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Zacatenco Campus

Computer Science Department

A New Multi-Objective Evolutionary Algorithm

Based on the R2 Indicator

Submitted by

Raquel Hernández Gómez
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Resumen

Una gran número de problemas del mundo real requieren de la optimización si-
multánea de varios objetivos en conflicto. A éstos se les conoce como problemas
de optimización multi-objetivo y no tienen una solución única, sino un conjunto de
soluciones que representan los diferentes compromisos entre los objetivos. Éste es
el denominado conjunto de óptimos de Pareto y a su imagen se le llama, frente de
Pareto.

El uso de algoritmos evolutivos y metaheuŕısticas bio-inspiradas para resolver
problemas multi-objetivo se ha vuelto muy popular en los últimos 15 años, dando
lugar a una amplia variedad de algoritmos evolutivos multi-objetivo (AEMOs). Los
dos componentes principales de un AEMO son: (1) un mecanismo de selección que
preserva los mejores compromisos entre los objetivos (i.e, soluciones no dominadas)
y (2) un estimador de densidad que permite esparcir soluciones uniformemente a lo
largo del frente de Pareto, de tal manera que sean lo más diversas posibles.

La incorporación de indicadores de desempeño como el mecanismo de selección en
un AEMO es un tema que ha atráıdo mucho interés en años recientes. Esto debido a
que los esquemas de selección basados en la optimalidad de Pareto no tienen un buen
desempeño en problemas con cuatro o más funciones objetivo. El indicador que ha
sido más utilizado para ser incorporado en el mecanismo de selección de un AEMO es
el hipervolumen. Sin embargo, en el presente trabajo, exploramos el uso del indicador
R2, que presenta varias ventajas con respecto al hipervolumen, de entre las cuales, la
principal es su bajo costo computacional. En esta tesis, proponemos un nuevo AEMO,
llamado MOMBI (Many-Objective Metaheuristic Based on the R2 Indicator), el cual
jerarquiza individuos por medio de funciones de utilidad. El enfoque propuesto es
comparado con NSGA-II (basado en dominancia de Pareto), MOEA/D (basado en
escalarización), SMS-EMOA (basado en el hipervolumen), ∆p-DDE (basado en el
indicador ∆p) y otros algoritmos de reciente creación basados en el indicador R2,
utilizando diversos problemas de prueba estándar.

Nuestros resultados experimentales indican que MOMBI obtiene soluciones de ca-
lidad similar a los producidos por SMS-EMOA, pero a un menor costo computacional.
Adicionalmente, MOMBI supera a MOEA/D, ∆p-DDE y NSGA-II en la mayoŕıa de
las instancias de prueba, particularmente cuando se trata de problemas de más de tres
funciones objetivo con frentes de Pareto complicados. De tal forma, creemos que el
enfoque propuesto es una alternativa viable para resolver problemas de optimización
con varios objetivos.

v



vi



Abstract

A wide variety of real-world problems have several (often conflicting) objectives that
need to be optimized at the same time. They are called multi-objective optimiza-
tion problems (MOPs) and their solution involves finding a set of decision variables,
also known as Pareto optimal set, that represent the best trade-offs among all the
objectives. The image of the Pareto optimal set is called the Pareto optimal front.

The use of evolutionary algorithms, as well as other bio-inspired metaheuristics,
for solving MOPs has become increasingly popular in the last 15 years, giving rise
to a wide variety of multi-objective evolutionary algorithms (MOEAs). The two key
algorithmic components of a MOEA are: (1) a selection mechanism that preserves
the best possible trade-offs among the objectives (i.e., the so-called nondominated
solutions) and (2) a density estimator that allows us to spread solutions along the
Pareto optimal front in a uniform way, so that they are as diverse as possible.

The incorporation of performance indicators as the selection mechanism of a
MOEA is a topic that has attracted increasing interest in the last few years. This
has been mainly motivated by the fact that Pareto-based selection schemes do not
perform properly when solving problems with four or more objectives. The indicator
that has been most commonly used for being incorporated in the selection mecha-
nism of a MOEA has been the hypervolume. Here, however, we explore the use of
the R2 indicator, which presents some advantages with respect to the hypervolume,
the main one being its low computational cost. In this document, we propose a new
MOEA called Many-Objective Metaheuristic Based on the R2 Indicator (MOMBI),
which ranks individuals using utility functions. The proposed approach is compared
with respect to NSGA-II (based on Pareto dominance), MOEA/D (based on scalar-
ization), SMS-EMOA (based on hypervolume), ∆p-DDE (based on the ∆p indicator),
and some other recently created MOEAs based on the R2 indicator, using several
benchmark problems.

Our preliminary experimental results indicate that MOMBI obtains solutions of
similar quality to those produced by SMS-EMOA, but at a much lower computational
cost. Additionally, MOMBI outperforms MOEA/D, ∆p-DDE and NSGA-II in most
of the test instances adopted, particularly when dealing with high-dimensional pro-
blems having complicated Pareto optimal fronts. Thus, we believe that our proposed
approach is a viable alternative for solving many-objective optimization problems.
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Finalmente, me gustaŕıa agradecer al CONACyT y CINVESTAV, por la beca otor-

gada durante este tiempo. Sin su financiamiento muchos estudiantes nos quedaŕıamos
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Chapter 1

Introduction

Multi-objective optimization problems are present in many areas of our life. Typical
application areas are engineering (robotics, transportation, aeronautics, telecommu-
nications, etc.), chemistry, medicine, ecology, and finance, just to name a few. These
problems are hard to solve, and even a slight improvement in a solution often has a
direct impact on costs and other important factors such as time, profit and customer
satisfaction. Therefore, the presence of several objectives in a problem, gives rise to a
set of trade-off solutions (instead of a single one), which become incomparable in the
absence of any further information. This makes necessary to find as many solutions
as possible.

Multi-objective Evolutionary Algorithms (MOEAs) are a specific class of solvers
of multi-objective problems, which simulate the natural evolutionary process, based
on the Darwinian concept of “survival of the fittest”. They apply a set of variation
operators, such as crossover and mutation, to combine different solutions, aiming to
produce reasonably good approximations of Pareto optimal sets.

MOEAs based on Pareto dominance have been used successfully in problems for
two or three objectives. However, they do not perform properly when dealing with
more than three objectives. In this thesis, we want to address this issue by integrating
into a MOEA a performance indicator of low computational cost.

The organization of this chapter is as follows: Section 1.1 presents the background
and motivation of this work. Section 1.2 defines the problem statement and our pro-
posed approach. Section 1.4 briefly discusses some previous work. Finally, Section 1.5
provides the organization of this thesis.

1.1 Background and Motivation

For many years, MOEAs have adopted selection mechanisms based on Pareto optima-
lity. These mechanisms preserve solutions that are Pareto optimal with respect to a
set of reference (normally the current population), and assign a rank to each of these
solutions, such that all the nondominated solutions are considered to be equally good.
Pareto-based MOEAs have been very popular since the 1990s, but recent studies have

1



2 Chapter 1

shown that they do not perform properly when dealing with problems having four or
more objectives.1 This has motivated the development of new selection schemes from
which the use of quality assessment indicators is probably the most popular [3]. The
idea in this case, is to optimize a quality assessment indicator that provides a good
ordering among sets that represent Pareto approximations.

From the many indicators currently available, the hypervolume2 [5] is, with no
doubt, the most popular. The main advantage of the hypervolume indicator is that
it has been proved that its maximization is equivalent to finding the Pareto optimal
set [6], and this has also been empirically corroborated [7]. In fact, maximizing the
hypervolume also leads to sets of solutions whose spread along the Pareto optimal
front is maximized (although this does not necessarily mean that such solutions will
be uniformly distributed along the Pareto optimal front). Nevertheless, the high
computational cost of the hypervolume (its computational cost grows exponentially
on the number of objectives [8]) normally makes a selection mechanism based on
such indicator prohibitive for problems having more than 5 objectives [9]. The nice
mathematical properties of the hypervolume indicator has triggered an important
amount of research, including work that focuses on computing it in a more efficient
way [10, 11]. It is indeed possible to approximate the hypervolume contribution,
significantly reducing its computational cost [10], but few studies of the performance
of such approaches with respect to those using exact hypervolume calculations are
currently available.

1.2 Problem Statement and Proposal

The main goal of this thesis is to incorporate a performance indicator of low compu-
tational cost that works as a selection mechanism in an evolutionary algorithm, in
order to solve unconstrained multi-objective problems.

In this work, we explore the use of another indicator that is known to have nice
mathematical properties [12]: R2. Here, we propose a new MOEA, called Many-
Objective Metaheuristic Based on the R2 Indicator (MOMBI) and analyze its per-
formance with respect to that of some well-known approaches: NSGA-II [13], which
is based on Pareto dominance, MOEA/D [14], based on scalarization, SMS-EMOA
[3], based on the hypervolume indicator (we use the approach to approximate the
hypervolume contribution proposed by Bader and Zitzler [10]), ∆p-DDE, based on
the ∆p indicator, and new MOEAs based on the R2 indicator: R2-IBEA [15], R2-
MODE [16] and R2-MOGA [16].

Even though, we are dealing with stochastic algorithms, the methodology adopted
for the analysis of MOEAs relies on the scientific method.

1Also called many-objective optimization problems. Its derived area, many-objective optimiza-
tion, is currently considered a hot research topic [1, 2].

2The hypervolume (also known as the S metric or the Lebesgue Measure) of a set of solutions
measures the size of the portion of objective space that is dominated by those solutions collectively
[4].
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1.3 Contributions

The main contributions of this work can be summarized as follows:

• A new MOEA that incorporates a ranking algorithm of individuals based on
the R2 indicator.

• A weight vector generation3 based on Tabu Search and Uniform Design.

• An interactive MOEA, in which the preferences of the user can be integrated.

• A detailed comparative study of the proposal with other state-of-the-art MOEAs.

• An analysis of sensitivity of the proposal to the parameters specific to the R2
indicator.

• Complexity analysis [17] of the compared MOEAs.

• A peer-reviewed paper presented at CEC’2013 [18].

1.4 Previous Work

In this section we review the previous related work on the use of indicators in the
selection mechanism of a MOEA.

As indicated before, the performance indicator that has been most commonly used
for the selection mechanism of a MOEA is the hypervolume [4]. This indicator has
several advantages, from which the main one is that it is the only unary indicator
which is known to be strictly monotonic [19]. However, computing the hypervolume
is exponential in the number of objectives [20] and is sensitive to the choice of the
reference point [3].

Currently, there are several MOEAs that incorporate the hypervolume in their
selection mechanism (e.g., the S Metric Selection-Evolutionary Multi-Objective Op-
timization Algorithm (SMS-EMOA) [3] and the Multi-Objective Covariance Matrix
Edaptation Evolution Strategy (MO-CMA-ES) [21]). However, the high computa-
tional overload of these approaches motivated the development of alternative strate-
gies. One of them is to estimate (by means of Monte Carlo simulations) the ranking
of a set of individuals that would be induced by the hypervolume indicator, without
having to compute the exact indicator values. This is the approach adopted by the
Hypervolume Estimation algorithm for multi-objective optimization (HypE) [10].

More recently, a new performance indicator called ∆p was proposed by Schütze et
al. [22]. This indicator can be seen as an “averaged Hausdorff distance” between the
outcome set and the Pareto optimal front. ∆p is composed of slight modifications of
two well-known performance indicators: generational distance (see [23]) and inverted

3The R2 indicator preserves diversity by means of a set of weight vectors that must be uniformly
distributed across the objective space.
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generational distance (see [24]). ∆p is a pseudo-metric which simultaneously evaluates
proximity to the Pareto optimal front and spread of solutions along it. Although ∆p

is not Pareto compliant, its computation has a much lower computational cost than
that of the hypervolume, and it can also handle outliers, which makes it attractive for
assessing performance of MOEAs. It is worth noting, however, that for incorporating
∆p into the selection mechanism of a MOEA, it is necessary to have an approximation
of the true Pareto optimal front at all times. This has motivated the development
of techniques that can produce such an approximation in an efficient and effective
way. For example, Gerstl et al. [25] linearize the nondominated (piecewise linear)
front of the current population, and include this mechanism in the ∆p-EMOA, which
is used for solving bi-objective optimization problems. This algorithm is inspired by
SMS-EMOA, and is assisted by a secondary population. ∆p-EMOA performs better
than NSGA-II [13], while consuming a lower number of function evaluations. An
extension of this approach to three-objective problems is reported by Trautmann et
al. [26]. In this case, the algorithm requires some previous mathematical steps which
include reducing the dimensionality of the nondominated solutions and calculating
their convex hull. This version of ∆p-EMOA achieves a better distribution of solu-
tions than MOEA/D [14], SMS-EMOA and NSGA-II. However, this MOEA requires
additional parameters and consumes a high computational time when dealing with
many-objective optimization problems.

Another possible approach to incorporate ∆p into a MOEA is to use an eche-
lon form of the nondominated individuals for the Pareto optimal front. This is the
mechanism adopted in ∆p-DDE by Rodriguez and Coello [9], in which ∆p is used as
the selection mechanism of a differential evolution algorithm. ∆p-DDE was able to
outperform NSGA-II and provided competitive results with respect to SMS-EMOA,
but at a considerably lower computational cost for many-objective optimization pro-
blems. The main limitation of this approach is that it produces a poor spread of
solutions in high-dimensional search spaces. Also, it has some difficulties for dealing
with discontinuous Pareto optimal fronts.

Recently, some researchers have recommended to adopt the R2 indicator proposed
by Hansen [27] to compare approximation sets on the basis of a set of utility functions
[12]. A utility function is a model of the decision maker’s preference that maps
each point in the objective space into a utility value. It is worth noticing that the
R2 indicator is weakly monotonic, and it is correlated with the hypervolume but
has a lower computational overhead than such indicator [12]. Because of this, the
R2 indicator is widely recommended for dealing with many-objective optimization
problems and over large nondominated sets [28]. It is worth emphasizing, however,
that the main caveat when trying to use this performance indicator is that each utility
function adopted, must be properly scaled.

The R2 indicator has been scarcely studied in the context of MOEAs. Here, we
explore its potential use as a selection mechanism within a MOEA, emphasizing its
possible usefulness in many-objective optimization problems.
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1.5 Structure of the Thesis

Including this introduction, the thesis consists of six chapters and three appendixes.
Chapter 2 provides some basic concepts and definitions which are required as a

background for the following chapters of this document. If the reader is familiar with
these topics, he/she may skip this chapter.

Chapter 3 introduces some performance indicators that are used as selection
mechanisms. A short review of the most representative MOEAs, that incorporate
such indicators is also provided.

Our proposed approach is described in detail in Chapter 4.
The results obtained by the proposal are compared with respect to those gene-

rated by some state-of-the-art MOEAs, using standard test problems and performance
indicators taken from the specialized literature in Chapter 5.

The conclusion of the thesis, as well as some possible paths for future research are
presented in Chapter 6.

Appendix A presents the standard test problems used in the comparative study.
Appendix B introduces the methodology adopted for the analysis of MOEAs.
Finally, Appendix C presents a summary of the numerical results obtained in the

experiments.
The implementation of the proposal, as well as the complete study can be down-

loaded at: http://computacion.cs.cinvestav.mx/~rhernandez/mombi.
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Chapter 2

Preliminary Concepts

Optimization is the process of selecting the best candidate solution from a range of
possibilities [29]. It aims for efficient allocation of scarce resources.

Many fields involve multiple conflicting objectives that should be optimized simulta-
neously. Such problems are generically known as Multi-Objective Optimization Pro-
blems (MOPs), and the area of multi-objective optimization, also known as multi-
criteria optimization, is concerned with the solution of such problems.

