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Resumen

En la industria, normalmente encontramos problemas donde la meta es optimizar si-
multáneamente dos o más funciones objetivo que usualmente están en conflicto entre
śı, tales como minimizar el tiempo y el costo de producción. A éstos se les conoce
como Problemas de Optimización Multi-objetivo (POMs). Diversas técnicas de pro-
gramación matemática han sido propuestas para resolver esta clase de problemas. Sin
embargo, dichas técnicas no se desempeñan bien en instancias con muchos óptimos
locales y usualmente están diseñadas para POMs con caracteŕısticas particulares.

Los Algoritmos Evolutivos Multi-Objetivo (AEMOs) son una alternativa que se
ha vuelto popular en años recientes para resolver POMs. Los AEMOs operan con
soluciones potenciales (llamadas individuos) que exploran el espacio de búsqueda
usando operadores inspirados en la evolución natural (selección, recombinación y
mutación).

La mayor parte de los AEMOs pueden clasificarse en tres categoŕıas de acuerdo
a su mecanismo de selección: basados en Pareto, basados en indicadores y basados
en descomposición. A pesar de que estos mecanismos son predominantes en la liter-
atura especializada, tienen varias desventajas como un desempeño pobre o costoso en
problemas con muchos objetivos o sensibilidad a los parámetros adoptados. Por lo
tanto, hay una necesidad de crear mecanismos de selección más eficaces que puedan
superar estas limitaciones y proporcionar soluciones robustas y eficientes.

En esta tesis se proponen dos nuevos mecanismos de selección alternativos que no
se encuentran en ninguna de las tres clases indicadas previamente. Estos mecanismos
se incorporan en AEMOs modernos y los algoritmos resultantes son validados con
respecto a AEMOs del estado del arte. Los resultados experimentales obtenidos de
dicha comparación indican que los mecanismos propuestos permiten resolver proble-
mas con una amplia variedad de caracteŕısticas y con más de tres objetivos.

Empleando el conocimiento obtenido de los mecanismos de selección propuestos,
se proponen posteriormente dos nuevos indicadores para evaluar el desempeño de los
AEMOs. El análisis experimental de dichos indicadores muestra que son capaces de
evaluar correctamente algunas caracteŕısticas cruciales de las aproximaciones gener-
ados por un AEMO.
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Abstract

In industry, we normally face problems in which the goal is to simultaneously optimize
two or more objective functions which are often in conflict with each other, such
as minizing both production time and cost. These are the so-called Multi-objective
Optimization Problems (MOPs). A variety of mathematical programming techniques
have been proposed to solve such problems. However, such techniques do not have a
good performance in instances with many local optimal and are usually designed to
deal with MOPs having particular features.

Multi-Objective Evolutionary Algorithms (MOEAs) are a choice for solving MOPs
that has become increasingly popular in recent years. MOEAs operate with potential
solutions (called individuals) which explore the search space using operators inspired
on natural evolution (selection, recombination and mutation).

Most MOEAs can be classified into one of the three following categories based on
their selection mechanism: Pareto-based, indicator-based and decomposition-based.
Although these mechanisms are predominantly used in the specialized literature, they
have several disadvantages, such as a poor or computationally expensive performance
in problems having many objectives or high sensitivity to the values of their param-
eters. Therefore, there is a need to propose new selection mechanisms with a higher
efficacy and that can overcome these limitations, thus providing robust and efficient
solutions.

In this thesis, we propose two new alternative selection mechanisms that do not
belong to any of the three previously indicated classes. Such mechanisms are incorpo-
rated into modern MOEAs and the resulting algorithms are validated with respect to
state-of-the-art MOEAs. Our experimental results indicate that the proposed mech-
anisms can properly deal with a wide variety of features and with problems having
more than three objectives.

Based on the knowledge obtained from the proposed selection mechanisms, we also
propose two new quality indicators to assess performance of MOEAs. The experi-
mental analysis of such indicators shows that they can correctly assess some crucial
features of the approximations generated by an MOEA.
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Chapter 1

Introduction

1.1 Motivation

Multi-objective optimization refers to minimizing or maximizing two or more ob-
jective functions that are usually in conflict (i.e., improving one objective causes
deterioration of another). Due to this conflict, the goal of a multi-objective optimiza-
tion problem (MOP) is to find the solutions that offer the best compromises among
objective functions. The set of solutions representing these compromises is called the
Pareto Optimal set, and its image (i.e., the corresponding objective function values)
is called the Pareto Optimal Front.

We can find numerous MOPs in the real world. For example, when designing a
product line, we seek to minimize the time and cost of production. Alternatively,
when planning water networks, we aim to minimize contaminants and freshwater
use [2]. Plenty of mathematical programming techniques have been proposed to solve
MOPs. However, most techniques can only find one Pareto-optimal solution that
usually depends on the chosen starting point. Moreover, they do not perform well
on problems with multiple local optima or are designed for problems with particular
characteristics, e.g., problems with linear or quadratic objective functions [3].

Multi-Objective Evolutionary Algorithms (MOEAs) are powerful alternative tech-
niques to solve MOPs. MOEAs are population-based approaches that try to find
optimal solutions by mimicking natural evolution. A general MOEA operates with
a set of individuals (called population) representing potential solutions to the given
problem. The population moves through the search space by employing evolutionary
operators such as selection, recombination, and mutation. MOEAs have become pop-
ular in recent years due to their ability to explore large and hard-to-navigate search
spaces, to their ease of use, and to the lack of need for gradient information. Further-
more, MOEAs can generate several elements of the Pareto Optimal Set in a single
run.

Most MOEAs are classified into three categories according to their selection mech-
anism [4]: Pareto-based, indicator-based, and decomposition-based approaches. Pa-
reto-based algorithms incorporate the concept of Pareto dominance in their selection

1



2 Chapter 1

process and are one of the most common types of MOEAs. However, one disadvan-
tage of this sort of selection mechanism is that it does not scale properly with the
number of objectives.

In indicator-based algorithms, the selection process is guided by a performance
indicator that measures the quality of an approximation set. The performance in-
dicator allows us to assess the convergence behavior of the algorithm during the
execution. Moreover, many indicators hold mathematical properties that make their
theoretical analysis easier. However, the computational cost often increases rapidly
with the number of dimensions, and the solutions’ distributions might depend on the
indicator’s settings.

Decomposition-based algorithms split the MOP into multiple single-objective prob-
lems. This selection process offers a flexible algorithmic framework and is usually not
expensive to compute. Nevertheless, they require a scalarizing function, which makes
assumptions about the geometrical shape of the Pareto front.

As we saw, these three types of algorithms present some limitations, such as poor
scaling with the number of objectives, sensitivity to their parameters, or the need
of prior knowledge. This work aims to study alternative selection techniques that
overcome these limitations. In particular, we will examine the properties of Molinet
Berenguer and Coello Coello’s scheme [5], which performs well in MOPs with diverse
characteristics. Moreover, using this knowledge, we will propose new competitive
selection schemes that can scale properly with the number of objectives and are
computationally efficient.

1.2 Research hypothesis

The hypothesis under which we will work is that it is possible to propose a novel
selection scheme for MOEAs that requires minimal extra information for the search,
is computationally efficient, has good performance (with respect to state-of-the-art
algorithms in the area), and can scale properly as the number of objective functions
increases. This new scheme could be based on the method reported in [5].

1.3 Objectives

General Objective

The general objective of this work is to contribute to extending the state-of-the-art
of alternative selection schemes that are not based on Pareto optimality, performance
indicators, or decomposition.

Specific Objectives

1. To study state-of-the-art alternative selection schemes of multi-objective evolu-
tionary algorithms to identify their advantages and disadvantages.

CINVESTAV-IPN Computer Science Department



Introduction 3

2. To propose at least one multi-objective evolutionary algorithm with a new al-
ternative selection scheme.

3. To evaluate the proposed algorithm’s performance against state-of-the-art multi-
objective evolutionary algorithms using problems and performance indicators
reported in the specialized literature.

1.4 Publications

The following publications were produced during the development of the thesis:

Conference publications

• D. C. Valencia-Rodŕıguez and C. A. Coello Coello. A novel performance indi-
cator based on the linear assignment problem. In Michael Emmerich, André
Deutz, Hao Wang, Anna V. Kononova, Boris Naujoks, Ke Li, Kaisa Miettinen,
and Iryna Yevseyeva, editors, Evolutionary Multi-Criterion Optimization: 12th
International Conference, EMO 2023, pages 348–360. Springer Nature Switzer-
land, 2023.

• D. C. Valencia-Rodŕıguez and C. A. Coello Coello. Multi-Objective Evolution-
ary Algorithm Based on the Linear Assignment Problem and the Hypervolume
Approximation Using Polar Coordinates (MOEA-LAPCO). In G. Rudolph,
A. V. Kononova, H. Aguirre, P. Kerschke, G. Ochoa, and T. Tušar, editors,
Parallel Problem Solving from Nature – PPSN XVII, pages 221–233, Cham,
2022. Springer International Publishing.

• D. C. Valencia-Rodŕıguez and C. A. Coello Coello. An Ensemble of Scalarizing
Functions and Weight Vectors for Evolutionary Multi-Objective Optimization.
In 2021 IEEE Congress on Evolutionary Computation (CEC’2021), pages 2459–
2467. IEEE Press, 2021.

Journal publications

• Diana Cristina Valencia-Rodŕıguez and Carlos A. Coello Coello. Influence of
the Number of Connections Between Particles in the Performance of a Multi-
Objective Particle Swarm Optimizer. Swarm and Evolutionary Computation,
77(101231), March 2023.

1.5 Thesis structure

The rest of this thesis is organized as follows. Chapter 2 provides basic mathematical
concepts associated with multi-objective optimization and a brief introduction to
MOEAs.

CINVESTAV-IPN Computer Science Department



4 Chapter 1

Chapter 3 describes the selection scheme proposed by Molinet Berenguer and
Coello Coello [5], which is the basis of this thesis. Additionally, this chapter examines
the related work linked to this scheme.

Chapter 4 focuses on the combination of different scalarizing functions and weight
vectors in the Molinet Berenguer and Coello Coello selection scheme. For this pur-
pose, a novel ensemble algorithm is proposed, which combines the best-performing
scalarizing functions and weight vectors. Furthermore, a performance evaluation of
this algorithm is presented. This chapter also proposes an integration of the hypervol-
ume indicator in the Molinet Berenguer and Coello Coello selection scheme to address
some of its disadvantages. The resulting selection mechanism is incorporated into an
MOEA, and its performance is evaluated experimentally.

Chapter 5 introduces a new performance indicator based on the selection scheme
studied in this thesis. This new indicator is experimentally evaluated, and some
detailed examples of its behavior are presented. In addition, a diversity indicator
is proposed using an equivalent procedure. This new indicator is experimentally
evaluated in artificial Pareto fronts and approximation sets.

Chapter 6 presents the conclusions of this thesis and some possible paths for future
research.

Appendix A describes the test suites used in this thesis for the performance eval-
uation. Furthermore, Appendix B presents some additional experimental results of
the thesis.

CINVESTAV-IPN Computer Science Department



Chapter 2

Background

In this chapter, we introduce the necessary background to understand this thesis.
Section 2.1 describes the main concepts associated with multi-objective optimization.
Section 2.2 presents the characteristics of multi-objective evolutionary algorithms,
how to evaluate them, and some examples. Finally, Section 2.3 summarizes the
contents of this chapter.

2.1 Multi-objective Optimization

Optimization involves finding feasible solutions corresponding to the highest or lowest
values of one or more objectives [3]. If there is only one objective function to consider,
the process of finding the optimal solution is known as single-objective optimization.
On the other hand, if two or more objective functions are involved, it is referred to as
multi-objective optimization. The main difference between single- and multi-objective
optimization is that, in the latter, different solutions may produce conflicting scenarios
among objectives. A solution that is the best for one objective could be the worst for
another. As a result, multi-objective optimization aims to identify the best possible
trade-offs among the objective functions.

We commonly find numerous multi-objective optimization problems in the real
world, such as industrial applications, transport engineering, and medicine [10]. There-
fore, the study of multi-objective optimization problems and how to solve them has
become a very relevant research area.

This section will introduce the most essential theory associated with multi-objective
optimization. We start by presenting the formal definition of an optimization prob-
lem (Subsection 2.1.1). Then, we introduce the optimality notion for multi-objective
optimization problems (Subsection 2.1.2) and the concept of Pareto dominance (Sub-
section 2.1.3). After that, we introduce the most commonly used reference points
(Subsection 2.1.4). Finally, we present scalarizing functions (Subsection 2.1.5) and
weight vectors (Subsection 2.1.6).

5



6 Chapter 2

2.1.1 Multi-objective optimization problem

A multi-objective optimization problem involves optimizing two or more objective
functions that are usually in conflict (i.e., improving one objective causes the de-
terioration of another). Due to this conflict, an optimal solution for one objective
may not be optimal for the others. Therefore, multi-objective optimization aims to
find solutions representing the best possible trade-offs among the objective functions.
The general form of a multi-objective optimization problem (MOP) can be stated as
follows (without loss of generality, we assume a minimization problem) [10]:

Minimize f(x) = [f1(x), . . . , fm(x)]
T (2.1)

subject to gi(x) ≤ 0 i = 1, . . . , p;

hj(x) = 0 j = 1, . . . , q.

An MOP involves numerical quantities that are both controllable and unknown,
named decision variables. To solve the problem, the value of these variables must
be determined. A vector of n decision variables is represented by

x = [x1, x2, . . . , xn]
T ,

where x belongs to the decision variable space (D).
Moreover, MOPs are often limited by unique features of the environment or avail-

able resources. These limitations are called constraints, which describe the relation-
ships among constants and decision variables involved in the problem. The MOP
comprises p inequality constraints (expressed as gi(x) ≤ 0, i = 1, . . . , p) and q equal-
ity constraints (expressed as hj(x) = 0, j = 1, . . . , q). When a solution satisfies
all constraints, it is named a feasible solution. Otherwise, it is called an infeasible
solution. Additionally, the set of all feasible solutions is known as the feasible region
(S).

An MOP also consists of m objective functions, which are computable functions
of the decision variables and help to determine the solutions’ quality. The objective
functions form a multi-dimensional space, called objective function space (Z). Each
value in the decision space has a corresponding point in the objective function space.
Therefore, the mapping is from an n-dimensional decision vector to an m-dimensional
objective vector (see Fig. 2.1). A vector of m objective functions is represented by

f(x) = [f1(x), . . . , fm(x)]
T .

2.1.2 Optimality notion

Multiple optimal solutions may arise in an MOP due to conflicting objective func-
tions. Therefore, the notion of optimum changes as we seek solutions that offer the
best possible compromises. The most accepted notion of optimum is the so-called
Pareto Optimality, originally proposed by Francis Ysidro Edgeworth and indepen-
dently proposed in a more general way by Vilfredo Pareto [10]. The formal definition
is as follows:

CINVESTAV-IPN Computer Science Department



Background 7

Figure 2.1: Mapping of a multi-objective problem

Definition 2.1 ([10]). A solution x ∈ S is said to be Pareto Optimal with respect
to S if and only if there is no y ∈ S, such that fi(x) ≤ fi(y) for all i = 1, . . . ,m, and
fj(x) < fj(y) for at least one j ∈ {1, . . . ,m}.

In other words, a solution is Pareto Optimal if no solution in the feasible region
is better in at least one objective and not worse in all objectives. When addressing
a MOP, the main goal is to identify the Pareto Optimal solutions, which form the
so-called Pareto Optimal Set. Its formal definition is the following:

Definition 2.2. The Pareto Optimal Set PS∗ is defined by:

PS∗ = {x ∈ S | x is Pareto Optimal}

Moreover, the image of the Pareto Optimal Set is called Pareto Front, and is
formally defined as follows:

Definition 2.3. The Pareto Front PF∗ is defined by:

PF∗ = {f(x) ∈ IRm | x ∈ PS∗}

2.1.3 Concept of Pareto dominance

Most multi-objective optimization algorithms use the concept of Pareto dominance
to establish a partial order among solutions. Its formal definition is the following:

Definition 2.4 ([3]). A solution x1 is said to dominate another solution x2 (denoted
as x1 ≺ x2 ), if both conditions 1 and 2 are true:
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Figure 2.2: Example of dominance

1. The solution x1 is not worse than x2 in all objectives, (fi(x1) ≤ fi(x2) for all
i = 1, 2, . . . ,m).

2. The solution x1 is strictly better than x2 in at least one objective, (fj(x1) <
fj(x2) for at least one j ∈ {1, 2, . . .m}).

In other words, a solution x1 is said to dominate another solution x2 if it is at
least as good as x2 in all objectives and better than x2 in at least one objective.
When comparing the dominance relation between two solutions, x, and y, there are
three possible outcomes:

1. Solution x dominates solution y.

2. Solution x is dominated by solution y.

3. Solutions x and y do not dominate each other.

The previous three cases are illustrated in Figure 2.2, where we consider a two-
objective minimization problem with five solutions. Point p1 dominates points p3 and
p4, as its objective values are better. Similarly, point p5 is dominated by point p2
because the former’s objectives have a higher value. Lastly, points p1 and p2 do not
dominate each other.

Other relationships among solutions used in multi-objective optimization are weak
dominance and strict dominance. Their formal definitions are the following:

Definition 2.5 ([1]). A solution x1 is said to weakly dominate another solution x2

(denoted as x1 ⪯ x2 ), if x1 is not worse than x2 in all objectives, or fi(x1) ≤ fi(x2)
for all i = 1, 2, . . . ,m.

Definition 2.6 ([1]). A solution x1 is said to strictly dominate another solution x2

(denoted as x1 ≺≺ x2 ), if x1 is better than x2 in all objectives, or fi(x1) < fi(x2)
for all i = 1, 2, . . . ,m.
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2.1.4 Reference points

When dealing with MOPs, two reference points are crucial in determining the bound-
aries of the Pareto front: the ideal and Nadir objective vectors. The ideal objective
vector sets the lower limit for each objective function within the feasible region. More-
over, this vector is a non-existent solution as its existence would indicate the absence
of conflict among objective functions. Its formal definition is as follows:

Definition 2.7 ([11]). The components of the ideal objective vector z∗ ∈ IRm are
obtained by minimizing each of the objective functions individually subject to the
feasible region. That is, each component z∗i is defined as:

z∗i = min
x∈S

fi(x),

for all i = 1, . . . ,m.

On the other hand, the Nadir objective vector represents the upper limit in the
Pareto Optimal Set. The formal definition of this vector is the following:

Definition 2.8. The components of the Nadir objective vector znad ∈ IRm are ob-
tained by maximizing each of the objective functions individually subject to the
Pareto Optimal Set. That is, each component znadi is defined as:

znadi = max
x∈PS∗

fi(x),

for all i = 1, . . . ,m.

The ideal and Nadir objectives vectors can be used to normalize the objectives
using the following expression [3]:

fnorm
i =

fi − z∗i
znadi − z∗i

. (2.2)

2.1.5 Scalarizing functions

A scalarizing function s : IRn → IR transforms a multi-objective problem into a
single-objective problem of the following form [12]:

Minimize s(f ′(x);w) (2.3)

subject to x ∈ S,

where w ∈ IRm is a predefined weight vector, f ′(x) = f(x) − z, and z ∈ IRm is a
reference point. The weight vector must satisfy that wi ≥ 0 for all i = 1, . . . ,m, and∑m

i=1wi = 1. Moreover, we assume that the ideal point is used as the reference point.
Table 2.1 displays the information of the scalarizing functions used in this work where
θ ∈ IR and α ∈ IR+.
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Table 2.1: Scalarizing functions used in this work

Acronym Name Formulation Suggested
parameters

Reference

TCH Tchebycheff
function

maxi{wi|f ′
i |} - [13]

ATCH Augmented
Tchebycheff

maxi{wi|f ′
i |}+ α

∑
i |f ′

i | α ∈ [0.001, 0.01] [14]

ASF Achievement
Scalarizing
Function

max
{

f ′
i

wi

}
- [11]

AASF Augmented
Achievement
Scalarizing
Function

max
{

f ′
i

wi

}
+ α

∑
i
f ′
i

wi
α ≈ 10−4 [11]

PBI Penalty
Boundary
Intersection

d1 + θd2
where d1 :=

∣∣∣f ′ · w
||w||

∣∣∣
and d2 :=

∥∥∥f ′ − d1
w

||w||

∥∥∥
θ = 5 [15]

AGSF2 Artificially
Generated
Scalarizing
Function 2

maxi

{∣∣∣wi − f ′
i

wi
− f ′

i

∣∣∣} - [16]

WS Weighted
Sum

∑
i wif

′
i - [17]

2.1.6 Weight vectors

In many cases and under certain assumptions, solving problem (2.3) leads to a Pareto
Optimal solution. Therefore, we could approximate the Pareto Optimal Set if we
have a set of uniformly distributed weight vectors. A popular technique for creating
weight vectors is the Simplex Lattice Design (SLD) [18]. This method generates a
series of vectors evenly spaced at intervals of δ = 1/H within a unit simplex, where
the H parameter represents the number of divisions along each objective. Therefore,
the number of vectors generated with SLD is N = CH+m−1

m−1 for a problem with m
objectives. Figure 2.3 shows an example of a set of weight vectors generated with the
SLD method.

