k1<)<k})
B = SubDomain(S, {(k,i,7))]1<k<n1<i<kk<j<n})
C = SubDomain(S, {(k.,7)]1<k<nk<i<n 1<j<k})
D = SubDomain(S, {(k,t,))|I <k<nk<i<nk<j<n})

/* Translation steps */
A’ = Translate(A, (k,n+i—-Ln+j-1))

B’ = Translate(B, (k,n+1-1,7))
C' = Translate(C, (k,s,n+j—1))
S’ = DomainUnion(D, A’, B’, C’)

/* Localization step */

AddVariable(r, S’)

Assign(r(k,k,7), m(k,k,7), {1<k<nk<j<n+k})

Pipeline(m(k,k,7), {1<k<nk<j<n+k}, (0,1,0), 7)

Addvariable(¢, {1<k<mi<i<k+nk<j<k+n})

Assign(c(k,i,k), m(k,k,j), {1<k<nk<i<k+n})

Pipeline(m(k,i,k), {1<k<nk<z<k+n} (0,0,1), ¢

/* Elimination of long k-dependencies */

Replace(m(k ~ 1,k - 1,7), r(k-—l,i—l,j), {l1<k<ni=k+n~-1Ek<j<k+n})
Replace(m(k—lik—l), clk-1,1,5 {l<k<nj=k+n-1Lk<i<k+n})
Assign(m(k,4,7), {1<k<nz~k+n—1]—k+n—1})

6.6 Uniformization of the Gap Problem

In this section we present the uniformization of the Gap problem which was introduced in Chapter
2. Examining the formulation we can observe that to compute a single subproblem, D[z, j], we
need i + j — 1 subproblems, but we can do it in max(z, ;) steps. The goal is to overlap in time
the computations of different steps from different problems. Let us introduce the variable d[i, j, q],
0 <i,j<n,0<q<max(i,j), to explicitly express the steps to compute D[, 7] in such a way that

D[, j) = d[i, j, max(i, j)]

That implies that the value D[i, j] is ready when ¢ = max(1, 7). The general formulation of d[i, j, g
would be

g=0- mitialization

di.g.a) = { 0 < ¢ < max(i,j) - min{d[i,j,q~1},"-} (6:21)

where the minimization process is serialized in max(z, j) steps. Noticing that the minimization op-
eration is associative, we can consider the different 7 + j — 1 subproblems in any order. Let us
corsider first the dependency stated by the subproblem D[i — 1,7 — 1]. According to our intended
uniformization scheme, it would be available at d[i — 1,j — 1,q ~ 1]. So, in order to avoid long com-
munications, its consideration within the computation of D[i, j] can be done at time ¢ = max(s, j).
So, d[t, j,q] = min{d[i,j, ¢ — 1],d[i = 1,j — 1,q — 1]} whenever ¢ = max(3, j).

6.6. UNIFORMIZATION OF THE GAP PROBLEM 73

To consider the dependencies D[i,q] and Dlg,], let us divide the two-dimensional domain into
the three regions given by t = 7,1 > j, and ¢ < J.

e 1=).
There exist as many rows as columns, so in each step we need to consider a pair of subproblems
coming from the same row and the same column. Let us use the variables d i, j, ¢] and d,[7, j. g]
to indicate the values D[, q] and Dlq, j], respectively, when computing D[z, j]. So we can write

g=0-—
min{d,[s,7,q] + w(g,j), dc[i, J, q] + w'(q.9)}
.o, J0<g<i=g> 59
dli.j.q] = min{d[i.j,q — 1, d.[i, 7, g + w(g, 5}, defirj) + w'(g.4)) (6.22)
g=1=] =

min{d[t,;,¢ - 1],d[i = 1,7 — 1,q¢ ~ 1]}

Later on we will describe the formulation for d. and d..
e 1>].
In this case there are more row subproblems than column subproblems. So at any stage g,

0 < g < 1, we consider a term D]q, j] represented by d.[7,7,q]. The terms D[z, q] represented
by d.[1, 7, q] will be considered after the first 1 — j steps of the computation. We can write

q=0-
0<g<gi—g =
min{d[i, j,q - 1], d.[1, j. q] + w(q, j)} :
| i (6.23)
min{d[i,j,q — 1), d:[1, 7, q] + w(g, 7), dc[t, j, q] + w'(g, 1)}
g=1—
min{d[i,7,¢ - 1],dt - 1,j - 1,¢ - 1]}

dli,7.9] =

o 1<
This case is the contrast of the previous case. There are more column subproblems than row

subproblems. In the first j — ¢ steps only column subproblems are considered. In the following
i steps both column and row subproblems are considered. Now we can write

g=0-—>
deli, 3, q) + w'(g,7)
O0<g<y—1—=

. min{d[i, j,q — 1],d.[i, 7, q] + w'(q,t
dlij.q] = j—isélfa Jydeli 5, q) + w'(q, 1)} (6.24)
min{d[t, j,q = 1}, d,[i, j, ¢] + w(q, j), dei. j,] + w'(g, 1)}
g=7-

min{d[i,j,q - 1],d[i = 1,7 - 1,9 — 1]}

Let us express now the formulations for d, and d,.. In Fig. 6.15 we can describe how to propagate
the values in the three dimensional domain. Fig. 6.15a only shows the domain. Fig. 6.15b shows the
dependencies derived when considering the D[¢ — 1,7 — 1] terms. In Fig. 6.15¢ we can observe how
to propagate the values along rows. When 7 < j, value D1, q], given by d[i, ¢,1], will be required in
step ¢ when computing D|i,4]. This values need to move from (i,q,1) to (i,7,7). Let us move them

§
.

74 CHAPTER 6. THE UNIFORMIZATION OF RECURRENCE EQUATIONS

in the direction [0,1, ~1] when 7 > j, and in the direction [0,1,0] when ¢ < j. These observation
give us the following formulation for d.:

0<y<i<n—
o g=1— dli,7.q]
dfigrq] = { i-j<gqg<i—= dfi,7-1,¢+1] (6.25)
0<i<;j<n0<g<y— d-i,j - 1.q]

In Fig. 6.15d) we can observe the dual case for propagating column values. Similar observations
can lead to the following formulation for d:

0<i<j<n—

o g=7~ dli, ,q] ,

delir g9} = {j—z’gq<]‘—> i~ 1,7,q+ 1] (6.26)
0<j<i<n0<qg<i— dfi—1,7,4]

Equations (6.22)-(6.26) describe the complete serialization scheme containing the following de-
pendencies:

o] a-|
(51: 0 ,52:

Loe] $)ae[8] o] 3] o= 3]
,(53: 1 ,54: 1 ,(55: O ,55: O
1 -1 0

-1 Lo} -1

If we express A = [a, b, C}T, by finding a solution of equation ATd; > 0 for 6;, 1 < i < 6 we obtain
the following restrictions:

From §, = ¢ > 0,

Froméy = a+b+c >0,

Fromdés = b—-c>0==b>c,

From 64 = b > 0,

Fromés = a-c>0=a>c,

From 6 = a >0

(U

We can choose A = (2,2, 1]7 leading to the timing function (i, 7,q) = 21 + 25 + q.
Projecting the domain into the direction [0,0, 1]7 we obtain the allocation function
A(v,5,9) = (i,7)

The direct and the inverse transformation can be formulated in the following matrix form:

t 2 21 1 1 0 1 0 t
z{=1]11200 7l 71 =10 0 1 T
Yy 01 0 q q 1 -2 -2 ¥

Applying the direct transformation to the dependence vectors we obtain the following mappings:

1) 1 2 1 2
5i=101],86=]11],88=]0],06q=|0 yo=111,68=1]1
0 1 1 1 0 0

L

To implement the algorithm given by this transformation we need to keep the last five results of
variable d and the last two values of each d, and d..
In summary, the transformations to obtain the recurrence equations 6.22 to 6.26 can be described

in the following manner:

|

(4]

6.6. UNIFORMIZATION OF THE GAP PROBLEM

) d)

Figure 6.15: Uniformization process of the gap problem. a) The extended 3D domain. b) Depen-w
dencies obtained by the D[i-1,j-1] term. ¢) Propagation of the values along rows. d) Propagation of
values along columns

S = Domain({(7,7,¢)|0 <1 <n,0<j <m,0<q<max(s,j)})
AddVariable(d, S)
AddVariable(d,., S)
AddVariable(d., S)

Assign(d.(4,5,9), {7 <i,q=14}, d(i,j,q))
Pipeline(d.(¢,5,q9), {J <t,g=1}, (0,1,-1))
Pipeline(d.(¢,7,9), {i <j,0<q¢<j}, (0,1,0))

Assign(dc(i,5,9), {i <j,qg=7}, d(i,j,q9))
Pipeline(dc(7,7,9), {: <j,¢=j}, (1,0,-1))
Pipeline(d.(i,7,q), {j <%,0<q¢<1}, (1,0,0))

Assign(d(4,7,q), {i=3,¢=0},
min(d- (3, 7,q) + w(g, 5), de(i,7,9) +w'(g, 7)))
Assign(d(i,j,q), {i=j0<q<i},
min(d(,7,¢ - 1), d-(4,7,9) +w(q,J),
de(i,5,q) +w'(g,5)))