In this chapter, some fundamental concepts of multi-objective optimization are
introduced, emphasizing the motivation and advantages of using evolutionary algo-
rithms in this domain. The rest of this chapter is organized as follows. We begin in
Section 2.1 by introducing the necessary notation and formally describing MOPs. In
Section 2.2, we provide the important notion of Pareto optimality and dominance. In
Section 2.3, we define special points which are often used as reference solutions. In
Section 2.4, we mention the role of the decision maker. In Section 2.5, we describe
different features of MOPs, such as, multimodality, deceptiveness, bias, etc. We also
point out different Pareto optimal front geometries, such as: linear, convex, concave,
degenerate, disconnected, etc. In Section 2.6, we present several techniques for solving
MOPs, and we also state an important theorem that assures that there is no univer-
sal robust solution technique for all MOPs. In Section 2.7, we focus on evolutionary
algorithms, which are suitable for solving MOPs, since they find multiple solutions
in a single run. In Section 2.8, we describe a relevant area called many-objective
optimization, which deals with problems having four or more objectives. Moreover,
in Appendix A, we present benchmark test problems, which are designed for many-
objective optimization and include many of the features described in Section 2.5.
Finally, we conclude in Section 2.9 with a summary of the chapter.

This chapter is based on the introduction to multi-objective optimization given in
[30], [31], and [32].
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2.1 Multi-objective Optimization

Even though some real-world problems can be treated as single objective problems,
it is hard, in general, to define all aspects of a problem in terms of only one objective.
Defining multiple objectives often gives a better idea of the task. Multi-objective
optimization, also known as multi-criteria optimization, has been available for about
three decades, and its application in real-world problems is continuously increasing
[33].

In single-objective optimization, the search space is often well defined. However,
when there are several possibly contradicting objectives to be optimized simulta-
neously, there is no longer a single optimal solution but rather a whole set of possible
solutions of equivalent quality. When we try to optimize several objectives at the
same time, the search space also becomes partially ordered. To obtain the optimal
solutions, there will be a set of optimal trade-offs among the conflicting objectives.
Moreover, such objectives may also be incommensurable (i.e., measured in different
units).

A Multi-Objective Optimization Problem (MOP) can be written in the form:

Minimize {f1(~x), f2(~x), . . . , fm(~x)} (2.1)

subject to gi(~x) ≥ 0 i = 1, 2, . . . , p (2.2)

hi(~x) = 0 i = 1, 2, . . . , q, (2.3)

where we have m (≥ 2) objective functions fi : IRn → IR. We denote the vector

of objective functions by ~f(~x) := (f1(~x), f2(~x), . . . , fm(~x))T . The decision variable
vector ~x = (x1, x2, . . . , xn)T belongs to the feasible region set S, which is a subset of
the decision variable space IRn, and it is defined by the constraint functions gi, hj :
IRn → IR for all i = 1, . . . , p, j = 1, ..., q.

In other words, it is aimed to determine from among the set of all numbers which
satisfy equations (2.2) and (2.3) the particular set x ∗1 , x

∗
2 , . . . , x

∗
n which yields the

optimum values of all the objective functions.
The above-described constraints represent restrictions imposed by a particular

characteristic of the environment or resources available (e.g., physical limitations,
time restrictions, etc.). It is worth noting that q, the number of equality constraints,
must be less than n, the number of decision variables, because if q ≥ n the problem
is said to be overconstrained, since there are more unknowns than equations.

We denote the image of the feasible region by Z := ~f(S) and call it a feasible
objective region. It is a subset of the objective space IRm.

For simplicity, we assume that all the objective functions are to be minimized.
The following identity may be used to transform all the functions which are to be
maximized into a form which allows their minimization:

max fi(~x) := min (−fi(~x)) . (2.4)
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If we want to calculate the optimal function values from the original objective
functions, we need to multiplying the transformed functions by −1. Similarly, ine-
quality constraints of the form:

gi(~x) ≤ 0 i = 1, 2, . . . , p (2.5)

can be transformed to (2.2) form by multiplying by −1 and changing the sign of the
inequality. Thus, equation (2.5) is equivalent to

− gi(~x) ≥ 0 i = 1, 2, . . . , p (2.6)

The notion of optimality changes when having several objective functions, because
in MOPs, the aim is to find good compromises rather than a single solution as in global
optimization. In the next section, we discuss this in more detail.

2.2 Pareto Optimality and Dominance

Multi-objective optimization problems are in a sense ill-defined, since there is no
natural ordering in the objective space. For example (2, 2)T can be said to be less
than (5, 5)T , but how to compare (2, 0.7)T and (0.7, 2)T .

Anyway, some of the objective vectors can be extracted for examination. Such vec-
tors are those where none of the components can be improved without deterioration
of at least one of the other components. Francis Ysidro Edgeworth [34] presented
this definition in 1881. However, the definition is usually called Pareto optimality
after the French-Italian economist and sociologist Vilfredo Pareto, who, in 1896, de-
veloped it further (see [35, 36]). However, some authors, like Stadler [37], use the
term Edgeworth-Pareto optimality for recognizing the true origin of this definition.
Koopmans was one of the first to employ in 1951 the concept of Pareto optimality in
[38]. A more formal definition of Pareto optimality is the following:

Definition 2.2.1. A decision vector ~x ∈ S is Pareto optimal if there does not exist
another decision vector ~y ∈ S such that fi(~y) ≤ fi(~x) for all i = 1, . . . ,m and
fj(~y) < fj(~x) for at least one index j.

In other words, this definition says that ~x is Pareto optimal if there exists no
feasible vector ~y which would decrease some criterion without causing a simultaneous
increase in at least one other criterion.

Therefore, in a MOP, our aim is to determine the Pareto optimal set from the set
S of all the decision variable vectors that satisfy (2.2) and (2.3). Note however that
in practice, not all the Pareto optimal set is normally desirable (e.g., it may not be
desirable to have different solutions that map to the same values in objective function
space) or achievable.

Other important definitions associated with Pareto optimality for a given MOP
~f(~x) are the following:
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Definition 2.2.2. The Pareto Optimal Set P∗ is defined by:

P∗ := {~x ∈ S | ~x is Pareto optimal}.

Definition 2.2.3. The Pareto Optimal Front PF∗ is defined by:

PF∗ := {~f(~x) ∈ IRm | ~x ∈ P∗}.

In addition to Pareto optimality, we define various preference relations associated
to it. Let us assume that ~x and ~y are two given vectors in IRm.

Definition 2.2.4 (Weak-Pareto Dominance). A solution ~x is said to weakly dominate
a solution ~y (denoted by ~x � ~y), if and only if ∀i ∈ {1, . . . ,m}, xi ≤ yi.

Definition 2.2.5 (Pareto Dominance). A solution ~x is said to dominate a solution
~y (denoted by ~x ≺ ~y), if and only if ~x is partially less than ~y; i.e., ∀i ∈ {1, . . . ,m},
xi ≤ yi ∧ ∃j ∈ {1, . . . ,m} such that xj < yj. This relation may also be stated in
terms of the weak-Pareto dominance, ~x ≺ ~y := (~x � ~y) ∧ (~x 6= ~y).

Definition 2.2.6 (Strong-Pareto Dominance). A solution ~x is said to strongly domi-
nate a solution ~y (denoted by ~x ≺S ~y), if and only if ∀i ∈ {1, . . . ,m}, xi < yi.

For the following definitions, let us assume that the symbol / can be any element
of the set {�,≺,≺S}.

Definition 2.2.7. Vectors ~x and ~y are incomparable (denoted by ~x ‖/ ~y) with respect
to /, if and only if ~x 6/ ~y ∧ ~y 6/ ~x.

Definition 2.2.8. Vectors ~x and ~y are indifferent (denoted by ~x ∼ ~y), if and only if
∀i ∈ {1, . . . ,m}, xi = yi.

Similar to the concept of Pareto optimality, weak and strong Pareto optimality
can be derived [30]. The relationship between these concepts is that the strong-Pareto
optimal set is a subset of the Pareto optimal set, which is a subset of the weak-Pareto
optimal set.

Some authors [32] consider that weakly Pareto optimal solutions are not always
useful in practice, because of the large size of the weakly Pareto optimal set. However,
they are often relevant from a technical point of view because they are sometimes
easier to generate than Pareto optimal points. Nevertheless, the most widely used
relation is Pareto dominance.

Figure 2.1 illustrates the mapping between decision and objective spaces. The
Pareto optimal set/front is represented by a fat line, while the weakly Pareto optimal
set/front is represented by the fat and disconnected lines.

The following concepts express the general form of definitions 2.2.1 and 2.2.2 in
terms of any of the previous relations.

Definition 2.2.9. A vector of decision variables ~x ∈ X is nondominated with respect
to the set X ⊆ S and /, if there does not exist another vector ~y ∈ X such that
~f(~y) / ~f(~x).
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Figure 2.1: Mapping between spaces in IR2 → IR2 for the minimization problem where
the decision space (left plot) consists of all pairs (x1, x2) ∈ {0, . . . , 1} × {0, . . . , 1} and
the objective space (right plot) is defined by the two functions f1(x1, x2) = |x1 + x2| and
f2(x1, x2) = −x1x2. The Pareto optimal set is {(x1, x2) | x1 = x2}, and the weakly Pareto
optimal set is {(x1, x2) | x1 = x2, x1 = −x2}.

Definition 2.2.10. The set of nondominated elements relative to the set X and /,
is expressed by ND(X, /) := {~x ∈ X | ~x is nondominated}.

The outcome of an optimizer is considered to be a set of mutually nondominated
solutions also called Pareto set approximation.

With solution ~a as a point of reference, the regions in Figure 2.2 illustrate the
different dominance relations. Solutions located in the second region are strongly
dominated by solution ~a because ~a is better in both objectives. For the same reason,
solutions located in the third region strongly dominate solution ~a. Although ~a has
a smaller objective value as compared to the solutions located at the boundaries
between the first and second regions, and between the second and fourth regions, it
only weakly dominates these solutions by virtue of the fact that they share a similar
objective value along either one dimension. Solutions located in the first and fourth
regions are incomparable to solution ~a because it is not possible to establish any
superiority of one solution over the other solutions.

Zitzler et al. [39, 40] suggested three desirable aspects of nondominated sets:

1. Convergence: The distance of the resulting nondominated front to the Pareto
optimal front should be minimized.

2. Distribution: A good (in most cases uniform) distribution of the solutions
found is desirable.
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Figure 2.2: Examples of dominance rela-
tions. It holds that ~a � ~a, ~a � ~b, ~a � ~c,
~a � ~d, ~a ≺ ~b, ~a ≺ ~c, ~a ≺ ~d, ~a ≺S ~d, ~a ‖ ~e,
~a ‖ ~f , ~a ∼ ~a. The nondominated front is{
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Figure 2.3: Desired features of approxi-
mation sets to the Pareto optimal front.

3. Spread: The extent of the obtained nondominated front should be maximized,
i.e., for each objective, a wide range of values should be covered by the nondomi-
nated solutions.

In the literature, the term proximity is used instead of convergence, and the term
diversity encompasses both distribution and spread. Good diversity is commonly of
interest in objective-space, but may also be required in decision-space [41].

The above aspects are shown graphically in Figure 2.3. The first case is able to
obtain solutions that are accurate and scattered; nonetheless, the set of solutions is
not uniformly distributed. In the second case, a diverse set of well-spread solutions is
obtained, although these are not accurate. The solutions in the third case are accurate
and diverse; however, the edges of the Pareto optimal front are not explored. Finally,
the fourth case shows the solution of an ideal optimizer.

In the remainder of this subsection, we describe the classifications of the relations
�,≺,≺S, and ‖. But before that, we provide some basic definitions of theory of
relations [42, 43].

Definition 2.2.11. A binary relation R on a non-empty set X is defined to be a
subsetR ⊆ X×X. We write xRy if and only if (x, y) ∈ R and say that x isR-related
to y. We also write x 6R y where x is not R-related to y.

Some important properties of binary relations are:
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Reflexive: ∀x ∈ X, xRx.

Irreflexive: ∀x ∈ X, x 6R x.

Symmetric: ∀x, y ∈ X, xRy =⇒ yRx.

Asymmetric: ∀x, y ∈ X, xRy =⇒ y 6R x.

Antisymmetric: ∀x, y ∈ X, (xRy ∧ yRx) =⇒ x = y, or equivalently,
(xRy ∧ x 6= y) =⇒ y 6R x.

Transitive: ∀x, y, z ∈ X, (xRy ∧ yRz) =⇒ xRz.

Definition 2.2.12. An equivalence relation is a binary relation over a set X which
is reflexive, symmetric, and transitive.

Definition 2.2.13. A partial order is a binary relation over a set X which is reflexive,
antisymmetric, and transitive.

Definition 2.2.14. If the partial order relation � is valid on a set X then the pair
(X,�) is called partially ordered set (or poset for short).

Definition 2.2.15. A strict partial order is a binary relation over a set X which is
irreflexive, asymmetric, and transitive.

Definition 2.2.16. A relation is asymmetric if and only if it is both antisymmetric
and irreflexive.

Definition 2.2.17. Every asymmetric relation is also antisymmetric.

Definition 2.2.18. A transitive relation is irreflexive if and only if it is asymmetric.

Therefore, the antisymmetric property is satisfied for ≺ and ≺S, because xRy and
yRx are never both true.

In Table 2.1, we present the properties that meet each of the relations. We can
observe that both strong Pareto dominance and Pareto dominance are strict partial
orders, weak-Pareto dominance is a partial order and the indifference operator is an
equivalence relation.

2.3 Reference Solutions

In this section, we define some special points which are often used as reference solu-
tions in multi-objective optimization algorithms.

One of these points denotes the lower bounds of the Pareto optimal front for each
objective function, which is expressed as follows:
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Table 2.1: Properties of the different relations of dominance.

Relation
Property

Reflexive Irreflexive Symmetric Asymmetric Antisymmetric Transitive
� X X X
≺

X X (X) X≺S
‖� X X
‖≺ X X‖≺S

∼ X X X

Definition 2.3.1. Each element of the ideal objective vector ~z ∗ = (z∗1 , . . . , z
∗
m)

minimizes each of the objective functions. The i-th component is defined as z∗i =
min~x∈S fi(~x).

It is obvious that this point corresponds to a non-existent solution, since there is
some conflict among the objectives. In general, solutions closer to the ideal objective
vector are better.

On the other hand, some algorithms may require a solution which has an objective
value strictly better than all the solutions in the feasible objective region. For this
purpose, the next reference point is defined as follows:

Definition 2.3.2. The utopian objective vector is an infeasible objective vector whose
components are formed by z ∗∗i = z ∗i − εi for all i = {1, . . . ,m}, where εi is some small
positive scalar.

It is worth noting that this vector strictly dominates every Pareto optimal solution.
Opposite to the ideal objective vector, the upper bounds of the Pareto optimal

front are denoted in the next point:

Definition 2.3.3. The nadir objective vector ~z nad =
(
znad1 , . . . , znadm

)
is constructed

using the worst values of the objective functions in the complete Pareto optimal front
PF∗. Each i-th component is defined as znadi = max~x∈P∗ fi(~x).

The nadir objective vector may be feasible or not. In practice, it is usually difficult
to obtain when having more than two objectives. Its components can be approximated
using a pay-off table [32], which is formed by using the objective vectors obtained
when calculating the ideal objective vector. That is, row i of the payoff table displays
the values of all the objective functions calculated at the point where fi obtained its
minimal value. Hence, z ∗i is at the main diagonal of the table. The maximal value of
the column i in the payoff table can be selected as an estimate of the upper bound
of the objective fi for i = 1, ...,m over the Pareto optimal front.