One drawback of the SLD method is that it produces many vectors at the bound-
ary, i.e., vectors with wi = 0 for at least one element wi [19]. Additionally, the number
of vectors increases non-linearly with the number of objectives. For example, a prob-
lem with eight objectives and eight divisions requires 6435 points. To address these
disadvantages, other approaches to generate weight vectors have been proposed. Deb
and Jain proposed a method that employs two layers of vectors: boundary and inside
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Figure 2.3: Weight vectors generated using the Simplex Lattice Design for a three-
objective problem with H = 4.

layers [20]. The boundary is generated using the traditional SLD method. While the
vectors of the inside layer are generated as follows [19, 20]:

wi = (wi + 1/m)/2 for i = 1, 2, . . . ,m. (2.4)

This transformation modifies the limits of the vectors to 1/2m ≤ wi ≤ 1/2+1/2m
for i = 1, 2 . . . ,m, pushing the vectors to the center of the simplex. Figure 2.4 shows
an example of a set of weight vectors generated using the two-layered approach. For
this illustration, we employ a three-objective problem. However, the two-layered
method is commonly used in problems with eight or more objectives.

In 2015, Molinet Berenguer and Coello Coello proposed a method that overcomes
the drawbacks mentioned earlier [5]. Their approach generates weight vectors by
combining uniform design with the Hammersley method. The Hammersley method
computes a set of points with minimal discrepancy (a numerical measure of scattered-
ness) at a low computational cost. This method relies on the p-adic representation
of natural numbers, where every positive integer m can be uniquely expressed using
a prime base p ≥ 2 as follows:

m =
r∑

i=0

bi × pi, 0 ≤ bi ≤ p− 1, i = 0, . . . , r, (2.5)

where pr ≤ m ≤ pr+1. Therefore, any integer m ≥ 1, whose representation is given
by (2.5), can be expressed as:

yp(m) =
r∑

i=0

bi × p−(i+1), (2.6)
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Figure 2.4: Weight vectors generated using a two-layered approach for a three-
objective problem. The number of divisions is set to H = 2 for the boundary layer
and H = 1 for the inside layer.

where yp(m) ∈ (0, 1) is referred to as the radical inverse of m base p. Accordingly,
the set of points generated with the Hammersley method consists of n points given
by

xi =

[
2i− 1

2n
, yp1(i), . . . , ypm−1(i)

]T
i = 1, . . . , n (2.7)

where m ≥ 2 and p1, . . . , pm−1 are distinct prime numbers.

On the other hand, uniform design is a technique that selects a set of points to
cover a region of interest efficiently. This method requires a set of points with slight
discrepancy. Hence, Molinet Berenguer and Coello Coello suggested using the Ham-
mersley method to generate low-discrepancy points U = {ui = [ui1, . . . , ui(m−1)]

T |
i = 1, . . . , n} ⊂ [0, 1]m−1 and then applying the following uniform design transforma-
tion:

wti = (1− u
1

m−i

ti )
i−1∏
j=1

u
1

m−j

tj , i = 1, . . . ,m− 1, (2.8)

wtm =
m−1∏
j=1

u
1

m−j

tj , t = 1, . . . , n. (2.9)

Figure 2.5 illustrates a set of points generated using uniform design with Ham-
mersly’s method.
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Figure 2.5: Weight vectors generated using the uniform design with Hammersly’s
method.

2.2 Multi-objective evolutionary algorithms

Evolutionary Algorithms (EAs) are search heuristics that imitate neo-Darwinian evo-
lutionary theory [21] to solve optimization problems. EAs have gained popular-
ity in tackling complex multi-objective optimization problems (the so-called Multi-
Objective Evolutionary Algorithms (MOEAs)) that exact methods can’t properly
handle. The reason for their popularity is that MOEAs have inherent parallelism,
the ability to explore intractable large spaces, and a framework that is easy to un-
derstand. Furthermore, these algorithms can generate several elements of the Pareto
Optimal Set in a single run.

MOEAs use a population (set) of individuals (decision vectors) to search for opti-
mal solutions adopting natural evolution operators such as selection, recombination,
and mutation. In addition, many MOEAs use an external archive to store non-
dominated solutions found in the search process. Also, they adopt a mechanism
called density estimator which is responsible for maintaining diversity in the popu-
lation. The behavior of an MOEA is determined by the choice of each operator, the
effectivity of the density estimator, the use of an external archive, and the way in
which each solution is inserted into the archive.

In the remainder of this section, we will explain the general framework of MOEAs
(Subsection 2.2.1). Then, we will describe different performance indicators to eval-
uate MOEAs (Subsection 2.2.2) and some commonly used density estimators (Sub-
section 2.2.3). Finally, we will introduce different selection mechanisms adopted by
MOEAs (Subsection 2.2.4).
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2.2.1 General framework

An MOEA involves a population of individuals (or potential solutions to a specific
problem) that evolve through the use of different evolutionary operators to produce
individuals with better characteristics. The three principal evolutionary operators of
MOEAs are the following [22, 21]:

1. Mutation operator. It corresponds to an erroneous self-replication of indi-
viduals. Thus, it operates on a single individual to produce a new one. The
main purpose of this operator is to introduce diversity into the population while
preserving some of the individual’s information. An example of a mutation op-
erator is polynomial-based mutation (PM) [23].

2. Recombination operator. It combines two or more individuals (named par-
ents) and produces one or more individuals (named offspring). This operator
aims to exchange information between individuals of a population and uses this
knowledge to generate better solutions. Simulated binary crossover (SBX) [23]
is an example of this operator.

3. Selection operator. It plays a crucial role in evolution by picking individuals
with superior fitness values to survive and reproduce. The goal of this operator
is to guide the population towards better solutions. In MOEAs, this selection
operator is essential because more than one solution is optimal. Therefore, we
need to employ alternative methods to evaluate the fitness of individuals instead
of relying solely on objective function values.

We denote P (t) = {a1, . . . ,aµ} as a population at generation t, and A as the ex-
ternal archive that contains the non-dominated solutions found so far. Therefore, the
general framework of an MOEA is shown in Algorithm 1. First, the population P (0)
is initialized and assessed. Next, the external archive A is initialized with the non-
dominated solutions in P (0). In the main loop of the MOEA, a set of new offspring
P ′′(t) is created through recombination and mutation of the parent population P (t).
The resulting population P ′′(t) is evaluated in the subsequent step, and the external
archive A is updated. Then, the fittest solutions are selected from both the parent
and offspring populations (i.e, from P ′′(t) ∪ P (t)). Finally, after the loop, either the
last population or the external archive is returned.

The result of an MOEA is called an Approximation Set, which is formally defined
as follows:

Definition 2.9 ([24]). Let A ⊆ Z be a set of objective vectors. A is called an
approximation set if any element of A does not weakly dominate any other objective
vector in A.
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Algorithm 1 General framework of an MOEA

1: t := 0
2: Initialize P (0)
3: Evaluate P (0)
4: Initialize A with the non-dominated solutions from P (0)
5: while stopping criterion is not fulfilled do
6: P ′(t) := recombine P (t)
7: P ′′(t) := mutate P ′(t)
8: Evaluate P ′′(t)
9: Update A using P ′′(t)
10: P (t+ 1) := select from P ′′(t) ∪ P (t)
11: t := t+ 1
12: end while
13: return Pt or A

2.2.2 Quality indicators

The performance of an MOEA is determined by the quality of the approximation set
and the computational resources needed to generate it [24]. Regarding the computa-
tional resources, monitoring the number of fitness evaluations or the overall run-time is
common in single- and multi-objective optimization. However, this situation changes
when it comes to quality. In a single-objective context, the quality of a solution is
determined by the objective function: a smaller or larger value indicates a better
solution. On the other hand, in a multi-objective context, we rely on the dominance
criterion to compare solutions. However, this criterion is ineffective when there are
incomparable solutions. As a result, it is unclear what quality means concerning
approximations of the Pareto optimal set.

We can make some statements about the quality of approximation sets compared
to others. In particular, we can distinguish five relations between two approximation
sets shown in Table 2.2. On the other hand, according to Li and Yao [25], we can
break down the quality of an approximation set into four aspects:

1. Convergence. It refers to the closeness of the set to the Pareto front.

2. Coverage. It considers the region covered by the approximation set.

3. Uniformity. It refers to how even the solution distribution is in the set. An
equidistant spacing among solutions is desirable.

4. Cardinality. It refers to the number of solutions in the set.

We can use mathematical expressions (called quality indicators) to evaluate these
four aspects in an approximation set. The formal definition of a quality indicator is
the following:
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Table 2.2: Preference relations on Pareto front approximations [1]

Relation Symbol Description
Strictly
dominates

A ≺≺ B Every b ∈ B is strictly dominated by at
least one a ∈ A

Dominates A ≺ B Every b ∈ B is dominated by at least one
a ∈ A

Better A◁B Every b ∈ B is weakly dominated by at
least one a ∈ A and A ̸= B

Weakly dom-
inates

A ⪯ B Every b ∈ B is weakly dominated by at
least one a ∈ A

Incomparable A∥B Neither A weakly dominates B nor B
weakly dominates A

Definition 2.10 ([24]). An m-ary quality indicator I is a function I : Ωm → IR,
which assigns each vector (A1, A2, . . . , Am) of m approximation sets a real value
I(A1, . . . , Am).

In this work, we are interested in unary quality indicators, i.e., whenm = 1. These
indicators can be Pareto-compliant, weakly Pareto-compliant, or none of the above.
The formal definitions of the first two concepts are shown below, assuming that a
greater indicator value corresponds to a higher quality.

Definition 2.11 ([26]). Given two approximation sets A and B, a unary indicator I
is ◁-compliant (Pareto-compliant) if A◁B ⇒ I(A) > I(B).

Definition 2.12 ([26]). Given two approximation sets A and B, a unary indicator I
is weakly ◁-compliant (weakly Pareto-compliant) if A◁B ⇒ I(A) ≥ I(B).

In the rest of the section, we will introduce some of the most important unary
indicators reported in the literature.

Hypervolume

The hypervolume (HV) [27] measures the size of the objective space dominated by a
solution set A given a reference point z. The HV indicator is defined as follows:

HV (A, z) = Λ

(⋃
a∈A

{x|a ≺ x ≺ z}
)

where Λ denotes the Lebesgue measure and z ∈ Rm might be dominated by all the
elements in A. Higher values of this indicator are preferred.

An advantage of the HV is that its maximization leads to the Pareto-optimal
set. Moreover, it is the only unary indicator that is Pareto-compliant. However, a
disadvantage of the HV is that its computational cost grows exponentially with the
number of objectives.
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S-energy

S-energy is a performance indicator that measures the uniform distribution of a set in
a d-dimensional manifold. Given an approximation set A ⊂ IRm, s-energy is defined
as [28]:

Es(A) =
∑
x∈A

∑
y∈A
y ̸=x

ks(x,y), (2.10)

where

ks(x,y) =
{ ||x− y||−s, s > 0
− log ||x− y||, s = 0

(2.11)

An advantage of the s-energy indicator is that its minimization leads to asymptotically
uniformly distributed solutions [29]. Therefore, lower values of this indicator are
preferred.

R2 indicator

Given an approximation set A ⊂ IRm and a set of utility functions U , the R2 indicator
is defined as follows [30]:

R2(A,U) =
1

|U |
∑
u∈U

min
a∈A
{u(a)}. (2.12)

The R2 indicator is weakly Pareo-compliant, scaling-dependent, and has a low com-
putational cost [31]. Moreover, lower values of this indicator are preferred. Many
possibilities exist regarding the choice of utility functions, such as TCH, ASF, or PBI
(see Table 2.1).

Inverted generational distance

Given an approximation set A ⊂ IRm and a reference set Z ⊂ IRm, the inverted
generational distance (IGD) is defined as follows [32]:

IGD(A,Z) =
1

|Z|

(∑
z∈Z

d(z, A)p

)1/p

(2.13)

where p > 0 and d(z, A) = mina∈A

√∑m
i=1(zi − ai)2. In other words, the IGD

indicator measures the average distance between each reference point and its nearest
solution. A small value of IGD indicates good distribution and convergence of an
approximation set.
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Modified inverted generational distance

The modified inverted generational distance (IGD+) [33] measures the average dis-
tance between a reference set and a Pareto front approximation. Given an approxi-
mation set A ⊂ IRm and a reference set Z ⊂ IRm, the IGD+ is defined as follows:

IGD+(A,Z) =
1

|Z|
∑
z∈Z

min
a∈A

d+(a, z) (2.14)

where d+(a, z) =
√∑m

i=1(max{ai − zi, 0})2. The IGD+ indicator is weakly Pareto-
compliant and allows measuring diversity and convergence of an approximation set.
Lower values of this indicator are preferred.

2.2.3 Density estimators

Density estimators keep MOEAs from converging to a single solution by maintain-
ing the diversity of solutions in a population. Some of the most common density
estimators are the following:

• Fitness sharing [34, 35]: The fitness sharing (or niching) estimator was in-
troduced by Goldberg in 1987 to promote the solutions’ distribution in single-
objective optimization and was later adopted by Fonseca and Fleming for multi-
objective optimization [34, 36]. This estimator uses a radius (ϕshare) to define
the niche of each individual. Then, an individual’s density is calculated us-
ing a sharing function that considers the sum of distances from the reference
individual to each solution within the niche.

• Adaptive grid [37, 38]. This estimator places the solutions in a grid based on
its objective values and computes the number of elements in each grid location.
Accordingly, a solution in a grid location with fewer elements is preferred. The
Pareto Archived Evolution Strategy (PAES) was the first MOEA that adopted
the adaptive grid [37].

• Crowding [39]. The crowding estimator was proposed by Deb et al. in 2000 to
assess the density of solutions around a particular individual [39]. It is set as the
estimation of the perimeter of the cuboid formed by the two nearest neighbors
of a solution.

• Clustering [40, 41]. This estimator uses algorithms (usually deterministic) to
create a fixed number of solution groups or clusters. The density of a solution
is determined by its distance from other solutions in the same cluster. An
example of an MOEA that employs the clustering method is the Strength Pareto
Evolutionary Algorithm (SPEA) [40].

• Parallel Coordinates [42]. This indicator represents a graph in a digital
image, where a pixel specifies the level of overlapping line segments. Hence, the
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individuals that cover a larger area of the image have a higher probability of
survival. The Multi-objective Optimizer based on Value Path (MOVAP) [42] is
an example of an MOEA that uses this density estimator.

• Entropy [43, 44]. In this estimator, the concept of entropy is taken from
information theory to measure the distribution of solutions based on the amount
of neighborhood information.

2.2.4 Classification based on the selection scheme

In 1984, David Schaffer presented the first implementation of a MOEA named Vector
Evaluated Genetic Algorithm (VEGA) [45]. Since then, a wide variety of MOEAs
with distinct characteristics have been proposed. They were initially classified as
Pareto-based and non-Pareto-based methods [46]. However, more recent variants are
classified into three prominent families based on their selection scheme [46, 4]:

1. Pareto-based. The algorithms in this class incorporate the concept of Pareto
dominance to select solutions, usually through non-dominated sorting and den-
sity estimators. For several years, many MOEAs have employed the Pareto-
based selection mechanism and have effectively addressed MOPs with two or
three objective functions [41, 39]. However, when solving problems with four
or more objectives, the MOEAs’ performance deteriorates since the selection
pressure dilutes. This dilution is caused by the quick growth of non-dominated
solutions as the number of objectives increases, making Pareto-based selection
equivalent to choosing solutions randomly [47, 48]. Two of the most represen-
tative algorithms in this class are NSGA-II [39] and SPEA2 [41].

2. Indicator-based. These MOEAs use a performance indicator to guide the
selection process. The underlying idea is to optimize the indicator value of
the population throughout the evolutionary process, transforming the MOP
into a single-objective optimization problem [49]. The hypervolume is the most
commonly used performance indicator due to its mathematical properties, such
as Pareto compliance [50, 51]. However, its computational cost increases ex-
ponentially with the number of objectives. For this reason, other indicators
like R2 have been employed to guide MOEAs despite their theoretical limi-
tations [52]. In addition to the high computational cost, the approximation
sets found by indicator-based MOEAs are strongly related to the indicators’
preferences. IBEA [50] and SMS-EMOA [51] are two examples of this class of
MOEAs.

3. Decomposition-based. This class of MOEAs transforms the MOP into mul-
tiple single-objective problems, each targeting different segments of the Pareto
front. A distinct parametrization (or weighting) of a scalarizing function defines
every subproblem. Therefore, a single run of a decomposition-based MOEA
could lead to the subproblems’ solutions and, consequently, to approximating
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the Pareto front [53]. However, the effectiveness of these algorithms depends
heavily on the adopted scalarizing function and the method used to generate
weights [46]. Moreover, a uniform distribution of weight vectors does not guar-
antee a uniformly distributed Pareto front [53]. MOGLS [54] and MOEA/D [15]
are two remarkable examples of this class of MOEAs.

Many drawbacks of the three previous selection schemes have been addressed. For
instance, low-cost approximations of the hypervolume have been suggested [55, 56].
Nevertheless, the problems have not been fully solved. This thesis explores alternative
selection schemes that are not part of the three existing families previously described.
In particular, we study here the work proposed by Molinet Berenguer and Coello
Coello [5] that transforms the selection process into a Linear Assignment Problem
(see Chapter 3).

2.3 Summary

This chapter presented the most essential aspects of multi-objective optimization and
MOEAs. First, the formal definition of an MOP was presented. Then, we introduced
the most common optimality notion of an MOP (Pareto optimality) and described
the concept of Pareto dominance. After that, we also described the Nadir and ideal
objective vectors, two crucial reference points in an MOP. In addition, we presented
the scalarizing functions that transform an MOP into a single-objective problem using
a weight vector. The methods for generating these vectors were described later on.

Regarding MOEAs, we first introduced their general framework in conjunction
with their principal evolutionary operators: mutation, recombination, and selection.
Then, we presented some quality indicators that determine the quality of an approxi-
mation set. Additionally, we introduced the most frequently used density estimators.
Finally, we showed the three most common families of MOEAs according to their
selection scheme: Pareto-based, Indicator-based, and Decomposition-based.
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Chapter 3

A selection scheme based on the
Linear Assignment Problem

The selection mechanism based on the linear assignment problem is considered an
alternative selection scheme because it does not use Pareto optimality information to
select new individuals. Its core idea is transforming the MOEA’s selection process
into a linear assignment problem. The algorithms that incorporate this selection
scheme have been found to obtain good approximations of the Pareto Optimal Front
without relying on any extra mechanism. This selection mechanism it is the object
of study of this thesis.

This chapter aims to explain in detail the linear assignment problem selection
scheme. For this purpose, Section 3.1 introduces what an assignment is, and Sec-
tion 3.2 formally defines a linear assignment problem. Section 3.3 describes a method
to solve this problem called the Kuhn-Munkres algorithm. Then, Section 3.4 intro-
duces the selection scheme, and Section 3.5 discusses some algorithms that incorporate
it. Finally, Section 3.6 provides a summary of the chapter.

3.1 Assignment problem

Assignment problems aim to determine the optimal way to assign n items (jobs or
students) to n other items (machines or tasks). Formally, an assignment can be
described as a bijective mapping φ between two finite sets U and V of n elements [57].
The mapping can be represented as a permutation φ with the form(

1 2 . . . n
φ(1) φ(2) . . . φ(n)

)
,

where 1 is mapped to φ(1), 2 is mapped to φ(2), ..., and n is mapped to φ(n).

Every permutation φ of the set {1, 2, . . . , n} corresponds to an n×n permutation
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matrix Xφ = (xij) with

xij =

{
1 if j = φ(i),

0 otherwise
(3.1)

which satisfies the linear system of equations

n∑
j=1

xij = 1 (i = 1, 2, . . . , n), (3.2)

n∑
i=1

xij = 1 (j = 1, 2, . . . , n). (3.3)

The set of equations (3.2) and (3.3) show that each permutation matrix must have
one element assigned to each row and column, resulting in a sum of 1 for each. For
instance, the assignment represented by the permutation(

1 2 3 4
3 4 1 2

)
, (3.4)

corresponds to the following permutation matrix

Xφ =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 .

Bipartite graphs can also be used to represent assignments. A graphG = (U, V ;E)
is called bipartite if its vertex set E can be partitioned into two non-empty subsets,
U and V , such that each edge of G has one end in U and the other in V [58]. A
matching M in G is a subset of the edges E such that every vertex of G meets at
most one edge of the matching. Moreover, a matching M is called a perfect matching
if every vertex of graph G corresponds to an edge in M , and the number of vertices
in U and V equals n [57]. Therefore, any assignment problem can be depicted as a
perfect matching. Figure 3.1 displays the bipartite graph of the assignment in (3.4).

3.2 Linear sum assignment problem

The linear sum assignment problem (or linear assignment problem) involves assigning
n agents to n tasks based on a cost matrix C = (cij), where each cell cij represents
the cost of assigning the ith agent to the jth task. The goal is to find the assignment
that results in the lowest sum of costs. For the rest of this thesis, we will use the
acronym LAP to refer to the linear sum assignment problem.
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Figure 3.1: Assignment represented by a bipartite graph

Given a cost matrix C = (cij) and a binary matrix X = (xij) such that

xij =

{
1 if row i is assigned to column j,

0 otherwise.

A LAP can be modeled as

min
n∑

i=1

n∑
j=1

cijxij (3.5)

s.t.
n∑

j=1

xij = 1 (i = 1, 2, . . . , n), (3.6)

n∑
i=1

xij = 1 (j = 1, 2, . . . , n), (3.7)

xij ∈ {0, 1} (i, j = 1, 2, . . . , n). (3.8)

Note that the resulting matrix X is a permutation matrix.

