Link Prediction in Large Directed Graphs

Dario Garcia-Gasulla
Ulises Cortés
Overview

- Motivation
- State of the Art
- Hypothesis
- Hierarchical Link Prediction
- Computational Models
- Data Sets & Results
- Conclusions
- Discussion & Future Work
Overview

◎ Motivation
◎ State of the Art
◎ Hypothesis
◎ Hierarchical Link Prediction
◎ Computational Models & Designs
◎ Data Sets & Results
◎ Conclusions
◎ Discussion & Future Work
Motivation

In Data Mining and Machine Learning …
From *intra-entity* to *inter-entity* patterns

“One small step for data, one giant leap for data science”
Motivation

New family of domains
- Web graphs
- Social networks
- Biological networks
- Product recommendation
- Terrorist associations
- ...

Typically LARGE
- but, how large?
Motivation

Whole new set of problems

- Rank entities based on importance
- Find groups of entities
- Discover association patterns
- Predict new relations

Let us call it just Graph Mining
Motivation

Link Prediction

- Find new relations given the structure of a graph
Motivation

Link Prediction
Needle in a haystack
-How many friends you do have in Facebook?
-How many friends you do NOT have?
we need PRECISION

An ocean of variables depending on one another
Friends define friendship
we need SCALABILITY
Overview

◎ Motivation
◎ State of the Art
◎ Hypothesis
◎ Hierarchical Link Prediction
◎ Computational Models & Designs
◎ Data Sets & Results
◎ Conclusions
◎ Discussion & Future Work
State of the Art

Compute statistics on the graph
- Bayes / Markov (Getoor and Taskar, 2007)
- Tensors (Nickel et al., 2011)

Compute the likelihood of the graph
- Hierarchies (Clauset et al., 2008)
- Communities (Stochastic block models)

Compute entity-entity similarities
- Number of paths
State of the Art

Similarity-based Link Prediction

- Scalable
- Parallelizable
- Unprecise

We look for common neighbors... *how far*?

- **Local**: 2-steps. It works, but not well enough.
- **Global**: No limit. Poor scaling. Disappointing results.
- **Quasi-local**: Unknown variable distance. Best!
 But wait, *unknown* distance?
State of the Art

Similarity-based: The essence
- How many common neighbors we have? (Newman, 2001)
- How many rare common neighbors we have? (Adamic and Adar, 2003) (Zhou, 2009)

Common Neighbors

\[
s_{x,y}^{CN} = |\Gamma(x) \cap \Gamma(y)|
\]

Adamic/Adar

\[
s_{x,y}^{AA} = \sum_{z \in \Gamma(x) \cap \Gamma(y)} \frac{1}{\log(|\Gamma(z)|)}
\]

Resource Allocation

\[
s_{x,y}^{RA} = \sum_{z \in \Gamma(x) \cap \Gamma(y)} \frac{1}{|\Gamma(z)|}
\]
Overview

◎ Motivation
◎ State of the Art
◎ Hypothesis
◎ Hierarchical Link Prediction
◎ Computational Models & Designs
◎ Data Sets & Results
◎ Conclusions
◎ Discussion & Future Work
Hypothesis

Currently, paths are the only measure
Not really expressive... *isn't there anything else?*

Directionality of edges
Asymmetric relations are frequent
But what do directions *mean?*
Hypothesis

The most basic asymmetry: Hierarchies
Knowledge does not get any simpler than that

Specialization \rightarrow Generalization
Descendant \rightarrow Ancestor

What do the descendants and ancestors of an entity tell us about that entity?