However, this kind of an estimate is not necessarily too good. Some other methods
have been proposed, see for example [32, 44].
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Components of both the ideal and nadir objective vectors are useful for normali-
zing objective values in a common range. Figure 2.1 (right) shows these three reference
points.

2.4 Decision Maker

Mathematically, every Pareto optimal point is an equally acceptable solution of the
multi-objective optimization problem. However, it is generally desirable to obtain
one point as a solution. Selecting one out of the set of Pareto optimal solutions calls
for information that is not contained in the objective functions.

The person (or a group of persons) who is supposed to have better insight into
the problem and who can express preference relations between different solutions is
the decision maker.

Solving a multi-objective optimization problem calls for the co-operation of the
decision maker and an analyst. By an analyst we here mean a person or a computer
program responsible for the mathematical side of the solution process. The analyst
generates information for the decision maker to consider and the solution is selected
according to the preferences of the decision maker.

By solving a multi-objective optimization problem we here mean finding a feasible
decision vector such that it is Pareto optimal and satisfies the needs and the require-
ments of the decision maker. Assuming such a solution exists, it is called a final
solution. However, it may be difficult for the decision maker to distinguish between
good and optimal solutions in real problems [45, 46]. If this is the case, the emphasis
should be on finding good solutions.

We usually assume that decision makers are only interested in Pareto optimal
points and the rest can be excluded. However, this is not the case if the problem
has not been formulated well enough. Therefore, nondominated solutions may be
important if there are some unformulated or hidden objective functions in the mind
of the decision maker or some of the objective functions are simply proxies of the
proper objective functions [45, 46]. In such cases, the Pareto optimal sets of the
problem handled and the actual problem which should be solved, do not coincide.
Here we assume the mathematical model to be accurate and static so that we can
mainly concentrate on Pareto optimal solutions.

2.5 Features of Multi-Objective Problems

In the literature, the feasible region set S and the feasible objective region Z are
better known as search space and fitness space, respectively. In this way, the Pareto
optimal set is a subset of the search space, whereas the Pareto optimal front is a
subset of the fitness space. The mapping from the search space to the fitness space
defines the fitness landscape.
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Figure 2.4: Features of the fitness landscape.

In this section, we are interested in describing the nature of the fitness landscape,
and the relationship between the Pareto optimal set and the Pareto optimal front. The
former identifies the types of difficulties encountered in the search space, whereas the
latter influences our judgement of what is considered a “good” representative subset
of the Pareto optimal set, which is important when it is impractical to identify the
entire Pareto optimal set.

In the following two subsections, we present the features of the fitness landscape
and the possible geometries that the Pareto optimal front can adopt. In some cases,
these elements make real-world problems very difficult to solve for optimizers. For
more details, the reader can consult [47, 48].

2.5.1 Fitness Landscape

In Figure 2.4, we classify the features of the fitness landscape. Since such features
are not exclusive, it is possible that a MOP may have a combination of them. Next,
we describe each of these features.

The fitness landscape can be one-to-one or many-to-one. The many-to-one case
presents more difficulties to the optimizer, as choices must be made between two
decision vectors that evaluate to identical objective vectors. Likewise, the mapping
between the Pareto optimal set and the Pareto optimal front may be one-to-one or
many-to-one. In each case, we say that the problem is Pareto one-to-one or Pareto
many-to-one, respectively.

A special instance of a many-to-one mapping occurs when a connected open subset
of decision variable space maps to a singleton.1 We refer to problems with this
characteristic as problems with flat regions, that is, regions where small perturbations
of the decision variables do not change the objective values. Optimizers can have
difficulty with flat regions due to a lack of gradient information. In Figure 2.5(a), we
illustrate this concept for a mono-objective problem.

If the majority of the fitness landscape is fairly flat, it does not provide useful

1A singleton, also known as a unit set [49], is a set with exactly one element.
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Figure 2.5: (a) Illustration of a flat function: f(x) = 0.7 + 1.75 min(0, x − 0.4)(0.4 − x) −
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)
, where x ∈ [−3, 3].

information regarding the location of Pareto optima, then the Pareto optima are said
to be isolated optima [50]. Problems with isolated optima are very difficult to solve.

Another characteristic of fitness landscapes is modality. An objective function
with only a single optimum is unimodal. An objective function is multimodal when
it has multiple local optima. A multimodal problem is one that has a multimodal
objective, see Figure 2.5(b) for an example.

A deceptive objective function has a special kind of multimodality. As defined by
Deb [50], for an objective function to be deceptive it must have at least two optima,
a true optimum and a deceptive optimum, but the majority of the search space must
favor the deceptive optimum. A deceptive problem is one with a deceptive objective
function. Multimodal problems are difficult because an optimizer can get stuck in
local optima. Deceptive problems exacerbate this difficulty by placing the global
optimum in an unlikely place. An example of this kind of problem is plotted in
Figure 2.6(a).

Another characteristic of the fitness landscape is when an evenly distributed sam-
ple of decision vectors in the search space maps to an evenly distributed set of ob-
jective vectors in fitness space. We expect some variation in the distribution, but we
are especially interested in significant variation, which is known as bias. Bias has a
natural impact on the search process, particularly when the mapping from the Pareto
optimal set to the Pareto optimal front is biased. Often, the decision maker has to
choose between an even distribution of solutions with respect to the search space and
with respect to the fitness space. The effects of bias are shown in Figure 2.6(b).

The judgement of whether a problem is biased depends on the density variation
of solutions in decision variable space. While it is usually easy enough to decide
whether a problem has bias or not, at the present time there is no agreed mathematical
definition of bias (but see [51] for one possibility). Bias is perhaps best indicated by
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Figure 2.6: (a) Example of a deceptive function: f(x) = x + |x|0.01, where x ∈ [−0.5, 0.5].
(b) The objective vectors that correspond to 40, 000 randomly selected decision vectors
from the biased two objective problem f1(x, y) = x5 + y, and f2(x, y) = x5 + 1− y, where
x, y ∈ [0, 1]. Note how, the objective vectors are denser toward PF∗.

plotting solutions in fitness space.

Variable dependencies are an important aspect of a problem. Given a single
objective O, a decision vector ~x, and an index i, we define a derived problem PO,~x,i as
the problem of optimizing O by varying only xi. This is a single objective problem
with a single variable. We also define P ∗O,~x,i to be the set of global optima (in decision
variable space) for each subproblem. If P ∗O,~x,i, is the same for all values of ~x, we say
that xi is separable on O. Otherwise, xi is nonseparable on O.

If every variable of O is separable, then O is a separable objective. Otherwise, O
is a nonseparable objective. Similarly, if every objective of a problem P is separable,
then P is a separable problem. Otherwise, P is a nonseparable problem. Separable
problems can be optimized by considering each parameter in turn, independently of
one another. A nonseparable problem is thus characterized by variable dependencies,
and it is more difficult, and is more representative of real world problems.

2.5.2 Geometries of the Pareto Optimal Front

Unlike single objective problems, for which the Pareto optimal front is but a single
point, Pareto optimal fronts for multi-objective problems can have a wide variety of
geometries.

In this subsection we present the basic forms that Pareto optimal fronts can adopt,
but before that, we review some related concepts [52, 53, 54].

Definition 2.5.1 (Convex Set). A set X is convex if the line segment between any
two points in X lies in X, i.e., if for any ~x1, ~x2 ∈ X and any λ with 0 ≤ λ ≤ 1, we
have:
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Figure 2.7: A convex hull: (a) non-convex figure; (b) the boundary of the convex hull (the
heavy line); (c) the convex hull.

λ~x1 + (1− λ) ~x2 ∈ X. (2.7)

Otherwise, the set is said to be non-convex.

Definition 2.5.2 (Convex Function). A function f : X → IR is said to be convex at
X if for any two points ~x1, ~x2 ∈ X:

f(λ~x1 + (1− λ) ~x2) ≤ λf( ~x1) + (1− λ)f( ~x2), (2.8)

where 0 ≤ λ ≤ 1.

Definition 2.5.3 (Strictly Convex Function). A function f : X → IR is said to be
strictly convex at X if for any two other distinct points ~x1, ~x2 ∈ X:

f(λ~x1 + (1− λ) ~x2) < λf( ~x1) + (1− λ)f( ~x2), (2.9)

where 0 < λ < 1.

On the other hand, a function f is (strictly) concave if −f is (strictly) convex.

Definition 2.5.4 (Convex Hull). The convex hull of a set X, denoted Conv(X), is
the set of all convex combinations of points in X:

Conv(X) =

{
k∑
i=1

λi~xi | ~xi ∈ X, (∀i : λi ≥ 0) ,
k∑
i=1

λi = 1

}
. (2.10)

As the name suggests, the convex hull Conv(X) is always convex, and it is the
smallest convex set that contains X. If a set X is non-convex, its convex hull is
obtained by “filling in” all “non-convexities”. Figure 2.7 illustrates the definition of
convex hull.
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Definition 2.5.5 (Neighborhood). The neighborhood of a point ~y is the set of points:

A = {~a | |~a− ~y| < ε} (2.11)

where ε is some small positive scalar.

Definition 2.5.6 (Interior Point). A point ~x ∈ X is an interior point if there exists
a neighborhood about ~x which contains only points of the set X.

Definition 2.5.7 (Boundary Point). A point ~x ∈ X is a boundary point if an only
if any neighborhood of ~x contains a point in X and a point not in X. The set of all
boundary points in X is denoted by ∂X.

Definition 2.5.8 (Extreme Point). An extreme point of a convex set is an element
of the set which cannot be expressed as a convex combination of two other points in
the set.

Obviously, an extreme point is a boundary point of the set, but all boundary
points of a convex set are not necessarily extreme points; for example, the extreme
points of a triangle are its vertices. The points which are not boundary points are
interior points.

Another definition of a convex set in terms of its convex hull, is the following:

Definition 2.5.9 (Convex Set). A set is convex if and only if it covers its convex
hull.

Definition 2.5.10 (Concave Set). A set is concave if and only if it is covered by its
convex hull.

Definition 2.5.11 (Strictly Convex Set). A set is strictly convex if and only if it is
convex and all its boundary points are extreme points, or equivalently a set is strictly
convex if it is convex and not concave.

Definition 2.5.12 (Strictly Concave Set). A set is strictly concave if it is concave
and not convex.

Definition 2.5.13 (Linear Set/Function). A linear set or function is both convex
and concave but neither strictly convex nor strictly concave.

Therefore, a MOP is convex (respectively concave or linear) if all objective func-
tions are convex (respectively concave or linear) and the feasible region is convex
(respectively concave or linear) [31].

Moreover, a mixed front is one with connected subsets that are each strictly con-
vex, strictly concave, or linear, but not all of the same type.

A degenerate front is a front that is of lower dimension than the objective space
in which it is embedded, less one. For example, a front that is a line segment in a
three-objective problem is degenerate.
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Figure 2.8: Sample geometry of a disconnected, mixed front that consists of a half-convex
half-concave component, a degenerate point, and a linear component.

Degenerate Pareto optimal fronts can cause problems for some algorithms. For
example, methods employed to encourage an even spread of solutions across the
Pareto optimal front might operate differently should the front effectively employ
fewer dimensions than expected.

Additionally, a front can be a disconnected set, often referred to as discontinuous.
Pareto optimal sets can also be disconnected. Although disconnected Pareto optimal
sets usually map to disconnected Pareto optimal fronts, this is not always the case.
Figure 2.8 serves to clarify some of these geometries.

Another concept, commonly used in multi-objective optimization, is the knee:

Definition 2.5.14. The knee is a point on a (concave) convex Pareto optimal front
that has the shortest distance to the (nadir) ideal objective vector.

Problems that are high-dimensional, discontinuous, multimodal, and/or NP-Com-
plete [55, 56] are termed irregular [57]. In the following section we will review some
methods that are often used to solve problems that exhibit these characteristics.

2.6 Methods for Solving Multi-Objective Problems

There are many methods available to tackle MOPs. According to Coello et al. [30],
general search and optimization techniques are classified into three categories: enu-
merative, deterministic,2 and stochastic (random). Many of these methods have been

2 The term deterministic means that given a particular input, an algorithm will always produce
the same output. Thus, no randomness is involved.
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Figure 2.9: Global optimization approaches.

created primarily for single-objective optimization, and then their use has been ex-
tended to MOPs. Figure 2.9 shows common examples of each type. In the following
paragraphs we briefly discuss each of them.

Enumerative schemes evaluate each possible solution within some defined finite
search space, but they are inefficient or even infeasible as search spaces become large.

Deterministic algorithms limit the search space by incorporating knowledge about
the problem domain, thus, they find “acceptable” solutions in “acceptable” time.
These methods are successfully used when solving a wide variety of problems. Ho-
wever, they are often ineffective for problems which are irregular. The following
heuristics3 are within this classification:

• Greedy algorithms make locally optimal choices, assuming that optimal sub-
solutions are always part of the globally optimal solution. Thus, these algo-
rithms fail unless that is the case.

• Hill-climbing algorithms proceed conservatively, changing only one solution fea-
ture at a time, and replacing the current best solution with the best one-feature
change. These techniques work best on unimodal functions, but the presence of

3A heuristic is a problem-solving technique in which the most appropriate local solution or partial
solution is selected using comparative rules [30].

CINVESTAV-IPN Computer Science Department



Preliminary Concepts 23

local optima, plateaus, or ridges in the fitness (search) landscape reduce their
effectiveness.

• Branch and bound search techniques limit the search space, computing some
bound at a given node which determines whether the node is “promising;”
several nodes’ bounds are then compared and the algorithm branches to the
“most promising” node.

• Depth-first search is blind or uninformed in that the search order is independent
of solution location. It expands a node, generates all successors, expands a
successor, and so forth. If a node is determined “unpromising”, backtracking
to a node’s parent is applied.

• Breadth-first search is also uninformed. It differs from depth-first search in its
actions after node expansion, where it progressively explores the graph one layer
at a time.

• Best-first search uses heuristic information to place numerical values on a node’s
“promise”; the node with highest promise is examined first.

• Best-first search selects a node to expand based both on “promise” and the
overall cost to arrive at that node.

• Calculus-based search methods require continuity in some variable domain for
an optimal value to be found.

Stochastic methods were developed as alternative approaches for solving irregular
problems. They require a function assigning fitness values to possible (or partial) so-
lutions, and an encode/decode (mapping) mechanism between the problem and algo-
rithm domains. The majority of them cannot guarantee optimal solutions. However,
in general they provide good solutions to a wide range of optimization problems which
traditional deterministic search methods find difficult. Examples of these methods
include the following metaheuristics4:

• A random search evaluates a given number of randomly selected solutions, while
in a random walk the next solution is selected at random using the last evaluated
solution as a starting point. Like enumeration, though, these strategies are
not efficient for many MOPs because of their failure to incorporate problem
domain knowledge. Random searches can generally expect to do no better than
enumerative ones.

4The term metaheuristic, derives from the composition of two Greek words. Heuristic derives
from the verb heuriskein which means “to find”, while the suffix meta means “beyond, in an upper
level”. In general, metaheuristics are high level strategies which guide subordinate heuristics in the
search process [58].
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• Simulated Annealing is an algorithm modeled on an annealing analogy, where,
for example, a liquid is heated and then gradually cooled down until it freezes.
This algorithm consists in choosing a random move. If the move improves
the current optimum, then it is always executed, else it is made with some
probability p < 1. This probability exponentially decreases either by time
or with the amount by which the current optimum is worsened. If water’s
temperature is lowered slowly enough it attains a lowest-energy configuration;
the analogy is that if the “move” probability decreases slowly enough, the global
optimum is found.

• Monte Carlo methods involve simulations dealing with stochastic events; they
employ a pure random search where any selected trial solution is fully indepen-
dent of any previous choice and its outcome. The current “best” solution and
associated decision variables are stored as a comparator (these methods are not
considered metaheuristics).