3.3 Kuhn-Munkres algorithm

The Kuhn-Munkres algorithm, or the Hungarian algorithm, is a well-known method
for solving LAPs. Kuhn initially introduced it in 1955 [59] , and Munkres later en-
hanced it in 1957 [60]. Although its initial computational complexity was O(n4), the
most efficient implementation is now O(n3) [57]. The Kuhn-Munkres algorithm is
described below.

Input:

– A cost matrix of size n× n.
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Output:

– The optimal assignment.

Procedure:

Step 0) Initialization:

Step 0.1) For each row of the matrix, find the smallest element and subtract
it from every component of the row.

Step 0.2) For each column of the resulting matrix, find the smallest element
and subtract it from every component of the column.

Step 1) Find a partial feasible solution:

Step 1.1) Find a zero in the resulting matrix.

Step 1.2) If there is no starred zero in its row or column, mark that zero with
a star (*).

Step 1.3) Repeat for each zero in the matrix.

Step 1.4) Go to Step 2.

Step 2) Check for optimality:

Step 2.1) Cover every column containing a starred zero (0*).

Step 2.2) If all columns are covered, the starred zeros are the optimal assign-
ment; stop the process.

Step 2.3) Otherwise, go to Step 3.

Step 3) Prime zeros:

Step 3.1) Choose an uncovered zero and prime it. Let r be the row containing
it.

Step 3.2) If there is no starred zero z in row r, go to Step 4.

Step 3.3) Otherwise, cover row r and uncover the column of z.

Step 3.4) Repeat until all zeros are covered.

Step 3.5) Go to Step 5.

Step 4) Construct an alternate path:

Step 4.1) Construct a sequence of alternating starred and primed zeros as
follows:

a) The uncovered 0’ is the first element Z0.

b) The 0* in Z0’s column (if any) is the second element Z1.

c) The 0’ in Z ′
1s row is the third element Z2.
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d) Continue similarly until the sequence stops at a 0’ with no 0*
in its column.

Step 4.2) Unstar each starred zero of the sequence, and star each primed zero
of the sequence.

Step 4.3) Erase all primes and uncover every line.

Step 4.4) Return to Step 2.

Step 5) Create additional zeros:

Step 5.1) Find the smallest uncovered element (h) of the matrix.

Step 5.2) Increase each twice-covered element by h.

Step 5.3) Decrease each uncovered element by h.

Step 5.4) Return to Step 3.

Figure 3.2 illustrates the manual execution of the Kuhn-Munkres algorithm to assign
three agents to three tasks.

t1 t2 t3
a1 10 15 9
a2 9 18 5
a3 6 14 3

Cost matrix

t1 t2 t3
a1 0 0 0
a2 3 7 0
a3 2 5 0

Step 0

t1 t2 t3
a1 0* 0 0
a2 3 7 0*
a3 2 5 0

Step 1

t1 t2 t3
a1 0* 0 0
a2 3 7 0*
a3 2 5 0

Step 2

t1 t2 t3
a1 0* 0’ 0
a2 3 7 0*
a3 2 5 0

Step 3

t1 t2 t3
a1 0* 0’ 2
a2 1 5 0*
a3 0 3 0

Step 5 (h = 2)

t1 t2 t3
a1 0* 0’ 2
a2 1 5 0*
a3 0’ 3 0

Step 3

t1 t2 t3
a1 Z1 = 0* Z2 =0’ 2
a2 1 5 0*
a3 Z0 =0’ 3 0

Step 4.1

t1 t2 t3
a1 0 0* 2
a2 1 5 0*
a3 0* 3 0

Step 4.2-4.4
t1 t2 t3

a1 0 0* 2
a2 1 5 0*
a3 0* 3 0

Step 2

Figure 3.2: Execution of the Kuhn-Munkres algorithm. The resulting assignment is
a1 with t2, a2 with t3, and a3 with t1. Moreover, the minimum assignment cost is 26.
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3.4 Transforming the selection process

In 2015, Molinet Berenguer and Coello Coello [5] proposed transforming a MOEA’s
selection process into a LAP. In this transformation, we consider a set of individuals
(the parents and their offspring) and a set of weight vectors representing regions of
the Pareto Front. The cost of assigning an individual to a weight vector measures how
suited this individual is to the part of the Pareto Front that the vector represents.
Hence, we can identify which individuals better characterize the Pareto Front (i.e.,
we can identify the best individuals in the population) by finding the assignment with
minimal cost.

The assignment cost can be computed using a scalarizing function (though other
methods can also be adopted [61]). Therefore, the elements cij of the cost matrix C
is computed as follows:

cij = s(f̃(xj),wi) i = 1, . . . , n, j = 1, . . . , 2n (3.9)

where s is the scalarizing function, 2n is the size of the population considering parents
and offspring, n the number of weight vectors, and f̃(xj) is the normalized objective
vector. This vector is defined as:

f̃(xj) = [f̃1(xj), . . . , f̃k(xj)] (3.10)

s.t. f̃i(xj) =
fi(xj)− zmin

i

zmax
i − zmin

i

, i = 1, . . . , k (3.11)

zmin
i = min

l=1,...,2n
fi(xl), i = 1, . . . , k (3.12)

zmax
i = max

l=1,...,2n
fi(xl), i = 1, . . . , k (3.13)

where fi(xj) is the ith function value of the jth solution. We used in this work the
Hungarian algorithm to solve the LAP in which the number of agents 2n must be
equal to the number of tasks. Hence, we added dummy costs (where cij = 0 for
i = n+ 1, . . . , 2n and j = 1, . . . , 2n) to match the values, as recommended in [57].

To illustrate the selection process, let’s assume that we have a population of six
individuals (shown in Figure 3.3) and we must select three. Moreover, we use the
weight vectors in Figure 3.3 to describe the different regions of the Pareto front.
Therefore, we first compute the cost matrix using the ASF scalarizing function (see
Table 3.1). Then, we apply the Kuhn-Munkres algorithm and we obtain the following
assignment: (

1 2 3
4 6 1

)
,

that is w1 with I4, w2 with I6, and w3 with I1. Finally, the selected individuals are I1,
I4, and I6. We can observe that the chosen individuals are non-dominated solutions,
and each of them is assigned to the closest weight vector.
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Figure 3.3: Example of a population of six individuals and three weight vectors

C I1 I2 I3 I4 I5 I6
w1 500.0 320.0 1000.0 0.4 700.0 300.0
w2 0.71 1.43 1.43 0.57 1.0 0.43
w3 0.5 1000.0 400.0 400.0 600.0 200.0

Table 3.1: Example of a cost matrix for six individuals and three weight vectors.
Grey cells show the assignment elements.

3.5 Algorithms that incorporate the linear assign-

ment problem transformation

Molinet Berenguer and Coello Coello proposed the first algorithm that incorporates
the LAP transformation in its selection process: the Hungarian Differential Evolution
(HDE) approach [5]. The algorithm works as follows. First, it randomly initializes
the population and evaluates it. After that, it generates the weight vectors using
the UDH method. In the main loop of the algorithm, it creates new solutions using
DE/rand/1/bin [62] and evaluates them. Then, it merges the parents with their
offspring and normalizes their objective values. With the resulting information, the
algorithm constructs the cost matrix using a scalarizing function and a weight vector
set. After that, the algorithm solves the LAP using the Hungarian method, and the
resulting assignment determines which individual proceeds to the next generation.
Algorithm 2 summarizes the above process.

In order to evaluate its performance, the HDE was compared to the MOEA/D [15],
appSMS-EMOA [5], and SMS-EMOA [51]. The adopted problems were selected from
the ZDT [63] and DTLZ [64] (using two to ten objectives) test suites. Moreover,
the hypervolume indicator was used as the performance measure. The experimental
results showed that the HDE outperforms MOEA/D and appSMS-EMOA, and it out-
performs SMS-EMOA in many test instances but while having a lower computational
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Algorithm 2 Hungarian Differential Evolution (HDE)

Require: Multi-objective problem, population size (n), maximum number of gener-
ations (gmax), parameters Cr and F for DE/rand/1/bin

Ensure: Last population (Pgmax)
1: Generate initial population P1 randomly
2: Evaluate each individual in P1

3: W ← Generate n weight vectors using UDH
4: for i← 0 to gmax do
5: P ∗

g ← Generate offspring from Pg using DE/rand/1/bin
6: Evaluate each individual in P ∗

g

7: Qg ← Pg ∪ P ∗
g

8: NQg ←Normalize objectives of each individual in Qg

9: C ← Construct a cost matrix using NQg, W , and a scalarizing function
10: I ←Obtain the best assignment in C using the Hungarian method
11: Pg+1 ← {xi|i ∈ I,xi ∈ Qg}
12: end for

cost.
In 2015, Miguel Antonio and Coello Coello incorporated the LAP selection into

a Multi-Objective Particle Swarm Optimizer (MOPSO) [65]. The core idea was to
merge the current and new particles and select the best ones using the LAP transfor-
mation. The resulting algorithm was called LAP based PSO (LAPSO). The experi-
mental results showed that LAPSO offers competitive results compared to state-of-
the-art MOPSOs in problems with three to ten objectives.

In 2016, Manoatl Lopez and Coello Coello proposed the IGD+-MOEA [61]. In
this case, the problem consisted of assigning a reference set representing the Pareto
front to individuals created with the SBX and PM [23] operators. For this purpose,
they used the modified distance calculation from IGD+ [33] as the assignment cost.
Therefore, the aim was to minimize the sum of the modified distances between each
reference point and each individual. In order to compute the assignment cost, the
objective function values are normalized using the expression

f ′
i(xi) =

fi(xi)

ui

(3.14)

s.t. ui = max
j=1,...,N

fi(xj) (3.15)

for all i = 1, . . . ,m, where N is the population size and m the number of objective
functions. Hence, the assignment cost between a solution xi and a vector vj is defined
as follows

Ci,j =

√√√√ m∑
k=1

(
max{f ′

i,k(xi)− vj,k, 0}
)2

(3.16)
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The authors compared the performance of IGD+-MOEA with the MOEA/D [15]
and a version of the SMS-EMOA that employs the Monte Carlo sampling to approx-
imate the hypervolume [66]. Moreover, they adopted problems from the DTLZ [64]
and WFG [67] test suites with two to eight objectives. The experiments showed that
the IGD+-EMOA can produce better approximations than the other algorithms in
many test instances.

In 2017, Sun et al. proposed an algorithm called global view-based selection
NSGA-III (GS-NSGA-III) [68], which incorporated the LAP transformation into the
selection process of NSGA-III [20]. However, the assignment cost between a solution
si and a vector vj is determined by the rank of si and its normalized perpendicular
distance to vj. Algorithm 3 presents the survival selection of GS-NSGA-III. First,
the individuals are ranked using non-dominated sorting. Then, the perpendicular
distance to each solution is computed for each reference vector, and the distance’s
limits are obtained. After that, the assignment cost between each solution and each
vector is computed. Finally, the LAP is solved, and the assigned individuals are se-
lected. The GS-NSGA-III algorithm was compared to NSGA-III [20], MOEA/D [15],
GrEA [69], and Hype [66] using the DTLZ [64] test suite with 8, 10, and 15 objec-
tives. The experimental results showed that GS-NSGA-III is competitive in tackling
many-objective optimization problems.

Algorithm 3 Global View-based Selection

Require: Reference vectors (V = {v1, . . . ,vk}), and population (Pt = {s1, . . . , sN}).
Ensure: Selected solutions (Pt+1)
1: Non-dominated sort of Pt

2: Assign the corresponding rank r(s) to each solution in Pt

3: Initialize the cost matrix C ∈ IRk×N with zeros
4: for i← 1 to k do
5: for j ← 1 to N do
6: Ci,j ← ||sj − visjv

T
i /(viv

T
i )||

7: end for
8: a← min{Ci,1, . . . , Ci,N}
9: b← min{Ci,1, . . . , Ci,N}
10: for j ← 1 to N do
11: Ci,j ← 0.9× (Ci,j − a)/(b− a) + r(sj)
12: end for
13: end for
14: Pt+1 ← Solve the LAP with cost matrix C

In 2018, Miguel Antonio et al. [70] proposed an improved version of the HDE called
MOEA-LAPS. The main difference with respect to the HDE was that the assignment
cost was computed in this case using the ASF scalarizing function. Furthermore,
the performance of the MOEA-LAPS was compared with θ-DEA [71], CMA-PAES-
HAGA [72], NSGA-III [20], and HDE. They adopted the DTLZ [64] and WFG [67]
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test suites, with two to ten objective functions, and the hypervolume indicator was
employed as the performance measure. In this case, the experimental results showed
that MOEA-LAPS produced the best overall results. Moreover, it provided good
approximations in terms of convergence and distribution of solutions.

We can observe that none of the previous algorithms uses additional mechanisms
besides the LAP transformation to achieve accurate approximations. Moreover, these
algorithms are able to improve the performance of state-of-the-art algorithms in prob-
lems with two to ten objectives. As a result, the LAP transformation has proven to
be an exceptional alternative selection method that deserves further investigation.

3.6 Summary

This chapter introduced all the details of transforming the MOEA’s selection process
into a LAP. First, we described the definition of an assignment problem and some
ways to represent an assignment. After that, we presented the formal definition of
a LAP and the best well-known algorithm to solve it, the Kuhn-Munkres algorithm.
Then, we described the LAP transformation and presented an example of its behavior.
Finally, we discussed five algorithms that implemented the LAP transformation and
showed that this selection scheme is a promising alternative selection method that
deserves further studies.
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On the design of selection schemes
using the LAP

This chapter introduces two novel selection schemes that employ the LAP transfor-
mation. Section 4.1 explores the simultaneous use of different scalarizing functions
and weight vectors in the LAP selection scheme, where the resulting algorithm is
called ESW. Section 4.2 incorporates the hypervolume indicator in the LAP selection
scheme to address their drawbacks. Moreover, the resulting scheme is incorporated
into a novel algorithm called MOEA-LAPCO. Finally, a summary of this chapter is
presented in Section 4.3.

4.1 Simultaneous use of scalarizing functions and

weight vectors in the LAP selection scheme

The famous No Free Lunch Theorem (NFL) for search [73] states that no single
search algorithm can outperform all the others in all types of problems. Therefore,
some attempts have been made to combine techniques as a mechanism to generalize
a search engine. The ensembles are examples of these algorithms. They contain
several populations that evolve simultaneously with different types of techniques.
Within each population, parents compete with their offspring and the offspring of
other populations to improve diversity [74].

Some researchers have provided evidence about the benefits of adopting several
scalarizing functions simultaneously within an MOEA. In 2010, Ishibuchi et al. [75]
proposed a variant of the MOEA/D that uses the WS and the TCH scalarizing func-
tion at the same time. They evaluated this new algorithm in variants of the knapsack
problem and concluded that the simultaneous use of both scalarizing functions out-
performs their individual use. On the other hand, in 2017, Hernández Gómez and
Coello Coello [76] proposed a new algorithm called MOMBI-III that incorporated
seven different scalarizing functions. The core idea was to use these functions and the
s-energy indicator to rank individuals for survival selection. The experiments showed
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that MOMBI-III was able to outperform the individual use of each function as well
as state-of-the-art algorithms in many-objective problems. In spite of this evidence,
this sort of mechanism has not been explored so far for the LAP selection scheme.

This section presents an ensemble of scalarizing functions and weight vectors using
the LAP transformation for the survival selection mechanism of an MOEA. For this
purpose, we choose an MOEA that uses this selection scheme (the HDE) and eval-
uate its performance using six different scalarizing functions and two weight vector
generators (Subsection 4.1.1). Then, we propose an ensemble of the pairs (scalariz-
ing function + weight vectors) with the best performance to obtain a more powerful
MOEA (Subsection 4.1.2). Then, we assess the performance of the new MOEA and
experimentally show that our new approach outperforms individual functions and
state-of-the-art algorithms (Subsection 4.1.3). Finally, we present a summary of the
section (Subsection 4.1.4).

4.1.1 Influence of the scalarizing functions and weight vec-
tors in the HDE

Initially, the HDE was implemented with the TCH scalarizing function [5], and later
on, it was found that the use of the ASF function was able to improve its perfor-
mance [70]. Hence, it is evident that the type of scalarizing function adopted in HDE
has an impact on its performance. Furthermore, only the UDH method has been
tested in HDE, and we do not know if other methods could improve its performance.
In this section, we present an experimental study that analyzes the behavior of HDE
using different scalarizing functions and weight vectors.

Experimental setup

We tested the HDE algorithm using six different scalarizing functions: TCH, ATCH,
ASF, AASF, PBI, and AGSF2. We selected θ = 5 for PBI, α = 10−4 for AASF
and α = 0.005 for ATCH. Besides the scalarizing functions, we tested the UDH and
the SLD methods for generating weight vectors. For the case of the SLD vectors,
we adopted H = 14. We performed 30 independent runs of each scalarizing function
with each weight vector set. The parameters used in HDE in all cases were F = 1.0,
Cr = 0.4, gmax = 300 and a population size of 120.

We adopted the DTLZ1 - DTLZ7 problems from the DTLZ test suite [64], the
WFG1 - WFG9 problems from the WFG test suite [67], and the Minus-DTLZ and
Minus-WFG test problems from [77]. The number of variables in DTLZ is defined
by n = 3 + k − 1 where k = 5 for DTLZ1, k = 10 for DTLZ2-DTLZ6 and k = 20
for DTLZ7. The same was applied to Minus-DTLZ. Regarding the WFG and Minus-
WFG, we set the position parameters to k = 4 and the distance parameters to l = 20.
All of these problems were adopted with three objectives.

We want to analyze which pair of scalarizing functions and weight vector sets have
the best overall performance. Hence, we employed the hypervolume indicator [27] for
the evaluation of the algorithms. This indicator measures the size of the objective
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space covered by the solution set, providing us with a way to measure the convergence
and diversity of an approximation.

Experimental results and discussion

The average and standard deviation of the 30 independent runs are shown in Ta-
bles B.1 and B.2. The two best values of each problem are highlighted in gray, where
the darker tone corresponds to the best value. In addition, the “*” symbol means that
the result is statistically significant using Wilcoxon’s rank-sum test with a significance
level of 5%.

In 81.25% of the conventional test problems (WFG and DTLZ), the best perfor-
mance scalarizing functions were the ones that adopted the SLD method. However,
in the minus problems (WFG-Minus and DTLZ-Minus), the UDH method’s functions
had the best performance in 93.75% of the problems.

The function with the best performance in the conventional problems was AGSF2,
which won in 56.25% of the problems. It was followed by the AASF which won in 25%
of the problems. Regarding the minus problems, AGSF2 had the best performance
with 62.5%, followed by AASF with 18.75%.

From these experiments, we can conclude that the SLD method is the best choice
for the conventional test suites (WFG and DTLZ) and that the UDH method is a
better option for the minus test suites (Minus-WFG and Minus-DTLZ). These results
also suggest that the UDH set is less sensitive to the Pareto Front shape than SLD.
Moreover, we concluded that AGSF2 and AASF are the recommended scalarizing
functions for HDE.

4.1.2 Our proposed approach

We saw in the previous subsection that the performance of HDE depends on the
scalarizing function and weight vectors adopted. In particular, the SLD weight vec-
tors had the best performance in conventional problems, while in the minus problems,
the UDH weight vectors had the best performance. Furthermore, the best scalariz-
ing functions for all the problems were the AASF and the AGSF2. Therefore, we
hypothesized that if we could design an ensemble of different scalarizing functions
and weight vectors, we could improve the performance of HDE in all the test suites,
turning it into a more general multi-objective optimizer.

Based on our previous discussion, we propose here an Ensemble of Scalarizing
functions and Weight vectors (ESW). Our proposed approach consists of four different
pairs of scalarizing functions and weight vectors. Particularly, we selected AGSF2
with SLD, AASF with UDH, ASF with SLD, and AASF with UDH since they had
the best performance in our previous experiment. However, it is evident that other
pairs can also be adopted.

Each pair has a subpopulation that generates offspring independently using
DE/rand/1/bin. Moreover, every population will use its corresponding pair to com-
pute the LAP assignment cost and to select its individuals using the Hungarian algo-
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rithm (as in the original HDE). Nevertheless, the parent, its offspring, and the other
subpopulation’s offspring will be considered in all the selection processes. Therefore,
the parents can be replaced by the offspring of other populations. We argue that
this information exchange can improve diversity and allows populations to help each
other.

The solutions’ distribution and convergence speed between subpopulations may
differ because each has a different scalarizing function and weight vectors. Therefore,
we include an external archive that stores the non-dominated solutions for merging
the information collected by the subpopulations. If the archive exceeds a predefined
size, the solution with the worst contribution of s-energy [28] is deleted. Algorithm 4
displays the pseudocode of ESW, and its flowchart is presented in Figure 4.1.