S A

feeoiabe

76 CHAPTER 6. THE UNIFORMIZATION OF RECURRENCE EQUATIONS

Assign(d(i,j.q), {i=J.9=1},
min(d(z,j,qg - 1), d@ - 1.7-1.¢-1)))
hssign(d(i,j.q), {i>j.q =0},
dr(z’]’Q> +u](q7-7))
Assign(d(i,j,q), {i > 0<g<1-7J},
min(d(i,j,¢ = 1), d-(2,j,q) +wlg.7),
Assign(d(i,j,q), {i>J1—j<q<i},
min(d(z,j,q — 1),
d-(i,7,9) + wlg.j), delr.j.q) + w'(g.2)))
Assign(d(1,j,q), {i>J.qg =1},
min(d(s,j,¢ - 1), di —= 1,7 -1,¢-1)))
Assign(d(1,7,q9), {j > 1.9 =0},
de(t,j,q) + w'{g,1))
Assign(d(i,j.q), {j>1.0<qg<j—1i},
min(d(i,j,q¢ = 1), dcli,7,q) + w'(g, 1),
Assign(d(1,j,q), {7 >1,7-1<q<j},
min(d(z, j,q¢ — 1),
de(i,7,q) +w(g, 7). del(i,f,q) +w'(g,2)))
Assign(d(i,7,q), {j >i,q¢=7},
min(d{z,j,¢ - 1), dii - 1,7 -1,g-1)))

6.7 A Tool for Manipulating Recurrence Equations

In this section we specify an interactive tool to manipulate recurrence equations. The goal of
the tool is to let the user explore different transformations before selecting a sequence of steps to
transform the input recurrence equations into output uniform recurrence equations. The tool relies
on a graphical interface to display the dependency graph of a problem. By letting the user specify
different views of the dependency graph, the tool should help him derive the right set and order of
transformations. That feature should be helpful for users with little or no experience dealing with
2D or 3D problems. -

The major purpose of the tool is to help the user transform a recurrence equation into a set of
uniform recurrence equations. This process involves deriving an ordered set of suitable transforma-
tions. To facilitate that process the tool must accomplish three major objectives. First, it must let
the user specify the transformations in a suitable way. Secondly, it must let the user keep track of the
global state of the transformation process. Finally, the tool must provide the user with convenient
feedback from each decision he takes. Let us explore now how to fulfill these goals.

The tool should have predefined a set of basic transformations suitable to implement the processes
of alignment, localization and serialization of computations. Furthermore, the tool has to deal with
the transformation of domains (Figure 6.16a).

In the process of exploring different approaches, the user builds a tree of transformations where
the correct sequence is a path from the root to one of the leaves as it is shown in Figure 6.16b. This
transformation tree represents the different transformations applied by the user during the process
of uniformization. One of its nodes should represent the current state of the transformation process.
The tool should have facilities to backtrack to a past state and to continue the process from that
state.

One way to assist the user in the transformation process is to provide him with a graphical
representation of the problem at hand. That would be possible only for 2D and 3D problems.
Showing the existing dependencies of the problem usually will help to see which dependencies should
be localized and which computations should be serialized. How to do that is the user’s responsibility.
So, the tool should have facilities to obtain different views of the problem’s dependency graph. That

78 CHAPTER 6. THE UNIFORMIZATION OF RECURRENCE EQUATIONS

Recurrence Equation

Parameters: 1 Dependency Graph
Input: et
Output: m]
Vars: M
begin
®
end. v
- . - ®
. A @ @& € 6
Transformation Tree
€

.17: The main

igure

[»>]

a predefined plane: ¢ — 7, 1 — k, or kK — j. Also we might choose a subdomain of the recurrence
equation and a subset of the dependencies to show in the current view of the dependency graph.
Some additional features such as highlighting source or target index points and highlighting uniform
or nonuniform dependencies can be of great help to the user. Depending on the complexity of the
dependency graph, we can supply that information using dialogs or direct manipulation.

In Figure 6.18 we illustrate the direct manipulation actions to specify the partitioning of the
domain for the transitive closure problem. The purpose is to move all the index points to make the
dependency arcs point along the same direction. By enclosing the index points within region A we
can group them and translate them to the position shown in Figure 6.18b. Then, we can apply the
same grouping, clicking and dragging operations to translate index point inside regions B and C to
obtain Figures 6.18c) and 6.18d), respectively. Note that the dependency arcs should move as we
translate the index points.

In summary, the direct manipulation features of a mouse such as pointing, grouping, clicking
and dragging can be used to select index points, to select dependencies, to specify directions or
translations, to change source or destination of dependency arcs, and to redefine a new source value.
Complimentary information required to completely specify a transformation can be requested by
input dialogs.

6.8 Conclusions

We have exemplified the uniformization process of recurrence equations. The goal is to transform
a general recurrence equation into a system of uniform recurrence equations where dependencies
are constant and fixed. The intermediate steps work over domains or computations to obtain new
representations. Serialization, alignment and localization are key steps in uniformizing a recurrence
equation. Good skill in manipulating polyhedral domains is suitable to perform such tasks. By
combining facilities to derive transformations with facilities to visualize domains and dependencies
we can derive sets of transformations to achieve, whenever it is possible, uniform representations.

6.8. CONCLUSIONS 79

,' i .__.,_' ’"
A B
T e ®
¢ & & o ¢ & e o ¢ o o o ¢ o o @
C
' e ® e e
] L
® - ®
a) b) <) d)

Figure 6.18: An example partitioning and translation transformations using direct manipulation.

We have illustrated the uniformization process for the three problems: convolution, transitive
closure and gap problems. To the best of our knowledge no previous uniform representation for
the gap problem has been found. We also introduced a set of functions to perform the required
transformations.

We have outlined the design of a tool for manipulating recurrence equations. It is intended to
transform, with the user’s aid, a general recurrence equation into a system of uniform recurrence
equations suitable for applying systolic processing. This tool would consist of a predefined set of
transformations. Each transformation can manipulate either or both the domain and the computa-
tion of a recurrence equation. We believe the tool's capabilities to backtrack and to obtain graphical
representations of the problem at hand would be of great help during the uniformization process.

80 CHAPTER 6. THE UNIFORMIZATION OF RECURRENCE EQUATIONS

Chapter 7

Generating VHDL Behavioral
Models

7.1 Introduction

Space-time descriptions have been used as the final representation for a systolic array. Since systolic
arrays are intended to be implemented on hardware, it is required to generate a circuit design from
space-time descriptions. VHDL can be used as a target language for that purpose, given that it is
a standard language and a variety of tools exists for circuit implementation from it. In generating
circuit designs from space-time representations, we need to make several decisions. For example,
we need to specify parameters for implementation, we have to design a generic processor for the
array and we have to replicate it indicating interconnections between different instances. Finally,
we must specify contral signals to activate each processor in a synchronous way. In this chapter we
discuss the main issues in generating circuit designs in VHDL from space-time representations and
we present some approaches to the problem.

In section 7.2 we outline the digital design process. In section 7.3, we briefly review VHDL
features. In section 7.4, we define space-time representations and we introduce some examples. In
section 7.5, we discuss the main issues in generating VHDL behavioral descriptions from space-time
representations. Important aspects about control signal generation, port configuration and processor
description are reviewed in that section. A case study appears in section 7.6.

7.2 Digital Design Process Review

The design process of a digital system consists of transforming a given functional specification to a
suitable level for its fabrication or construction [48]. It usually can be described as an abstraction
process from a high-level specification to a low-level one as it is shown in Figure 7.1. The design
process usually starts from an idea described at the behavioral level, in which a system is described
by its input-output response. That behavior is translated to a register transfer level (RTL) in
which a set of resources are specified, a mapping function indicates which behavior is executed by
each resource and a scheduling strategy defines the order in which the operations of the behavior
are performed. This level is usually described as a set of registers and a control device which are
interconnected by one or several buses. Then, a RTL description is transformed to a logic level in
which a number of gates are specified as well as their interconnections by wires. It is usually called a
netlist or a gate wirelist. From the logic level a transistor list or a layout description can be obtained
which finally produces a circuit that performs the initial description.

There exist a number of tools which assist humans in making that transformation process. Simu-
lators and synthesizers are among the most used. Simulators perform the design at the level provided
by the design entry. They usually require input vectors test patterns to do the simulation. Synthe-
sizers are automatic tools for transforming one design at one level of abstraction to a lower level.

81

82 CHAPTER 7. GENERATING VHDL BEHAVIORAL MODELS

l Design Idea

;E Behavioral Design

bt Flow graph, pseudocode. ..

{ Datapath Design

> Bus & register structura

Logic Design

S * Gate wirslist, netlist

Phsysical Design

™ Transisior list. layout, .

{ Manufacturing

(Chip or Board

Figure 7.1: A typical abstraction hierarchy of the digital design process.

We would like to have a synthesizer for transforming a behavioral description to a layout. Since that
work involves many formidable tasks such as optimization, placement and routing, most current
tools transform a RTL description to gate wirelists [32]. There have been distinguishea two types
of synthesizers: high-level and low-level. While high-level synthesizers take as input a behaviora!
description, a low-level one translates a gate-level description to a layout circuit.

In summary, design is a series of transformations from one representation of a system to another
until a representation exists that can be fabricated. Synthesis is the process of transforming one
representation in the design abstraction hierarchy to another. There exist two types of descriptions:
behavioral and structural. A behavioral description is represented by an input-output response.
It can be done algorithmically or by a dataflow representation. On the other hand, a structural
representation is described in terms of an interconnection of more primitive components. At each
level of the design hierarchy some procedures are necessary to do design entry, simulation, synthesis
and test design.

7.3 VHDL Review

The VHSIC Hardware Description Language, VHDL, supports modeling and simulation of circuits
at all stages of the design process. VHDL allows to do synthesis, hardware testing and timing
analysis of a circuit. In VHDL, a circuit component is represented as an entity which may be
associated with various alternative architectures. Typically, an architecture may either specify an
abstract behavioral description of a device, or provide a concrete structural definition in terms of
simpler components (see Figure 7.2). The equivalence of architectures may be confirmed through
comparative simulations.