• Tabu search is a meta-strategy developed to avoid getting “stuck” in local op-
tima. It keeps a record of both visited solutions and the “paths” which reached
them in different “memories.” This information restricts the choice of solu-
tions to evaluate next. Tabu search is often integrated with other optimization
methods.

• Evolutionary Computation is a generic term for several stochastic search me-
thods which computationally simulate the natural evolutionary process. These
techniques are loosely based on natural evolution and the Darwinian concept of
“survival of the fittest” (see section 2.7 for more details).

Mathematical Programming involves several deterministic-search methods pro-
posed by the Operations Research community. These methods are grouped with
respect to the complexity of MOPs. Linear programming is designed to solve pro-
blems in which the objective function and all constraints are linear. Conversely,
nonlinear programming techniques solve some MOPs not meeting those restrictions,
but require convex constraint functions. Finally, stochastic programming is used
when random-valued parameters and objective functions subject to statistical per-
turbations are part of the problem formulation. Depending on the type of variables
used in the problem, several variants of these methods exist (i.e., discrete, integer,
binary, and mixed-integer programming).

There are other techniques that can handle multiple objectives [30], such as Par-
ticle Swarm Optimization, Cultural Algorithms, Artificial Immune Systems, Coope-
rative Search, and Memetic Algorithms, just to mention a few.

One of the most widely used taxonomies for nonlinear programming is the one
proposed by Hwang and Masud in 1979 [59, 32]. Here, the methods are categorized
according to the participation of the decision maker in the solution process. The
classes are:
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• No-preference Methods: The opinions of the decision maker are not taken
into consideration. The MOP is solved using some relatively simple method
and the solution obtained is presented to the decision maker. The decision
maker may either accept or reject the solution. These methods are suitable for
situations where the decision maker does not have any special expectations of
the solution and (s)he is satisfied simply with some optimal solutions.

• A Posteriori Methods: After the Pareto optimal set (or a part of it) has
been generated, it is presented to the decision maker, who selects the most pre-
ferred among the alternatives. The inconveniences here are that the generation
process is usually computationally expensive and, at least partially, difficult.
On the other hand, it is hard for the decision maker to select from a large set
of alternatives. A more important question is how to present or display the
alternatives to the decision maker in an effective way.

• A Priori Methods: The decision maker must specify her or his preferences,
hopes and opinions before the solution process takes place. The difficulty is that
the decision maker does not necessarily know beforehand what it is possible to
attain in the problem and how realistic her or his expectations are.

• Interactive Methods: Assuming the decision maker has enough time and
capabilities for co-operation, these methods can be presumed to produce the
most satisfactory results. Namely, only part of the Pareto optimal points has
to be generated and evaluated, and the decision maker can specify and correct
her or his preferences and selections as the solution process continues. This
also means that it is not necessary to have any previous knowledge about the
preference structure. However, the information should be meaningful and easy
to understand.

These classical methods solve problems using mathematical techniques, such as
gradient information. Therefore, some assumptions are made about continuity and
convexity. Usually, they generate one solution at a time, and the principal idea
of these methods is to transform the multi-objective problem into a single objective
problem using constraints, a hierarchy of objectives, or aggregation functions.5 There
is a large variety of classical methods. In Table 2.2, we present some of them.

No Free Lunch Theorem

As we have seen, there is a large variety of methods for solving MOPs. However,
none of them can be said to be generally superior to all the others. This observation

5 Aggregation functions combine all the objectives of the problem into a single one, using either
an addition, multiplication or any other combination of arithmetical operations. These functions
may be linear or nonlinear.
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Table 2.2: Some classical methods.

Method Reference Classification
Global Criterion or Compromise programming Yu, Zeleny 1973 No-preference

MPB (Multiobjective Proximal Bundle
Method)

Mäkelä, Miettinen 1993-1996 No-preference

Weighting Method Gass and Saaty 1955; Zadeh 1963
A posteriori,
a priori

ε-constraint Haimes 1971 A posteriori
Hybrid Method Corley 1980; Wendell and Lee 1977 A posteriori

Method of Weighted Metrics Bowman 1976 A posteriori

Achievement Scalarizing Function Approach Wierzbicki 1980-1986 A posteriori
Hyperplane method Yano and Sakawa 1989 A posteriori

NISE (Noninferior set estimation) Cohon 1978 A posteriori

NBI (Normal boundary intersection) Das and Dennis 1998 A posteriori
Value Function Method - A priori

Lexicographic Ordering - A priori

Goal Programming Charnes and Cooper 1955, 1961 A priori
Weighted Goal Programming Charnes and Cooper 1977 A priori

Lexicographic Goal Programming - A priori
Min-Max Goal Programming Flavell 1976 A priori
ISWT (Interactive Surrogate Worth Trade-Off
Method)

Chankong and Haimes 1978 Interactive

GDF (Geoffrion-Dyer-Feinberg) Geoffrion et al. 1972 Interactive

SPOT (Sequential Proxy Optimization Tech-
nique)

Sakawa 1982 Interactive

Tchebycheff Method Steuer 1986 Interactive
STEM (Step Method) Benayoun 1971 Interactive
Reference Point Method Wierzbicki 1980-1982 Interactive

GUESS Method Buchanan 1997 Interactive
STOM (Satisficing Trade-Off Method) Nakayama et al. 1984-1995 Interactive
Light Beam Search Jaszkiewicz and Slowinski 1994,1995 Interactive

Reference Direction Approach Korhonen and Laakso 1984-1986 Interactive
RD (Reference Direction Method) Narula et al. 1994 Interactive
NIMBUS (Nondifferentiable Interactive Multi-
objective Bundle-based optimization System)

Miettinen and Mäkelä (1994-1997) Interactive

Interactive multiple goal programming (IMGP) Nijkamp and Spronk (1980, 1990) Interactive
Sequential multiobjective problem solving
(SEMOPS)

Monarchi et al. (1973) Interactive

was made by Wolpert and Macready [60] in 1997. They published the No Free-
Lunch (NFL) theorem, which is a class of theorems concerning the average behavior
of optimization algorithms over a set of optimization problems.

The primary of such theorems states that, if problem domain knowledge is not in-
corporated into the algorithm domain, no formal assurances of an algorithm’s general
robust effectiveness exist.

NFL theorems, in addition, imply that incorporating too much problem domain
knowledge into a search algorithm reduces its effectiveness on other problems outside
and even within a particular class; therefore, robustness is sacrificed in such cases.

In [61], Köppen extends the NFL theorem to the case of multi-objective optimiza-
tion, which states that, on average, each algorithm has the same performance when
applied to all possible sets of problems, provided that no a priori knowledge of the
problem is assumed.

There has been some considerable debate about the utility of the NFL theorems,
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often centered around the question of whether the set of problems that we are likely to
tackle with evolutionary algorithms is representative of all problems, or if they form
some special subset. However, the NFL theorems have come to be widely accepted,
and the following lessons can be drawn from them [62]:

• If an algorithm does particularly well on one class of problems, then it is likely
to do more poorly over the remaining problems. This suggests that a careful
strategy is required to evaluate algorithms.

• For a given problem, we can circumvent the NFL theorem by incorporating
problem-specific knowledge. This of course leads us towards memetic algo-
rithms.6

2.7 Evolutionary Computation

Evolutionary computation is a subfield of artificial intelligence, which studies com-
putational systems that use ideas and get inspiration from natural evolution and
adaptation. It aims at understanding such computational systems and developing
more robust and efficient ones for solving complex real-world problems [63].

These computational systems, also known as evolutionary algorithms, are meta-
heuristics, which are considered, in general, a posteriori methods. They must be
used only as a last resort once all other strategies have been exhausted, or when time
consumption or results are not satisfactory. Evolutionary algorithms are also reco-
mmended in cases where it is not possible to formulate a problem, or when dealing
with inaccurate and noisy data.

The aim of this section is to describe what an evolutionary algorithm is, its main
components and related terminology. Section 2.7.1 presents the main branches of
evolutionary computation and points out similarities and differences among its diffe-
rent paradigms. Additionally, Section 2.7.2 provides an example of a Multi-Objective
Evolutionary Algorithm (MOEA), which has been widely studied and applied in diffe-
rent areas of knowledge.

Some of the terms used in evolutionary computation are individuals, which are
solution candidates; and population, which is the set of solution candidates. Each
individual represents a possible solution, i.e., a decision vector, which is encoded,
using an appropriate representation.

All evolutionary algorithms have three prominent features which distinguish them
from other search algorithms. First, they are all population-based. Second, there
is communication and information exchange among individuals in a population by
means of selection and/or recombination. Third, they are stochastic.

The search mechanism of evolutionary algorithms can be summarized by equation
(2.12):

6 Metaheuristics which incorporate a local search rule with a population-based strategy.
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Algorithm 1 Pseudocode for the tournament selection algorithm.

Input: Population P , Tournament size k
Output: The selected individuals to become parents

1: Q← ∅
2: while |Q| ≤ |P | do
3: Pick k individuals randomly from P , with or without replacement
4: Let Pi be the best of these k comparing their fitness values
5: Q← Q ∪ Pi
6: return Q

P [t+ 1] := ss (v (sp(P [t])) , P [t]) , (2.12)

where P [t] is the population at iteration or generation t, sp is the operator for parent
selection, v is the variation operator, and ss is the operator for survivor selection. In
the following, we explain in detail each component.

The parent selection or mating selection aims at picking promising solutions based
on their quality for variation. This process usually consists of two stages: fitness
assignment and sampling. In the first stage, the individuals in the current population
are evaluated in the objective space and then assigned a scalar value, the fitness,
reflecting their quality. Afterwards, a so-called mating pool is created by random
sampling from the population according to the fitness values.

An important term, related to this operator, is selection pressure, which drives
the population towards better solutions. However, when fitness values of individuals
are all very close together, there is almost no selection pressure.

For instance, a straightforward sampling method is tournament selection, which
is shown in Algorithm 1 [62]. Here, two individuals are randomly chosen from the
population, and the one with the better fitness value is copied to the mating pool.
This procedure is repeated until the mating pool is filled. The complexity of this
deterministic version is O(|P |), since it requires |P | competitions, each of which is
performed in O(1). The selection pressure is controlled by varying the tournament
size; the larger the tournament, the higher is the chance that it will contain mem-
bers of above-average fitness, and the lower that it will consist entirely of low-fitness
members.

On the other hand, the variation operators take a set of solutions from the mating
pool and systematically or randomly modify these solutions in order to generate po-
tentially better solutions. There are usually two variation operators: recombination
and mutation. The essence of the recombination or crossover operator is the inheri-
tance of information (genes) from two or more parents by one or two offspring. To
mimic the stochastic nature of evolution, a crossover probability is associated with
this operator.

By contrast, the mutation operator is applied to one individual and delivers a
modified mutant, the child or offspring of it, according to a given mutation rate.
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Sometimes, an algorithm needs to escape from local optima and avoid premature
convergence. In this case, mutation comes into play.

It is worth noting that due to random effects some individuals in the mating pool
may not be affected by variation and therefore simply represent a copy of a previously
generated solution.

There are numerous recombination and mutation operators which have been pro-
posed for different representations [62]. The most common for multi-objective op-
timization using real numbers encoding is simulated binary crossover (SBX) and
polynomial-based mutation [64, 65, 66].

SBX simulates the working principle of single-point crossover on binary strings
[62]. This operator is convenient, because the spread of children solutions around
parent solutions can be controlled using a distribution index. A large value of this
index allows only near parent solutions to be created, whereas a small value of the
index allows distant solutions to be created. Another aspect of this crossover operator
is that it allows to have a more focused search when the population is converging.

Similarly, for polynomial-based mutation, the amount of perturbation in a variable
can also be controlled by fixing a distribution index. This operator is suitable for SBX.

Finally, the survivor selection, also known as environmental selection or replace-
ment, chooses which individuals among parents and offspring will be allowed in the
next generation. This decision is usually based on their fitness values, favoring those
with higher quality.

Based on the above concepts, natural evolution is simulated iteratively, until a
certain stopping criterion is fulfilled. At the end, the best individuals in the final
population represent the outcome of the evolutionary algorithm.

2.7.1 Main Branches

Evolutionary computation is an emerging field which has grown rapidly in recent
years. It encompasses several major branches, i.e., evolution strategies, evolutionary
programming, genetic algorithms and genetic programming. At a philosophical level,
they differ mainly in the way in which they simulate evolution. At the algorith-
mic level, they differ mainly in their representations of potential solutions and the
operators that they use to modify solutions.

In Table 2.3, the main characteristics, similarities and differences of evolutionary
algorithms are summarized. Here, it is assumed that the symbol µ represents the
population size (which is the same as the number of parents), and λ represents the
number of offspring generated from all µ parents. Next, we describe briefly these
approaches.

Evolution strategies were first proposed by Rechenberg and Schwefel in 1965 as
a numerical optimization technique of parameters (see [67] for a brief history). The
original evolution strategy did not use populations. A population was introduced
into evolution strategies a few years later [68, 29]. The main contribution of this
approach is self-adaptation, which includes parameters settings in the evolution pro-
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Table 2.3: Main characteristics of evolutionary algorithms.

Feature
Evolution
Strategies

Evolutionary
Programming

Genetic
Algorithms

Genetic
Programming

Abstract Level Individual behavior Species behavior Organisms Organisms
Representation Real-valued Real-valued Binary-valued Tree structures

Self-adaptation
Standard
deviation
and covariances

None
(meta-EP: standard
deviation, step
sizes, variances;
R-meta-EP: cova-
riance matrices)

None None

Mutation
Main operator
(Gaussian
perturbation)

Only operator
(Gaussian
perturbation)

Secondary operator
Secondary, optional
(random change
in trees)

Recombination

Important, but
secondary
(discrete or
intermediate)

None Main operator
Main operator
Exchange of
subtrees

Parent
Selection

Probabilistic
(uniform
distribution)

Deterministic
(each parent
creates one
offspring via
mutation)

Probabilistic,
biased by fitness
(preservative)

Probabilistic,
biased by fitness
(preservative)

Survivor
Selection

- Extinctive: (1+1),
(1 + λ), (µ+ 1)

- Deterministic,
biased by fitness:
(µ, λ), (µ+ λ)

Probabilistic,
biased by fitness
(µ+ µ)

- Generational
replacement

- Deterministic,
biased by fitness:
(µ+ λ)

- Generational
replacement
(simple GA)

- Probabilistic,
biased by fitness
(steady-state GP)

cess of individuals. There are five major selection schemes in evolution strategies:

• (1 + 1): one parent generates one child, and the best of them is selected to form
the next generation.

• (1 + λ): one parent generates λ offspring. The best individual from the parent
and the λ offspring is selected to form the next generation.

• (µ+ 1): µ parents generate one child, which can substitute the worst parent.

• (λ + µ): λ offspring are generated from µ parents. The µ fittest individuals
from λ+ µ candidates are selected to form the next generation.

• (λ, µ): the µ fittest individuals from λ (λ ≥ µ) offspring are selected to form
the next generation.

The first three schemes use an extinctive selection mechanism, since some indivi-
duals are excluded from being selected for reproduction, while the last two schemes
use a deterministic selection approach, since they always choose the best solutions
from the population.

Evolutionary programming was first proposed by Fogel et al. in the mid 1960s as
a way to achieve artificial intelligence [69, 70]. This approach is similar to evolution
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strategies, however it does not use any recombination. Moreover, µ parents gene-
rate µ offspring, from which µ individuals are selected using a pairwise tournament
competition.