- After meeting a thousand cats, what do you know about “cat”?
- After meet animals with claws, what do you know about “cat”?
- Quite a lot actually...
Overview
◎ Motivation
◎ State of the Art
◎ Hypothesis
◎ Hierarchical Link Prediction
◎ Computational Models & Designs
◎ Data Sets & Results
◎ Conclusions
◎ Discussion & Future Work
Hierarchical Link Prediction

◎ The INFerence score: $x \rightarrow y$?
- Given the generalizations of x, $A(x)$, is $x \rightarrow y$ coherent? Deductive reasoning (DED)
- Given the specializations of x, $D(x)$, is $x \rightarrow y$ coherent? Inductive reasoning (IND)

$$s_{x \rightarrow y}^{DED} = \frac{|A(x) \cap D(y)|}{|A(x)|}$$

$$s_{x \rightarrow y}^{IND} = \frac{|D(x) \cap D(y)|}{|D(x)|}$$
Hierarchical Link Prediction

The INFerence score
Just add the evidence: INF = DED + IND
But INF is purely proportional:

\[s_{x \rightarrow y}^{\text{DED}} = \frac{|A(x) \cap D(y)|}{|A(x)|} \quad s_{x \rightarrow y}^{\text{IND}} = \frac{|D(x) \cap D(y)|}{|D(x)|} \]

While all top scores are accumulative:

\[s_{x, y}^{\text{CN}} = |\Gamma(x) \cap \Gamma(y)| \]

\[s_{x, y}^{\text{AA}} = \sum_{z \in \Gamma(x) \cap \Gamma(y)} \frac{1}{\log(|\Gamma(z)|)} \]

\[s_{x, y}^{\text{RA}} = \sum_{z \in \Gamma(x) \cap \Gamma(y)} \frac{1}{|\Gamma(z)|} \]
Hierarchical Link Prediction

INFerence modifications

Accumulative scores: *Skip low-degree vertices. Rich get richer.*
Proportional evidence is important too: *Make it hybrid*

\[
s^{DED \cdot LOG}_{x \rightarrow y} = \frac{|A(x) \cap D(y)|}{|A(x)|} \times \log(|A(x)|)
\]

Deduction is more reliable: INF_2D = 2*DED + IND
INF_LOG, INF_LOG_2D a new family of hybrid scores

\[
s^{IND \cdot LOG}_{x \rightarrow y} = \frac{|D(x) \cap D(y)|}{|D(x)|} \times \log(|D(x)|)
\]
Overview

◎ Motivation
◎ State of the Art
◎ Hypothesis
◎ Hierarchical Link Prediction
◎ Computational Models & Designs
◎ Data Sets & Results
◎ Conclusions
◎ Discussion & Future Work
Computational Models & Designs

Similarity-based is scalable ... enough?

Graph with 1M vertices → $1 \cdot 10^{12}$ similarities
Unfeasible to compute them one by one!

Similarity-based is parallelizable ... how?

Very parallel... *embarrassingly* parallel!
Similarities are independent of one another
Parallel computing models are a must
Computational Models & Designs

General parallel computing model
- Fork-join (OpenMP)
- Tested on MareNostrum (BSC)

Graph-specific parallel computing model
- Pregel (ScaleGraph)
- Tested on TSUBAME (UCD/JSTCrest)
Computational Models & Designs

Different algorithmic designs are possible

Intersection-based
\[\forall \ v^1 \in \mathbb{N} \]
\[\forall \ v^2 \in \mathbb{N} \]
\[\text{intersection}(\text{neigh}(v^1),\text{neigh}(v^2)) \]

Traverse-based
\[\forall \ v \in \mathbb{N} \]
\[\forall \ \text{neigh}(v) \]
\[\forall \ \text{neigh}(\text{neigh}(v)) \]
Computational Models & Designs

Intersection-based
- All v_1, v_2 paths found at the same time
- High complexity: $O(N^2 \cdot k)$
- High locality

Traverse-based
- v_1, v_2 paths found one at a time
- Low complexity: $O(N \cdot k^3)$
- No locality
Computational Models & Designs

Computation times of both designs

![Chart showing computation times for different datasets and traversal methods.](chart.png)
Intersection design: Good for superhubs (locality)
- Cost based on missing edges

OpenMP computation times and regression
Computational Models & Designs

Traverse design: Good for all but superhubs (complexity)
-Cost based on graph size and superhubs relevance

ScaleGraph

OpenMP
Computational Models & Designs

OpenMP
- Control over data-structures (type, order)

ScaleGraph
- Designed for large-scale graphs
- Automatic management of data and communications

What is a small/large graph?
- Requires lots of memory
- Requires lots of computing units
Computational Models & Designs

Single machines have a limit of memory and of computing units. Eventually...