Algorithm 4 Ensemble of Scalarizing functions and Weight vectors (ESW)

Require: Max archive size (Amax), stopping condition, subpopulation size (n), pa-
rameters Cr and F for DE/rand/1/bin

Ensure: External Archive (A)
1: wSLD ← Generate weight vectors of size n using SLD
2: wUDH ← Generate weight vectors of size n using UDH
3: W = {wSLD, wUDH, wSLD, wUDH}
4: SF = {AGSF2,AGSF2,AASF,AASF}
5: Generate initial population POPi randomly, ∀i = {1, ..., 4}
6: Evaluate populations
7: A←Obtain the non-dominated solutions in the populations
8: while the stopping condition is not fulfilled do
9: for i← 1 to 4 do
10: OFFi ← Generate offspring from POPi using DE/rand/1/bin
11: end for
12: Evaluate offspring
13: Insert offspring into A using Pareto dominance
14: if |A| > Amax then
15: Remove the individual with worst s-energy contribution until |A| = Amax

16: end if
17: for i← 1 to 4 do

18: Qi ←
4⋃

j=1

OFFj ∪ POPi

19: NQi ←Normalize objectives of Qi

20: C ← Construct a cost matrix using NQi, SFi and Wi

21: Ii ← Obtain the best assignment in Ci using the Hungarian method
22: POPi ← {xj|j ∈ I,xj ∈ Qi}
23: end for
24: end while
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Figure 4.1: General flowchart of ESW

CINVESTAV-IPN Computer Science Department



36 Chapter 4

Table 4.1: Parameters of the algorithms used in experiment 1

Algorithms Parameters settings
HDE (in all versions) F = 1.0, Cr = 0.4, gmax =

1100, n = 120
ESW F = 1.0, Cr = 0.4,

max function evaluations =
132000, n = 55, max
archive size = 120

4.1.3 Experimental analysis

In this subsection, we validate the performance of ESW using two experiments. The
first experiment compares ESW with HDE using the pairs (scalarizing function +
weight vectors) separately. We present this experiment in subsection 4.1.3. The
second experiment compares ESW with state-of-the-art algorithms, and it is presented
in subsection 4.1.3. In both cases, we use the hypervolume and the s-energy indicator
for performance assessment. In all the tables, the two best values of each problem are
highlighted in gray, where the darker tone indicates the best value. In addition, the
“*” symbol means that the result is statistically significant using Wilcoxon’s rank-sum
test with a significance level of 5%.

Comparison with standalone pairs

For this comparison, we performed 30 independent runs of ESW and HDE with the
following separate pairs: AGSF2 with SLD, AGSF2 with UDH, AASF with SLD, and
AASF with UDH. We adopted the benchmark problems (including their configura-
tion), the scalarizing functions’ parameters and the weight vectors’ parameters from
Section 4.1.1. Furthermore, Table 4.1 displays the parameters of the algorithms used
in this experiment.

We present the results of the experiment in Tables B.3 and B.4. Regarding the hy-
pervolume indicator, our proposed approach outperforms the other algorithms in 84%
of the problems. Regarding the s-energy indicator, our approach has the best perfor-
mance in 93% of the problems. Therefore, we can conclude that ESW outperforms
HDE in almost all the test problems adopted.

Comparison with respect to state-of-the-art algorithms

We selected three well-known algorithms for our experimental study at the second
stage: NSGA-III [20], MOEA/DD [78], and SMS-EMOA [50]. In this case, we tested
many-objective problems. For this sake, we adopted a version of SMS-EMOA that
uses the algorithm of HYPE [66] to approximate the hypervolume contributions when
dealing with problems having more than three objectives.

We used the DTLZ1-DTLZ4 and DTLZ7 problems from the DTLZ test suite.
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Table 4.2: Number of SLD partitions used by NSGA-III and MOEA/DD

Objectives (m) 3 5 7 10
Number of partitions (H) 14 6 5 2,3

Table 4.3: Number of SLD partitions and subpopulation sizes used by ESW

Objectives (m) 3 5 7 10
Number of partitions (H) 9 4 3 2,3
Subpopulation sizes (n) 55 70 84 275

Moreover, we adopted the minus versions of the same problems. We set the number
of objectives (m) to: 3, 5, 7, and 10. The number of variables was set to n = k+m−1,
where k takes the same values as indicated in Section 4.1.1.

We selected the SLD method to generate the weight vectors of MOEA/DD and
NSGA-III. For problems having ten objectives, we used the two-layer approach pro-
posed in [20] to generate the weight vectors. Table 4.2 displays the corresponding H
values for each objective. In the case of ESW, Table 4.3 displays the subpopulation
sizes given the H values. We also used the two-layer approach for ten objectives.
Table 4.4 shows the population size (or maximum archive size) and the maximum
number of function evaluations that the algorithms used.

The parameters of SBX and polynomial-based mutation were set to pc = 1.0,
pm = 1/n, ηc = 30 and ηm = 20. We set the parameters of the DE operator
to F = 1.0 and Cr = 0.4. MOEA/DD also used a neighborhood size T = 20, a
neighborhood selection probability δ = 0.9, and the PBI scalarizing function with
θ = 5.

Table B.5 shows the average and standard deviation of the hypervolume values.
Regarding the DTLZ problems, MOEA/DD had the best performance since it is
ranked first place in 10 out of 20 instances. The algorithm with the second-best
performance was SMS-EMOA with nine instances, and the third-best algorithm was
ESW with seven instances. In the case of the Minus-DTLZ problems, the best al-
gorithm is SMS-EMOA that obtained the first place in 13 out of 20 instances. The
second-best was ESW, with seven instances. NSGA-III and MOEA/DD did not ob-
tain first places in this case. We can observe from these results that the performance
of SMS-EMOA and ESW does not depend on the Pareto front shape since both can
obtain first places in all test suites. This is not the case of MOEA/DD that had the
best performance in almost all the DTLZ problems. However, it could not obtain the

Table 4.4: General parameters used in experiment 2

Number of objectives (m) 3 5 7 10
Population size (or archive size) 120 210 210 276

Max function evaluations 132000 231000 231000 303600
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first place in the remaining problems. In general, the best algorithm regarding the
hypervolume indicator was SMS-EMOA with 22 out of 40 instances in the first place.
The second best algorithm was our proposed ESW, which ranked first in 14 out of 40
instances.

On the other hand, Table B.6 shows the average and standard deviation of the s-
energy values. For the DTLZ problems, ESW had the best performance, with 13 out
of 20 instances in the first place. MOEA/DD had the second-best performance since it
obtained the first place in 7 out of 20 instances. In the Minus-DTLZ problems, ESW
also outperforms the other algorithms with 18 out of 20 instances in the first place,
followed by MOEA/DD with two instances. We can see that ESW outperforms the
other algorithms in almost all the problem instances regarding the s-energy indicator.

In summary, we can conclude that ESW is a competitive approach with respect
to state-of-the-art algorithms.

4.1.4 Discussion

In this section, we evaluate the influence of scalarizing functions and weight vectors
on the performance of HDE. We conclude that the SLD weight vectors perform better
in conventional problems (DTLZ and WFG) and the UDH weight vectors perform
better in minus problems (Minus-WFG and Minus-DTLZ). These results suggest that
the UDH problems are less sensitive to the Pareto Front shape than the SLD vectors.
Moreover, the recommended scalarizing functions for HDE are the AGSF2 and the
AASF. In addition, we proposed a new ensemble algorithm (called ESW) using the
best pairs of scalarizing functions and weight vectors that had the best performance
in the previous experiment. The experimental results show that ESW outperforms
HDE and is competitive with respect to state-of-the-art algorithms.

4.2 Integrating a performance indicator into the

LAP selection scheme

It has been shown that the LAP selection scheme is an excellent alternative to
the standard selection schemes adopted by Multi-Objective Evolutionary Algorithms
(MOEAs). However, we identified two critical issues in its operation: it occasionally
selects duplicated solutions and it does not always prefer non-dominated solutions.
This chapter introduces a novel selection scheme that combines the LAP transforma-
tion with the hypervolume indicator in order to overcome the previous drawbacks.
However, since the computation of the hypervolume indicator is expensive, we adopted
an approximation scheme that uses a polar coordinates transformation [55]. In addi-
tion, we incorporate our proposed selection mechanism into an MOEA, called Multi-
Objective Evolutionary Algorithm Based on the Linear Assignment Problem and the
Hypervolume Approximation using Polar Coordinates (MOEA-LAPCO). Our exper-
imental results show that MOEA-LAPCO outperforms HDE and state-of-the-art al-
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Table 4.5: Example of a case where the Hungarian algorithm selects duplicated so-
lutions. The individuals I1 and I2 have the same value and the best assignment cost
(highlighted in gray). Therefore, these solutions will be assigned and selected for the
next generation.

C I1 I2 I3 I4
w1 0 0 333333.33 1000000.0
w2 0 0 1000000.0 333333.33

gorithms.

This section is organized as follows. Subsection 4.2.1 explains the drawbacks of
the LAP selection scheme. Subsection 4.2.2 introduces our proposed approach, and
Subsection 4.2.3 evaluates it through an experimental study. Finally, Subsection 4.2.4
presents a summary of this section.

4.2.1 Drawbacks of the LAP selection scheme

Although it has been shown that the LAP transformation is a promising selection
scheme [5, 70], we have found two critical drawbacks in its operation. First, we
identified that it selects duplicated individuals. This problem arises because the
assignment costs are the same for repeated solutions. Therefore, if the solutions
have the best cost for different weight vectors, the Hungarian algorithm will prefer
them. For instance, let’s assume that we want to select two elements from a set of
four individuals such that I1 = I2, f(I1) = f(I2) = [1, 2]T , f(I3) = [4, 3]T , and
f(I4) = [2, 5]T . Moreover, we consider two weight vectors, w1 = [1, 0]T and w2 =
[0, 1]T . Accordingly, their assignment costs using the ASF function are displayed in
Table 4.5. We can observe that individuals 1 and 2 have the best assignment costs
for all the weight vectors. Hence, the Hungarian algorithm will assign either w1 to
I1 and w2 to I2 or vice versa.

The second drawback is that the LAP transformation occasionally prefers weakly-
dominated solutions over non-dominated ones. To illustrate this fact, we executed
HDE over 100 generations with a population size of 120 individuals, using the WFG7
problem [67]. Figure 4.2 displays, for each generation, the number of non-dominated
solutions available in the population of parents and their offspring. Moreover, it shows
the number of weakly dominated solutions selected by the LAP selection scheme. We
can see in Figure 4.2 that even though, on some occasions, there are more than 120
non-dominated solutions available, HDE still selects 20 or more weakly dominated
solutions.

This issue occurs when weakly dominated (or even dominated) solutions are closer
to non-covered vectors, while some non-dominated solutions are in crowded vectors.
Therefore, the costs of assigning the non-covered vectors to the former solutions are
lower than those of the latter. To illustrate this situation, let us suppose we want to
assign the four weight vectors to the five individuals shown in Figure 4.3. Further-
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Figure 4.2: Execution of the HDE during 100 generations using the WFG7 problem.
Squares represent the number of available non-dominated solutions, and circles rep-
resent the number of selected weakly-dominated solutions.

more, Table 4.6 shows the assignment cost using the ASF function for this problem.
We can observe that all the individuals are non-dominated except for individual I5,
which is also the closest to vector w3. Moreover, individual I4 is located in a crowded
area far from vector w3. Consequently, the cost of assigning vector w3 to individual
I5 is lower than that of assigning w3 to individual I4. Hence, in the best assignment
(which is gray-colored in Table 4.6), the individual I5 is preferred over I4.

Table 4.6: Example of a cost matrix where a dominated individual (I5) is preferred
over a non-dominated one (I4). The best assignment is highlighted in gray.

C I1 I2 I3 I4 I5
w1 1.0 428571.43 857142.86 285714.29 1000000.0
w2 1.5 1.29 2.57 1.38 3.0
w3 3.0 2.08 1.29 2.77 1.5
w4 1000000.0 692307.69 0.86 923076.92 307692.31

4.2.2 Our proposed approach

This subsection proposes incorporating a performance indicator in the LAP selection
scheme to solve its disadvantages. For this purpose, we selected the hypervolume
indicator because it can differentiate dominated and non-dominated solutions (due
to its Pareto compliance). However, we decided to use a polar coordinate approxi-
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Figure 4.3: Example of a set of individuals where a dominated individual is preferred
over a non-dominated one using the LAP selection mechanism.

mation of the hypervolume [55] because of its high computational cost which grows
exponentially with the number of objectives.

For the remainder of this section, we first introduce the polar coordinate approxi-
mation of the hypervolume (see Section 4.2.2). Then, we describe our proposed selec-
tion scheme that combines the hypervolume indicator and the LAP transformation
(see Section 4.2.2). Finally, we present the Multi-Objective Evolutionary Algorithm
Based on the Linear Assignment Problem and the Hypervolume Approximation us-
ing Polar Coordinates (MOEA-LAPCO), which is an MOEA that incorporates the
proposed selection scheme (see Section 4.2.2).

Approximating the hypervolume contribution using polar coordinates

The hypervolume indicator (denoted by IH) measures the size of the objective space
covered by a set given a reference point. Let A ⊂ Rk and zu ∈ Rk be a reference
point dominated by every point in A. Therefore, the IH of A and zu can be written
as [55]:

IH(A, z
u) =

∫
D

IΩ(z)dz (4.1)

where zl = (zl1, ..., z
l
k)

T s.t. zli = min{yi | y = (y1, ..., yk)
T ∈ A}, D = {z ∈ Rk |

zl ≺ z ≺ zu}, Ω = {z ∈ Rk | ∃y ∈ A such that y ≺ z ≺ zu} and IΩ(z) is the
characteristic function of Ω. Moreover, the hypervolume contribution of a vector
y ∈ A considering A and zu is defined as V (y, A,zu) = IH(A, z

u)− IH(A\{y}, zu).
The computational cost of the hypervolume is prohibitive when the number of

objectives is larger than six. To deal with this problem, Deng and Zhang [55] proposed
a new method to approximate the hypervolume using polar coordinates. Their idea is
to express the hypervolume (displayed in (4.1)) as a (k−1)−D integral using the polar

CINVESTAV-IPN Computer Science Department



42 Chapter 4

coordinate system. Deng and Zhang proposed different methods to approximate the
hypervolume contribution using the polar coordinates transformation. In this work,
we selected the most stable method according to the experimental results reported
in [55].

Let A ⊂ Rk and zu ∈ Rk be a reference point dominated by every point in A.
To compute the hypervolume contribution, this method first generates n uniformly
distributed points {θ(1), . . . ,θ(n)} on the (k − 1) − D unit sphere in Rm

+ using the
Unit Normal Vector Approach. Therefore, each point θi is generated as follows:

θ(i) =
| x |
|| x ||2

where x ∼ N (0, Ik). (4.2)

In addition, a matrix M is constructed, whose (i,j)-entry is the jth largest value
in {lȳ(θ(i)) | ȳ ∈ A} where

lȳ(θ) = min
1≤m≤k

(1/θm)(z
u
m − ȳm). (4.3)

Finally, the contribution V (y, A,zu) is approximated using the following expres-
sion:

Ṽ (y, A,zu) =
Φ

2k
1

kn

n∑
i=1

{
Mk

i1 −Mk
i2 if ly(θ

(i)) = Mi1

0, otherwise,
(4.4)

where Φ = [2π(k/2)/Γ(k/2)] is the area of the (k − 1) − D unit sphere and Γ(x) =∫∞
0

zx−1e−zdz is the analytic continuation of the factorial function.

Selection process

Our proposed selection scheme (summarized in Algorithm 5) splits the selection pro-
cess into two phases. During the first phase, we eliminate a percentage p ∈ [0, 50] of
the population by utilizing the LAP transformation. In the second phase, we remove
the remaining 50− p percentage using the polar-coordinate approximation of the hy-
pervolume. The idea is to use the hypervolume indicator to increase the preference
for the non-dominated solutions.

We have to take some considerations to apply the above mechanism. First, we
observed that the approximation of the hypervolume contribution using polar coor-
dinates is extremely sensitive to the reference point adopted (as pointed out by Deng
and Zhang [55]). In particular, the algorithm’s distribution was poor when domi-
nated solutions were considered for the reference point computation. Therefore, in
the selection process, we first obtain the non-dominated solutions on the population
(see line 1). If the number of non-dominated solutions is less than npop, we only
employ the LAP transformation to select the individuals for the next generation (see
lines 5 to 7). Otherwise, we employ our proposed two-phase process for selecting the
individuals (see lines 8 to 18).
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Algorithm 5 Select individuals

Require: Set of weight vectors (w1), set of weight vectors (w2), population (Q),
uniformly distributed points (θ), population size (npop), reference point factor
(λ), number of objectives (k)

1: ND ← Obtain the non-dominated solutions from Q
2: zmax = [zmax

1 , . . . , zmax
k ] s.t. zmax

j = maxx∈ND fj(x), j = {1, . . . , k}
3: zmin = [zmin

1 , . . . , zmin
k ] s.t. zmin

j = minx∈ND fj(x), j = {1, . . . , k}
4: Q′ ← Normalize the objective functions of Q using zmax and zmin

5: if |ND| ≤ npop then
6: C ← Compute the assignment cost using Q′ and w1

7: I ← Obtain the best assignment in C using the Hungarian algorithm
8: else
9: C ← Compute the assignment cost using Q′ and w2

10: IH ← Obtain the best assignment in C using the Hungarian algorithm
11: IND ← Obtain the indices of the non-dominated solutions from A := {xi |

IH [i] = 1, xi ∈ Q′}
12: nd size← |{xi | IND[i] = 1, xi ∈ Q′}|
13: if nd size < npop then
14: I ← Prune population with polar coordinates( Q′, IH , θ, λ, k )
15: else
16: I ← Prune population with polar coordinates( Q′, IND, θ, λ, k )
17: end if
18: end if
19: P ← {xi | I[i] = 1, xi ∈ Q}
20: return P

In addition, it is essential to note that the LAP transformation does not always
prefer non-dominated solutions, even if we have enough solutions of this type. There-
fore, in the two-phase process, we compute the number of non-dominated solutions
returned by the LAP before initiating the polar-coordinate discarding mechanism
(see line 11). If the number of non-dominated solutions is less than npop, the prun-
ing process will be carried out over the solutions provided by the LAP (see line 14).
Otherwise, the pruning process will only be performed on the selected non-dominated
solutions, discarding the rest (see line 16). We assume that the duplicated solutions
are dominated (except for the first solution to appear). Consequently, the algorithm
also removes the duplicated solutions in this phase.

On the other hand, we changed the normalization limits adopted in the original
LAP selection scheme. Instead of obtaining the maximum and minimum values from
the whole population, we only consider the non-dominated solutions of the population.
Moreover, the normalization is performed using these limits in the expression (3.10).
See lines 2 to 4.

Regarding the approximation of the hypervolume, we preprocess some information
to avoid the recurrence of expensive operations. First, the set θ does not depend on
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the population to prune and, therefore, it can be the same for all generations. Hence,
we compute this set at the beginning of the MOEA-LAPCO algorithm. Second, the
values ly(θ

(i)) do not change when a solution is removed. The only information that
changes is the matrix ranking. Therefore, at the beginning of the pruning procedure,
we compute the ly(θ

(i))k values and store them in a matrix M . We raise the ly(θ
(i))

values to the power k because it does not affect the contribution order and avoids an
extra computational cost. Furthermore, we obtain the indices that sort in descending
order each row of M . The above procedure is displayed in Algorithm 6.

Algorithm 6 Compute and sort M

Require: Normalized objective vectors (Q′), number of elements in Q′ (m), list that
handles currently selected solutions (IS), uniformly distributed points (θ), number
of points in θ (n), reference point (zu), number of objectives (k)

1: Initialize matrix M of size n×m with zeros
2: Initialize matrix IS of size n×m with zeros
3: for i = 1 to n do
4: cim ← 0
5: for j = 1 to m do
6: if IS[j] = 1 then
7: ȳ ← Q′[j]

8: lȳ(θ
(i))← min1≤l≤k(1/θ

(i)
l )(zul − ȳl)

9: M [i][j] = (lȳ(θ
(i)))k

10: cim ← cim + 1
11: IM [i][cim] = j
12: end if
13: end for
14: Sort the first cim elements of IM [i] in descending order such that

IM [i][x] is bigger than IM [i][y] when M [i][IM [i][x]] > M [i][IM [i][y]].
15: end for
16: return M , IM , cim

Adopting the previous considerations, Algorithm 7 displays the procedure to ap-
proximate the hypervolume contribution. First, we initialize the array C of contri-
butions with zeros. Then, we find the best and second-best solution indices for each
ith-point in θ. Since we have the matrix IM , we only have to go through the list
IM [i] to find the first two still selected individuals (see lines 3 and 4). After that, we
obtain the best and second-best elements from M and compute their difference (see
lines 5 and 6). Then, we go through the IM [i] list starting from the index of the best
individual, add the difference to the currently selected individuals, and stop when the
value M [i][IM [j]] is different from the best individual (see lines 7 to 18). At the end
of the iterations, we multiply the contributions by Φ

2k
1
kn

as in equation (4.4).
Finally, the pruning procedure using the polar coordinate approximation is dis-

played in Algorithm 8. The first step is to obtain the reference point from the currently
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Algorithm 7 Compute contribution

Require: matrix (M), indices that sort the solutions inM (IM), cols of IM (cIM), list
that handles currently selected solutions (IS), number of objectives (k), number
of rows in M (r), number of cols in M (c)

1: C ←Initialize array of size c with zeros
2: for i = 1 to r do
3: jbest← minj=1,...,cIM j s.t. IS[IM [i][j]] = 1
4: jsbest← minj=1,...,cIM j s.t. IS[IM [i][j]] = 1 ∧ j! = jbest
5: best←M [i][IM [i][jbest]]
6: diff ← best−M [i][IM [i][jsbest]]
7: j ← jbest
8: while j < c do
9: idx← IM [j]
10: if best = M [i][idx] then
11: if IS[idx] = 1 then
12: C[idx] = C[idx] + diff
13: end if
14: else
15: break
16: end if
17: j ← j + 1
18: end while
19: end for
20: for j = 1 to c do
21: C[j] = Φ

2k
1
kn
∗ C[j]

22: end for
23: return C
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selected individuals. Then, we compute and sort the matrix M using Algorithm 6.
Then, we compute the contribution of each individual in the population using Al-
gorithm 7 and remove the one with the lower contribution. We repeat the above
procedure until the population size is equal to npop.