A VHDL environment consists of an analyzer which processes the input provided by a text editor
in VHDL syntax. It checks for syntax errors and when the input-code is error-free, translates it to
an intermediate format which is then linked with one or several libraries by a library subsystem. The
output can be used for simulation, synthesis, or testing, by a set of tools that take the intermediate
representation as input (see Figure 7.3).

82 CHAPTER 7. GENERATING VHDL BEHAVIORAL MODELS

I Design Idea

z Behavioral Design

e Flow graph. pseudocode. ..

Datapath Design]

-

Bus & register structurg

! Logic Design

Gate wirelist, netiist

l Phsysical Design

[T Transistor list, layout, .

{ Manufacturing

{ Chip or Board ‘l

Figure 7.1: A typical abstraction hierarchy of the digital design process.

4R AT

work involves many formidable tasks such as optimization, placement and routing, most current
tools transform a RTL description to gate wirelists {32]. There have been distinguished two types
of synthesizers: high-level and low-level. While high-level synthesizers take as input a behavioral
description, a low-level one translates a gate-level description to a layout circuit.

In summary, design is a series of transformations from one representation of a system to another
until a representation exists that can be fabricated. Synthesis is the process of transforming one
representation in the design abstraction hierarchy to another. There exist two types of descriptions:
behavioral and structural. A behavioral description is represented by an input-output response.
It can be done algorithmically or by a dataflow representation. On the other hand, a structural
representation is described in terms of an interconnection of more primitive components. At each
level of the design hierarchy some procedures are necessary to do design entry, simulation, synthesis
and test design.

7.3 VHDL Review

The VHSIC Hardware Description Language, VHDL, supports modeling and simulation of circuits
at all stages of the design process. VHDL allows to do synthesis, hardware testing and timing
analysis of a circuit. In VHDL, a circuit component is represented as an entity which may be
associated with various alternative architectures. Typically, an architecture may either specify an
abstract behavioral description of a device, or provide a concrete structural definition in terms of
simpler components (see Figure 7.2). The equivalence of architectures may be confirmed through
comparative simulations.

A VHDL environment consists of an analyzer which processes the input provided by a text editor
in VEDL syntax. It checks for syntax errors and when the input-code is error-free, translates it to
an intermediate format which is then linked with one or several libraries by a library subsystem. The
output can be used for simulation, synthesis, or testing, by a set of tools that take the intermediate
representation as input (see Figure 7.3).

82 CHAPTER 7. GENERATING VHDL BEHAVIORAL MODELS

t Design Idea

t Behavioral Design

p—rr—————= Flow graph, pseudocode, ...

Datapath Design

e
Bus & register structurs

Logic Design

P Gate wirelist, netiist

Phsysical Design

S ——— .
Transistor list, fayout, . .

)

Manufacturing

Chip or Board

Figure 7.1: A typical abstraction hierarchy of the digital design process.

We would like to have a synthesizer for transforming a behavioral description to a layout. Since that
work involves many formidable tasks such as optimization, placement and routing, most current
tools transform a RTL description to gate wirelists [32]. There have been distinguished two types
of synthesizers: high-level and low-level. While high-level synthesizers take as input a behavioral
description, a low-level one translates a gate-level description to a layout circuit.

In summary, design is a series of transformations from one representation of a system to another
until a representation exists that can be fabricated. Synthesis is the process of transforming one
representation in the design abstraction hierarchy to another. There exist two types of descriptions:
behavioral and structural. A behavioral description is represented by an input-output response.
It can be done algorithmically or by a dataflow representation. On the other hand, a structural
representation is described in terms of an interconnection of more primitive components. At each
level of the design hierarchy some procedures are necessary to do design entry, simulation, synthesis
and test design.

7.3 VHDL Review

The VHSIC Hardware Description Language, VHDL, supports modeling and simulation of circuits
at all stages of the design process. VHDL allows to do synthesis, hardware testing and timing
analysis of a circuit. In VHDL, a circuit component is represented as an entity which may be
associated with various alternative architectures. Typically, an architecture may either specify an
abstract behavioral description of a device, or provide a concrete structural definition in terms of
simpler components (see Figure 7.2). The equivalence of architectures may be confirmed through
comparative simulations.

A VHDL environment consists of an analyzer which processes the input provided by a text editor
in VHDL syntax. It checks for syntax errors and when the input-code is error-free, translates it to
an intermediate format which is then linked with one or several libraries by a library subsystem. The
output can be used for simulation, synthesis, or testing, by a set of tools that take the intermediate

representation as input {see Figure 7.3).

7.4. SPACE-TIME DESCRIPTIONS 83

ENTITY my_design IS
GENERIC(delayl: TIME :=5 NS: delay2: TIME := T NS),
PORT(a. b: IN BIT: z: OUT BIT).

END my_design;

ARCHITECTURE behavioral OF my_design IS
declarations:
BEGIN
PROCESS
sequential statements;
END PROCESS:
END behavioral;

ARCHITECTURE structural OF my_design 1S
declurations;
BEGIN

component instantiation;

END behavioral;

ARCHITECTURE dataflow OF my_design IS
declarations;
BEGIN

component instantiation:

bus assignments;
END behavieral;

Figure 7.2: A typical VHDL with alternative descriptions.

VHDL is a concurrent language which allows a multilevel description of a system. It includes
support for concurrent management of signal assignments as well as the usual sequential descriptions.
VHDL design usually are generic which later on are bound to specific libraries. VHDL can manage
packages, subprograms and procedures. It is a strongly typed language whose basic type is a signal
which is a variable with a time component. VHDL allows concurrent assignment of signals by
handling delay assignments.

Usually the VHDL simulation system is an event-driven simulator which evaluates a circuit oaly
when events occur. The simulator keeps track of two different times: a simulation time and a real
time. The events are recorded by a time queue processor which keeps track of real time in-a queue
time. It generates events to be handled by a signal tracer. When the delay component of an event
has reached zero value, it activates a signal change which is processed by a process executor which,
in turn, schedules new events to be tracked (See Figure 7.4).

7.4 Space-Time Descriptions

In Chapter 4 we introduced recurrence equations and space-time descriptions. In this section we will
further elaborate the definition of space-time descriptions to make some observations about their
structure. Let X,Y, Z,... be identifiers (also called variables or functions as we will see later).

A space-time description is a uniform recurrence equation defining an identifier X over a domain

DX of the form

X(z) = g(Yi(z — 61),... ,Yn(z — 8,,)) Vze DX (7.1)

where

84 CHAPTER 7. GENERATING VHDL BEHAVIORAL MODELS

Text
Editor Run time
Simulate error messages
VHDL Source Simulation Results
Analyzer -
Error < Analyzer Larour
Messages » |
Synthesizer
‘ .

Library System

Netlist

Model '
Builder I Synthesizer
ﬂ T

Design Libraries
R

Library

Environment

Other Tools [

Figure 7.3: A VHDL working environment.

l Time Signal

I Queue . Tracer
insert

and event activate
Delete
Time
Processor
Queue -
Processor scheduler Executor

Figure 7.4: A typical VHDL simulator.

e DX = T x S™"~! is the domain of definition of the equation which is a n-dimensional space
whose one dimension is designated as time and the other (n — 1) dimensions are designated
as space. The space describes an {n — 1)-dimensional array of points which are interpreted as
virtual processors. If two or more recurrence equations all have the same identifier X on the

left-hand-side of the equation, then their respective domains of definitions are disjoint.

¢ The points z of the domain are of the form z = (t,s) where ¢ is a 1-dimensional value identified
with time and s is an (n — 1)-dimensional value which is identified as space.

¢ The expressions z — d;, 1 < j < m, are considered as dependency mapping functions (also
called inder mapping functions) which map z in D¥ toz ~§;,1<j < m.

¢ Y;,1 < j <m, are identifiers which can be considered as inputs or can be defined by their own
space-time descriptions.

e g; is a strict single-valued function defining the right-hand-side of the equation.

7.4. SPACE-TIME DESCRIPTIONS 85

According the definition, the constant vectors &1,d9,...,0, are defined as communications
between virtual processors of the array. They are n-dimensional values. One of them indicates
delays, and the n — 1 remaining values indicate communication to a neighbor processor of z in a
given direction.

Similarly to recurrence equations, domains of definition for space-time descriptions of an identifier
represent a partition of the domain of the identifier. Since all identifiers are frequently defined over
the same domain, we will denote it simply as D.

Usual domains are n-dimensional integer polyhedrons which were defined in Chapter 5.

We can group all space-time description in whose left-hand-side appears the same variable or
identifier and write the definition of a variable in the following form

VZEDi\’ - gYu(z-9011),... . Yim, (2 - d1mm))
X(z) = (7.2)
VZE’Dif s gn(Ynl(z-(5n1),... ,Ynml(z-dnm))

It is common to write the conditions ¥z € DX, 1 < i < n, as predicates, piX(z), which take true
or false values (1 or 0) and 3, pX (z) = 1, i. e., one and only one of the predicates, p*, takes a true
value in a point z. Then, we can rewrite Equation 7.2 as

pi(z) = gi(Yii(z = d011),. .., Yim, ((2 = 611n))
X(z) = (7.3)
p,{(Z) - gn()/;ll(z —6711)7-” yYnml((z—&nm))

indicating that if pX (z) takes a true value, then X (z) is evaluated to the corresponding g; function.
As we will see in the next section, in most of the cases the predicates can be written as a

conjunction

pi=P'APIA-- P} (7.4)
of predicates Pij taking one of the following forms

p{'(xl7‘z2"” 7In—-1) <t

p{(II»IZM" lrﬂ—l)zt (75)

p{(zly‘Z:Zr"' 1In—1) >t

Each p! is seen as a control expression involving only space indexes, ;. Usually, it evaluates to
a nonnegative rational value and the expression consists only of rational expressions and terms to

the first power.
Usually, not all §;;, 1 < < n,1 <j < m are different. Then, we will refer to them simply as

the set of dependencies {d1,... ,d4}. Let us examine the different possibilities of z — d, 1 < k < d.