Genetic algorithms were initially conceived by Holland [71] and his students [72] in
1975 although some of the ideas appeared as early as 1957 in the context of simulating
genetic systems [73]. It is probably the most well-known branch of evolutionary com-
putation, which emphasizes genetic encoding of potential solutions into chromosomes.
In an attempt to prevent the loss of good solutions during the optimization process
due to random effects, elitism can be incorporated. In essence, a trace is kept of
the current fittest members, and such individuals are always kept in the population.
Additionally, the genetic algorithm uses preservative selection, since each individual
has a non-zero probability of being selected as a parent.

A special sub-branch of genetic algorithms is genetic programming. These algo-
rithms evolve tree-structured chromosomes. They were first used by Koza in 1989
[74, 75].

2.7.2 A sample MOEA: NSGA-II

A very popular evolutionary algorithm, proposed by Deb et al. [13] in 2000, is the
Nondominating Sorting Genetic Algorithm II, which is an improved version of the
Nondominated Sorting Genetic Algorithm (NSGA) [76, 77], and it is inspired by the
ranking procedure originally proposed by Goldberg [78] in 1989. Here, the population
is partitioned into layers or fronts using a nondomination criterion.

This ranking procedure is shown in Algorithm 2. In lines 1 to 8, for each individual
p, the set of solutions that p dominates (Sp), and the number of solutions which
dominate p (np) are calculated. This requires O(mN2), where m is the number of
objectives, and N = |P | represents the population size.

In lines 9 to 11, all the individuals with domination count as zero belong to the
first nondominated front. In lines 13 to 20, for each solution p with np = 0, each
member q of its set Sp is visited and its domination count is reduced by one. In doing
so, if for any member q, the domination count becomes zero, then it is placed in a
separate list Q. At the end of the iterative cycle (lines 21 and 22), the members of this
list belong to the second nondominated front. Now, the above procedure is continued
with each member of Q and the third front is identified. This process continues until
all fronts are identified.

For each solution p in line 15, the domination count np can be at most N − 1.
Thus, each solution p will be visited at most N − 1 times before its domination count
becomes zero. At this point, the solution is assigned a nondomination level and
will never be visited again. Since there are at most N − 1 such solutions, the total
complexity is O(N2). Thus, the overall complexity of this procedure is O(mN2), and
the storage requirement is O(N2).

Diversity is maintained by the crowding distance, which estimates the density of
solutions surrounding a particular solution p in the population. This quantity, p.dist,
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Algorithm 2 Pseudocode of nondominated-sort

Input: Population P
Output: Partition in fronts of the population

1: for all p ∈ P do
2: Sp ← ∅
3: np ← 0
4: for all q ∈ P do
5: if (p ≺ q) then
6: Sp ← Sp ∪ {q}
7: else if (q ≺ p) then
8: np ← np + 1
9: if np = 0 then

10: p.rank ← 1
11: F1 ← F1 ∪ {p}
12: i← 1
13: while Fi 6= ∅ do
14: Q← ∅
15: for all p ∈ Fi do
16: for all q ∈ Sp do
17: nq ← nq − 1
18: if nq = 0 then
19: q.rank ← i+ 1
20: Q← Q ∪ {q}
21: i← i+ 1
22: Fi = Q
23: return F

corresponds to the average distance of two points on either side of this point along
each of the objectives.

In Algorithm 3, we present the pseudocode to calculate the crowding distance of
a set of individuals. First, the distance is initialized for all individuals. Then, in
lines 3 to 4, the set of individuals is sorted with respect to each objective function
value. In line 5, the extreme solutions are assigned an infinite distance value. In
lines 6 and 7, the distance values are calculated for all other intermediate solutions.
This calculation is continued with other objective functions. The overall crowding-
distance value is calculated as the sum of individual distance values corresponding to
each normalized objective function.

Here, Pj.fi refers to the i-th objective function value of the j-th individual in the
set P . The complexity of this procedure is governed by the sorting algorithm. Since
m independent orderings of at most N solutions (when all population members are in
one front P ) are involved, this algorithm has O(mN logN) computational complexity.

The main loop of NSGA-II is shown in Algorithm 4. First, the population is
initialized at random and evaluated in each objective function. Then, the upper
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Figure 2.10: Schematic of fronts and crowding distance of individuals in NSGA-II. The
fronts are represented by the continuous lines. The dashed regions depict the crowding
distance of solutions ~a and ~b. Here, solution ~b is preferred over ~a. The boundary solutions
of the first front have infinite crowding distance.

Algorithm 3 Pseudocode of the crowding-distance

Input: Set of individuals P , vector of maximum and minimum values of each objec-
tive function ~fmin, ~fmax

Output: Assignment of the crowding distance
1: l← |P |
2: (∀p ∈ P ) p.dist← 0
3: for all i ∈ {1, . . . ,m} do
4: Sort individuals P according to the i-th objective value in ascending order
5: P1.dist← Pl.dist←∞
6: for j = 2 to l − 1 do
7: Pj.dist← Pj.dist+ (Pj+1.fi − Pj−1.fi) / (fmaxi − fmini )

and lower bounds of all objective functions are obtained in line 4. Each solution
is assigned a fitness (or rank) equal to its nondomination level in line 5. At each
generation, tournament selection with k = 2 (see Algorithm 1) is executed for the
current population in line 7. In line 8, recombination and mutation operators are
used to create an offspring population of size N . This offspring is evaluated in line
9, and the minimum and maximum values of each objective function are updated in
line 10. Since elitism is introduced, both populations of parents and offspring are
sorted with respect to Algorithm 2 in line 11. Then, in lines 12 to 17, the solutions
of the lower fronts are considered in the next generation. If the last front is larger
than the population size, then its solutions are sorted according to their rank and
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Algorithm 4 Pseudocode of NSGA-II

Input: MOP, termination condition, population size N
Output: Approximation to the Pareto optimal set

1: t← 0
2: Initialize population Pt
3: Evaluate population Pt
4: Obtain ~fmin and ~fmax

5: nondominated-sort(Pt)
6: while termination condition is not fulfilled do
7: Perform binary tournament selection
8: Generate offspring P ′t using variation operators
9: Evaluate population P ′t

10: Update ~fmin and ~fmax

11: F ←nondominated-sort(Pt ∪ P ′t)
12: Pt+1 ← ∅
13: i← 1
14: while |Pt+1|+ |Fi| ≤ N do

15: crowding-distance(Fi, ~f
min, ~fmax)

16: Pt+1 ← Pt+1 ∪ Fi
17: i← i+ 1
18: Sort individuals of the front Fi
19: Pt+1 ← Pt+1 ∪ Fi[1 : (N − |Pt+1|)]
20: t← t+ 1
21: return Pt

crowding distance (line 18). The best solutions fill the remaining population (line
19). The overall complexity of the algorithm is O(mN2), which is governed by the
nondominated sorting part of the algorithm.

It is worth noting that when we compare two solutions in tournament selection
or sorting of the population, we prefer the solution with the lower (better) rank.
Otherwise, if both solutions belong to the same front, then we prefer the solution
that is located in a less crowded region.

In Figure 2.10, we illustrate the front building process, as well as the crowding
distance for a hypothetical population. As we will see in the next section, NSGA-II
is not effective in solving optimization problems with more than three objectives.

2.8 Many-Objective Optimization

Evolutionary algorithms based on Pareto optimality have been found to be very useful
since the 1990s, but recent studies have shown that they do not perform properly
when dealing with problems having four or more objectives [1, 2]. Farina and Amato
[79] in 2002 were the first in observing this behavior and introduced the terminology
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many-objective, which was extended to many-objective optimization by Purshouse
and Fleming [80] a year later. This area is currently considered a hot research topic.

The goal of this section is to present a general overview of many-objective op-
timization, including: main issues, alternative solutions, and examples of real-world
problems.

According to Ishibuchi et al. [2], the difficulties that we may encounter in MOEAs
when applying Pareto dominance to many-objective problems are the following:

1. Deterioration of the search ability. When the number of objectives in-
creases, almost all solutions in each population become nondominated. This
severely weakens the Pareto dominance-based selection pressure toward the
Pareto optimal front. Therefore, the convergence property of MOEAs is severely
deteriorated.

2. Exponential increase in the number of solutions required for approxi-
mating the entire Pareto optimal front. The goal of MOEAs is to find a
set of nondominated solutions that properly approximates the entire Pareto op-
timal front. Since the Pareto optimal front is a hyper-surface in objective space,
the number of solutions required for its approximation exponentially increases
with the dimensionality of objective space. Therefore, we may need thousands
of nondominated solutions to approximate the entire Pareto optimal front of a
many-objective problem.

3. Difficulty of the visualization of solutions. It is usually assumed that the
choice of a final solution from a set of obtained nondominated solutions is done
by a decision maker based on his/her preference. The increase in the number
of objectives makes the visualization of obtained nondominated solutions very
difficult. This means that the choice of a final solution becomes very difficult
in many-objective optimization.

The deterioration of the search ability is produced mainly by the phenomenon of
dominance resistance,7 which is the difficulty in producing new candidate solutions
that will dominate current solutions. Deb et al. [83] and Hanne [81] also identified
that the level of dominance resistance could increase with the dimension of objective
space. The deterioration of convergence has been pointed out in a number of studies
[80, 84, 85], where the bad performance of NSGA-II has been demonstrated.

Recent advances in the field of evolutionary many-objective optimization led to
the conclusion that the addition of an objective makes the problem indeed harder,
but, it can be argued that the difference is not significant [86].

According to Bentley et al. [87] the number of nondominated m-dimensional vec-
tors on a set of size N is O(lnm−1N). As a consequence, in many-objective problems,
the selection of solutions is carried out almost at random or guided by diversity cri-
teria. In fact, Knowles and Corne [1] demonstrated that, for MOPs with more than

7This term was first identified by Hanne [81] and Ikeda et al. [82] and, in the context of many-
objective optimization by Deb et al. [83].
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ten objectives, a purely random search may perform favorably when compared with
a MOEA.

A straightforward idea for the scalability improvement of MOEAs to many-objective
problems is to increase the selection pressure toward the Pareto optimal front. One
approach based on this idea is to modify Pareto dominance in order to decrease the
number of nondominated solutions in each population [88]. Another approach is to
assign different ranks to nondominated solutions [89, 90, 91, 92].

Another idea for the scalability improvement is the use of different fitness eva-
luation mechanisms (instead of Pareto dominance). One approach based on this idea
is to use a number of different scalarizing functions for fitness evaluation [93, 85, 94,
95, 14]. Another approach is the use of indicator-based evolutionary algorithms where
indicator functions are used to evaluate each solution [96, 9, 15].

On the other hand, for the second difficulty, the number of points necessary to
represent a Pareto optimal front is bounded by O(mrm−1), where r is the resolution
and m the number of objectives [97]. This issue has often been tackled by incorpo-
rating preference information in MOEAs [41, 98, 99, 100]. As we have seen in Section
2.2, for multi-objective optimization the desirable aspects of nondominated sets are
convergence and diversity. Moreover, for many-objective optimization, the property
of pertinency [101] or preferability [102] has special prominence. This feature consists
of producing solutions that reside in the decision maker’s region(s) of interest. In
practice, and especially as the number of objectives increases, the decision maker is
interested only in a sub-region of objective-space. Thus, focusing on pertinent areas
of the search space helps to improve optimizer efficiency and reduces unnecessary
information that the decision maker would otherwise have to consider. At the end of
the optimization process, the decision maker can then decide on a single solution to be
implemented based on preferences and application dependent high-level information.

A direct approach for handling the difficulty of visualization is to decrease the
number of objectives [103, 104, 105, 106]. Of course, dimensionality reduction can
remedy not only the third difficulty but also the other difficulties. Visualization
techniques of nondominated solutions with many objectives have been proposed in
the literature [107, 108] where objective vectors are mapped into a low-dimensional
space for their visualization. A number of visualization techniques of high-dimensional
objective vectors have also been proposed in the field of multiple criteria decision
making [32].

One practical method that will be used in this document is the parallel coordinates
or value paths [109, 110], which represent sets of objective vectors. To show a set
of points in an m-dimensional objective space, a backdrop is drawn consisting of m
parallel lines, typically vertical and equally spaced. An objective vector is represented
as a poly-line with vertices on the parallel axes; the position of the vertex on the
ith axis corresponds to the ith value of the objective function. If the ranges are
known, they give additional information about the possibilities and limitations of
the objective functions. It is worth noticing, that each objective function can have
a scale of its own. Parallel coordinates are a recommended visualization method
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because they are easy to interpret. For example, it is easy to distinguish non-Pareto
optimal alternatives if they are included. Further, even a large number of objective
functions causes no problem.

According to López [111], the number of function evaluations is another important
difficulty when dealing with many-objective optimization problems, since some real-
world problems have a small budget of function evaluations, due to time constraint
reasons. Some memetic algorithms have been proposed to tackle this issue using less
than 1000 function evaluations [112, 113, 114, 115]. Other challenges are related to
the design of both data structures to efficiently manage the population, and density
estimators to achieve an even distribution of the solutions along the Pareto optimal
front. Unfortunately, even if we could efficiently obtain an accurate approximation of
the Pareto optimal front, the selection of one solution among such a huge number of
solutions would be a very difficult task for the decision maker.

In Tables 2.4 and 2.5 [30], we provide several examples of real-world many-
objective optimization problems. These diverse applications require from 4 up to 500
objectives, being engineering the area in which they seem to appear more frequently.

2.9 Summary

This chapter introduced the basic concepts of multi-objective optimization, which
is widely used in several disciplines. We started by defining a MOP, the concept
of optimality, and the relations of normal, weak and strong dominance. Moreover,
we denote that the outcome of an optimizer is the Pareto set approximation, which
should meet the desirable aspects of convergence, distribution and spread.

We defined three important points in objective space: ideal, utopian and nadir
vectors, which are used as reference solutions in multi-objective algorithms. Then,
we mentioned that the decision maker is the only person who is supposed to express
preference relations among the different solutions produced by an optimizer.

We discussed the features that are present in MOPs, in both search space and
fitness space, and the methods that have been proposed to solve them, which are
classified as enumerative, deterministic and stochastic; or categorized according to
the participation of the decision maker: non-preference, a posteriori, a priori, and
interactive. We introduced the No Free-Lunch theorem, which states that if pro-
blem domain knowledge is not incorporated into the algorithm domain, no formal
assurances of an algorithm’s general robust effectiveness exist.

This chapter also gave a quick overview of evolutionary computation. We discuss
its main components, and related terminology, such as, individual, population, parent
selection, fitness, selection pressure, variation operator, crossover, mutation, offspring,
premature converged and reduction.

Additionally, we presented a brief history of major types of evolutionary algo-
rithms, i.e., evolution strategies, evolutionary programming, genetic algorithms, and
genetic programming.

Finally, we gave a general overview of many-objective optimization, its main issues,
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Table 2.4: Real-world applications for many-objective optimization.

Field Specific Application Reference(s) # Objectives

Environmental
Engineering

Groundwater pollution
remediation

Garrett et al. (1999)
[116]

4
Aquifer pumping flow, oxygen injec-
tion rate, toluene pulsing rate, and
separation.

Environmental
Engineering

Location of siting retail
and service facilities

Guimarães et al.
(1993-94) [117, 118]

5
Height, geology, aspect, land use, and
distance from two urban centers.

Electrical and
Electronics
Engineering

Synthesis of CMOS
operational amplifiers

Zebulum et al. [119] 7
Gain, linearity, power consumption,
area, phase margin, slew-rate, and
GBW.

Telecom. and
Network
Optimization

Improve wire-antenna
geometries

Van Veldhuizen et al.
[120]

4
Radiated power gain, azimuthal sym-
metry of radiated power, input resis-
tance, and input reactance.

Robotics and
Control
Engineering

Controller design Schroder et al. [121] 9
Steady state error, compliance, ma-
ximum current, noise susceptibility,
complexity, etc.