Algorithm 8 Prune population with polar coordinates

Require: Normalized objective vectors (Q′), list that handles currently selected so-
lutions (IS), uniformly distributed points (θ), reference point factor(λ), number
of objectives (k)

1: z ← Find the maximum value of each objective from A := {xi | IS[i] = 1, xi ∈ Q′}
2: zu ← λ ∗ z
3: rM ← |θ|
4: cM ← |Q′|
5: M, IM , cIM ← Compute and sort M( Q′, cM , IS, θ, rM , zu, k )
6: num sel = cIM
7: while num sel > npop do
8: C ← Compute contribution( M , IM , cIM , IS, k, rM , cM )
9: idx← argmini=1,··· ,cM C[i] s.t. IS[i] = 1
10: IS[idx] = 0
11: num sel = num sel − 1
12: end while
13: return IS

MOEA-LAPCO

In this section, we incorporate our proposed selection scheme into an MOEA. The
resulting approach was called MOEA-LAPCO and is displayed in Algorithm 9. First,
two sets of weight vectors (w1 and w2) are generated using the UDH method. The set
w1 is used when only the LAP transformation is applied, and the set w2 is used when
the two-phase selection is performed. Thus, the size of w2 depends on the parameter
p and is calculated as |w2| = (100−p)∗npop∗2

100
. Then, the set θ of uniformly distributed

points is created using equation (4.2). Then, the initial population is generated and
evaluated. In the main loop of the algorithm, a new population is generated using
the SBX and PM operators [23]. After that, the individuals that persist for the
next generation are selected using Algorithm 5, and this procedure continues until a
maximum number of evaluations is reached.

4.2.3 Experimental analysis

We evaluated the performance of MOEA-LAPCO with respect to state-of-the-art
algorithms. For this purpose, we performed 30 independent runs of HDE [5], HDE
with SBX and PM, MOEA/DD [78], NSGA-III [20], and our proposed algorithm. We
adopted the WFG1-WFG9 problems from the WFG test suite [67] using 3, 5, 8, and
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Algorithm 9 MOEA-LAPCO

Require: Multi-objective problem, population size (npop), number of uniformly dis-
tributed points (nhv), maximum number of evaluations, variation operators’ pa-
rameters, reference point factor (λ), percentage of solutions to be discarded using
the LAP transformation (p)

Ensure: P
1: w1← Generate npop weights vectors using UDH

2: w2← Generate (100−p)∗npop∗2
100

weights vectors using UDH
3: θ ← Generate nhv uniformly distributed points using equation (4.2)
4: Generate initial population P
5: Evaluate population P
6: while the maximum number of evaluations is not reached do
7: P ′ ← Generate from P the new population using variation operators
8: Evaluate population P ′

9: Q← P ∪ P ′

10: P ← Select individuals( w1, w2, Q, θ, npop, λ, p)
11: end while
12: return P

10 objectives. The position-related parameters were set to m = 2× (k − 1) where k
is the number of objectives, the distance-related parameters were set to l = 20, and
the number of variables to n = m+ l. Finally, we used the hypervolume indicator for
the performance assessment.

Regarding the variation operators, SBX and PM, we set pc = 0.9, pm = 1/n,
ηc = 20 and ηm = 20. Furthermore, we set the parameters of DE to F = 1.0 and
Cr = 0.4. In the case of the weight vectors of the MOEA/DD and NSGA-III, we
adopted Das and Dennis’ approach with the two-layer technique used in the NSGA-
III for more than five objectives [20]. Concerning the MOEA/DD’s parameters, we
set T = 20, δ = 0.9, and we used the PBI function with θ = 5. In the case of
MOEA-LAPCO, we set nhv = 10000, δ = 1.5, and p = 25. Furthermore, we used the
AASF function with α = 0.0001 in both versions of HDE and in the MOEA-LAPCO.
Considering the parameters for all the algorithms, we used a population size of 120
for three objectives, 210 for five, 156 for eight, and 276 for ten. In the case of the
maximum number of evaluations, we used the population size times 1000 in all cases
regardless of the number of objectives.

Table 4.7 shows the average and the standard deviation of the hypervolume’s
values over 30 generations of each algorithm. The best averages are highlighted in
dark gray, and the second-bests are highlighted in light gray. Moreover, the symbol
“*” indicates that the algorithm is statistically better than the others employing the
Wilcoxon rank-sum test with a significance level of 5%.

We can observe that MOEA-LAPCO is better than HDE with DE and SBX+PM
in almost all the problems, indicating that the new mechanism improves the original
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versions. On the other hand, the MOEA-LAPCO is better than all the algorithms
in 20 out of 36 problems. Remarkably, it is the best in problems WFG3, WFG5,
WFG6, WFG8, and WFG9 using 3, 5, and 8 objectives. Moreover, it is the best in
the WFG4 and WFG7 problems using 3 and 5 objectives. However, we can notice
that it is not the best in any of the problems with ten objectives, suggesting that the
algorithm’s performance degrades with more than eight objectives. We believe that
this happens because the reference point selection mechanism is not good enough for
many-objective problems.

Table 4.7: Average and standard deviation of the hypervolume indicator over 30
generations of MOEA-LAPCO and state-of-the-art algorithms. The best values are
highlighted in dark gray, and the second-best values are shown in light gray. The
symbol “*” indicates that the algorithm is better than the others in a statistically
significant.

k HDE DE HDE SBX+PM MOEA-LAPCO MOEA/DD NSGA-III

WFG1

3 8.031e-1 (9.0e-3) 8.963e-1 (2.2e-2) 9.214e-1 (2.5e-2) *1.218e+0 (3.2e-2) 7.749e-1 (3.7e-2)
5 9.095e-1 (9.5e-3) 1.103e+0 (1.6e-2) 1.157e+0 (1.5e-2) *1.454e+0 (5.4e-2) 8.978e-1 (3.5e-2)
8 1.245e+0 (1.7e-2) 1.691e+0 (2.7e-2) 1.746e+0 (1.8e-2) *1.915e+0 (1.1e-1) 1.384e+0 (1.1e-1)
10 1.446e+0 (1.8e-2) 2.029e+0 (2.2e-2) 2.077e+0 (2.7e-2) *2.297e+0 (1.1e-1) 1.958e+0 (1.5e-1)

WFG2

3 1.234e+0 (2.9e-3) 1.189e+0 (8.7e-2) *1.194e+0 (8.8e-2) 1.168e+0 (8.9e-2) 1.153e+0 (8.9e-2)
5 1.548e+0 (4.2e-3) 1.572e+0 (6.9e-2) *1.586e+0 (7.1e-2) 1.537e+0 (6.6e-2) 1.523e+0 (8.2e-2)
8 *2.134e+0 (1.8e-2) 1.977e+0 (1.7e-1) 2.065e+0 (1.2e-1) 1.957e+0 (9.9e-2) 1.939e+0 (1.5e-1)
10 *2.591e+0 (1.2e-3) 2.525e+0 (1.3e-1) 2.546e+0 (2.5e-2) 2.292e+0 (3.2e-2) 2.428e+0 (1.1e-1)

WFG3

3 9.105e-1 (3.9e-3) 9.387e-1 (2.1e-3) *9.466e-1 (1.5e-3) 8.932e-1 (6.0e-3) 9.014e-1 (5.4e-3)
5 1.109e+0 (5.9e-3) 1.163e+0 (6.5e-3) *1.186e+0 (6.0e-3) 1.039e+0 (9.5e-3) 1.059e+0 (1.1e-2)
8 1.426e+0 (7.7e-3) 1.457e+0 (1.2e-2) *1.494e+0 (2.3e-2) 1.16e+0 (2.2e-2) 1.263e+0 (2.6e-2)
10 1.694e+0 (8.5e-3) *1.724e+0 (1.1e-2) 1.703e+0 (3.1e-2) 1.279e+0 (2.0e-2) 1.576e+0 (2.8e-2)

WFG4

3 7.303e-1 (3.9e-3) 7.79e-1 (2.1e-3) *7.983e-1 (9.6e-4) 7.784e-1 (1.6e-3) 7.565e-1 (3.0e-3)
5 1.191e+0 (6.3e-3) 1.267e+0 (3.7e-3) *1.334e+0 (2.4e-3) 1.286e+0 (4.3e-3) 1.210e+0 (8.7e-3)
8 1.706e+0 (1.5e-2) 1.468e+0 (1.1e-1) 1.54e+0 (4.2e-2) *1.736e+0 (2.5e-2) 1.595e+0 (4.1e-2)
10 *2.180e+0 (1.6e-2) 1.972e+0 (9.3e-2) 1.893e+0 (3.6e-2) 2.097e+0 (4.1e-2) 1.959e+0 (3.8e-2)

WFG5

3 7.368e-1 (2.3e-3) 7.419e-1 (4.7e-3) *7.667e-1 (3.2e-3) 7.434e-1 (3.8e-3) 7.321e-1 (5.1e-3)
5 1.251e+0 (3.2e-3) 1.237e+0 (3.4e-3) *1.319e+0 (2.8e-3) 1.258e+0 (3.8e-3) 1.228e+0 (5.3e-3)
8 1.443e+0 (2.4e-1) 1.640e+0 (1.1e-1) *1.853e+0 (9.4e-2) 1.681e+0 (2.8e-2) 1.726e+0 (2.5e-2)
10 1.821e+0 (2.1e-2) 1.964e+0 (3.3e-2) 1.845e+0 (5.7e-2) 2.046e+0 (4.3e-2) *2.137e+0 (2.6e-2)

WFG6

3 7.056e-1 (6.9e-4) 7.59e-1 (6.4e-3) *7.783e-1 (5.7e-3) 7.541e-1 (6.2e-3) 7.377e-1 (8.4e-3)
5 1.206e+0 (1.4e-3) 1.25e+0 (9.5e-3) *1.314e+0 (8.7e-3) 1.254e+0 (1.1e-2) 1.217e+0 (1.2e-2)
8 1.802e+0 (2.6e-3) 1.790e+0 (2.5e-2) *1.934e+0 (3.1e-2) 1.765e+0 (2.8e-2) 1.737e+0 (3.5e-2)
10 *2.285e+0 (1.4e-3) 2.068e+0 (5.5e-2) 2.143e+0 (9.4e-2) 2.140e+0 (3.9e-2) 2.172e+0 (3.4e-2)

WFG7

3 7.507e-1 (2.2e-3) 7.711e-1 (1.1e-3) *7.886e-1 (5.7e-4) 7.727e-1 (1.3e-3) 7.599e-1 (2.7e-3)
5 1.207e+0 (6.1e-3) 1.266e+0 (3.3e-3) *1.336e+0 (1.3e-3) 1.299e+0 (3.6e-3) 1.245e+0 (1.1e-2)
8 1.747e+0 (1.9e-2) 1.542e+0 (9.3e-2) 1.764e+0 (1.6e-1) *1.867e+0 (1.3e-2) 1.709e+0 (3.5e-2)
10 2.242e+0 (1.6e-2) 2.08e+0 (5.4e-2) 1.95e+0 (8.e-2) *2.263e+0 (1.7e-1) 2.169e+0 (3.4e-2)

WFG8

3 8.525e-1 (4.8e-3) 8.979e-1 (2.1e-3) *9.195e-1 (1.3e-3) 9.007e-1 (2.1e-3) 8.717e-1 (5.3e-3)
5 1.140e+0 (7.1e-3) 1.33e+0 (1.2e-2) *1.375e+0 (2.e-2) 1.268e+0 (1.2e-2) 1.175e+0 (9.2e-3)
8 1.598e+0 (1.8e-2) 1.596e+0 (8.1e-2) *1.874e+0 (9.5e-2) 1.755e+0 (6.4e-2) 1.528e+0 (3.3e-2)
10 2.116e+0 (1.3e-2) 1.988e+0 (4.3e-2) 1.990e+0 (7.4e-2) *2.216e+0 (6.1e-2) 1.951e+0 (4.6e-2)

WFG9

3 8.626e-1 (1.5e-3) 8.847e-1 (3.2e-2) *9.303e-1 (3.e-2) 8.965e-1 (3.0e-2) 8.768e-1 (2.e-2)
5 1.184e+0 (2.7e-3) 1.169e+0 (4.3e-3) 1.211e+0 (2.3e-3) 1.203e+0 (2.9e-2) 1.167e+0 (1.4e-2)
8 1.804e+0 (9.9e-3) 1.782e+0 (4.4e-2) *1.844e+0 (7.0e-2) 1.634e+0 (8.9e-2) 1.68e+0 (5.9e-2)
10 *2.207e+0 (1.1e-2) 2.108e+0 (5.7e-2) 2.010e+0 (7.0e-2) 1.935e+0 (8.6e-2) 2.075e+0 (4.6e-2)

4.2.4 Discussion

In this section, we identified two crucial drawbacks of the LAP selection scheme: oc-
casional selection of duplicated solutions and not always prioritizing non-dominated
solutions. Therefore, we proposed combining the LAP transformation with an ap-
proximation of the hypervolume indicator using polar coordinates. Then, we proposed
a novel algorithm (MOEA-LAPCO) incorporating the resulting selection scheme.

We compared MOEA-LAPCO with HDE, a variant of HDE using SBX and PM,
MOEA/DD, and NSGA-III using problems with three to ten objectives. The experi-
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mental results showed that the MOEA-LAPCO outperforms the two variants of HDE,
showing that our proposed selection scheme improves the LAP selection mechanism.
Moreover, MOEA-LAPCO outperforms the other algorithms in most problems. How-
ever, MOEA-LAPCO’s performance deteriorates when more than eight objectives are
used.

4.3 Summary

In this chapter, we presented two new selection methods that use the LAP trans-
formation. The first selection scheme simultaneously uses four different scalarizing
functions and two weight vector sets in the LAP selection scheme. The resulting
algorithm was called ESW, and the experimental results showed that it outperforms
HDE and is competitive with respect to state-of-the-art algorithms. On the other
hand, the second selection scheme incorporates an approximation of the hypervolume
indicator in the LAP transformation, aiming to solve two of its drawbacks. More-
over, we incorporated the new scheme into a novel algorithm called MOEA-LAPCO.
The experiments showed that MOEA-LAPCO outperforms HDE and state-of-the-art
algorithms.
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Chapter 5

On the design of performance
indicators using the LAP

The solution to a multi-objective optimization problem consists of a set of non-
dominated solutions which can not be easily evaluated as in the case of single-objective
problems. Therefore, the performance assessment of MOEAs is an essential research
topic. Over the years, a variety of indicators have been proposed to assess different
characteristics of the Pareto front approximations [27, 79, 33]. These characteristics
can be convergence, coverage, uniformity, or cardinality of an approximation set.

This chapter presents two indicators that used the LAP to measure the perfor-
mance of an approximation set: ILAP andDLAP . Both indicators use a set of reference
vectors and establish a cost of assigning a solution to one of the vectors. However,
the ILAP is designed to estimate the convergence and diversity of an approximation
set, and the DLAP is focused on measuring diversity.

This chapter is organized as follows. Section 5.1 describes the ILAP indicator
and presents some experiments to evaluate its performance. On the other hand,
Section 5.2 presents the DLAP and an experimental analysis to measure its efficacy.
Finally, Section 5.3 summarizes the contents of this chapter.

5.1 A performance indicator based on the LAP

One of the most popular performance indicators adopted in evolutionary multi-
objective optimization has been the hypervolume [27], which measures the space
covered by an approximation set given a reference point. This indicator is Pareto
compliant and can assess both convergence and spread of the approximations pro-
duced by a MOEA. However, its computational cost becomes unaffordable as the
number of objectives increases.

Another commonly used performance indicator is R2 [79]. This indicator can
assess the convergence and diversity of the solutions by using a set of weight vectors
and a scalarizing function. Moreover, the behavior of the R2 indicator is similar
to that of the hypervolume (although R2 is weakly Pareto compliant) but has a

51



52 Chapter 5

significantly lower computational cost [79]. Nevertheless, as we will see later on,
the R2 indicator may obtain the same value for approximation sets with different
distributions.

This section introduces a novel performance indicator based on LAP [57]: ILAP .
The core idea of this indicator is to use the cost obtained when adopting LAP as
a performance indicator. Our experimental results show that ILAP correctly ranks
solution sets with different distributions and shapes. Moreover, we present an example
in which ILAP distinguishes two approximation sets in a better way than the R2
indicator.

The remainder of this section is organized as follows. Subsection 5.1.1 introduces
our proposed performance indicator, called ILAP . Subsection 5.1.2 presents a com-
parison of the ILAP with the R2 indicator. Subsection 5.1.3 and 5.1.4 features an
experimental analysis to verify the effectiveness of the ILAP . Lastly, Subsection 5.1.5
summarizes the section.

5.1.1 Our proposed approach

As we mentioned in Chapter 3, Molinet Berenguer and Coello Coello [5] transformed
the selection process of a MOEA into a LAP. In this proposal, the authors consider
a set of individuals and a set of weight vectors representing different regions of the
Pareto front. Moreover, the cost of assigning an individual to a weight vector is com-
puted using a scalarizing function. Therefore, after solving the LAP, the individuals
assigned to a weight vector are selected for the next generation. The authors incorpo-
rated this selection scheme into the HDE algorithm, which is very competitive with
respect to modern algorithms.

In the case of the LAP selection process, the size of the set of individuals is larger
than the size of the set of weight vectors. Therefore, the Hungarian algorithm finds
the subset of individuals that minimizes the overall assignment cost and discards
the subsets with the worst values. Hence, we can deduce that the minimum overall
assignment cost gives us an estimation of how good or bad a set is. Using this idea, we
propose an indicator based on the LAP. The ILAP indicator is defined in the following.

Definition 5.1. Given a set of uniformly distributed weight vectorsW = {w1, . . . ,wn},
an approximation set A = {a1, . . . ,an}, and a cost matrix C such that Cij = s(wi,aj)
where s is a scalarizing function. Then, the ILAP is defined as:

ILAP =
1

n
min
x∈X

{
n∑

i=1

n∑
j=1

Cijxij

}
(5.1)

where X is the set of permutation matrices.

We compute the ILAP by obtaining a cost matrix C using s, A, and W . Then, we
solve the LAP defined by C employing the Hungarian algorithm. Finally, the indicator
value is the best assignment’s cost divided by n. The cost matrix computation is
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(a) Measuring convergence.
ILAP = 25000.3375 for the circles’
set, and ILAP = 25000.4375 for the
triangles’ set.
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(b) Measuring diversity.
ILAP = 25000.4375 for the circles’
set, and ILAP = 197500.675 for the
triangles’ set.

Figure 5.1: Examples where the ILAP assesses both convergence and diversity. A
lower value is preferred; therefore, the ILAP ranks the sets correctly in both cases.

performed in O(mn2), where m is the number of objectives. Moreover, the LAP
problem is solved in O(n3). Therefore the computational complexity of computing
the ILAP is O(mn2 + n3).

In the ILAP , each weight vector must be assigned to a currently unassigned solution
while minimizing the cost. In the ideal case, each weight vector is assigned to a
solution where it obtains its lowest cost. However, let’s assume that more than one
weight vector obtains its lowest cost with the same solution. In that case, the indicator
will assign the solution to the vector with the lowest value and will use the second-best
solutions for the remaining vectors.

This process allows the ILAP to assess convergence and diversity at the same time.
On the one hand, it measures convergence by always considering the best values of
the scalarizing functions. On the other hand, it measures diversity because it tries to
quantify how much the solutions cover the regions of the weight vectors. Examples
of these two cases are shown in Fig. 5.1a and Fig. 5.1b, where the ILAP successfully
ranks the sets. We used the ASF scalarizing function for these examples and for the
rest of this chapter.

5.1.2 Comparison between our approach and the R2-indicator

The ILAP and R2 indicators have some similarities. Both use scalarizing functions
and weight vectors to assess the performance of an approximation set. Moreover, the
indicators will obtain the same value when the regions given by the weight vectors
are equally covered (as shown in Fig. 5.2).
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Figure 5.2: Example of a case where ILAP and R2 obtain the same values: ILAP =
R2 = 10000.3875

However, the R2 indicator only considers the solutions with the best values of the
scalarizing function, discarding the information provided by the solutions with the
worst values. Therefore, the R2 indicator may not evaluate the performance of the
whole set and may obtain the same value for two different approximations. On the
other hand, the ILAP indicator considers the whole set since it assigns each weight
vector with a different solution and obtains the indicator’s value from this assignment.

An example of the previous situation is shown in Fig. 5.3a and Fig. 5.3b. Given
two different approximation sets, the R2 indicator obtains the same value, while the
ILAP obtains different values. Furthermore, ILAP prefers the approximation set with
a solution nearer to an uncovered vector.