1. Y # X. g; is referring to different identifiers. That exhibits the following possibilities:

(a) z—6& = (t,z1,Z2, - ,Zn-1). This represents an access to a different identifier in the same
domain point at the current time.
(b) 2—8 ={(t—At,z1,22, -+ ,Zn-1)- A reading to a value taken by a different identifier in

the same domain point at previous time. At indicates the number of clock cycles previous
to the current one in which the desired value of the variable was produced.

(¢c) z—6=(t-At,zy ~Azy,z, - Aza, - ,2n_1 — Azp-1). A reading to a value taken by a
different identifier in a neighbor domain point at previous time. (Az;, Az, , Az, 1)
indicates the direction and displacement in which the neighbor point is located. Note
that At > 0, since we cannot access values at different space point at the time in which
they are produced.

86 CHAPTER 7. GENERATING VHDL BEHAVIORAL MODELS

2. Y = X. That means that g; is referring to the same identifier.

(a) z—6 = (t — At,z1,72, - ,Tn-1). A reading to a value taken by the identifier in the
same domain point at previous time. A, indicates the number of clock cycles previous to
the current one in which the desired value was produced.

(b) z-6=(t—At,z, — Az, 20— Azz, - Ty ~ ATpp). A reading to a value taken by
the same identifier in a neighbor domain point at previous time. (Azy, Azy, - JAT_1)
also indicates the direction and displacement in which the neighbor point is located. For
the same reasons as above, At > 0

We can make some observations about space-time representations. First, At must be greater
than or equal to 0. When At > 0 we refer the access with delay At. We cannot access variables in
a different domain point with At = 0. When Az = (Axy, Azy,... ,Azn) # 07 we consider there
is a communication to a neighbor processor located with displacement Ax.

7.5 Important Issues in Generating Behavioral Descriptions

Once we have made some remarks about space-time representation we will focus on the main issues
in generating behavioral descriptions from them in VHDL. Each following subsection will consider a
different aspect. The first one is of importance to simplify the understanding of remaining sections.

7.5.1 Control Signal Handling

Predicates appearing in a given space-time description indicate the control of the functionality and
timing of the processors. Since we intend to implement circuits, dedicating hardware to perform
those could be expensive. However, as we pointed out before, they usually involve only terms to
the first power and this makes them susceptible of some optimizations. A better design could be
obtained by replacing the expensive computations of a predicate by transferring one-bit control
signal, as illustrated by [18, 39]. For a predicate that is independent of ¢ there is no concern, since it
can be hardwired into the design. For any predicate that is dependent on ¢, it must be substituted
by one that is independent of ¢. Since a communication always moves in space and takes time
to complete, it can be used to “compute” expressions of the space-time indices in a time-variant
predicate.

A control expression is an expression p(zy,zs, - ,&n_1) of space indices z;, 1 < ¢ < n which
evaluates to a nonnegative rational value and the expression consists only of rational coefficients and
terms to the first power.

Proposition 1 Suppose a control expression p(z1,Z2, -+ ,Tn-1) is strictly monotonic increasing in
some space indez z;, that means, if o} <z, then p(zy,- -, Thy -, Tn-1) < DP{T1, "+ ,Tiy ", Tnet)-
Then, for each z; that accomplishes the previous restriction, the time dependence of the control
expression, defined as

dt(z;) = p(z1,- Tiy -, Tn-t) = (21, Ti = 1, ,Znoy) (7.6)
has a positive constant value.

The previous proposition can be easily verified since p involves terms to the first power. A similar
proposition is valid when p is strictly monotonic decreasing.

Proposition 2 Suppose a control expression p(zy,Tq, -+ ,Zn-1) 18 strictly monotonic decreasing in
some space indezx z;, that means, if z; < z;, then p{zy, -+ , 2%, ,Tn-1) > (T2, ,Tiy ,Tn-1)-
Then, for each z; that accomplishes the previous restriction, the time dependence of the control
ezpression, defined as

7.5. IMPORTANT ISSUES IN GENERATING BEHAVIORAL DESCRIPTIONS 87

~1
~1
~—

di(zi) =plz1, - i Tao) = (@1, T+ 1,0 Tamy) (7.
has a positive value which is constant.
Given the above propositions we can state the following theorem.

Theorem 1 Time-variant predicates of the form

t < plzi, T2, Tn-1)
t = plz1,T2, " ,Tn-1), and
t > pley, T2, s Tnot)
where p(zy, L2, ,Tn-1) 15 a strictly monotonic increasing control expression, can be implemented

by predicates

q(z1,22, Tnay,t) =5
where,
0 for t<p(zy, 22, ,Tn-1)
S = 1 fOT t=P($1,$2»"'aIn—l)
2 for t>p(z1,%2," 1 Tno1)
The control stream q(xy, T2, ,Tn-1,t) is defined by
p(z1, 22, ,Tp-1) =0 =
t<0-—> G
t=0-—- 1 -
Q(t9x17127"'11n—1)_ t>0—-) 2 (/8)
p(zy, 22, Tpo1) >0
gt —dt(zi), 1,22, \Tic1, "+, Tno1)

in which all predicates, except for the switch-on predicatest < 0, t = 0, and t > 0 are time-invariant,
and dt(z;) is the time dependency of control ezpression p(zy, T2, -, Tn-1).

Proof. First, let us make the following observation. From 7.6 we can write

p(zi, iy Tne1) = (@1, 0y T = Lo Tno) + dE(3) (7.9)
Recursively applying 7.9 over p(zy, -+ ,z; — 1,--- ,z,_1} we can find the following expression
plzyr, Zi, , Taoy) = p{Ty, 0 T —ky o Ty) + kdt{z), k>0 (7.10)
Since p(z1, - , T4, ,Tn-1) is strictly monotonic
p(zy, - Tiy e Tnet) > (@1, Ti= 1, Tpoy) > o > plTy, - xi— ko ,fcn—1() Z(;
7.11

Without losing generality, we can assume that there exists j such that

p(rl7...71:{—]‘!‘..71“'_1):0 (7¢12)

Let us focus now on the part of the theorem related to the case t < p{zy,--- ,zi,- - ,Zn-1). The
proof of two other cases is similar.
We want to prove that

t<p(1'17 al'n—-1)4:’¢1(tv$1»$2:"' 1$n—l):O . (7.13)

Let us separate the case when we already know that p{z;, -+ ,z,-1) = 0 from the case when
p(xls"' 7In—-1) > O

88 CHAPTER 7. GENERATING VHDL BEHAVIORAL MODELS

1. plz1,--+ ,za-1) = 0. This can be trivially verified.

(a) t <plzy, - ,Zn-1) = q(t,z1,22, - ,Tn-1) = 0. By definition of q.
(b) q(t,z),z9,- - ,zp—1) = 0. We already know that p(zi, - ,zn-1) = 0, then, by ¢’s
definition t < 0. Therefore, t < p(z1, -, Zn-1)
2. plzy, -+ Tn-y) > 0.
(a) t < p(z1, - ,Tn-1). By the initial observation, we know that 3j, such that,
plzy, Ti, Taot) =plTy, Ti— Jy 0 s Tn-) + 7dE(T)) (7.14)
where p(zy, - ,2; = J,- - ,Ta_1) = 0. Then t < jdt{z;), which implies t — jdt(z;) < 0.
Evaluating g in (¢t — jdt(z;)),z1, - , 2y = J,- - ,Tn_1), we find that
q(t —jdt(zi),z1, - 2i = Jy o, Tao1) =0 (7.15)
Since, p is monotonic, p(zy, -+, zi—{j—1), - ,Tn-1) > plz1, - ,Ti—=J, - ,Tn-1) = 0.
Then,
q(t —jdt(zi),zy, - i — Jyr yTner) = (7.16)
q(t = (7 — Ddt(zi), 21,z = (= 1),y Tno1) =0 (7.17)
Applying another j — 1 steps we obtain
q{t, 1, Tiy 4y Tnoy,) =0 (7.18)
{(b) gt,zy, 23, - , 21} = 0. We already know that p(z;, - ,z,_;) > 0. By definition,
qlt.z1, - Tiy o Tnot) = gt = db(zi) 2,z = 1 zng) (7.19)
Recursively applying g’'s definition, we know that there exists j, such that,
q(t,zy, Ty Taoy) = gt = jdt(@i), 21, T~ o Zam1) =0 (7.20)
and
P(T1, T Zaot) = P(E1, T = G Tan) + () (7.21)
where p(z1, - ,2Zi = J,- -+ ,Zn-1) = 0. By definition of q, t — jdt(z;)) < 0. Then,
t —jdt(zi)) <plzi, -,z = j, Tama) (7.22)
Applying j steps of Eq. 7.6 will provide the desired result
t<plzy, - ,xi, ,Tooa) (7.23)

A similar theorem holds for a control expression that is strictly monotonic decreasing. For sake
of space we avoid here its enunciation.

7.5.2 Obtaining a Generic Processor

After defining a set of parameters we need to build the description of a generic processor which,
after replicating it and interconnecting its different instances, would produce the processor array to
compute the space-time description. In figure 7.5, we present the general scheme for a behavioral
description of a generic processor of the array. First we need to specify the input and output ports.
They represent the inputs and outputs that are modeled in the behavioral architecture. They are
also used to interconnect different instances of the generic processor. The second part is devoted to
the behavioral description. We will use a process for each variable handled in the processor array.
The set of processes are modeled to execute in concurrent fashion so that it accurately describes
the behavior of variables. The code inside each process is modeled to be interpreted in sequential
fashion. It will contain the necessary instructions to model predicates, to evaluate conditions and

to respond to clock cycles.