Shared memory paradigm

Distributed memory paradigm

OpenMP/ScaleGraph

<table>
<thead>
<tr>
<th>OmpSs/ScaleGraph</th>
</tr>
</thead>
</table>

https://pm.bsc.es/ompss
Overview
◎ Motivation
◎ State of the Art
◎ Hypothesis
◎ Hierarchical Link Prediction
◎ Computational Models & Designs
◎ Data Sets & Results
◎ Conclusions
◎ Discussion & Future Work
Data Sets & Results

INF assumes hierarchical directionality... should work on hierarchical graphs

- **Wordnet** (lexical hyponym/hypernym)
 - 89K vertices, 698K edges
- **OpenCyc** (ontological subClass, instanceOf)
 - 116K vertices, 345K edges

Evaluation through AUC – Precision/Recall curves
- Random remove of 10% for test
Data Sets & Results

WordNet – RA (red), AA (green) CN (blue), INF_LOG_2D (pink)
Data Sets & Results

OpenCyc – RA (red), AA (green) CN (blue), INF_LOG_2D (pink)
So it work for hierarchical graphs... what about non-hierarchical ones?

- IMDb (movies, directors, genres and tags)
 - 1.9M vertices, 7.5M edges

- Web graphs* (web pages and hyperlinks)
 - Notre Dame: 325K vertices, 1.5M edges
 - Stanford-Berkeley: 685K vertices, 7.6M edges
 - Google: 875K vertices, 5.1M edges
 - Hudong: 1.9M vertices, 14.8M edges
 - Baidu: 2.1M vertices, 17.7M edges
Data Sets & Results

IMDb
- INF_LOG_2D: 2021%
- |N| = 2.9M
- |E| = 7.5M

Notre Dame
- INF_LOG_2D: 65%
- |N| = 325K
- |E| = 1.5M

Google
- INF_LOG_2D: 390%
- |N| = 875K
- |E| = 5.1M

Stanford-Berkley
- INF_LOG_2D: 722%
- |N| = 685K
- |E| = 7.6M

Hudong
- INF_LOG_2D: 360%
- |N| = 1.9M
- |E| = 14.8M

Baidu
- INF_LOG_2D: 71%
- |N| = 2.1M
- |E| = 17.7M
Conclusions

◎ Hierarchies are latent in some large graphs
 - “Naturally!”

◎ Hierarchies can be used for Link Prediction
 - “No they can't. They should!”

◎ It is feasible to do large-scale Link Prediction
 - “Link Prediction and HPC: a perfect couple”
Conclusions

◎ INFerence
 - Do not build a model, just use it
 - Proportional-Accumulative scores
 - Huge leap in predictive performance

Precision Scalability

◎ Evaluation under class super-imbalance
 - Do not do it all, just do it right
Overview

- Motivation
- State of the Art
- Hypothesis
- Hierarchical Link Prediction
- Computational Models & Designs
- Data Sets & Results
- Conclusions
- Discussion & Future Work
Discussion & Future Work

• Data-intensive tasks: Cost, data structures and locality

• Large-scale graphs
 • OmpSs/Scalegraph on cluster

• HPC & Graph Mining: Models, algorithms, …

• Traverse vs intersection design
Discussion & Future Work

• Applications
 • Search engines, product recommendation, research support, etc.

• Improving INFerence
 • Tunned parameters
 • Quasi-local INF

• Deep Learning + Graph Mining
Thanks

KEMLg
BSC

dariog@lsi.upc.edu
dario.garcia@bsc.es
ia@cs.upc.edu
Credits

Special thanks to all the people who made and released these awesome resources for free:

◎ Simple line icons by Mirko Monti
◎ E-commerce icons by Virgil Pana
◎ Streamline iconset by Webalys
◎ Presentation template by SlidesCarnival
◎ Photographs by Unsplash & Death to the Stock Photo (license)