Robotics and
Control
Engineering

Controller design Donha et al. [122] 4
Overshoot, controller roll-off fre-
quency, rise and settling times.

Robotics and
Control
Engineering

Robust controller
design

Herreros López and
co-workers [123, 124,
125]

4
Related to mixed H/H∞ controller
design.

Robotics and
Control
Engineering

Design of control sys-
tems for a gas turbine
engineering

Chipperfield and
Fleming (1995-96)
[126, 127]

9
Related to the foreaft differential and
total engine thrust.

Robotics and
Control
Engineering

Design of control
systems

Dakev et al. and
Chipperfield et al.
(1995-96) [128, 129]

7
Performance parameters of the elec-
tromagnetic suspension system for a
maglev vehicle.

Robotics and
Control
Engineering

Design of control
systems

Tan and Li (1997)
[130]

9

Stability, closed-loop sensitivity, dis-
turbance rejection, plant uncertainty,
actuator saturation, rise and settling
times, overshoots, and steady state
error.

Robotics and
Control
Engineering

Robotic manipulator
problem

Jakob et al. (1992)
[131]

5

Failure checks (overstep and colli-
sions), accuracy in reaching the tar-
get position, smooth path, travel
time, energy consumption.

Robotics and
Control
Engineering

Robotic manipulator
problem (trajectory)

Ortmann and Weber
(2001) [132]

6 Related to the joints of a robot arm.

Robotics and
Control
Engineering

Robotic manipulator
problem (counter-
weight balancing)

Coello et al.
(1995;1998) [133]

4
Torques and joint forces of the robot
arm.

Structural and
Mechanical
Engineering

Micromechanical
modeling parameters

Reardon (1998) [134] 17 Related to experimental data points.

Transport
Engineering

Road systems (alterna-
tive motorway routes)

Guimarães et al.
(1995-97) [135, 136,
137]

5
Height, geology, aspect, land use, and
distance from urban centers.

Transport
Engineering

Road systems (train)
Laumanns et al.
(2001) [138]

10
Weight, gear box, engine and driving
strategy, fuel consumption, driving
performance, and convenience, etc.

Transport
Engineering

Road systems Qiu (1997) [139] 17
Maximize the investment effective-
ness subject to the current budget
constraints.

Aeronautical
Engineering

Helicopter design
Flynn and Sherman
(1995) [140]

4
Buckling of panel and bay, panel
weight, number of frames and stiffe-
ners.

Aeronautical
Engineering

Aerodynamic opti-
mization (subsonic
wing design)

Anderson
(1995) [141]

4
Lift/drag ratio, lift/weight ratio,
meet design lift goals, and maintain
structural integrity.

Chemistry
Intensities of emission
lines of trace elements

Wienke et al. (1992)
[142]

7
Combination of relative emission in-
tensities.
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Table 2.5: Real-world applications for many-objective optimization (continuation).

Field Specific App. Reference(s) # Objectives

Chemistry
Polymer extru-
sion optimization

Gaspar Cunha et
al. (1997) [143]

4
Melt temperature, length of screw required for
melting, power consumption and mass output.

Medicine
Treatment plan-
ning in radiation
therapy

Yu (1997) [144] 4

Maximum dose in the target volume, average
dose above the mean in the anterior critical
structure, average dose above the mean in the
posterior critical structure and average dose
above the mean in the normal tissue shell.

Medicine
Left ventricle 3D
reconstruction

Aguilar and Mi-
randa (1999) [145]

6

Slice fidelity, internal energy of the recon-
structed slice, and energy of similarity between
the current slice configuration and the adja-
cent slice previously reconstructed.

Ecology
Assessment of
ecological models

Reynolds and
Ford (1999)
[146, 147]

10

Mortality, stand height frequency distribution,
median live tree height, number of live whorls,
crown angle and length ratio, suppressed tree
growth rate, variability in suppressed tree
height increment rates, dominant tree slope
and variability in dominant tree height incre-
ment rates.

Computer
Science and
Engineering

Coordination of
agents

Cardon, Galinho
et al. (1998-2000)
[148, 149, 150]

up
to
500

There are as many objectives as jobs in a Gantt
diagram for scheduling problems.

Computer
Science and
Engineering

Games Chow (1998) [151] 4
Number of red, white, and blue chromatic rec-
tangles from a 10 × 10 chessboard, and a dis-
tribution factor for the three colors.

Computer
Science and
Engineering

Image processing
Bhanu and Lee
(1994) [152]

5
Edge-border coincidence, boundary consis-
tency, pixel classification, object overlap and
contrast.

Computer
Science and
Engineering

Computer-
generated anima-
tion

Shibuya et al.
(1999) [153]

4
Change of the joint torques, joint torques, ac-
celeration of the handled object, and comple-
tion time of the motion.

Computer
Science and
Engineering

Graph layout
generation

Barbosa and Bar-
reto (2001) [154]

5

Uniform spatial distribution of vertices, num-
ber of edge-crossings, uniform edge length,
exhibition of symmetric features, and avoid ha-
ving vertices too close to edges.

Design and
Manufacture

Machine design
(four-cylinder
gasoline engine)

Fujita et al.
(1998) [155]

4
Maximize miles/fuel covered, acceleration per-
formance, starting response, and follow-up res-
ponse.

Design and
Manufacture

VLSI (building
block placement
problem)

Esbensen and Kuh
(1996a) [156]

4
Maximum path delay, layout area, routing con-
gestion, and aspect ratio deviation with res-
pect to a certain target.

Design and
Manufacture

Process planning
Groppetti and
Muscia (1997)
[157]

6
Assembly cost and cycle-time, product reliabi-
lity, maintenance costs, product flexibility, and
redesign and/or modification flexibility.

Design and
Manufacture

Machine design
(gas turbine
engine)

Fonseca and Flem-
ing (1995;1998)
[158, 159]

7
Pole magnitude, gain margin, phase mar-
gin, rise and settling times, maximum value
reached by the output, output error.

Design and
Manufacture

Process planning
Chen and Ho
(2001) [160, 161]

4
Total flow time, deviations of machine work-
load, the greatest machine workload, and the
tool costs.

Design and
Manufacture

Machine design

Coello and
Christiansen
(1996;1999)
[162, 163]

4
Surface roughness, surface integrity, tool life,
and metal removal rate.

Scheduling Time-tabling
Paechter et al.
(1998) [164]

12 Room changes, time restrictions, etc.

Finance Economic models
Mardle et al.
(1998;2000)
[165, 166]

4
Maximize profit, maintain quota shares among
countries, maintain employment in the indus-
try and minimize discards.
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alternative solutions, and examples of real-world problems. An additional desirable
aspect in many-objective optimization is pertinency, which consists of producing so-
lutions that reside in the decision maker’s region(s) of interest.
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Chapter 3

Performance Indicators Used as a
Selection Mechanism

Many MOEAs implement a combination of Pareto dominance on sets and a diversity
measure based on Euclidean distance in the objective space. While these methods
have been successfully employed in various bi-objective optimization scenarios, they
appear to have difficulties when the number of objectives increases [96]. As a con-
sequence, researchers have tried to develop alternative concepts, and a recent trend
is to use performance indicators (also denoted as quality measures or quality indica-
tors) for search.1 So far, they have mainly been used for performance assessment. Of
particular interest in this context is the R2 indicator [167] as it is almost compatible
with Pareto dominance and highly correlated with the hypervolume [168, 169], but
has a lower computational overhead than such indicator [12].

In this chapter, we overview three performance indicators that can be successfully
incorporated as search engines into a MOEA. Moreover, we describe some of their
derived algorithms, including their pseudocode and complexity analysis. Firstly, in
Section 3.1, we describe the main properties of quality measures. In Section 3.2 we
present the hypervolume. In Section 3.3, we introduce a new performance indicator,
∆p, followed by the R2 indicator in Section 3.4. Finally, in Section 3.5 we briefly
discuss some other techniques that can be applied.

3.1 Properties

Performance indicators serve different goals: they may be used for comparing the
outcomes of multi-objective optimizers, but also serve as guides or as a stopping
criterion during the optimization process. In the following, we provide some important
definitions related to performance indicators.

1Performance indicators are often referred to in the literature as metrics. However, metric is a
well-defined terminology in mathematics and many performance indicators in multi-objective opti-
mization do not necessarily satisfy the conditions for a metric.
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Definition 3.1.1. A (unary) performance indicator is a function I : Z ⊂ IRm → IR
that assigns each approximation set a real number.

Definition 3.1.2. An indicator I is said to be strictly monotonic if and only if whene-
ver a Pareto set approximation entirely dominates another one, then the indicator
value of the dominant set will also be better. Formally, this can be expressed as:

∀A,B ∈ Z : A ≺ B ⇒ I(A) > I(B),

where ≺ stands for the underlying Pareto dominance of sets.

Definition 3.1.3. An indicator I is said to be weakly monotonic if and only if for
any Pareto set approximation that is compared to another Pareto set approximation,
it holds: that being at least as good in terms of the dominance relation implies being
at least as good in terms of the indicator values. Formally, this can be expressed as:

∀A,B ∈ Z : A � B ⇒ I(A) ≥ I(B),

where � stands for the underlying weak-Pareto dominance of sets.

3.2 Hypervolume Indicator

The hypervolume indicator or S metric is one of the most popular set quality mea-
sures, since it is the only unary indicator known to be strictly monotonic with respect
to Pareto dominance. Therefore, maximizing the hypervolume guarantees converging
to the true Pareto optimal front of the problem being solved [28, 170, 6]. In fact, its
maximization also leads to sets of solutions whose spread along the Pareto optimal
front is maximized (although this does not necessarily mean that such solutions will
be uniformly distributed along the Pareto optimal front).

The hypervolume measures the size of the portion of objective space that is domi-
nated by an approximation set [4] (see Figure 3.1). Based on a reference point ~z, the
hypervolume of an approximation set A is defined as:

IHV (A : ~z) = L

(⋃
~a∈A

{
~a′ | ~a ≺ ~a′ ≺ ~z

})
, (3.1)

with L(.) denoting the Lebesgue measure of a set [171]. The greater the indicator
value, the better the approximation set.

The hypervolume contribution of an individual solution reflects the influence of a
single point on the quality of the approximation set. Given a solution ~a ∈ A, it is
defined as:

CHV (~a,A : ~z) = IHV (A : ~z)− IHV (A \ {~a} : ~z). (3.2)

The nice mathematical properties of the hypervolume indicator has triggered an
important amount of research, including work that focuses on computing it in a
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Figure 3.1: Examples of the dominated hypervolume in two and three dimensions. The left
figure shows a minimization case whereas the right one shows maximization.

Table 3.1: Hypervolume algorithms. Here, N is the number of solutions considered, m the
number of objectives and S represents the number of samples.

Algorithm Reference
Computational
Complexity

Slicing Objectives (recursive)
Zitzler, 1998 [172]
Knowles, 2002 [173]
While et al., 2006 [174]

O(Nm−1)

Dimension-sweep Fonseca et al., 2006 [175] O(Nm−2 logN)

Related to the Klee measure
problem

Beume and Rudolph,
2006 [176]
Beume, 2009 [177]

O(N logN+Nm/2)

O(Nm/2 logN)
Exclusive hypervolume While et al., 2012 [178] O(Nm)

Approximated by means of
Monte Carlo Simulation

Everson et al., 2002 [179]
Bader et al., 2010 [180, 10]
Bringmann and Friedrich,
2008 [181, 11]

(O(SN2m))

more efficient way (see Table 3.1).2 Even though, it has been shown, that there
is no polynomial algorithm available to compute the hypervolume, it is possible to
approximate the hypervolume contribution, significantly reducing its computational
cost. However, few studies of the performance of such approaches with respect to
those using exact hypervolume calculations are currently available.

Several hypervolume-based MOEAs have been proposed in the literature [7, 21,
106, 10]. In the following subsections, we describe two relevant algorithms: IBEA
(Subsection 3.2.1) and SMS-EMOA (Subsection 3.2.2).

2The tightest known lower bound for 2 or 3 objectives is of order Ω(NlogN).
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3.2.1 IBEA

The Indicator Based Evolutionary Algorithm, proposed by Zitzler and Künzli[182], is
a general framework to incorporate performance indicators in a MOEA. The fitness
of a solution is based on the sum of the indicator values resulting from pairwise
comparisons to all other solutions. Several variants of IBEAs have been proposed in
the literature [7, 3, 19]. In those variants of IBEAs, hypervolume was almost always
used as an indicator.

Wagner et al. [96] reported good results by IBEAs for many-objective problems.
Since IBEAs do not use Pareto dominance, their search ability is not severely deterio-
rated by the increase in the number of objectives. One difficulty in the application of
IBEAs to many-objective problem is a large computation cost for hypervolume cal-
culation. Ishibuchi et al. [183] proposed an iterative version of IBEAs to decrease the
computation cost by searching for only a small number of representative solutions.
Objective reduction in IBEAs was examined in Brockhoff and Zitzler [105] for the
same purpose.

3.2.2 SMS-EMOA

The S Metric Selection-Evolutionary Multi-objective Optimization Algorithm, pro-
posed by Beume et al. [3] in 2006, combines ideas borrowed from other MOEAs, like
the NSGA-II and archiving strategies presented by Knowles et al. [184, 185]. It is
an algorithm founded on two pillars: (1) nondominated sorting is used as a ranking
criterion (see Algorithm 2) and (2) the hypervolume is applied as selection criterion to
discard that individual, which contributes the least hypervolume to the worst-ranked
front.

SMS-EMOA is described in Algorithm 5. Starting with an initial population
of N individuals, a new individual is generated by means of randomized variation
operators. The new individual will become a member of the next population, if
replacing another individual leads to a higher quality of the population with respect
to the hypervolume indicator. Afterwards, one individual is discarded from the worst
ranked front. Whenever this front comprises |Rh| > 1 individuals, the individual
x ∈ Rh that minimizes the hypervolume contribution is eliminated.

SMS-EMOA guarantees that the covered hypervolume of a population cannot
decrease in future generations. Moreover, the produced solutions are well-distributed
on the Pareto optimal front. Boundaries of the Pareto optimal front and regions
around knee points (see Definition 2.5.14) are favored. A distinguishing feature of the
SMS-EMOA is that it is well-suited for approximating Pareto sets by a small number
of individuals. The computational effort required for computing hypervolume is very
high for more than three objectives. Therefore, the SMS-EMOA is hardly applicable
to higher dimensional problems that normally require a large number of function
evaluations.
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Algorithm 5 Pseudocode of the SMS-EMOA

Input: MOP, stopping criterion, reference point ~z
Output: Pareto set approximation

1: Initialize population P
2: Evaluate population P
3: while stopping criterion is not fulfilled do
4: Generate offspring p from P using variation operators
5: Evaluate individual p
6: P ← P ∪ {p}
7: {R1, . . . , Rh} ← nondominated-sort(P )
8: ∀x ∈ Rh : r(x)← CHV (~x,Rh : ~z) (see eq. (3.2))
9: x∗ ← arg min

x∈Rh

r(x)

10: P ← P \ {x∗}
11: return P

3.3 Delta p Indicator

More recently, a new performance indicator called ∆p was proposed by Schütze et
al. [22]. This indicator can be seen as an “averaged Hausdorff distance” between
the outcome set and the Pareto optimal front. It is composed of slight modifications
of two well-known performance indicators: generational distance (GD, see [23]) and
inverted generational distance (IGD, see [24]).

Definition 3.3.1. Given an approximation set A and a discretized Pareto optimal
front PF of a MOP, the (slightly modified) GD indicator is defined as:

IGDp =

 1

|A|

|A|∑
i=1

dpi

1/p

, (3.3)

where di is the Euclidean distance from ai ∈ A to its nearest member of PF .