75 IMPORTANT ISSUES IN GENERATING BEHAVIORAL DESCRIPTIONS 89

ENTITY generic-processor IS

PORT(
input ports : im . . .}
output ports : out . . .)

END generic-processor;

ARCHITECTURE behavioral OF generic-processor
IS
SIGNAL
BEGIN
X: PROCESSC . . .)
BEGIN
END PROCESS;
Y: PROCESS(C . . .)
BEGIN
END PROCESS;
Z: PROCESSC . . .
BEGIN
END PROCESS;
END behavioral;

Figure 7.5: A typical behavioral VHDL description of a generic processor.

7.5.3 Processor Identification

In many situations is convenient for a processor to know its position within the entire array. For
example, a processor located at the boundary of the array frequently needs to take some action to
input or output values. Processor identification can be modeled in the following ways:

1. Internal register
2. Input port configuration

3. Generic port configuration

The first case is probably the best approach, closely related to the final implementation of the
processor. However, that implies that each instance of the generic processor needs to be nardwired
uniquely. From VHDL point of view, it is necessary to generate different instances, one per processor,
which can be cumbersome.

Processor identification can be hardwired as a set of input ports. However, for synthesis purposes,
the designated area for ports is very restricted and we need to avoid unnecessary ports.

A way to parameterize designs is through the use of generic parameters. They are used typically
to transmit delays for simulation. We can use a generic parameter to indicate each processor iden-
tification. The syntax of constructs related to ports and generics is similar and it is shown in figure
7.6.

7.5.4 Port Configuration and Processor Interconnect

The main issue here is to determine the set of input and output ports for a generic processor.
From the observations made about space-time representations, we know that each time we find an
expression of the form

9:i(Y(z-4),...) (7.24)

90 CHAPTER 7. GENERATING VHDL BEHAVIORAL MODELS

ENTITY generic-processor IS

GENERIC(
id : INTEGER(n-1 DOWNTO 0);

),

PORT(
input ports : in .
output ports : out .

s

END generic-processor;
Figure 7.6: A generic parameter to indicate processor identification.

we have to consider 8 to determine if we need to add a register for delays, a communication between
processor and, from that, we need to designate a port for that purpose. Each time we find a case

z -0 =(t—At,xy —Azy,20 - Az2,... Ty = AZn1) (7.25)

where A, # 0 and 3A,, # 0, we need to add a communication link to the neighbor processor located
in the direction and offset indicated by

Ax = (AIl,AIQ,H. ,Alin_l) (726)

Therefore, it is necessary to add a port to read the value of variable Y. Similarly, an output port

must be added for communicating Y-value yielded by this processor.
Let us suppose now that we have two dependerncy directions §, and 8 which are the same except

for the time component, ‘
8, = (Aty, Az, Az,... ,Az,_y) (7.27)
(52 = (Atg,Axl,A.’Eg,... ,Az:n_l) (728)
and they appear upon the same variable Y. Since we need the value produced by the same processor
at two different times, t; and t,, we add only one communication interconnect and, hence, only
one port for communicating such a variable. We take as a convention that, whenever we find a
communication link of the type in eq. 7.25, we transmit it as soon as possible without considering

_the value of At. From here, we can interpret that the value taken at the input port would represent
the value of Y on the corresponding processor delayed by 1 clock cycle.

7.5.5 Delay and Communication Management

Delays represent the way in which all processors of the array synchronize. A delay is required any
time a dependency of the form

z'_a:(t—‘AtvII)‘”azn-—l)y At21 (729)
is found. A delay can also be seen as a communication requirement. When the delay is of the form
z2-0=(t—-Atz,...,Tn1) (7.30)

the communication is onto the processor itself. Let us consider the set of dependencies of the form
in Eq. 7.30 referring to the same variable, Y,

Sy={8z-d=(t-Atz,...,z01), Ot>1, X(..,2-4,...)} (7.31)

This set indicates that each processor is using values of Y produced at previous times, t — A, , ¢ —
Ay, -+t — Ay,. We propose the use of A, . — 1 registers to store intermediate values, where

Atmax = max{At;, Aty, ..., At} (7.32)

Registers are modeled in VHDL as signals, they can be updated with each clock cycle as shown
in Figure 7.7.

é
g

7.6. A CASE STUDY: THE EDIT DISTANCE 91

SIGNAL Y1, Y2, Y:
BEGIN

b: BLOCK(clk = '1’ AND NOT clk’STABLE)

BEGIN
Y <= ...
Y2 <= Yi;
Yi <= Y,
END BLOCK;

Figure 7.7: Use of temporal signals for handling delays.

For values incoming from different processor, i.e. when

Z—(s:(t"‘At,I]"'Aml,zz_AIQ,A.;,In_l“A:En_l), At > 0, BlAI‘#O
(7.33)

if they refer to the same variable, since we already know that there exists one input to get the value
of the variable delayed in one clock cycle. We use the same strategy to store as many values of the
same variable incoming from the same processor as we need.

7.5.6 Condition Evaluation

LRGN $ 1

to the discussion presented in the control-signal generation section, predicates of the form
t < p(zy,z9,...,Zn-1), t = p(21,22,... ,Tp-1), and t > p(z1,22,... ,ZTn-1), can be substituted,
in many cases, for predicates of the form ¢(t,z1,22,... ,Zn-1) = 0, ¢(t,z1,72,... ,zp-1) = 1, and
q(t,z1,72,... ,Tn-1) = 2, respectively, where ¢ is itself defined by a recurrence involving time-
independent predicates.

We now focus on the term ¢t = 0 and t < 0 of Eq. 7.8. The first one represents the initial time
or reset. The second term indicates when the processor array is working. We will use a special
signal, RST, to know when the array needs to be re-initiated. The general VHDL model used for the
evaluation of a variable X is shown in figure 7.8.

According to the general structure of a recurrence equation representing space-time dimensions
)

7.5.7 Generating the Regular Processor Array

Once we have determined the VHDL model for a generic processor we can build the processor ar-
ray by adequately replicating it and interconnecting its different instances. We need to create a
processor per point in the space domain of the space-time representation. Domains are commonly
parallelepiped domains, then we can use the iterative features of VHDL which are similar to loop con-
structs in a programming language. To establish interconnections we need to consider the different
dependencies, 81,03,...,d84 in the space-time description. In general, we take

Ax = {(:1:1‘_,:1,‘2”~ .. ,In_l‘.)‘é,‘ = (At,',AZEh,Alzi,. N ,AIn_ll.), 1 S 1 S d} (734)

To choose the ports to interconnect we examine the variable in which é; appears. In figure 7.9,
we present the structure of the VHDL model for a linear processor array. We assume that the whole
array has one input and one output and each processor has an interconnection with its previous
neighbor processor.

7.6 A Case Study: The Edit Distance

Let T = (t1,tz, -~ ,ti,--- ,ta) and R = (ry,72, -~ ,7j,- -+ ,Tmm) be two strings to compare. We are
interested in the cost of transforming string R to string T. We can apply successive comparisons

92 CHAPTER 7. GENERATING VHDL BEHAVIORAL MODELS

ARCHITECTURE behavioral OF generic-processor IS

BEGIN
X: PROCESSC . . .)
BEGIN

IF RST = '1’ THEN
-~ initialization
ELSE
-- get values from input ports
CASE expr =>
WHEN C1 => g¢1(---);
WHEN C2 => g2(---);

WHEN Ck => gi(---);
END CASE;
-- update signals for delayed values
-~ send computed values to the output port
END PROCESS;

*

END behavioral;

Figure 7.8: A typical process model to compute the value of a variable in a clock cycle.

between elements of R and elements of T. When a mismatch occurs, we must consider the possibility
of replacing a character of T for one of R, of inserting a character of T', or deleting a character of R.
This problem can be well defined by the following recurrence relation stating a dynamic programming
problem: :

D(i-1,5 = 1) +d(ti, ;)
D(i,j) =min{ D(i-1,j) + K, (7.35)
D(i,j - 1) + K,

with the initial conditions:

D(0,0) = 0
D(,0) = D(i-10+K, forl<i<n
D0,;) = D(0,j-1)+K, forl<j<m

where d(t;,7;) represents the cost of replacing r; by t;, K, the cost of adding ¢;, and K, the cost
of omitting r;. Note that in this formulation, the costs of insertion and suppression are constant,
independent from the specific characters. In a typical application, like spelling correction, this
calculation has to be repeated a lot of times since the same test string must be compared to many
reference strings (a full dictionary for example). Therefore the amount of computation can be very
large and prohibits the use of a conventional computer.