5.1.3 Evaluation in artificial many-objective Pareto fronts

In this section, we study the performance of the ILAP in artificial Pareto fronts. We
employed three types of solutions sets generated in a unit m-simplex:

• C1. The solutions are concentrated in one corner of the simplex.

• C2. The solutions are randomly generated.

• C3. The solutions are uniformly distributed. We employ the method proposed
in [29] for this type of set.

Moreover, the set size for each dimension is shown in Table 5.1, and Figs. 5.4a
to 5.5l show the parallel coordinates graphs of the sets. Regarding ILAP , we use the
ASF, and the UDH method [5] for generating the weight vectors.

The results are shown in Tables 5.2a and 5.2b. Moreover, we include the results of
the hypervolume indicator [27] as a reference. We can observe that ILAP consistently
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(a) R2=44000.50133, ILAP=44000.584
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(b) R2=44000.50133, ILAP=44000.616

Figure 5.3: The R2 indicator obtains the same value for two sets with distinct distri-
butions, while the ILAP indicator obtains different values.

Table 5.1: Set size for each dimension

m 3 4 5 6 7 8 9 10
Set size 100 110 120 130 140 150 160 170

ranks the C3 sets in first place, the C2 sets in second place, and the C1 sets in last
place. Furthermore, the hypervolume obtains the same ranking. Therefore, ILAP can
correctly rank a set of solutions when dealing with problems having from 3 up to 10
dimensions.

5.1.4 Evaluation in Pareto front approximations

In this section, we use the ILAP , the hypervolume, and the R2 indicator to evaluate
the performance of two well-known MOEAs: the NSGA-II [39] and the MOEA/D [15].
For this purpose, we ran each algorithm 30 times using different problems. We
adopted the DTLZ1, DTLZ2, and DTLZ7 problems from the DTLZ [64] test suite,
the DTLZ1−1 from the Minus-DTLZ test problems [77], and the WFG1-WFG3 from
the WFG [67] test suite with m = 3, 5, 8, and 10 objectives. Regarding the DTLZ
problems, we set the number of decision variables to n = m+ k − 1, where k = 5 for
DTLZ1, k = 10 for DTLZ2, and k = 20 for DTLZ7. In the case of the WFG prob-
lems, we set the position-related parameters to 2× (m− 1) and the distance-related
parameters to 20. Finally, we used the same configuration of DTLZ1 for DTLZ1−1.

In the case of the algorithm’s parameters, we set the population sizes to 100 for
three objectives, 120 for five, 140 for eight, and 160 for ten. We set the crossover and
mutation parameters to: pc = 1.0, pm = 1/number of variables, nc = 20, and nm =
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Table 5.2: ILAP and Hypervolume values of the sets C1, C2, and C3 for each dimension
m. Darker cells imply better values.

m C1 C2 C3
3 5.0453 1.5322 1.1263
4 5.6031 1.8407 1.3157
5 5.9506 2.3113 1.5775
6 5.8495 2.6022 1.9827
7 6.0938 2.9235 2.1356
8 5.9524 3.0488 2.4045
9 5.8106 3.2949 2.9855
10 5.5003 3.4681 3.1862

(a) ILAP

m C1 C2 C3
3 0.77462 1.076862 1.11977
4 0.906105 1.32058 1.369026
5 1.036677 1.49916 1.560266
6 1.197589 1.659354 1.737507
7 1.284942 1.862622 1.920832
8 1.400768 2.057528 2.111709
9 1.586619 2.252491 2.328822
10 1.805137 2.501373 2.563038

(b) Hypervolume

20. Regarding the MOEA/D parameters, we used a neighborhood size T = 20, the
ASF function, and the UDH weight vectors. Finally, the ILAP and the R2 indicators
adopted the ASF function and UDH weight vectors.

Tables 5.3a, 5.3b, and 5.3c display the average and the standard deviation of
each indicator. We can observe that the three indicators obtain the same results for
DTLZ1, DTLZ2, DTLZ7, WFG1, WFG2, and DTLZ1−1. In the case of the WFG3
problem, the R2 and the hypervolume get the same rank in 5 and 8 objectives. In
contrast, the ILAP and the hypervolume get the same rank in 3 and 5 objectives. This
situation could happen because the WFG3 is a linear problem that hardly fits the
shape of a simplex. Therefore, the R2 and ILAP indicators may have some trouble
with the performance assessment because they employ reference vectors sampled in
a simplex.

5.1.5 Discussion

We proposed in this section a novel performance indicator based on the Linear As-
signment Problem called ILAP . The experimental results showed that our proposed
ILAP could successfully rank the solutions sets using different distributions and Pareto
front shapes of many-objective problems. Moreover, we described an example where
the R2 indicator (the performance indicator with the most significant similarity with
the ILAP ) can not distinguish between two different approximation sets. In contrast,
our proposed ILAP can differentiate them and prefers the one with a solution nearer
to an uncovered region.
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Table 5.3: Average and standard deviation of the hypervolume, R2, and ILAP in-
dicators. The gray cells are used to show better values. Moreover, the symbol “*”
represents that the algorithm is statistically better according to the Wilcoxon rank
sum test.

M MOEA/D NSGA-II

DTLZ1

3 1.324e+0 (8.5e-4) *1.331e+0 (3.1e-6)
5 *1.610e+0 (7.5e-6) 1.610e+0 (1.4e-4)
8 *2.144e+0 (6.2e-6) 2.143e+0 (4.4e-4)
10 *2.594e+0 (8.3e-6) 2.593e+0 (1.4e-4)

DTLZ2

3 *8.330e-1 (9.3e-4) 8.169e-1 (5.1e-3)
5 *1.593e+0 (2.1e-3) 1.584e+0 (5.5e-3)
8 *2.139e+0 (1.2e-3) 2.002e+0 (4.2e-2)
10 *2.589e+0 (1.2e-3) 2.454e+0 (3.9e-2)

DTLZ7

3 6.436e-1 (5.e-2) *6.908e-1 (2.6e-2)
5 6.136e-1 (5.6e-2) *8.222e-1 (1.9e-2)
8 2.e-1 (1.2e-1) *7.608e-1 (9.4e-2)
10 1.102e-1 (9.4e-2) *5.378e-1 (1.3e-1)

WFG1

3 *1.197e+0 (2.7e-2) 1.108e+0 (2.5e-2)
5 *1.526e+0 (3.6e-2) 1.273e+0 (2.9e-2)
8 *2.055e+0 (5.0e-2) 1.495e+0 (3.6e-2)
10 *2.465e+0 (3.5e-2) 1.378e+0 (3.8e-2)

WFG2

3 1.072e+0 (8.e-2) *1.155e+0 (8.2e-2)
5 1.328e+0 (1.1e-1) *1.58e+0 (6.9e-3)
8 1.711e+0 (1.4e-1) *2.129e+0 (6.3e-3)
10 2.074e+0 (2.1e-1) *2.576e+0 (7.8e-3)

WFG3

3 8.132e-1 (7.8e-3) 8.162e-1 (4.e-3)
5 1.140e+0 (1.4e-2) 1.134e+0 (1.4e-2)
8 1.472e+0 (2.9e-2) *1.501e+0 (2.7e-2)
10 1.518e+0 (5.1e-2) *1.798e+0 (3.5e-2)

DTLZ1−1

3 *2.775e-1 (2.9e-5) 2.733e-1 (2.2e-3)
5 1.224e-2 (9.e-5) 1.215e-2 (5.3e-4)
8 *3.472e-5 (1.3e-6) 3.167e-5 (2.3e-6)
10 4.988e-7 (3.8e-8) 4.924e-7 (3.6e-8)

(a) HV

M MOEA/D NSGA-II

DTLZ1

3 7.692e-2 (7.e-3) *2.856e-2 (6.e-4)
5 *1.155e-3 (3.1e-5) 2.388e-1 (1.2e-1)
8 *1.318e-3 (5.5e-5) 8.6e-1 (3.1e-1)
10 *1.574e-3 (9.5e-5) 1.165e+0 (2.6e-1)

DTLZ2

3 *1.360e+0 (2.5e-4) 1.446e+0 (3.8e-2)
5 *8.176e-1 (5.2e-3) 1.196e+0 (5.9e-2)
8 *6.764e-1 (2.4e-2) 2.832e+0 (2.4e-1)
10 *8.836e-1 (1.0e-1) 3.216e+0 (2.0e-1)

DTLZ7

3 3.517e+0 (1.1e+0) *3.074e+0 (5.8e-1)
5 7.344e+0 (9.4e-1) *6.085e+0 (1.7e-1)
8 1.702e+1 (2.2e+0) *1.098e+1 (4.8e-1)
10 2.339e+1 (3.5e+0) *1.487e+1 (9.1e-1)

WFG1

3 *1.076e+0 (1.6e-1) 1.493e+0 (2.7e-1)
5 *1.375e+0 (2.2e-1) 2.922e+0 (2.6e-1)
8 *1.412e+0 (2.3e-1) 4.859e+0 (2.3e-1)
10 *1.797e+0 (2.1e-1) 8.452e+0 (2.7e-1)

WFG2

3 2.126e+0 (7.0e-1) *1.488e+0 (7.6e-1)
5 3.305e+0 (1.1e+0) *1.174e+0 (5.4e-2)
8 5.121e+0 (1.5e+0) *1.425e+0 (5.4e-2)
10 5.187e+0 (2.3e+0) *1.533e+0 (6.7e-2)

WFG3

3 *2.667e+0 (2.5e-2) 2.673e+0 (2.0e-2)
5 *3.724e+0 (6.2e-2) 3.796e+0 (6.2e-2)
8 *5.617e+0 (8.1e-2) 5.711e+0 (7.7e-2)
10 6.985e+0 (2.2e-1) *6.594e+0 (1.1e-1)

DTLZ1−1

3 *5.014e+0 (2.0e-4) 5.46e+0 (6.4e-2)
5 *1.349e+1 (3.2e-2) 1.581e+1 (1.4e-1)
8 *3.073e+1 (8.9e-2) 3.825e+1 (3.5e-1)
10 *4.034e+1 (1.2e-1) 5.187e+1 (4.4e-1)

(b) R2

M MOEA/D NSGA-II

DTLZ1

3 6.127e-1 (1.0e-3) *5.061e-1 (5.9e-2)
5 *1.155e-3 (3.0e-5) 9.361e-1 (1.0e-1)
8 *1.318e-3 (5.6e-5) 1.800e+0 (1.1e-1)
10 *1.577e-3 (9.8e-5) 2.105e+0 (6.0e-2)

DTLZ2

3 *1.363e+0 (3.4e-4) 1.958e+0 (7.2e-2)
5 *8.181e-1 (5.2e-3) 1.478e+0 (6.5e-2)
8 *6.765e-1 (2.5e-2) 4.292e+0 (2.2e-1)
10 *8.851e-1 (1.1e-1) 5.212e+0 (1.8e-1)

DTLZ7

3 4.797e+0 (1.1e+0) *3.298e+0 (6.3e-1)
5 1.257e+1 (1.2e+0) *6.904e+0 (1.7e-1)
8 2.834e+1 (3.0e+0) *1.333e+1 (4.4e-1)
10 3.711e+1 (6.0e+0) *1.825e+1 (6.9e-1)

WFG1

3 *1.359e+0 (1.7e-1) 1.721e+0 (3.8e-1)
5 *1.62e+0 (3.1e-1) 3.338e+0 (3.3e-1)
8 *1.727e+0 (2.9e-1) 5.834e+0 (4.5e-1)
10 *2.213e+0 (2.8e-1) 1.021e+1 (4.6e-1)

WFG2

3 2.377e+0 (6.3e-1) *1.75e+0 (8.5e-1)
5 3.568e+0 (1.1e+0) *1.954e+0 (2.3e-1)
8 5.302e+0 (1.5e+0) *2.953e+0 (2.5e-1)
10 5.314e+0 (2.2e+0) *3.271e+0 (3.0e-1)

WFG3

3 3.276e+0 (3.7e-2) *2.929e+0 (5.6e-2)
5 *4.172e+0 (1.2e-1) 4.804e+0 (1.3e-1)
8 *6.833e+0 (1.6e-1) 7.874e+0 (2.3e-1)
10 *9.165e+0 (2.5e-1) 9.488e+0 (2.6e-1)

DTLZ1−1

3 *5.014e+0 (2.0e-4) 5.627e+0 (6.7e-2)
5 *1.349e+1 (3.2e-2) 1.637e+1 (1.9e-1)
8 *3.076e+1 (7.4e-2) 3.915e+1 (3.e-1)
10 *4.037e+1 (1.2e-1) 5.325e+1 (3.7e-1)

(c) ILAP
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(a) C1 - 3D (b) C2 - 3D (c) C3 - 3D

(d) C1 - 4D (e) C2 - 4D (f) C3 - 4D

(g) C1 - 5D (h) C2 - 5D (i) C3 - 5D

(j) C1 - 6D (k) C2 - 6D (l) C3 - 6D

Figure 5.4: Artificial solution sets generated in a unit simplex. Solutions in C1 are
concentrated in a corner, in C2 are randomly generated, and in C3 are uniformly
distributed.
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(a) C1 - 7D (b) C2 - 7D (c) C3 - 7D

(d) C1 - 8D (e) C2 - 8D (f) C3 - 8D

(g) C1 - 9D (h) C2 - 9D (i) C3 - 9D

(j) C1 - 10D (k) C2 - 10D (l) C3 - 10D

Figure 5.5: Artificial solution sets generated in a unit simplex (continuation)
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5.2 A diversity indicator based on the LAP

This section presents a novel diversity indicator based on the LAP, the DLAP . The
core idea is to measure the closeness between an approximation set and a set of well-
distributed reference vectors. Therefore, we compute the minimum cost of assigning
the solutions in the approximation set and the reference vectors.

The remainder of this section is organized as follows. First, we describe our pro-
posed approach in Subsection 5.2.1. Then, we evaluate the new indicator in artificial
Pareto fronts (see Subsection 5.2.2) and Pareto front approximations (see Subsec-
tion 5.2.3). Finally, we discuss the results in Subsection 5.2.4.

5.2.1 Our proposed approach

We proposed a new indicator that measures the diversity of solutions of an approxi-
mation set using the LAP. We called this indicator DLAP , and its formal definition is
the following:

Definition 5.2. Given a set of uniformly distributed reference vectorsW = {w1, . . . ,wn},
an approximation set A = {a1, . . . ,an}, and a cost matrix C such that Cij = c(wi,aj)
where c is a function that measures the closeness between wi and aj. Then, the DLAP

is defined as:

DLAP =
1

n
min
x∈X

{
n∑

i=1

n∑
j=1

Cijxij

}
(5.2)

where X is the set of permutation matrices.

We compute the DLAP by measuring the closeness between each reference vector
and every solution in objective space. Then, we determine the minimum cost of
assigning a set of reference vectors to the approximation set. The resulting value
indicates how well an approximation set covers different regions of the objective space,
where a smaller value indicates a better approximation.

We proposed two different alternatives to evaluate the proximity between a solu-
tion and a reference vector. The first alternative is to use the shortest Euclidean dis-
tance between a solution and a reference vector. Given a solution a = [a1, . . . , am] ∈ A
and a reference vector w, this distance can be computed using the following expres-
sion:

cdistance(w,a) =
∥∥∥a′ − a′ ·w

w ·ww
∥∥∥ (5.3)

where a′ = [a′1, . . . , a
′
m] such that a′i =

ai−zmin
i

zmax
i −zmin

i
for all i = 1, . . . ,m. Moreover,

zmin
i = minz∈A zi, and zmax

i = maxz∈A zi.
The second alternative employs the angle between a solution and a reference vector

to measure proximity. Given a solution a = [a1, . . . , am] ∈ A and a reference vector
w, this angle can be computed using the following expression:

cangle(w,a′) = arccos
( w · a′

∥w∥∥a′∥
)

(5.4)
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where a′ is defined as in cdistance. Figure 5.6 illustrates how these two metrics of
closeness are defined.

Figure 5.6: Metrics of closeness between a reference vector and a solution

5.2.2 Evaluation in artificial Pareto fronts

We conduct three experiments to validateDLAP in artificially generated Pareto fronts.
In each experiment, we use the UDH method to generate the reference set, setting
the number of vectors equal to the size of the approximation set. Moreover, for each
approximation, we compute the DLAP using the cdistance (DLAP (distance)) and the cangle
(DLAP (angle)).

In the first experiment, we generate three approximation sets with 100 solutions
on the hyperplane f1 + f2 + f3 = 1 (see Figure 5.7). The solutions in Figure 5.7a
are concentrated on a small region of the hyperplane. The solutions in Figure 5.7b
are randomly distributed, and those in Figure 5.7c are uniformly distributed. We
can observe that the lower the value, the better the distribution, regardless of the
closeness function.

In the second experiment, we rotate the previous sets to verify if the indicator is
sensible to the geometry of the Pareto front (see Figure 5.8). We can observe that
DLAP (angle) assigns lower values to the sets with better distribution, and the same
occurs for DLAP (distance).

Regarding the third experiment, we scale the approximation set from Figure 5.7c
by 75% and 50% to test if the indicator can measure the set coverage (see Figure 5.9).
The results show that both alternatives, DLAP (distance) and DLAP (angle), assign lower
values to the sets with better coverage.

5.2.3 Evaluation in Pareto front approximations

In this section, we evaluate our proposed approach into Pareto front approxima-
tions. For this purpose, we performed 30 independent runs of NSGA-II [39] and
MOEA/D [15] using three objective problems. In particular, we adopted the DTLZ1,
DTLZ2, and DTLZ7 from the DTLZ test suite [64], the WFG1, and WFG3 from the
WFG test suite [67], and the DTLZ1-Minus proposed in [77].
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(a) DLAP (angle) = 0.4511,
DLAP (distance) = 0.2557

(b) DLAP (angle) = 0.1053,
DLAP (distance) = 0.0699

(c) DLAP (angle) = 0.0832,
DLAP (distance) = 0.0611

Figure 5.7: Artificially generated Pareto fronts with different distributions located on
a unit simplex.

(a) DLAP (angle) = 0.4731,
DLAP (distance) = 0.5164

(b) DLAP (angle) = 0.3006,
DLAP (distance) = 0.3418

(c) DLAP (angle) = 0.256,
DLAP (distance) = 0.3018

Figure 5.8: Artificially generated Pareto fronts with different distributions located on
an inverted unit simplex.

In the case of the algorithm’s parameters, we set the population size to 100. We
set the crossover and mutation parameters to: pc = 1.0, pm = 1/number of variables,
nc = 20, and nm = 20. Concerning the MOEA/D parameters, we used a neighbor-
hood size T = 20, the ASF function, and the UDH weight vectors.

Tables 5.4 and 5.5 display the average and standard deviation of DLAP (distance) and
DLAP (angle) for each algorithm and problem. Moreover, Figures 5.10 and 5.11 show
the most representative Pareto front approximations that NSGA-II and MOEA/D
obtained.

The results show that both indicators obtained the same ranking in DTLZ1−1,
DTLZ2, and DTLZ7 problems. While in problems DTLZ1, WFG1, and WFG3,
the indicators obtained different rankings. Therefore, the indicators have different
behavior depending on the problem.

We can observe that MOEA/D outperformed NSGA-II in generating well-distribu-
ted approximations for DTLZ1 and DTLZ2 problems. This result matches the ranking
obtained by DLAP (distance). In contrast, DLAP (angle) only matches in the DTLZ2 prob-
lem. On the other hand, NSGA-II generated better approximations than MOEA/D
in DTLZ7 and DTLZ1−1 problems. Both indicators (DLAP (angle) and DLAP (distance))
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(a) DLAP (angle) = 0.2631,
DLAP (distance) = 0.1563

(b) DLAP (angle) = 0.1138,
DLAP (distance) = 0.076

(c) DLAP (angle) = 0.0834,
DLAP (distance) = 0.0611

Figure 5.9: Artificially generated Pareto fronts with different coverage located on a
unit simplex.

correctly rank the DTLZ7 problems, but fail in DTLZ1−1. Regarding WFG3, the fig-
ures show that NSGA-II performed better than MOEA/D. This result fits the ranking
obtained by DLAP (distance) but differs from the ranking obtained by DLAP (angle).

Therefore, we can conclude that DLAP (distance) correctly ranks more approximation
sets than DLAP (angle). However, none of the indicators could correctly rank DTLZ1−1.

Table 5.4: Average and standard deviation of DLAP (distance) indicator. The gray cells
are used to show better values.

Problem NSGA-II MOEA/D
DTLZ1−1 3.4424e-01 (5.42e-03) 2.6413e-01 (3.47e-05)
DTLZ1 1.0869e-01 (3.16e-02) 7.8457e-03 (4.06e-04)
DTLZ2 1.0496e-01 (6.27e-03) 7.5247e-03 (8.25e-04)
DTLZ7 2.1643e-01 (1.46e-02) 4.8157e-01 (1.24e-01)
WFG1 1.1808e-01 (1.08e-02) 1.1143e-01 (2.45e-02)
WFG3 2.2273e-01 (1.18e-02) 2.2786e-01 (6.02e-03)

5.2.4 Discussion

We have presented a novel diversity indicator based on the LAP called DLAP . The
idea was to obtain the minimum cost of assigning an approximation set to a reference
vector set, where the cost is computed using a closeness function between a solution
and a vector. We proposed two functions to measure this proximity: the minimum
distance between a point (cdistance) and a vector and the angle between a solution and
a vector (cangle).