Definition 3.3.2. Given an approximation set A and a discretized Pareto optimal
front PF of a MOP, the (slightly modified) IGD indicator is defined as:

IIGDp =

 1

|PF |

|PF |∑
i=1

dpi

1/p

, (3.4)

where di is the Euclidean distance from pfi ∈ PF to its nearest member of A.

Both IGDp and IIGDp have (weak) metric properties:

• IGDp and IIGDp are non-negative

• IGDp and IIGDp are non-symmetric
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• IGDp and IIGDp do not satisfy the (relaxed) triangle inequality.

Definition 3.3.3. Given an approximation set A and a discretized Pareto optimal
front PF of a MOP, the ∆p indicator is defined as:

I∆p = max(IGDp , IIGDp) (3.5)

The ∆p indicator has better metric properties than either the GD or IGD indi-
cators:

• It is positive and symmetric: I∆p is a semi-metric.

• If the magnitudes of the sets are bounded, the relaxed triangle inequality is
satisfied and I∆p is a pseudometric.

• If p =∞ then I∆p is a metric (the Hausdorff distance).

∆p simultaneously evaluates proximity to the Pareto optimal front and spread
of solutions along it. Although ∆p is not Pareto compliant, its computation has a
much lower computational cost than that of the hypervolume, and it can also handle
outliers, which makes it attractive for assessing performance of MOEAs.

It is worth noting, however, that for incorporating ∆p into the selection mechanism
of a MOEA, it is necessary to have an approximation of the true Pareto optimal front
at all times. This has motivated the development of techniques that can produce
such an approximation in an efficient and effective way. In Sections 3.3.1 and 3.3.1
we review two pioneering approaches in this regard.

3.3.1 Delta p-EMOA

Gerstl et al. [25] linearize the nondominated (piecewise linear) front of the current
population, and include this mechanism in the ∆p-EMOA, which is used for solving
bi-objective optimization problems. This algorithm is inspired by SMS-EMOA, and
is assisted by a secondary population. ∆p-EMOA performs better than NSGA-II
[13], while consuming a lower number of function evaluations. An extension of this
approach to three-objective problems is reported by Trautmann et al. [26]. In this
case, the algorithm requires some previous mathematical steps which include reducing
the dimensionality of the nondominated solutions and calculating their convex hull.
This version of ∆p-EMOA achieves a better distribution of solutions than MOEA/D
[14], SMS-EMOA and NSGA-II. However, this MOEA requires additional parameters
and consumes a high computational time when dealing with many-objective optimiza-
tion problems.
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3.3.2 Delta p-DDE

Another possible approach to incorporate ∆p into a MOEA is to use an echelon form
of the nondominated individuals for the Pareto optimal front. This is the mechanism
adopted in ∆p-DDE [9], in which ∆p is used as the selection mechanism of a differen-
tial evolution algorithm. ∆p-DDE was able to outperform NSGA-II and provided
competitive results with respect to SMS-EMOA, but at a considerably lower compu-
tational cost for many-objective optimization problems. The main limitation of this
approach is that it produces a poor spread of solutions in high-dimensional search
spaces. Also, it has some difficulties for dealing with discontinuous Pareto optimal
fronts.

In Algorithm 6, we present the pseudocode of this MOEA. Here, the individual
contributions are defined as follows:

Definition 3.3.4. The contribution of an individual a to the GD indicator (CGD)
can be defined in a straightforward manner as:

CGD(a,A, PF ) = di, (3.6)

where di is the Euclidean distance from ai to its nearest member of PF .

Definition 3.3.5. Let Q be the set of all elements of the Pareto optimal front PF
for which ai ∈ A is the closest element in A. The contribution of ai to CIGD can be
defined as:

CIGD(ai, A, PF ) =

{
p

√∑
q∈Q dist(q, ai)

p if Q 6= ∅
−1 otherwise,

(3.7)

where dist is the Euclidean distance between two points.

Definition 3.3.6. Let A be an approximation set for a MOP with Pareto optimal
front PF . Given two elements ai, aj ∈ A, ai contributes less than aj to I∆p if one of
the following conditions holds:

• ai contributes to IIGD and aj does not
CIGD(ai, A, PF ) > 0 and CIGD(aj, A, PF ) < 0

• ai contributes more to IIGD than aj
CIGD(ai, A, PF ) > CIGD(aj, A, PF )

• ai and aj contribute equally to IIGD but ai is closer to the Pareto optimal front
CIGD(ai, A, PF ) = CIGD(aj, A, PF ) and CGD(ai, A, PF ) < CGD(aj, A, PF )

The complexity of ∆p-DDE is ruled by the building of the reference set (see [9]),
which is exponential with respect to the number of objectives.
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Algorithm 6 Pseudocode of the ∆p-DDE

Input: MOP, stopping criterion,
Output: Pareto set approximation

1: Initialize population P
2: Evaluate population P
3: Initialize reference set S
4: Compute the ∆p contributions of each individual according to S
5: while stopping criterion is not fulfilled do
6: Generate offspring P ′ using variation operators
7: Evaluate population P ′

8: P ← P ∪ P ′
9: Update reference set S

10: Compute the ∆p contributions of P according to S
11: Remove the worst individuals from P
12: return P

3.4 The R2 Indicator

The family of R indicators was original proposed by Hansen and Jaszkiewicz in 1998
[167], for the purpose of comparing approximations of different multi-objective optimi-
zers by means of utility functions, which map a vector ~y ∈ IRm to a scalar utility value
u ∈ IR.

Specifically, the R2 indicator is a recommended approach [28] for many-objective
problems, since it is weakly monotonic and simultaneously evaluate all desired as-
pects of a Pareto front approximation, being often preferred over the hypervolume
for two reasons: first, its lower computational cost, and second, the more uniform
distributions that it produces. In the following, we derive its expression.

For a set U of general utility functions, a probability distribution p on U , and a
reference set R, the R2 indicator of a solution set A is defined as the expected utility:

R2(R,A, U, p) =

∫
u∈U

max
~r∈R
{u(~r)} p(u)du−

∫
u∈U

max
~a∈A
{u(~a)} p(u)du. (3.8)

For a discrete and finite set U and a uniform distribution p over U , the R2 indicator
can be written as [186]:

R2(R,A, U) =
1

|U |
∑
u∈U

(
max
~r∈R
{u(~r)} −max

~a∈A
{u(~a)}

)
. (3.9)

Since the first summand is a constant if we assume R to be constant, we delete
the first summand and call the resulting unary indicator also R2 for simplicity [12]:

R2(A,U) = − 1

|U |
∑
u∈U

max
~a∈A
{u(~a)}, (3.10)
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The R2 indicator is based on an assumption that we are allowed to add values
of different utility functions. Therefore, it is also dependent on the scaling of the
different utility functions. In this case, the lower the value of the measure is, the
higher is the evaluation of A.

With respect to the choice of the utility functions u, there are several possibilities,
such as, weighted sum, least squares, weighted Tchebycheff metric, etc. (see Chap-
ter 4) These utility functions have an associated set of uniformly distributed weight
vectors W and a reference point ~z, in order to maintain diversity. The most common
utility function is the weighted Tchebycheff metric:

R2(A : W, ~z ∗) =
1

|W |
∑
~w∈W

min
~a∈A

{
max

i∈{1,...,m}
wi |ai − z∗i |

}
. (3.11)

The contribution of a solution ~a ∈ A to the R2 indicator is defined as:

CR2(~a,A : W, ~z ∗) = R2(A : W, vecz ∗)−R2(A \ {~a} : W, ~z ∗). (3.12)

In Sections 3.4.1, 3.4.2 and 3.4.3 we provide three new algorithms which rely on
the R2 indicator.

3.4.1 R2-EMOA

The R2 Evolutionary Multi-Objective Algorithm was proposed by Trautmann et al.
in 2013 [187]. This algorithm extends SMS-EMOA by replacing the hypervolume
indicator with the unary R2 indicator. It is computationally less expensive than
SMS-EMOA; however, it still uses dominance ranking as the main criterion in the
selection mechanism.

Algorithm 7 shows the pseudocode of the R2-EMOA.3 After a random initiali-
zation of the population (lines 1 and 2) and the generation of one new offspring
per iteration (lines 3 to 6), R2-EMOA uses standard nondominated sorting (see Al-
gorithm 2), and deletes the solution with the worst rank that has the smallest R2
indicator value of the remaining population (lines 7 to 10). The reference point and
the set of normalized weight vectors are direct parameters required by the algorithm.

To optimize for speed, the weighted Tchebycheff value for each solution and weight
vector is only calculated once and stored throughout the algorithm. Furthermore, ins-
tead of calculating the R2 value for all the solution sets Rh\{x}, as in the pseudocode
of Algorithm 7, the worst solution is determined within the set Rh directly (see [187]).

The overall complexity is ruled by the nondominated sorting of a population,
O(N2m), where N represents the population size and m the number of objectives.
The storage requirement is O(|W |N +m(N + |W |)).

R2-EMOA can deal with small populations for two and three objectives. Further-
more, decision makers’ preferences can be included by adjusting the weight vector
distributions of the indicator which results in a focused search behavior.

3The implementation of R2-EMOA is available (in MATLAB) for download at
http://inriadortmund.gforge.inria.fr/r2emoa.
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Algorithm 7 Pseudocode of the R2-EMOA

Input: MOP, stopping criterion, set of weight vectors W , reference point ~z
Output: Pareto set approximation

1: Initialize population P
2: Evaluate population P
3: while stopping criterion is not fulfilled do
4: Generate offspring p from P using variation operators
5: Evaluate individual p
6: P ← P ∪ {p}
7: {R1, . . . , Rh} ← nondominated-sort(P )
8: ∀x ∈ Rh : r(x)← R2(Rh \ {x} : W,~z)
9: x∗ ← arg min

x∈Rh

r(x)

10: P ← P \ {x∗}
11: return P

3.4.2 R2-MOGA and R2-MODE

The R2 Multi-Objective Genetic Algorithm and R2 Multi-Objective Differential Evo-
lution was proposed by Dı́az-Manŕıquez et al. in 2013 [16]. These algorithms incor-
porate the R2 indicator to a modified version of the nondominated sorting method
of NSGA-II (see Section 2.7.2), in order to separate individuals into layers. This
approach is coupled to two different search engines, resulting in two MOEAs.

The set of weight vectors W is generated at each generation using the random
design, described in Subsection 4.3.1 and the weighted Tchebycheff functions are
assumed as utility functions. The reference point is updated per generation using the
utopian point.

Algorithm 8 presents the generic pseudocode of these MOEAs. The general idea
is to calculate the contributions of the entire population. Then, the individuals with
a contribution greater than zero are isolated. These individuals will form the first
layer. In the following, the contributions are computed to the remainder of the
population (to those individuals that have a contribution of zero in the previous
step), identifying and isolating again the individuals with a contribution greater than
zero, and assigning them the second layer. This process is repeated until the entire
population is segmented.

In the following, we deduce the complexity of this generic algorithm per generation.
The computational cost of the weight vector generation is O(|W |m). The offspring
generation is O(N). The reunion of parents and offspring is assumed to be constant,
O(1), as well as the initialization of the next generation. The population evaluation
and calculation of the reference point is made in O(Nm) each. Using additional
storage, the contribution of each individual to a weight vector in line 13 can be done in
O(N |W |m), assuming that the evaluation of the utility functions takes O(m). In the
worst case, where more than N individuals are in a layer, line 15 takes O(N). The set
operations in lines 16 and 17 are constant. Therefore, the overall complexity is ruled

CINVESTAV-IPN Computer Science Department



Performance Indicators Used as a Selection Mechanism 51

Algorithm 8 Pseudocode of the R2-MOEA

Input: MOP, maximum number of generations G, population size N , number of
normalized weight vectors |W |

Output: Pareto set approximation
1: i← 0
2: Initialize population Pi
3: Evaluate population Pi
4: Calculate the reference point ~z ∗

5: while i < G do
6: Create the set of W weight vectors at random of size |W |
7: Generate offspring P ′i using variation operators
8: Evaluate population P ′i
9: Update the reference point ~z ∗

10: S ← Pi ∪ P ′i
11: Pi+1 ← ∅
12: while Pi+1 < N do
13: F ←

{
p ∈ S | CR2(p, S : W, ~z ∗) 6= 0

}
(see eq. (3.12))

14: if |Pi+1|+ |F | > N then
15: Remove from F the worst |Pi+1|+ |F | −N candidates
16: Pi+1 ← Pi+1 ∪ F
17: S ← S \ F
18: i←i + 1
19: return Pi

by the calculation of the R2 contributions, O(N2|W |m). Additionally, O(|W |N +
m(N + |W |)) storage is required for this procedure.

The experiments made in [16] demonstrated that these two algorithms were com-
petitive with NSGA-II, MOEA/D and SMS-EMOA for 2 and 3 objectives, and out-
performed them in high dimensionality

3.4.3 R2-IBEA

The R2 Indicator Based Evolutionary Algorithm, which was proposed by Phan and
Suzuki in 2013 [15] as an extension of IBEA (see Subsection 3.2.1), which eliminates
Pareto dominance and performs a selection guided by a binary version of the R2
indicator. This binary version determines a superior-inferior relationship between
two individuals (x and y) in objective space, and is given by the following equation:

IR2(~x, ~y) = R2({~x} : W, ~z ∗)−R2({~x ∪ ~y} : W, ~z ∗), (3.13)

where each R2 value is obtained using equation (3.11). Thus, weighted Tchebycheff
functions are assumed as utility functions.
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Algorithm 9 Pseudocode of the R2-IBEA

Input: MOP, maximum number of generations G, population size N , set of normali-
zed weight vectors W , constant κ

Output: Pareto set approximation
1: i← 0
2: Initialize population Pi
3: Evaluate population Pi
4: Calculate the reference point ~z ∗

5: while i < G do
6: Perform binary tournament selection
7: Generate offspring P ′i using variation operators
8: Evaluate population P ′i
9: Let be Pi+1 ← {Pi ∪ P ′i}

10: Update the reference point ~z ∗

11: Calculate the population fitness:

(∀p ∈ Pi+1) p.fitness←
∑

q∈Pi+1\{p}−e
−IR2(q. ~f,p. ~f :W, ~z ∗)/κ

12: while |Pi+1| > N do
13: p∗ ← arg min

p∈Pi+1

p.fitness

14: Pi+1 ← Pi+1 \ {p∗}
15: Update the population fitness:

(∀p ∈ Pi+1) p.fitness← p.fitness+ e−IR2(p∗. ~f,p. ~f :W, ~z ∗)/κ

16: i←i + 1
17: return Pi

It is worth noting that if ~x ≺ ~y, then IR2(~x, ~y) = 0; otherwise, IR2(~x, ~y) ≥ 0, which
satisfies the property of weak monotonicity:

• IR2(~x, ~y) ≤ IR2(~y, ~x) if x ≺ y

• IR2(~x, ~y) ≥ IR2(~y, ~x) if y ≺ x

The set of normalized weight vectors W is generated using the hypervolume
approach, described in Subsection 4.3.3 of Chapter 4.

In Algorithm 9, we show the pseudocode of R2-IBEA, which is based on a Genetic
Algorithm. In the first three lines, the initial population is generated at random, and
then evaluated. In line 4, the reference point ~z ∗ = (z∗1 , . . . , z

∗
m) is calculated using

equation (3.14):

z∗i = min
p∈P

p.fi − 2 max
j=1,...,m

{
max
p∈P

p.fj −min
p∈P

p.fj

}
+

(
max
p∈P

p.fi −min
p∈P

p.fi

)
, (3.14)

where P represents the set of individuals in the current population, and we assume
that each individual p is composed of a vector of m-objective functions p. ~f .
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In each generation, the parents are chosen from the current population Pi with
a binary tournament operator (line 6). Here, the relationship between individuals
is determined by equation (3.13), preferring the superior one as a parent. If two
individuals yield the same IR2 value, one of them is selected at random. In line 7
the selected parents produce the offspring population P ′i by means of the SBX and
Polynomial mutation (see last part of Section 2.7). Then, the offspring is evaluated
in each objective function in line 8.