It is easy to see that the space-time description of Eq. 7.35 is given by

t=0,z=0—> 0
t>0,z=0— D(t-1,z)+ Ko
Dit,z) =¢ 1<t<n,t=z— D{t-1,z~1)+Ka (7.36)

t>zr,1<c<m—= min{D{t-2,z-1)+d(t;—z,72),
D(t-1,z)+ K., D(t -1,z - 1) + K,}

According to the discussion about control-signal generation we can avoid the computation of
predicates t = « and z < t. It is clear that those predicates are monotonically increasing in the

.
g

76. A CASE STUDY: THE EDIT DISTANCE 93

ENTITY regular-array IS
PORT(I1: dn . . .; Ot: out . . .);
END regular-array;

ARCHITECTURE iterative OF regular-array IS
COMPONENT Gen-P
GENERIC(id: INTEGER(ni DOWNTO O J;
PORT(Ini: in ...; Oul: out ... J;
END COMPONENT;
FOR ALL: Gen-P USE ENTITY work.Generic-Processor;
SIGNAL S: vector(O TO N-1);
BEGIN
C0: Gen-P
GENERIC MAP(0);
PORT MAP(I1, S(0));

CI1TON-2: FOR i IN 1 TO n-2 GENERATE
C: Gen-P
GENERIC MAP(1);
PORT MAP(S(i-1), S(i));
END GENERATE;

Cn-1: Gen-P
GENERIC MAP(n-1);
PORT MAP(S(n-2), 01);
END iterative;

Figure 7.9: VHDL model for a linear processor array using the iterative features of VHDL.

z-dimension and the corresponding time dependency is dt(z) = 1. Then, we can write

t=0,z=0—- 0
t>0,z2=0~- D{t-1,z)+ Ko
D(t,z) =<4 q(t,z)=1— D{t-1,z-1)+ Ka (7.37)
g(t,z) =2 = min{D{t -2,z — 1) + d(s¢—y,72),
D(t—1,z)+ Ko, D(t -1,z - 1) + K.}

where

£=0— {=0— 1
g(t,z) = - t>0—> 2 (7.38)
z>0— g{z-1,t-1)

Observing equations 7.37 and 7.38 we see that we need to store the value of D in each processor
indicated by dependency (¢ — 1,z). Also, we need the value of D from previous processor provided
by dependencies (¢t — 1,z — 1) and (¢t — 2,z — 1). Furthermore, we need the value of ¢ from the
previous processor provided at time ¢ — 1. The port configuration of the generic processor can be
seen in figure 7.10.

In Figures 7.12, 7.13, and 7.14, we show the VHDL modeling of variables R, D, and Q of the
generic processor. They are modeled by defining a process per variable. The code inside each process
is sequential and the general structure is similar. The first part is devoted to initializing the instance,
when RST is on. The second part evaluates each condition according to the predicates produced by
the control-signal generation step.

94 CHAPTER 7. GENERATING VHDL BEHAVIORAL MODELS

R . RP
D DH
B P s o
Q <@
bt
CK RST

Figure 7.10: Port configuration of the generic processor for the edit distance problem.

ENTITY sm IS
PORT(
R : in BIT.VECTOR(3 DOWNTO 0);
D : in BIT_VECTOR(3 DOWNTO 0);
Q : in BIT
RP : out BIT_VECTOR(3 DOWNTQ 0);
DH : out BIT_VECTOR(3 DOWNTO 0);
QP : out BIT
ck : in BIT
rst : in BIT
Y
END smO;

Figure 7.11: Port configuration of the generic processor for the edit distance problem.

7.7 Conclusions

We have discussed the main issues in generating behavioral VHDL models from space-time de-
scriptions. Space-time descriptions are the final description of a systolic algorithm. Since they are
intended to be implemented on hardware, a circuit must be obtained from them. Describing circuit
designs can be done at various levels of abstraction. With the development of modern synthesizers,
more often many circuits are described at behavioral level in which a circuit design is described by
its input-output response. The development of general behavioral synthesizers is currently a matter
of great research. See [32, 45] for a survey.

A behavioral VHDL model of a space-time description involves several issues. We discussed the
most important ones. The control signal generation is of relevance since we must to save space in
a circuit implementation. Several VHDL modeling features are used to obtain behavioral models
of a space-time description. Iterative instantiation of components is used to obtain the regular
processor array. Processor identification is achieved through generic parameters. Each variable is
modeled through a separate and independent VHDL process. We discussed how to generate a generic
processor for the array. We indicated how to determine the port configuration of it. Also, we gave
a general structure for handling delays and for evaluating conditions of a variable.

Previous guidelines were determined by generating behavioral models for a set of dynamic pro-
gramming algorithms. We showed the case of the edit distance problem. Those models were sim-
ulated to verify their behavior. Some of them were submitted to a behavioral synthesizer which
successfully generated design at gate level. Although the designs obtained were effective and feasi-
ble, further work is required to reduce space of circuits and to speed the performance of the target
design. Finally, given the restricted scope of space-time descriptions we think that it is possible to
systematize the generation of design at a lower level such as the register-transfer level.

~
~

CONCLUSIONS | 95

R: PROCESS(rst, ck)
SIGNAL Ri: REG.VECTOR(3 DOWNTO 0) REGISTER;
BEGIN
IF rst = '1’ THEN
Ri <= B"0000";
ELSE IF ck = 1’ AND NOT ck’'STABLE THEN
Ri <= R;
ENDIF;
ENDIF;
RP <= Ri;
END PROCESS;

Figure 7.12: Process model of variable R of the generic processor for the edit distance problem. -

D: PROCESS(rst, ck)
SIGNAL Di, D2: REG_VECTOR(3 DOWNTO O) REGISTER;
SIGNAL Di, Dii: REG.VECTOR(3 DOWNTO 0) REGISTER;

BEGIN
IF rst = '1’ THEN
D1 <= B"0000%;
D2 <= B"0000";
ELSE IF ck = 1’ AND NOT ck’STABLE THEN
D2 <= D1; D1 <= D; Dil <= Di;
CASE ID =>
WHEN '0’ => Di <= Dil + Ko;
WHEN OTHERS
CASE Q =>
WHEN '0’ => Di <= D1 + Ka;
WHEN 1’ =>
Di <= D2+mem(Ri);
Di <= MINSEL(Di, Dit+Ka);
Di <= MINSEL(Di, D1+Ko);
END CASE;
END CASE;
ENDIF;
DP <= Di;
ENDIF;

END PROCESS;

Figure 7.13: Process model of variable D of the generic processor for the edit distance problem.

Q: PROCESS(rst, ck)
SIGNAL Qi: BIT;
SIGNAL Qi: BIT;
BEGIN
IF rst = '1’ THEN
Q1 <= ’0’;
Qi <= '07;
ELSE IF ¢k = "1’ AND NOT ck’STABLE THEN
Q1 <= Q;
CASE ID =>
WHEN "0’ => Qi <= '{’
WHEN OTHERS => Q1;
END CASE;
ENDIF;
QP <= Qi;
ENDIF;
END PROCESS;

Figure 7.14: Process model of variable Q of the generic processor for the edit distance problem.

96 CHAPTER 7. GENERATING VHDL BEHAVIORAL MODELS

i

Chapter 8

Conclusions

8.1 Review of Goals

In this thesis we have presented an approach to synthesizing data-parallel algorithms of dynamic
programming problems at the hardware description level.

Dynamic programming algorithms are particularly suitable for FPGA implementation, given
that they require a very simple arithmetic and logical operations. Furthermore, the great number of
dependencies that they exhibit require a fast communication medium for subproblem solutions. In
that case, hardware implementation of DP algorithms is of great benefit to achieve good performance.
Finally, the regularity shown in DP algorithms, both in computation and communication, is adequate
to take advantage of the regularity in the FPGA’s architecture.

We studied the characteristics of DP aigorithms. In Chapter 2, we reviewed the general for-
mulation of a DP algorithm and we showed two major classifications of DP algorithms. We also
presented a set of DP algorithms to understand the nature of every class.

In Chapter 3, we presented general strategies to design data-parallel algorithms for DP problems.
We determined that the important characteristics of a DP problem for data-parallel implementations
are the size of the DP table, the seriability of the DP recurrence formulation, and the number of
subproblem dependencies. We presented a naive approach to implement data-parallel dynamic
programming in C* in which we designated a virtual processor for each subproblem of the DP table.
Then, we showed a more practical approach to implement data-parallel algorithms by grouping
several subproblems to be computed in a single processor. For uniform dependencies this approach
is effective and it can be easily applied. For non-uniform dependencies, it is necessary to consider
the dependency direction vectors. Finally, we further elaborate our data-parallel approach for DP
problems having non-fixed number of dependencies. Combining non-uniform block decomposition,
overlapping computation and communication, and achieving a balanced computational load for each
processor, we obtained good performances in two real multicomputers (Meiko CS2 and CM-5).

In Chapter 4 we introduced a general terminology to describe recurrence equations from the par-
allel algorithm description perspective. We should say that the description of recurrence equation
from the perspective found in the literature is very simple and brief. Then, the description presented
in Chapter 4 is the most complete approach we can find in the literature of recurrence equations
considering the parallel algorithm approach. We defined precisely the concepts of domains, identi-
fiers, and dependency relation. We introduced both the general case of recurrence equations as well
as the special cases.

We discussed in Chapter § a dataflow analysis technique for extracting the functional information
from affine C* segment programs. The affine C* program fragments (ACPF) are descriptive enough
to represent the class of data-parallel programs for dynamic programming algorithms and some
other classes including linear algebra algorithms. The techniques shown in that Chapter capture
the functional description of an ACPF producing recurrence equations describing it. The dataflow
analysis technique is realized as an extension of techniques developed to analyze sequential programs.
Given that the semantics of C* is rather different from that of a sequential programming language, we

97

98 CHAPTER 8. CONCLUSIONS

redefined the concepts of sequencing predicate and dataflow dependency relation. From the dataflow
dependency relation of each parallel statement in an ACPF, we obtain the recurrence equations. We
showed some examples for some kinds of ACPFs; those found in dynamic programming.

In Chapter 6, we examined the process of uniformization of recurrence equations. We examined
the most frequent mathematical transformations used in that process. We introduced a representa-
tion for polyhedral domains. We also discussed the uniformization process in three examples: the
convolution problem, the all-pairs shortest path problem and the gap problem. To the best of our
knowledge no previous uniform representation for the gap problem has been found. We also intro-
duced a library of functions to perform the uniformization process. Finally, we outlined the design
of a tool for manipulating recurrence equations which is of utility in the uniformization process.

Obtaining space-time equations from uniform recurrence equations is perhaps the most studied
topic in the systolic processing field. Very mature techniques exists to realize such transformation.
The work done separately by Quinton [67], Rajopadhye [70], and Rao [71] are good examples of a
systematic study for that topic. For such reason, we do not spend too much time in examining the
problem.