The experimental results showed that this new indicator is able to measure the
coverage and distribution of artificial Pareto fronts, regardless of the closeness func-
tion. Moreover, the experiments showed that the DLAP with the cdistance performed
better than cangle to measure the diversity of approximation sets.
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Table 5.5: Average and standard deviation of the DLAP (angle) indicator. The gray
cells are used to show better values.

Problem NSGA2 MOEAD
DTLZ1−1 2.8618e-01 (5.09e-03) 2.1678e-01 (1.96e-05)
DTLZ1 6.3980e-01 (4.02e-02) 7.1443e-01 (8.39e-04)
DTLZ2 1.0555e-01 (6.93e-03) 1.3515e-02 (1.07e-04)
DTLZ7 2.2282e-01 (7.42e-02) 4.1321e-01 (6.72e-02)
WFG1 2.2328e-01 (7.06e-02) 2.6044e-01 (2.08e-02)
WFG3 2.5687e-01 (1.09e-02) 2.3707e-01 (2.89e-03)

(a) DTLZ1 (b) DTLZ2 (c) DTLZ7

(d) WFG1 (e) WFG3 (f) DTLZ1−1

Figure 5.10: Representative Pareto front approximations obtained by NSGA-II

5.3 Summary

In this chapter, we proposed two novel indicators that employ the LAP to assess the
performance of an algorithm: ILAP and DLAP . The ILAP was designed to measure
the convergence and diversity of an approximation set. The experimental results
showed that the ILAP is able to evaluate the performance of approximation sets with
different distributions and shapes. On the other hand, the DLAP was developed to
measure the diversity of approximation sets. Moreover, our experiments showed that
this indicator can correctly assess the diversity of approximation sets with different
distributions and coverage of the regions.
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(a) DTLZ1 (b) DTLZ2 (c) DTLZ7

(d) WFG1 (e) WFG3 (f) DTLZ1−1

Figure 5.11: Representative Pareto front approximations obtained by MOEAD
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Chapter 6

Conclusions and future work

Most MOEAs can be categorized into three families according to their selection
scheme: Pareto-based, indicator-based, and decomposition-based. Pareto-based MOEAs
are widely used and effective for optimizing two-objective problems. However, their
performance deteriorates when increasing the number of objectives. On the other
hand, indicator-based MOEAs can deal with complicated Pareto fronts, but their
computational cost usually becomes prohibitive when dealing with many-objective
problems. Moreover, the solutions’ distribution relies on the chosen indicator. Con-
versely, decomposition-based MOEAs can solve multiple single-objective problems in
a single run, offering diverse solutions. However, the solutions’ distribution highly
depends on the adopted scalarizing function and weight vector set.

Throughout the years, the drawbacks of these three families of MOEAs have
been addressed but not fully resolved. Therefore, this thesis explored alternative
selection schemes that do not belong to these families. In particular, we studied the
transformation of the selection process into a linear assignment problem, which is
competitive with well-known MOEAs and has good performance in many-objective
problems. The main contributions of this thesis are the following:

In Chapter 3, we introduced the linear assignment problem transformation and
examined the algorithms containing this selection scheme. We noted that none of the
algorithms require additional mechanisms to achieve accurate approximations beyond
the LAP transformation. However, there have been limited studies on the behavior
of this selection scheme.

In Chapter 4, we performed an experimental analysis of the influence of scalarizing
functions and weight vectors in the LAP selection scheme. For this purpose, we
evaluated six scalarizing functions (TCH, ATCH, ASF, AASF, PBI, and AGSF2)
and two weight vector sets (SLD and UDH) in the HDE. We found that the SLD set
performed best in conventional problems (DTLZ and WFG), while the UDH set was
most effective in Minus problems (DTLZ−1 and WFG−1). Moreover, the two best
scalarizing functions were the AASF and the AGSF2. We conclude that the choice of
scalarizing function and weight vector set highly influences the behavior of the LAP
selection scheme. Moreover, the best choice depends on the problem.

For this reason, we designed a novel MOEA that integrates different scalarizing
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functions and weight vector sets using the LAP transformation. In particular, we
employed an ensemble technique to simultaneously use the best pair of scalarizing
functions (AASF and AGSF2) and the two previous vector sets (SLD and UDH).
The resulting algorithm was called an Ensemble of Scalarizing functions and Weight
vectors (ESW). We evaluated the performance of ESW using problems with three to
ten objectives. The experimental results showed that ESW outperforms HDE using
the individual pairs. Moreover, ESW is competitive with state-of-the-art algorithms.
Therefore, we concluded that the simultaneous use of different scalarizing functions
and weight vectors enhances the performance of the LAP selection scheme.

Furthermore, within this chapter, we identified two critical drawbacks of the LAP
transformation: it may select duplicated solutions and it does not always prefer non-
dominated solutions. In order to address these disadvantages, we proposed a novel
MOEA that combines the LAP transformation with the hypervolume indicator. How-
ever, we employed a polar-coordinate approximation of the hypervolume because of
its high computational cost. The resulting algorithm was called MOEA-LAPCO.
The MOEA-LAPCO strategy involves dividing the selection process into two phases.
During the first phase, the LAP transformation is employed to eliminate a fraction
of the population, while the second phase employs the hypervolume indicator. The
goal was to enhance the preference for non-dominated solutions by utilizing the hy-
pervolume indicator. The experimental results showed that our proposed approach
is competitive with modern algorithms in problems with three to ten objectives.

In Chapter 5, we presented a novel performance indicator that employs the LAP
transformation as its core mechanism: the ILAP . Our experimental results showed
that our proposed indicator can effectively rank solution sets with distinct distribu-
tions and Pareto front shapes. In addition, we provided an example where the R2
indicator, which is the most similar performance indicator to the ILAP , fails to dif-
ferentiate between two distinct approximation sets. In contrast, our proposed ILAP

is able to distinguish between them and favors the solution that is closer to an un-
covered area. Additionally, in this chapter, we introduced a novel diversity indicator
based on the LAP: DLAP . Its core idea was to measure the coverage and distribution
of the solution by employing a reference set. The experimental results showed that
the DLAP can accurately rank artificial Pareto fronts and approximation sets with
diverse characteristics.

As a part of our future work, we are interested in exploring the mathematical
properties of the ILAP indicator (such as Pareto compliance) and determining which
scalarizing function is the best to evaluate approximation sets. Moreover, we would
like to incorporate a decision-maker’s preferences into the LAP transformation. This
task can be done easily because each solution must be assigned to a point or vector,
which can be a reference point of a preference direction. In addition, we are interested
in exploring different ways to compute the assignment cost to avoid the occasional
preference of dominated solutions.
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Appendix A

Test functions

In this appendix, we summarize the problems that we adopted in this thesis. Mainly,
we present the Deb-Thiele-Laumanns-Zitzler (DTLZ) test suite, the Walking Fish
Group (WFG) test suite, and the Minus test problems.

A.1 Deb-Thiele-Laumanns-Zitzler test suite

The Deb-Thiele-Laumanns-Zitzler (DTLZ) test suite was presented in a technical
report by Deb et al. [80] (later published in [64]). It comprises nine problems (DTLZ1-
DTLZ9) that can be scaled to any number of objectives. In this thesis, we employed
seven of the nine problems, whose main characteristics are summarized in Table A.1.
Moreover, their mathematical definitions are presented below.

Table A.1: Main characteristics of the DTLZ1-DTLZ7 problems

Problem Separability Frontality Geometry
DTLZ1 separable multifrontal linear
DTLZ2 separable unifrontal concave
DTLZ3 separable multifrontal concave
DTLZ4 separable unifrontal concave
DTLZ5 unknown unifrontal degenerate (M = 3)/

unknown (M > 3)
DTLZ6 unknown unifrontal degenerate (M = 3)/

unknown (M > 3)
DTLZ7 separable unifrontal disconnected with

mixed components
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DTLZ1

It is a multifrontal problem with a linear Pareto Front. Let M be the number of
objectives, then the mathematical formulation of this problem is the following:

Minimize f1(x) =
1

2
(1 + g(y))

M−1∏
i=1

xi,

fj=2:M−1(x) =
1

2
(1 + g(y))

(M−j∏
i=1

xi

)
(1− xM−j+1),

fM(x) =
1

2
(1 + g(y))(1− x1),

where y = {xM , ...., xM+k−1},

g(y) = 100
[
k +

k∑
i=1

(yi − 0.5)2 − cos (20π(yi − 0.5))
]
,

subject to 0 ≤ xi ≤ 1, for i = 1, 2, ..., n.

(A.1)

The Pareto Optimal Set corresponds to xi = 0.5 for all xi ∈ y. Moreover, its
Pareto Front lies on the hyperplane

∑M
m=1 fm = 0.5. The number of variables is

defined by n = M + k − 1, where a value of k = 5 is suggested.

DTLZ2

It is a multi-objective problem with a concave Pareto Front. Let M be the number
of objectives, then the mathematical formulation of this problem is the following:

Minimize f1(x) = (1 + g(y))
M−1∏
i=1

cos
(πxi

2

)
fj=2:M−1(x) = (1 + g(y))

(M−j∏
i=1

cos
(πxi

2

))
sin
(πxM−j+1

2

)
fM(x) = (1 + g(y)) sin (

πx1

2
)

where y = {xM , ...., xM+k−1},

g(y) =
k∑

i=1

(yi − 0.5)2,

subject to 0 ≤ xi ≤ 1, for i = 1, 2, ..., n.

(A.2)

The Pareto optimal solutions correspond to xi = 0.5 for all xi ∈ y, and the objective
functions must satisfy

∑M
m=1 f

2
m = 1. The number of variables is defined by n =

M + k − 1, where a value of k = 10 is suggested.
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DTLZ3

It is a multifrontal problem with a concave Pareto Front. Let M be the number of
objectives, then the mathematical formulation of this problem is the following:

Minimize f1(x) = (1 + g(y))
M−1∏
i=1

cos
(πxi

2

)
fj=2:M−1(x) = (1 + g(y))

(M−j∏
i=1

cos
(πxi

2

))
sin
(πxM−j+1

2

)
fM(x) = (1 + g(y)) sin (

πx1

2
)

where y = {xM , ...., xM+k−1},

g(y) = 100
[
k +

k∑
i=1

((yi − 0.5)2 − cos (20π(yi − 0.5)))
]
,

subject to 0 ≤ xi ≤ 1, for i = 1, 2, ..., n

(A.3)

The Pareto optimal solutions correspond to xi = 0.5 for all xi ∈ y. The number of
variables is defined by n = M + k − 1, where a value of k = 10 is suggested.

DTLZ4

It is a multi-objective problem with a concave Pareto Front. Let M be the number
of objectives, then the mathematical formulation of this problem is the following:

Minimize f1(x) = (1 + g(y))
M−1∏
i=1

cos
(πxα

i

2

)
fj=2:M−1(x) = (1 + g(y))

(M−j∏
i=1

cos
(πxα

i

2

))
sin
(πxα

M−j+1

2

)
fM(x) = (1 + g(y)) sin

(πxα
1

2

)
where y = {xM , ...., xM+k−1},

g(y) =
k∑

i=1

(yi − 0.5)2,

subject to 0 ≤ xi ≤ 1, for i = 1, 2, ..., n

(A.4)

The number of variables is defined by n = M + k − 1, where a value of k = 10 is
suggested. The parameter α = 100 is also recommended by its authors.
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DTLZ5

LetM be the number of objectives, then the mathematical formulation of this problem
is the following:

Minimize f1(x) = (1 + g(y))
M−1∏
i=1

cos
(πθi

2

)
fj=2:M−1(x) = (1 + g(y))

(M−j∏
i=1

cos
(πθi

2

))
sin
(πθM−j+1

2

)
fM(x) = (1 + g(y)) sin (

πθ1
2

)

where θi =

{
x1 if i = 1
1+2g(y)xi

4(1+g(y))
for i = 2, 3, . . . , (M − 1),

y = {xM , ...., xM+k−1},

g(y) =
k∑

i=1

(yi − 0.5)2,

subject to 0 ≤ xi ≤ 1, for i = 1, 2, ..., n.

(A.5)

The Pareto optimal solutions correspond to xi = 0.5 for all xi ∈ y, where the
objective function values must satisfy

∑M
m=1 f

2
m = 1. The number of variables is

defined by n = M + k − 1, where a value of k = 10 is suggested.

DTLZ6

LetM be the number of objectives, then the mathematical formulation of this problem
is the following:

Minimize f1(x) = (1 + g(y))
M−1∏
i=1

cos
(πθi

2

)
fj=2:M−1(x) = (1 + g(y))

(M−j∏
i=1

cos
(πθi

2

))
sin
(πθM−j+1

2

)
fM(x) = (1 + g(y)) sin (

πθ1
2

)

where θi =

{
x1 if i = 1
1+2g(y)xi

4(1+g(y))
for i = 2, 3, . . . , (M − 1),

,

y = {xM , ...., xM+k−1},

g(y) =
k∑

i=1

y0.1i ,

subject to 0 ≤ xi ≤ 1, for i = 1, 2, ..., n

(A.6)
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The Pareto optimal solutions correspond to xi = 0 for all xi ∈ y. The number of
variables is defined by n = M + k − 1, where a value of k = 10 is suggested.

DTLZ7

It is a problem with a disconnected Pareto Front. Let M be the number of objectives,
then the mathematical formulation of this problem is the following:

Minimize fj=1:M−1(x) = xj,

fM(x) = (1 + g(y))
(
M −

M−1∑
i=1

[ fi(x)

1 + g(y)
(1 + sin (3πfi(x)))

])
where y = {xM , ...., xM+k−1},

g(y) = 1 + 9
k∑

i=1

yi
k

subject to 0 ≤ xi ≤ 1, for i = 1, 2, ..., n

(A.7)

The Pareto optimal solutions correspond to xi = 0 for all xi ∈ y. The number of
variables is defined by n = M + k − 1, where a value of k = 20 is suggested.

A.2 Walking Fish Group test suite

The Walking Fish Group (WFG) test suite consists of nine scalable problems (WFG1-
WFG9) proposed by Huband et al. in 2005 [67]. Each problem is defined in terms of
an underlying vector of parameters x, obtained through a series of transition vectors
from a vector z. The vector z consists of k + l = n working parameters, where the
first k are position parameters and the last l are distance-related parameters. It is
worth noticing that n must be larger or equal to M (the number of objectives), and
k must be divisible by (M − 1).

Additionally, every problem of the WFG test suite is associated with shape func-
tions that determine the nature of the Pareto optimal front, which can be linear,
convex, concave, mixed, or disconnected. Table A.2 displays the shape functions
employed in the problems.

On the other hand, the fitness landscape of each problem is defined through trans-
formation functions. There are three types: bias, shift, and reduction. The bias func-
tions impact the search process as they bias the fitness landscape. The shift functions
move the location of the optima, which helps to define its position. Furthermore, re-
duction functions impact the separability of the problem. Table A.3 presents the
transformation functions employed in these problems.

Table A.4 summarizes the main characteristics of the nine WFG test problems.
Moreover, their mathematical definitions are presented below.
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Table A.2: Shape functions. In every function it holds that x1, ..., xM−1 ∈ [0, 1]. A
and B are constants.

Name Function

Linear linear1(x1, ..., xM−1) =
M−1∏
i=1

xi

linearm=2:M−1(x1, ..., xM−1) =
(M−m∏

i=1

xi

)
(1− xM−m+1)

linearM(x1, ...., xM−1) = 1− x1

Convex convex1(x1, ..., xM−1) =
M−1∏
i=1

(
1− cos

(πxi

2

))
convexm=2:M−1(x1, ..., xM−1) =

(M−m∏
i=1

(
1− cos

(πxi

2

)))(
1− sin

(πxM−m+1

2

))
convexM(x1, ..., xM−1) = 1− sin

(πx1

2

)

Concave concave1(x1, ..., xM−1) =
M−1∏
i=1

sin
(πxi

2

)
concavem=2:M−1(x1, ..., xM−1) =

(M−m∏
i=1

sin
(πxi

2

))
cos
(πxM−m+1

2

)
concaveM(x1, ..., xM−1) = cos

(πx1

2

)

Mixed convex/
concave

mixedM(x1, ..., xM−1) =
(
1− x1 −

cos(2Aπx1 + π/2)

2Aπ

)α
where α > 0, A ∈ {1, 2, ...}

Disconnected
discM(x1, ..., xM−1) = 1− (x1)

α cos2 (A(x1)
βπ)

where α, β > 0, A ∈ {1, 2, ...}
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Table A.3: Transformation functions. The parameters y and y1, ..., y|y| always have
the domain [0, 1]. A, B and C are constants.

Name Function

Bias:
Polynomial

b poly(y) = yα

where α > 0, α ̸= 1.

Bias:
Flat Region b flat(y, A,B,C) = A+min(0, ⌊y −B⌋)A(B − y)

B
−min(0, ⌊C − y⌋)(1− A)(y − C)

1− C

where A,B,C ∈ [0, 1], B < C,B = 0 =⇒ A = 0 ∧ C ̸= 1, C = 1 =⇒ A = 1 ∧B ̸= 0.

Bias:
Parameter
Dependent

b param(y,y′, A,B,C) = yB+(C−B)v(u(y′))

v(u(y′)) = A− (1− 2u(y′))
∣∣∣⌊0.5− u(y′)⌋+ A

∣∣∣
where A ∈ (0, 1), 0 < B < C.

Shift:
Linear s linear(y, A) =

|y − A|
|⌊A− y⌋+ A|

where A ∈ (0, 1).

Shift:
Deceptive s decept(y, A,B,C) = 1 + (|y − A| −B)

(⌊y − A+B⌋(1− C + A−B
B

)

A−B
+
⌊A+B − y⌋(1− C + 1−A−B

B
)

1− A−B
+

1

B

)
where A ∈ (0, 1), 0 < B << 1, 0 < C << 1, A−B > 0, A+B < 1.

Shift:
Multimodal

s multi(y, A,B,C) =
1 + cos

[
(4A+ 2)π

(
0.5− |y−C|

2(⌊C−y⌋+C)

)]
+ 4B

(
|y−C|

2(⌊C−y⌋+C)

)2
B + 2

where A ∈ {1, 2, ...}, B ≥ 0, (4A+ 2)π ≥ 4B,C ∈ (0, 1)

Reduction:
Weighted Sum r sum(y,w) =

( y∑
i=1

wiyi

)
/

|y|∑
i=1

wi

where |w| = |y|, w1, ..., w|y| > 0).

Reduction:
Non-separable r nonsep(y, A) =

∑|y|
j=1

(
yj +

∑A−2
k=0 |yj − y1+(j+k) mod |y||

)
|y|
A
⌈A/2⌉(1 + 2A− 2⌈A/2⌉)

where A ∈ {1, ..., |y|}, |y| mod A = 0
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Table A.4: Main characteristics of WFG problems

Problem Separability Frontality Geometry
WFG1 separable unifrontal convex, mixed
WFG2 non-separable multifrontal convex, disconnected
WFG3 non-separable unifrontal linear, degenerate
WFG4 separable multifrontal concave
WFG5 separable deceptive concave
WFG6 non-separable unifrontal concave
WFG7 separable unifrontal concave
WFG8 non-separable unifrontal concave
WFG9 non-separable multifrontal concave

WFG1

It is a unifrontal separable problem with a mixed Pareto Front. Given a vector
z = {z1, . . . , zk, . . . , zn}, the mathematical formulation of this problem is given as
follows:

Minimize f1(x) = xM + 2convex1(x1, ..., xM−1)

fm=2:M−1(x) = xM + (2m)convexm(x1, ..., xM−1)

fM(x) = xM + (2M)mixedM(x1, ..., xM−1)

where xi=1:M−1 = r sum({y(i−1)k/(M−1)+1, ..., yik/(M−1)},
{2(i− 1)k/(M − 1) + 1, ..., 2ik/(M − 1))})

xM = r sum({yk+1, ..., yn}, {2(k + 1), ..., 2n})
yi=1:n = b poly(y′i, 0.02)

y′i=1:k = y′′i
y′i=k+1:n = b flat(y′′i , 0.8, 0.75, 0.85)

y′′i=1:k =
zi
2i

y′′i=k+1:n = s linear
( zi
2i
, 0.35

)

(A.8)

where M is the number of objective functions and the mixedM function has the
parameters α = 1 and A = 5.

WFG2

It is a multifrontal non-separable problem with a disconnected Pareto Front. Given a
vector z = {z1, . . . , zk, . . . , zn}, the mathematical formulation of this problem is given
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as follows:

Minimize f1(x) = xM + 2convex1(x1, ..., xM−1)

fm=2:M−1(x) = xM + (2m)convexm(x1, ..., xM−1)

fM(x) = xM + (2M)discM(x1, ..., xM−1)

where xi=1:M−1 = r sum({y(i−1)k/(M−1)+1, ..., yik/(M−1)}, {1, ..., 1})
xM = r sum({yk+1, ..., yk+l/2}, {1, ..., 1})

yi=1:k = y′i
yi=k+1:k+l/2 = r nonsep({y′k+2(i−k)−2, y

′
k+2(i−k)}, 2)

y′i=1:k =
zi
2i

y′i=k+1:n = s linear
( zi
2i
, 0.35

)

(A.9)

where M is the number of objective functions, l must be a multiple of two, and the
discM function has the parameters α = 1 and A = 5.