Finally, in Chapter 7 we discussed to way to obtain VHDL descriptions from space-time repre-
sentations. Since we can describe a circuit at various abstraction levels, we chose the highest one
(behavioral) to describe our circuits. We discussed the main issues in obtaining such descriptions.
We showed how to face the control signal generation, the delay and communication management,
and the processor configuration and interconnection. Several designs for dynamic programming
algorithm were produced following the approach presented in that chapter. They were effectively
simulated through the Altera development system.

In summary, we can say that in this thesis we provide a clear methodology to synthesize algo-
rithms from the data-parallel level to the hardware description level. Since our primary intention
was to implement the algorithms in FPGAs, we restricted ourselves to DP algorithms because of the
reasons clearly stated in chapters 1 and 2. However, we think that this methodology can be applied
to a wider class of algorithms including, for example, linear algebra algorithms.

8.2 Open Problems and Future Work

In every investigation, there still exist some problems whose solution cannot be explicitly treated.
Here we want to present three that our research did not address. They represent big questions for
the parallel processing community:

1. If we relax timing functions, for example ¢{(z) = P(z), can we expand the class of recurrence
equations for which a valid schedule and mapping exists? In other words, can the class of
solvable recurrence equations be wider if we do not consider linear timing functions?. Feautrier
(1992) proposed multidimensional timing functions [31] as a methodology.

2. Is there a class of recurrence equations for which a uniformization algorithm can be depicted?
It is already known that problems with affine dependencies, Az +b, can be effectively converted
to a uniform shape, is it possible to expand that class?

3. Usually mapping is the last step in the process of systolic synthesis. What would happen to
the process if the first step that we do is mapping and then we look for timing functions?

In addition, we would like to present some extensions to the research we did that can be considered
in the future.

1. First, it would be convenient to take the VHDL behavioral descriptions to FPGA implemen-
tation. That work would allow to exploration of performance considerations which were not
considered in this research. :

2. For developing efficient circuits, it would be more convenient to transform space-time descrip-
tions to a lower abstraction level. Currently, work is being performed to transform space-time
descriptions to register transfer level.

8.3. FINAL CONSIDERATIONS 99

3. Many different space-time descriptions can be derived from the same set of uniform recurrence
equations. There exist different optimization criteria for space-time descriptions, for example
speed or circuit area. The tool shown here does not consider these factors and it would be
good to incorporate such facilites.

4. The dataflow analysis of parallel programs can be extended by considering conditional loops
(like the while-loop). Collard [23] developed an algorithm to analyze sequential while-loops.
Our dataflow analysis technique can be modified to analyze while-loops of data-parallel state-
ments.

5. The non-homogeneous block decomposition technique for implementing data-parallel programs
can be applied to other kinds of problems showing a similar behavior to the one of the gap
problem. Research work is required to find problems having non-fixed dependencies.

6. Finally, we think that the methodology presented here can be applied to algorithms other
than dynamic programming ones. Some work needs to be done to show the feasibility of the
methodology for other kind of algorithms.

8.3 Final Considerations

The realization of a research involves many steps and considers many aspects of the topic. The
approach presented here was started from a general objective and this was divided into several sub-
goals to present a coherent solution. Our primary concern at the beginning was the implementaticn
of algorithms for FPGAs. Soon, we became awar of the lack of techniques for this purpose start-
ing from high-level specifications. For that reason, we concentrate on algorithms implemented in a
high-level programming language. C* has been implemented with some degree of success in both
multiprocessors and multicomputers. This research has tried to discover if C* can be applied to
FPGA custom computing. In this thesis, the answer to that question has been partially answered.
Here, we presented a methodology to transform a DP algorithm to hardware description level but,
clearly, some steps need to be further investigated. In addition, some problems, like speed, area,
and partitioning, might appear in the course of a specific FPGA implementation.

At every stage of the methodology proposed here we tried to make, whenever was possible, some
contributions. The methodology along with the set of contributions discussed at every step represent
the main contribution of this dissertation.

Although FPGA technology is being used more frequently for custom computing, at this moment
reconfigurable architectures are rare and they have being developed mainly at academic laboratories.
The future of custom computing is promising; the current examples of real reconfigurable architec-
tures show its feasibility. Two main drawback have to be considered in order that reconfigurable
architectures become commonly used. The first one is due to technological restrictions. Although
the FPGA density has been increased recently, it is still not enough for many algorithmic appli-
cations. However, it is very probable that density will increase as technology evolves. The second
drawback is concerned with the lack of techniques for implementing algorithms in circuits. Very few
people would be interested in implementing algorithms by designing circuits. Clearly, compilation
techniques are demanded to perform such task in an automatic way. We think that this research
contributes in pursuing that goal.

100 CHAPTER 8. CONCLUSIONS

|

U

Appendix A

Acronyms

ACPF Affine C* Program Fragment

ARE Affine Recurrence Equation

CLB Configurable Logic Block

DP Dynamic Programming

FPGA Field Programmable Gate Array

OMP Optimal Matrix Parenthesization

RE Recurrence Equation

RTL Register Transfer Level

SRE System of Recurrence Equations

SURE System of Uniform Recurrence Fquations
URE Uniform: Recurrence Equation

VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuits

101

102

APPENDIX A. ACRONYMS

I T e A e e i

S

Bibliography

{1] Corporation Actel. ACT Family Field Programmable Gate Arrays Data Book. Actel Corpora-
tion, Sunnyvale, CA, 1990.

(2] L. Agarwal, M. Wazlowski, and S. Ghosh. An asynchronous approach to efficient execution of
programs on adaptive architectures utilizing fpgas. In Proc. of the IEEE Workshop on FPGAs
for Custom Computing Machines, pages 101-110, 1994.

[3] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools. Addison-
Wesley, Reading, MA, 1986.

4] Ltd. Algotronix. Configurable Array Logic User Manual Algotronix, Ltd., Edinburgh, UK,
g
1991.

[5] Corporation Altera. ALTERA Data Book 1987. Altera Corporation, Santa Clara, CA, 1987.

[6] R. Andonov and S. Rajopadhye. Optimal tiling. Technical Report Publication Interne No. 792,
IRISA, January 1994.

[7] Rumen Andonov and Sanjay Rajopadhye. Knapsack on VLSI: from algorithm to optimal circuit.
[EEE Transactions on Parallel and Distributed Systems, 8(6), June 1997.

[8] P. M. Athanas and H.F. Silverman. Processor reconfiguration through instruction-set meta-
morphosis. [EEE Computer, pages 11-18, March 1993.

[9] D. H. Ballard and C. M. Brown. Computer Vision. Prentice-Hall, Englewood Cliffs, NJ, 1979.
[10] U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Publishers, 1988.

[11] M. Barnett. A systolizing compiler. Technical Report TR-92-13, University of Texas at Austin,
May 1992.

[12] R. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, 1957.

[13] R. Bellman and S. Dreyfus. Applied Dynamic Programming. Princeton University Press, Prince-
ton, NJ, 1962.

[14] P. Bertin and H. Touati. PAM programming environments: Practice and experience,. In Proc.
of the IEEE Workshop on FPGAs for Custom Computing Machines, pages 133-138, 1994.

(15] Phillip Gnassi Bradford. Parallel Dynamic Programming. PhD thesis, Indiana University,
December 1994.

[16] J. Bu and E. F. Deprettere. Converting sequential iterative algorithms to recurrence equations
for automatic design of systolic arrays. In IEEE International Conference on Acoustic, Speech
and Signal Processing, pages 2025-2028, May 1988. '

[17] H. D. Chen and K. S. Fu. Algorithm partition and parallel recognition of general context-free
languages using fixed-sized vlsi architecture. In Ohio State University, editor, Proceeding of the
Midwest VLSI Workshop, Jan 1985.

103

S i

104 BIBLIOGRAPHY

[18] M. C. Chen. A design methodology for synthesizing parallel algorithms and architectures.
Journal of Parallel and Distributed Computing, pages 461-491, 1986.

(19] M. C. Chen. A parallel language and its compilation to multiprocessor machines for VLSI. In
Principles of Programming Languages. ACM, 1986.

[20] M. C. Chen, Y. Choo, and J. Li. Compiling parallel programs by optimizing performance.
Journal of Supercomputing, 2:171-207, 1988.

[21} Y. T. Chiang and K. S. Fu. Parallel parsing algorithms and VLSI implementations for syntactic
pattern recognition. [EEE Transaccions on Pattern Analysis and Machine Intelligence, PAMI-
6, 1984. ’

(22] M. J. Clark and C. R. Dyer. Curve detection in VLSL. In K. S. Fu, editor, VLSI for Pattern
Recognition and Image Processing. Springer-Verlag, Berlin, 1984.

[23] J.-F. Collard. Space-time transformation of while-loops using speculative execution. In [EEE,
editor, Proc. of the 1994 Scalable High Performance Computing Conference, pages 429-436,
May 1994.

[24] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. [ntroduction to Algorithms. MIT Press,
McGraw-Hill, New York, NJ, 1990.

[25] A DeHon. DPGA-coupled microprocessors: Commodity ics for the early 21st century. In Proc.
of the IEEE Workshop on FPGAs for Custom Computing Machines, pages 31-39, 1994.

[26] David Epstein, Zvi Galil, Giancarlo Raffaele, and Giuseppe F. Italiano. Sparse dynamic pro-
gramming I: Linear cost function. Journa! of the Associate Computing Machinery, 39(3):519-
545, July 1992. '

[27] David Epstein, Zvi Galil, Giancarlo Raffaele, and Giuseppe F. Italiano. Sparse dynamic pro-
gramming II: Convex and concave cost functions. Journal of the Associate Computing Machin-
ery, 39(3):546-567, July 1992.

(28] B. Fagin and J. G. Watt. FPGA and rapid prototyping technology use in a special purpose
computer for molecular genetics. In Proceedings of the IEEE International Conference on
Computer Design, pages 496-501, 1992.

[29] P. Feautrier. Dataflow analysis of array and scalar referehces‘ International Journal of Parallel
Programming, 20(1):23-53, February 1991.

[30] P. Feautrier. Some efficient solutions to the affine scheduling problem. Part I one-dimensional
time. International Journal of Parallel Programming, 21(5):313-347, October 1992.

[31] P. Feautrier. Some efficient solutions to the affine scheduling problem. Part II multidimensional
time. International Journal of Parallel Programming, 21(6):389-420, December 1992.

[32] D. Gajski, N. Dutt, A. Wu, and Y. Lin. High Level Synthesis: Introduction to Chip and System
Design. Kluwer Academic Publishers, Norwell, MA, 1992.

[33] Z. Galil and K. Park. Speeding up dynamic programming with applications to molecular biology.
Theoretical Computer Science, 64:107-118, 1989.

[34] Z. Galil and K. Park. Parallel algorithms for dynamic programming recurrences with more than
O(1) dependency. Journal of Parallel and Distributed Computing, 21:213-222, 1994.

[35] Zvi Galil and Kungsoo Park. Dynamic programming with convexity, concavity, and sparsity.
Theoretical Computer Science, 92:49-76, 1992.

[36] M. Gokhale, W. Holmes, A. Kosper, S. Lucas, R. Minnich, and D. Sweely. Building and using
highly parallel programmable logic array. [EEE Computer, pages 81-89, January 1991.

BIBLIOGRAPHY 105

[37] M. Gokhale and R. Minnich. FPGA computing in a data parallel C. In Proc. of the I[EEE
Workshop on FPGAs for Custom Computing Machines, pages 94-101, 1993.

(38] J. Greene, E. Hamdy, and S. Beal. Antifuse field programmable gate arrays. Proceeding of the
[EEE, 81(7):1993, July 1042-1055.

(39] L. J. Guibas, H. T. Kung, and C. D. Thompson. Direct VLSI implementation of combinatorial
algorithms. In California Institute of Technology, editor, Proceedings of Conference on Very
Large Scale Integration, pages 509-525, 1979.

[40] P. J. Hatcher, M. J. Quinn, A. J. Lapadula, B. K. Seevers, R. J. Anderson, and R. R. Jones.
Data-parallel programming on MIMD computers. [EEE Transactions on Parallel ‘and Dis-
tributed Systems, 2(3):377-383, July 1991.

[41] Philip J. Hatcher and Michael J. Quinn. Data-Parallel Programming on MIMD Computers.
The MIT Press, Cambridge, MA, 1991.

[42] D. S. Hirschberg and L. L. Larmore. The least weight subsequence problem. SIAM Journal of
Computing, 16(4):628-638, 1987.

[43] Hu. Integer Programming and Network Flows. Addisson-Wesley, Reading, MA, 1969.

[44] S. S. Huang, H. Liu, and V. Viswanathan. Parallel dynamic programming. [EEE Transactions
on Parallel and Distributed Systems, 5(3):326-328, 1994,

[45] Ahmed Amine Jerraya, Hong Ding, Polen Kission, and Maher Rahmouni. Behavioral Synthesis
and Component Reuse with VHDL. Kluwer Academic Publishers, Norwell, MA, 1997.

[46] G. Karipys and V. Kumar. Efficient parallel formulations for some dynamic programming
algorithms. Technical Report TR 92-59, Comp. Sc. Department, University of Minnesota,
October 1992.

[47) R. M. Karp, R. E. Miller, and S. Winograd. The organization of computations for uniform
recurrence equations. Journal of the ACM, 14(3):563-590, 1967.

(48] Randy H. Katz. Contemporary Logic Design. Addisson-Wesley, Reading, Mass., 1994.

[49] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parailel Computing. Ben-
jamming Cummings Pub. Co., Redwood City, CA, 1994.

[50] S. Y. Kung. VLSI Array Processors. Prentice Hall, Englewood Cliffs, NJ, 1988.

[51] L. Lamport. The parallel execution of DO loops. Communications of the ACM, 17(2):83-93,
February 1974.

[52] H. Le Verge, C. Mauras, and P. Quinton. The ALPHA language and its use for the design of
systolic arrays. Journal of VLSI Signal Processing, 3(3):173-182, September 1991.

[53] G. Li and B. W. Wah. Systolic processing for dynamic programming problems. In Proc. of
International Conference on Parallel Processing, pages 434-441, 1985.

[54] H. H. Liu and Fu. K. S. VLSI arrays for minimum distance classification. In K. S. Fu, editor,
VLSI for Pattern Recognition and Image Processing. Springer-Verlag, Berlin, 1984.

[55] D. P. Lopresti. P-NAC: a systolic array for comparing nucleic acid sequences. [EEE Computer,
20(7):98-99, February 1987.

[56] D. E. Maydan, S. P. Amarasinghe, and M. L. Lam. Array data-flow analysis and its use in array
privatization. In Proceedings of ACM Conference on Principles of Programming Languages,
pages 2—-15, January 1993.

106 BIBLIOGRAPHY

[57] D. E. Maydan, J. L. Hennesy, and M. S. Lam. Effectiveness data dependence analysis. In
Proceedings of the NSF-NCRD Workshop on Advanced Compilation Technigques for Novel Ar-
chitectures, 1992.

[58] V. Mazlov. Lazy array data-flow dependence analysis. In Proceedings of ACM Symposium on
Principles of Programming Languages, pages 311-325, January 1994.

[59] S. Mazor. A Guide to VHDL. Kluwer, San Mateo, CA., 1993.

[60] D.I. Moldovan. ADVIS: A software package for the design of systolic arrays. IEEE Transactions
on Computer-Aided Design, CAD-6(1):33-40, 1987.

[61] R. K. Moore. A dynamic programming algorithm for the distance between two areas. [EEE
Transaction on Pattern Analysis and Machine Intelligence, PAMI-1, 1979.

[62] C. S. Myers and L. R. Rabiner. A level building dynamic time warping algorithm for connected
word recognition. [EEE Transaction on Acoustics, Speech and Signal Recognition, ASSP-29,
1981.

[63] John V. Oldfield and Richard C. Dorf. Field Programmable Gate Arrays: Reconfigurable Logic
for Rapid Prototyping and Implementation of Digital Systems. John Wiley & Sons, Inc., New
York, NY, 1995.

[64] W. Pugh. The omega test: a fast and practical integer programming algorithm for dependence
analysis. Communications of the ACM, 8:102-114, 1992.

[65] W. Pugh and D. Wonnacott. Nonlinear array dependence analysis. Technical Report CS-TR-
3372, Comp. Sc. Department, University of Maryland, November 1994.

[66] Michael J. Quinn and Philip J. Hatcher. On the utility of communication-computation over-
lap in data-parallel programs. International Journal on Parallel and Distributed Computing,
33(2):197-204, March 1996.

[67] P. Quinton. Automatic synthesis of systolic arrays from uniform recurrent equations. In Proc.
of the 11th Annual Symposium on Computer Architecture, pages 208-214, 1984.

(68] P. Quinton and I. Robert. Systolic Algorithms and Architectures. Prentice Hall, Englewood
Cliffs, NJ, 1991.

[69] L. R. Rabiner, A. E. Rosenberg, and S. E. Levinson. Considerations in dynamic time warping
algorithms for discrete word recognition. [EEE Transaction on Acoustics, Speech and Signal
Recognition, ASSP-26, 1978.

[70] S. V. Rajopadhye and R. M. Fujimoto. Synthesizing systolic arrays from recurrence equations.
Parallel Comnputing, 14:163-189, 1990.

[71] S. K. Rao and T. Kailath. Regular iterative algorithms and their implementation on processor
arrays. Proceeding of the IEEE, 76(3):259-269, 1988.

(72] Hudson B. Ribas. Automatic Generation of Systolic Programs From Nested Loops. PhD thesis,
Carnegie Mellon University, June 1990. Published as CMU-CS-90-143.

[73] J. Rose, A. El Gamal, and A. Sangiovanni-Vincentelli. Architecture of field programmable gate
arrays. Proceeding of the IEEE, 81(7):1013-1029, July 1993.

[74] W. Rytter. Efficient parallel computations for dynamic programming. Theoretical Computer
Science, 59:297-307, 1988.

[75] H. Sakoe and S. Chiba. Dynamic programming optimization for spoken word recognition. /EEE
Transaction on Acoustics, Speech and Signal Recognition, ASSP-26:43-49, 1978.

BIBLIOGRAPHY 107

[76] David Sankoff and Joseph B. Kruskal, editors. Time warps, string edits, and macromolecules:
The theory and practics of sequence comparison. Addison-Wesley, Reading, MA, 1983.

[77] M. Sniedovich. Dynamic Programming. Marcel Dekker, Inc., New York, NY, 1992.

[78] S. Triemberger. A reprogrammable gate array and applications. Proceeding of the IFEE,
81(7):1993, July 1030-1056.

[79] N. H. E. Weste, D. H. Burr, and B. D Ackland. A systolic processing element for speech
recognition. In [EEE International Solid State Circuit Conference, pages 274-275, 1982.

[80] D. Wilde. A library for doing polyhedral operations. Technical Report TI-785, IRISA, December
1993.

[81] Michael Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley, Read-
wood City, CA, 1996.

[82] Inc. Xilinx. The Programmmable Gate Array Data Book. Xilinix Inc., San Jose, Ca, 1992.