WFG3

It is a unifrontal non-separable problem with a degenerate Pareto Front. Given a
vector z = {z1, . . . , zk, . . . , zn}, the mathematical formulation of this problem is given
as follows:

Minimize fm=1:M(x) = xM + (2m)linearm(x1, ..., xM−1)

where xi=1:M−1 = r sum({y(i−1)k/(M−1)+1, ..., yik/(M−1)}, {1, ..., 1})
xM = r sum({yk+1, ..., yk+l/2}, {1, ..., 1})

yi=1:k = y′i
yi=k+1:k+l/2 = r nonsep({y′k+2(i−k)−2, y

′
k+2(i−k)}, 2)

y′i=1:k =
zi
2i

y′i=k+1:n = s linear
( zi
2i
, 0.35

)
(A.10)

where M is the number of objective functions, and l must be a multiple of two.

WFG4

It is a multifrontal separable problem with a concave Pareto Front. Given a vector
z = {z1, . . . , zk, . . . , zn}, the mathematical formulation of this problem is given as
follows:

Minimize fm=1:M(x) = xM + (2m)concavem(x1, ..., xM−1)

where xi=1:m−1 = r sum({y(i−1)k/(M−1)+1, ..., yik/(M−1)}, {1, ..., 1})
xM = r sum({yk+1, ..., yn}, {1, ..., 1})

yi=1:M−1 = s multi(zi/(2i), 30, 10, 0.35)

(A.11)
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where M is the number of objective functions.

WFG5

It is a deceptive separable problem with a concave Pareto Front. Given a vector
z = {z1, . . . , zk, . . . , zn}, the mathematical formulation of this problem is given as
follows:

Minimize fm=1:M(x) = xM + (2m)concavem(x1, ..., xM−1)

where xi=1:m−1 = r sum({y(i−1)k/(M−1)+1, ..., yik/(M−1)}, {1, ..., 1})
xM = r sum({yk+1, ..., yn}, {1, ..., 1})

yi=1:M−1 = s decept(zi/(2i), 0.35, 0.001, 0.05)

(A.12)

where M is the number of objective functions.

WFG6

It is a unifrontal non-separable problem with a concave Pareto Front. Given a vector
z = {z1, . . . , zk, . . . , zn}, the mathematical formulation of this problem is given as
follows:

Minimize fm=1:M(x) = xM + (2m)concavem(x1, ..., xM−1)

where xi=1:M−1 = r nonsep({y(i−1)k/(M−1)+1, ..., yik/(M−1)},
k/(M − 1))

xM = r nonsep({yk+1, ..., yn}, l)
yi=1:k =

zi
2i

yi=k+1:n = s linear
( zi
2i
, 0.35

)
(A.13)

where M is the number of objective functions.

WFG7

It is a unifrontal separable problem with a concave Pareto Front. Given a vector
z = {z1, . . . , zk, . . . , zn}, the mathematical formulation of this problem is given as
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follows:

Minimize fm=1:M(x) = xM + (2m)concavem(x1, ..., xM−1)

where xi=1:M−1 = r sum({y(i−1)k/(M−1)+1, ..., yik/(M−1)}, {1, ..., 1})
xM = r sum({yk+1, ..., yn}, {1, ..., 1})

yi=1:k = y′i
yi=k+1:n = s linear(y′i, 0.35)

y′i=1:k = b param
( zi
2i
, r sum({ zi+1

2(i+ 1)
, ...,

zn
2n
}, {1, ..., 1}), 0.98

49.98
, 0.02, 50

)
y′i=k+1:n =

zi
2i

(A.14)

where M is the number of objective functions.

WFG8

It is a unifrontal non-separable problem with a concave Pareto Front. Given a vector
z = {z1, . . . , zk, . . . , zn}, the mathematical formulation of this problem is given as
follows:

Minimize fm=1:M(x) = xM + (2m)concavem(x1, ..., xM−1)

where xi=1:M−1 = r sum({y(i−1)k/(M−1)+1, ..., yik/(M−1)}, {1, ..., 1})
xM = r sum({yk+1, ..., yn}, {1, ..., 1})

yi=1:k = y′i
yi=k+1:n = s linear(y′i, 0.35)

y′i=1:k =
zi
2i

y′i=k+1:n = b param(
zi
2i
, r sum({z1

2
, ...,

zi−1

2(i− 1)
.{1, ..., 1}), 0.98

49.98
, 0.02, 50)

(A.15)

where M is the number of objective functions.

WFG9

It is a multifrontal non-separable problem with a concave Pareto Front. Given a
vector z = {z1, . . . , zk, . . . , zn}, the mathematical formulation of this problem is given
as follows:
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Minimize fm=1:M(x) = xM + (2m)concavem(x1, ..., xM−1)

where xi=1:M−1 = r nonsep({y(i−1)k/(M−1)+1, ..., yik/(M−1)}, k/(M − 1))

xM = r nonsep({yk+1, ..., yn}, l)
yi=1:k = s decept(y′i, 0.35, 0.001, 0.05)

yi=k+1:n = s multi(y′i, 30, 95, 0.35)

y′i=1:n−1 = b param(
zi
2i
, r sum({ zi+1

i+ 1
, ...,

zn
2n
}, {1, ..., 1}), 0.98

49.98
, 0.02, 50)

y′n =
zn
2n

(A.16)

where M is the number of objective functions.

A.3 Minus test problems

The Minus problems were proposed by Ishibuchi et al. [77] to show that most state-of-
the-art algorithms are overspecialized in the DTLZ and WFG test problems. Given
a multi-objective problem of the form:

Minimize f1(x), . . . , fM(x) subject to x ∈ X. (A.17)

The core idea is multiplying all objective functions by (-1). Therefore, the problem
is transformed as follows:

Minimize − f1(x), . . . ,−fM(x) subject to x ∈ X. (A.18)
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Appendix B

Experimental results

B.1 Study of ESW performance

Tables B.1 and B.2 show the average and standard deviation of the hypervolume
indicator of HDE in conventional and minus problems. These results are related to
the experiments shown in Chapter 4.

Tables B.3 and B.4 show the average and standard deviation of hypervolume
values of the comparison between HDE using individual pairs (scalarizing function
and weight vectors) and our proposed ESW. Moreover, Tables B.5 and B.6 shows the
average and standard deviation of hypervolume and s-energy values of the comparison
of ESW with state-of-the-art algorithms. These results are related to the experiments
shown in Chapter 4.
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Table B.5: Average and standard deviation of hypervolume values of the comparison
with state-of-the-art algorithms. The two best values are highlighted in gray (dark
gray is the best, and light gray is the second best). The “*” indicates that the result
is statistically significant.

m ESW NSGA-III MOEA/DD

SMS-EMOA(m = 3) /

SMS-EMOAHype (m = 5,7,10)

dtlz1

3 1.2974e+0 (3.5e-2) 1.3062e+0 (4.3e-5) 1.3066e+0 (2.1e-5) *1.3067e+0 (9.7e-6)
5 1.6103e+0 (8.2e-7) 1.6103e+0 (4.5e-5) 1.6103e+0 (1.1e-6) 1.6099e+0 (1.6e-4)
7 1.9478e+0 (2.2e-5) 1.9474e+0 (1.8e-3) *1.9479e+0 (3.7e-6) 1.9472e+0 (2.6e-4)
10 2.5937e+0 (8.9e-16) 2.5937e+0 (3.6e-7) 2.5937e+0 (3.6e-7) 2.5937e+0 (8.9e-16)

dtlz2

3 7.6057e-1 (2.8e-4) 7.5514e-1 (1.5e-4) 7.5890e-1 (1.1e-6) *7.6811e-1 (4.7e-5)
5 *1.3508e+0 (7.0e-4) 1.3468e+0 (5.3e-4) 1.3478e+0 (4.8e-6) 1.3474e+0 (1.5e-3)
7 1.8399e+0 (1.1e-3) 1.8434e+0 (3.5e-4) *1.8446e+0 (4.7e-6) 1.8378e+0 (1.2e-3)
10 2.5936e+0 (2.5e-4) 2.5842e+0 (1.7e-2) *2.5937e+0 (4.4e-16) 2.5936e+0 (5.9e-5)

dtlz3

3 1.3226e+0 (3.3e-2) 1.3308e+0 (1.4e-5) 1.3308e+0 (3.7e-7) *1.3308e+0 (3.7e-7)
5 1.6105e+0 (4.6e-5) 1.6105e+0 (2.2e-16) 1.6105e+0 (2.2e-16) 1.6105e+0 (2.2e-16)
7 1.9487e+0 (4.4e-16) 1.9487e+0 (4.4e-16) 1.9487e+0 (4.4e-16) 1.9487e+0 (4.4e-16)
10 2.5937e+0 (8.9e-16) 2.5937e+0 (6.0e-7) 2.5937e+0 (8.9e-16) 2.5937e+0 (8.9e-16)

dtlz4

3 7.849e-1 (2.e-2) 7.6273e-1 (1.1e-1) 7.8725e-1 (1.4e-6) *7.1642e-1 (1.3e-1)
5 1.3351e+0 (1.3e-3) 1.3311e+0 (2.5e-4) 1.3314e+0 (4.2e-6) *1.3365e+0 (1.3e-3)
7 1.8510e+0 (1.4e-3) 1.8190e+0 (7.5e-2) *1.8533e+0 (1.8e-6) 1.8529e+0 (9.4e-4)
10 2.5937e+0 (7.e-5) 2.5937e+0 (6.0e-5) *2.5937e+0 (8.9e-16) 2.5937e+0 (3.1e-6)

dtlz7

3 1.2285e+0 (9.2e-5) 1.2222e+0 (3.7e-3) 1.2233e+0 (1.3e-4) *1.228e+0 (5.6e-3)
5 *1.4522e+0 (5.9e-4) 1.439e+0 (2.0e-3) 1.3898e+0 (4.e-2) 1.2622e+0 (1.1e-1)
7 *1.6759e+0 (1.5e-2) 1.5796e+0 (5.2e-2) 4.5235e-1 (7.6e-2) 8.2143e-1 (5.1e-1)
10 1.9117e+0 (2.2e-1) 1.9058e+0 (8.7e-2) 2.4389e-1 (3.9e-2) 1.9654e+0 (3.8e-1)

dtlz1−1

3 *3.0505e-1 (1.7e-4) 2.8573e-1 (1.3e-3) 2.6546e-1 (6.1e-4) 1.9195e-1 (1.2e-2)
5 1.9193e-2 (1.5e-4) 1.2290e-2 (1.1e-3) 1.0192e-2 (1.6e-4) 1.8941e-2 (1.1e-3)
7 4.4404e-4 (6.3e-6) 3.3421e-4 (2.8e-5) 2.0216e-4 (6.9e-6) *4.8428e-4 (3.7e-5)
10 7.8126e-7 (3.7e-8) 1.0556e-6 (1.4e-7) 1.3846e-7 (1.6e-8) *1.2840e-6 (1.2e-7)

dtlz2−1

3 9.3876e-1 (2.6e-4) 9.2134e-1 (1.8e-3) 9.1874e-1 (6.6e-4) *9.4007e-1 (1.8e-4)
5 *4.7853e-1 (1.8e-3) 4.2668e-1 (4.4e-3) 3.5354e-1 (1.5e-3) 4.3612e-1 (7.4e-3)
7 1.3525e-1 (8.7e-4) 1.1411e-1 (4.4e-3) 8.4628e-2 (1.6e-3) *1.4347e-1 (3.7e-3)
10 1.4428e-2 (2.4e-4) 1.3372e-2 (8.5e-4) 6.8312e-3 (3.1e-4) *2.0770e-2 (5.4e-4)

dtlz3−1

3 *7.1942e-1 (9.7e-4) 7.0608e-1 (2.7e-3) 7.0371e-1 (6.5e-4) 5.0008e-1 (1.9e-2)
5 1.6358e-1 (2.1e-3) 1.2602e-1 (6.3e-3) 8.2782e-2 (2.7e-3) *1.9704e-1 (5.8e-3)
7 9.7422e-3 (1.1e-3) 9.0438e-3 (1.4e-3) 8.5155e-3 (4.5e-4) *3.5046e-2 (1.3e-3)
10 7.6167e-5 (1.5e-5) 4.1322e-4 (1.0e-4) 5.7394e-4 (8.1e-5) *3.8553e-3 (3.4e-4)

dtlz4−1

3 9.3872e-1 (2.8e-4) 9.2217e-1 (1.9e-3) 9.1861e-1 (4.1e-4) *9.4017e-1 (1.8e-4)
5 *4.7745e-1 (8.e-3) 4.264e-1 (4.7e-3) 3.4831e-1 (2.2e-3) 4.4191e-1 (6.4e-3)
7 1.3462e-1 (8.2e-4) 1.0158e-1 (5.5e-3) 8.2317e-2 (7.e-4) *1.4507e-1 (2.8e-3)
10 8.429e-3 (1.6e-3) 1.0796e-2 (1.e-3) 6.9314e-3 (4.6e-4) *2.1365e-2 (5.8e-4)

dtlz7−1

3 1.3116e+0 (1.1e-5) 1.3105e+0 (5.9e-4) 1.3111e+0 (4.4e-5) *1.3117e+0 (1.4e-6)
5 1.5785e+0 (3.5e-4) 1.5649e+0 (3.0e-3) 1.5462e+0 (6.3e-2) 1.5728e+0 (1.1e-2)
7 *1.8984e+0 (6.7e-4) 1.8419e+0 (8.2e-3) 1.1554e+0 (3.1e-2) 1.8642e+0 (1.4e-2)
10 2.3558e+0 (3.5e-2) 2.3513e+0 (1.3e-2) 1.2544e+0 (3.5e-2) *2.4844e+0 (4.1e-2)
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Table B.6: Average and standard deviation of s-energy values of the comparison with
state-of-the-art algorithms. The two best values are highlighted in gray (dark gray
is the best, and light gray is the second best). The “*” indicates that the result is
statistically significant.

m ESW NSGA-III MOEA/DD

SMS-EMOA(m = 3) /

SMS-EMOAHype (m = 5,7,10)

dtlz1

3 *5.4852e+5 (8.8e+4) 6.7586e+5 (1.9e+3) 6.0073e+5 (3.5e+2) 6.1437e+5 (1.5e+3)
5 *5.8482e+8 (9.9e+7) 4.8462e+15 (2.6e+16) 1.7714e+9 (1.1e+6) 1.9274e+11 (5.4e+11)
7 *2.7427e+7 (2.6e+6) 2.0833e+33 (1.1e+34) 2.8939e+7 (7.1e+4) 1.6979e+30 (9.1e+30)
10 *1.0902e+30 (4.e+30) 1.5708e+54 (1.9e+54) 3.1455e+29 (1.1e+28) 1.2687e+54 (2.2e+54)

dtlz2

3 *8.5177e+4 (7.2e+1) 1.1143e+5 (3.6e+3) 8.9408e+4 (1.3e+0) 1.1827e+5 (1.8e+3)
5 *2.9926e+5 (9.6e+2) 3.5488e+5 (4.6e+2) 3.5543e+5 (2.1e+1) 2.6909e+10 (1.3e+11)
7 *2.8434e+5 (6.e+3) 4.6017e+5 (1.5e+3) 4.6397e+5 (8.8e+1) 3.333e+20 (1.8e+21)
10 *6.8291e+8 (2.9e+9) 3.4296e+48 (1.8e+49) 6.9118e+9 (3.2e+8) 1.0096e+29 (4.5e+29)

dtlz3

3 *1.5886e+7 (3.6e+7) 2.782e+7 (6.6e+6) 2.0173e+7 (3.2e+4) 2.3244e+7 (3.7e+5)
5 *1.7255e+13 (2.1e+13) 4.0516e+13 (1.3e+14) 1.6377e+13 (6.3e+10) 1.5793e+25 (2.1e+25)
7 *1.0611e+20 (5.1e+20) 2.6420e+34 (1.4e+35) 9.6665e+18 (7.9e+16) 2.0949e+36 (2.2e+36)
10 *3.3870e+48 (1.8e+49) 1.6999e+55 (1.3e+55) 5.5979e+34 (1.3e+34) 4.3020e+55 (7.7e+55)

dtlz4

3 *9.4209e+4 (3.e+4) 1.1207e+5 (2.3e+4) 9.2487e+4 (1.3e+0) 8.8115e+5 (1.3e+6)
5 *2.8891e+5 (4.8e+3) 3.3831e+5 (4.9e+2) 3.3869e+5 (1.4e+1) 7.9963e+11 (4.2e+12)
7 *3.2145e+5 (5.9e+3) 5.6666e+29 (3.1e+30) 4.8228e+5 (6.3e+1) 3.9256e+16 (2.1e+17)
10 *2.6341e+16 (1.4e+17) 9.3176e+46 (5.0e+47) 2.5528e+11 (3.e+10) 3.6538e+33 (2.e+34)

dtlz7

3 3.4745e+5 (8.5e+3) 6.7388e+7 (1.3e+8) *5.1791e+5 (7.e+5) 7.6398e+5 (2.6e+5)
5 *1.0179e+13 (5.5e+13) 1.3371e+15 (6.8e+15) 4.2344e+10 (1.3e+11) 3.9672e+19 (2.1e+20)
7 *9.4473e+4 (3.1e+3) 1.913e+19 (6.7e+19) 9.2988e+10 (1.6e+10) 7.9183e+23 (4.2e+24)
10 *2.3439e+3 (1.3e+2) 1.5425e+34 (8.3e+34) 7.8423e+12 (3.4e+13) 1.9316e+34 (7.1e+34)

dtlz1−1

3 *1.4117e+5 (1.9e+2) 2.4779e+11 (9.2e+11) 7.8507e+5 (2.2e+6) 2.0554e+6 (6.6e+5)
5 *1.3196e+6 (1.2e+4) 6.6751e+22 (3.6e+23) 2.7882e+9 (3.5e+9) 6.4933e+11 (3.4e+12)
7 *2.5558e+6 (1.9e+4) 1.5617e+25 (8.2e+25) 1.2222e+17 (6.5e+17) 2.5159e+16 (1.0e+17)
10 *1.6882e+8 (3.4e+7) 1.9274e+32 (8.4e+32) 9.5644e+23 (4.7e+24) 4.3405e+23 (2.3e+24)

dtlz2−1

3 *1.4005e+5 (1.5e+2) 2.3182e+9 (1.2e+10) 1.8862e+5 (5.2e+4) 2.0916e+5 (1.7e+3)
5 *7.5610e+5 (1.3e+4) 1.6784e+20 (9.e+20) 7.4462e+9 (3.5e+10) 1.9575e+10 (9.2e+10)
7 *8.7556e+5 (6.8e+3) 5.2344e+19 (2.7e+20) 3.5629e+13 (7.7e+13) 4.1913e+14 (1.5e+15)
10 *2.9202e+6 (6.4e+4) 1.7751e+29 (6.9e+29) 2.3295e+21 (1.0e+22) 1.4417e+20 (6.3e+20)

dtlz3−1

3 *8.5503e+4 (2.9e+2) 2.2985e+7 (7.6e+7) 1.1212e+5 (4.1e+4) 5.6999e+6 (1.6e+6)
5 *2.8263e+5 (2.8e+3) 1.0907e+13 (3.3e+13) 2.9823e+9 (1.5e+10) 1.4955e+11 (4.8e+11)
7 *2.5871e+5 (9.2e+3) 5.6391e+18 (3.0e+19) 2.7063e+14 (1.5e+15) 2.2508e+15 (1.2e+16)
10 *1.9501e+6 (1.3e+5) 6.8219e+31 (3.7e+32) 7.5909e+20 (3.8e+21) 3.7049e+17 (1.8e+18)

dtlz4−1

3 *1.4023e+5 (1.5e+2) 1.4933e+9 (4.2e+9) 1.3408e+10 (3.4e+10) 2.0823e+5 (1.6e+3)
5 *7.6196e+5 (5.2e+4) 6.9684e+22 (3.6e+23) 2.088e+23 (7.9e+23) 2.5420e+11 (9.3e+11)
7 *8.8492e+5 (7.2e+3) 8.3333e+33 (4.5e+34) 1.0620e+33 (5.6e+33) 1.3106e+15 (6.8e+15)
10 *5.6494e+6 (1.7e+6) 9.7702e+37 (5.3e+38) 6.4856e+47 (1.9e+48) 1.0617e+23 (5.2e+23)

dtlz7−1

3 4.6499e+6 (1.8e+5) 7.4787e+10 (2.9e+11) *7.2603e+5 (1.1e+5) 1.3095e+7 (2.2e+5)
5 *7.3814e+6 (1.1e+6) 4.6987e+17 (2.1e+18) 2.1525e+7 (2.3e+7) 1.2511e+19 (6.7e+19)
7 *1.8044e+6 (3.8e+4) 8.3523e+20 (4.0e+21) 4.7305e+11 (1.4e+12) 7.5992e+25 (3.8e+26)
10 9.0018e+23 (4.3e+24) 6.3153e+29 (3.4e+30) 9.8209e+14 (3.1e+15) 3.1702e+38 (1.7e+39)
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[5] José A. Molinet Berenguer and Carlos A. Coello Coello. Evolutionary Many-
Objective Optimization Based on Kuhn-Munkres’ Algorithm. In António
Gaspar-Cunha, Carlos Henggeler Antunes, and Carlos Coello Coello, editors,
Evolutionary Multi-Criterion Optimization, 8th International Conference, EMO
2015, pages 3–17. Springer. Lecture Notes in Computer Science Vol. 9019,
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