In line 9, the offspring are combined with the parent population to form candidates
for the next generation Pi+1. From this resulting set, the reference point is updated
using again equation (3.14) in line 10.

It is important to mention that the location of the reference point is adjusted
dynamically, according to the extent of the current solutions in objective space. Since
the R2 indicator has an inherent bias towards the center of Pareto optimal fronts [12],
R2-IBEA tends to correct this problem, placing the reference point far enough from
the individuals (even in the infeasible region). Consequently, the density of weight
vectors in extreme regions is increased, so that individuals in edge regions can be
reached.

In line 11, the fitness of each individual (p.fitness) is calculated by applying
the individual’s IR2 value to an exponential amplification function. Here, a value of
κ = 0.005 is recommended. Then, the worst individual (i.e., the one with the lowest
fitness) is removed from Pi+1 (lines 13 and 14). In line 15, fitness is recalculated for
each of the remaining individuals in Pi+1. By repeating this removal process until
|Pi+1| = N , the N individuals are selected to be used in the next generation.

In the following, we obtain the complexity of R2-IBEA per generation. The com-
putational cost of the tournament selection is O(N), as well as the offspring genera-
tion. The combination of parents and offspring is constant O(1). The population
evaluation and calculation of the reference point is made in O(Nm) each. In order
to compute fitness and perform the reduction of the population in O(N2), it is ad-
visable to calculate first the R2 values for each pair of individuals. This can be done
in O(N2|W |m). Therefore, the overall complexity is ruled by the calculation of the
R2 values, O(N2|W |m). Additionally, O(|W |N + m(N + |W |)) storage is required
for this procedure.

The experimental results in [15] showed that R2-IBEA outperformed R2-EMOA,
MOEA/D, NSGA-II and IBEA-ε with respect to optimality and diversity of the ob-
tained solutions, for almost all instances of the ZDT and DTLZ test problems (see
Appendix A) from two to five objectives.

3.5 Other Approaches

There are several other scalable techniques that can be used as a search engine into
a MOEA for problems with more than three objectives. In the following sections, we
briefly mention some of them, such as, scalarization of utility functions (Section 3.5.1),
entropy (Section 3.5.2) and ε indicator (Section 3.5.3).
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Algorithm 10 Pseudocode of the MOEA/D

Input: MOP, stopping criterion, set of normalized weight vectors: (∀p ∈ P ) p.~w,
neighborhood size K, utility function u

Output: Pareto set approximation
1: Initialize population P
2: Evaluate population P
3: (∀p ∈ P ) p.B ← k-nearest-neighbor(P, p,K)
4: Calculate the reference point ~z ∗

5: while stopping criterion is not fulfilled do
6: for all p ∈ P do
7: Let a and b be two parents randomly selected from p.B
8: Generate offspring c from a and b using genetic operators
9: Evaluate individual c

10: Update the reference point ~z ∗:

zi ←

{
c.fi if c.fi < zi

zi otherwise
∀i ∈ {1, . . . ,m}

11: for all q ∈ p.B do
12: if u(c. ~f : ~z ∗, q. ~w) ≤ u(q. ~f : ~z ∗, q. ~w) then
13: Replace individual q by c
14: return P

3.5.1 MOEA/D

The Multi-Objective Evolutionary Algorithm based on Decomposition, proposed by
Zhang in 2006 [14], transforms an optimization problem into a number of scalar op-
timization subproblems that are simultaneously optimized by evolving a population.
Each individual solution in the population is associated with a subproblem. These
subproblems are quantified using a utility function with uniformly distributed weight
vectors and a reference point.

The set of normalized weight vectors W is generated using the simplex-lattice
design approach, described in Subsection 4.3.2.

In Algorithm 10, we present the pseudocode of MOEA/D. Here, P represents
the population and every individual p is associated with a weight vector, p.~w and a
neighborhood of this weight vector, p.B, which is defined as a set of its K closest
weight vectors. The element p. ~f represents the m-objective functions.

In the first two lines, the population is initialized and evaluated. In line 3, the
Euclidean distances are computed between any two weight vectors and then the K
closest weight vectors for each individual p are selected and stored in record p.B. It is
worth to mention that p itself belongs to p.B. In line 4, it is initialized the reference
point with the best value found so far for each objective. At each generation, in lines 5
to 9, for every individual in the population, two neighbors are selected for generating

CINVESTAV-IPN Computer Science Department



Performance Indicators Used as a Selection Mechanism 55

and evaluating a new individual. The reference point is updated in line 10. Then,
the new individual is compared with the neighbors of p, if it surpasses one of them,
then it is replaced (lines 11 to 13). When the stopping criterion is fulfilled, it returns
the final population, in line 14.

The storage required for MOEA/D is O(Nm), where N = |P |. The complexity
of this procedure at each generation is O(NKm), assuming a cost of O(m) for the
computation of the utility function.

MOEA/D has the lowest complexity of all the previously described MOEAs. In
several studies, it has been shown that MOEA/D is able to outperform NSGA-II
[188, 189].

3.5.2 Entropy

This is a performance indicator for spread based on Shanon’s entropy, which has
been proposed by Farhang-Mehr and Azarm [190]. The basic idea is that each solu-
tion point provides some information about its neighborhood modeled by a Gaussian
distribution. A density function has also been calculated by the sum of all Gaussian
distributions from all solution points. The peaks and valleys of density function cor-
respond to the dense areas and the sparse areas, respectively. A desirable solution
set should have a “uniform” density function which was evaluated with Shannon’s
entropy [190].

Originally, the term “flat” was used for the description of the density function,
however, statistically the term “uniform” seems to be more appropriate.

3.5.3 Epsilon Indicator

The ε indicator, proposed by Zitzler [170], is the minimum factor for which we need
to multiply all the elements of a reference set P in order to have all its elements
dominated or equal to the elements in a nondominated set A. Smaller values of this
indicator mean that the set A is more similar to the reference set and that it is a
better NS (because the reference set is suppose to be a better NS than any set in the
comparison). It is easy to calculate and has a low computational complexity .

3.6 Summary

In this chapter we reviewed three important performance indicators that are suitable
for guiding the search during the optimization process.

The hypervolume indicator is the only quality indicator known to be fully sensitive
to Pareto dominance and is invariant to the scaling of the objectives. Nevertheless,
its high computational cost (it grows exponentially on the number of objectives [8])
normally makes a selection mechanism based on such indicator prohibitive for pro-
blems having more than 5 objectives [9]. Another disadvantage is that it is sensitive
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to the choice of the reference point. Examples of algorithms based on this indicator
are: IBEA and SMS-EMOA.

Another indicator is ∆p, which can be seen as an “averaged Hausdorff distance”
between the outcome set and the Pareto optimal front. It is composed of slight
modifications of the GD and IGD indicators. Even though ∆p is not Pareto compliant,
it evaluates proximity to the Pareto optimal front and spread of solutions along it.
Moreover, it has a much lower computational cost than that of the hypervolume, and
it can also handle outliers. The representative algorithms based on this indicator are:
∆p-EMOA and ∆p-DDE.

The R2 indicator is only weakly monotonic and is variant to scaling, but it has
a correlated behavior with the hypervolume. Furthermore, this indicator has a low
computational cost and the distribution obtained using this indicator are more uni-
form than those of the hypervolume. Examples of algorithms based on this indicator
are: R2-EMOA, R2-MOGA, R2-MODE and R2-IBEA.

Finally, there exist some other alternative approaches that can be incorporated
into a MOEA, such as scalarization, entropy and ε indicator.
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Chapter 4

A New Metaheuristic for
Many-Objective Optimization

This chapter presents our proposed MOEA, called Many-Objective Metaheuristic
Based on the R2 Indicator (MOMBI), which performs a hierarchical ranking of the
individuals of a population. The ranking procedure is described in Section 4.1. As we
saw in Chapter 3, the R2 indicator requires a set of utility functions that measures
the decision maker’s relative preference for the solutions. In Section 4.2, we detail
the most effective choices of these utility functions. Since MOEAs are considered a
posteriori methods, the set of available utility functions must give a wide range of
possibilities over the whole objective space. In Section 4.3, we describe four methods
intended to produce distributed weight vectors. In Section 4.4, we integrate the meta-
heuristic and provide a hypothetical example. Then, in Section 4.5, we suggest an
interactive method for MOMBI in which the decision maker can produce individuals
around specific reference points. The source code of MOMBI is available for down-
load at: http://computacion.cs.cinvestav.mx/~rhernandez/mombi. Finally, in
Section 4.6 we provide a summary of the chapter.

4.1 The Proposed Ranking Algorithm

According to Brockhoff et al. [12], the unary version of the R2 indicator for a constant
reference set can be expressed as follows:

R2(A,U) =
1

|U |
∑
u∈U

u∗(A), (4.1)

where A is the Pareto set approximation, U is a set of utility functions and u∗(A) =
min~a∈A{u(~a)} is the best utility value obtained in the set A.1

Since we intend to use R2 in the selection mechanism of a MOEA, we need to
design a scheme for that purpose. Our proposal here is to produce a nondominated

1For simplicity, we have applied the dual property: min~z = −max(−~z), and we also assume that
the utility functions only take positive values.
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sorting scheme based on the utility functions adopted. The core idea is to group
solutions that optimize the set of utility functions chosen, and place these solutions
on top, such that they get the first rank (the best). Such points will then be removed
and a second rank will be identified in the same manner. The process will continue
until all the solutions had been ranked. Clearly, this is the nondominated sorting
scheme proposed by Goldberg [78], except for the fact that Pareto dominance is not
used in this case.

The formal definition of a rank, derived from equation (4.1), is presented in equa-
tion (4.2):

rankk(A) =
⋃
~u∈U

u∗({A \Bk(A)}), (4.2)

where Bk(A) is the union of solutions with the lowest ranks:

Bk(A) =

{⋃
j

rankj(A)|k > 1, j ∈ [1, k)

}
. (4.3)

When two individuals contribute with the same utility value, then we propose to
choose as tiebreaker the one with the lower L2 and L1 norms [191] (also known as
Euclidean and Manhattan norms respectively). These norms are defined by:

Lp(~x) =

(
m∑
i=1

|xi|p
)1/p

, (4.4)

where m is the number of objectives.
In Algorithm 11, we present a naive approach to rank a population, based on

equations (4.2) and (4.3). We assume that each individual p has the following struc-
ture:

• p. ~f : Vector of objective function values

• p.L1: Manhattan norm of p. ~f

• p.L2: Euclidean norm of p. ~f

• p.rank: Hierarchy of the individual

• p.u∗: The best utility value obtained

• p.α: The current utility value for a utility function u

In lines 1 to 5, for every pair of objective vector ~f and utility function u of an
individual p, the current utility value is computed and stored in record p.α. If the
obtained value of an individual outperforms its previous one, it is updated in field
p.u∗. In line 6, the population P is sorted with respect to the Algorithm 12. Lines 7
to 11 perform the ranking assignment of the sorted population.

CINVESTAV-IPN Computer Science Department



A New Metaheuristic for Many-Objective Optimization 59

Algorithm 11 R2 Ranking Algorithm

Input: Population P , set of utility functions U
Output: Ranking of the population

1: for all u ∈ U do
2: for all p ∈ P do
3: p.α← u(p. ~f)
4: if p.α < p.u∗ then
5: p.u∗ ← p.α
6: Sort the population P using Algorithm 12 in increasing order
7: rank ← 1
8: for all p ∈ P do
9: if rank < p.rank then

10: p.rank ← rank
11: rank ← rank + 1

As mentioned before, when two individuals have the same utility value, we prefer
the solution with the lowest norms, since this guarantees convergence towards the
Pareto optimal front.

In the following, we obtain the complexity of the ranking algorithm. First, as-
suming that the evaluation of a utility function requires O(m), the computation of
a utility function for all the individuals takes O(|P |m), where |P | denotes the po-
pulation size. The complexity of comparing individuals is constant; therefore, the
sorting procedure is performed in O(|P | log |P |). Moreover, the ranking assignment
is linear with respect to the population, O(|P |). Since these steps are computed |U |
times, the overall complexity is O(|U ||P |(log |P | + m)). Furthermore, it is worth
noting that O(|P |m) storage is required for this procedure.

The choice of the utility functions becomes crucial to achieve a ranking compatible
with Pareto dominance. In the next section we will focus on this issue.

4.2 Utility Functions

The concept of utility was developed in the early 1940s by Von Neumann and Morgens-
tern in the axiomatic utility theory [192], which assumes that the decision maker can
choose among the alternatives available in such a way that the satisfaction derived
from the choice made is as large as possible. This, of course, implies the decision maker
is aware of the alternatives available and is capable of evaluating them. Moreover, it
is assumed that all information pertaining to the various levels of the objectives can
be captured by a utility function.

Mathematically, a utility function, u : IRm → IR, is a model of the decision
maker’s preference that maps each point in the objective space into a utility value.
It is important to mention that a utility function does not really reflect the decision
maker’s inner (psychological) intensity of preference. It just provides a model of
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Algorithm 12 Comparison Between Individuals

Input: Individuals a and b
Output: The best individual

1: if a.α < b.α then
2: return a
3: if a.α > b.α then
4: return b
5: if a.u∗ < b.u∗ then
6: return a
7: if a.u∗ > b.u∗ then
8: return b
9: if a.L2 < b.L2 then

10: return a
11: if a.L2 > b.L2 then
12: return b
13: if a.L1 < b.L1 then
14: return a
15: if a.L1 > b.L1 then
16: return b
17: return “tie”

his behavior [193]. This is an important distinction, since behavior should then be
consistent (i.e., it should not originate intransitivities2).

The weighted Lp metrics and some variants that are based on optimization tech-
niques are the most suitable for representing utility functions. In the following sub-
sections we explore the most popular metrics for generating Pareto optimal solutions.

4.2.1 Weighted Lp Metrics

The Lp metrics (see equation (4.4)) can be weighted in order to produce different
(weakly) Pareto optimal solutions. The weighted Lp metric for p ∈ [1,∞) is defined
as:

uLp(~a : ~r, ~w) =

(
m∑
i=1

wi|ai − ri|p
)1/p

, (4.5)

where ~r ∈ IRm is a reference point, ~w is a weight vector such that wi ≥ 0 for all
i = 1, ...,m and

∑m
i=1 wi = 1.

If p = 1, the metric is better known as weighted sum function. The minimization
of this metric is always Pareto optimal if the weighting coefficients are all positive or
if the solution is unique; the corresponding proof can be found in [32]. The weakness

2Let a, b and c be three solutions, if u(a) < u(b) and u(b) < u(c), then it is impossible that
u(c) < u(a).
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of the weighted sum function is that not all of the Pareto optimal solutions can be
found unless the problem is convex. The same weakness may also occur in problems
with discontinuous objective functions [194]. In Figure 4.1 (a)-(b) the contour lines
of this metric are shown for a bi-objective problem. The bold curve represents the
Pareto optimal front, the dashed line is the weight vector and the black points are the
optimal solutions, assuming the reference point is placed at the origin. The darker
the contour, the better the utility is. It is worth noting that only extreme solutions
can be found with this technique.

If p = 2, we have the metric of least squares, whose representation is illustrated
in Figure 4.1 (c)-(d). It is important to mention that even though the minimization
of the weighted Lp-metrics (1 <= p <∞) produces Pareto optimal solutions, it does
not guarantee to find all of them.

Finally, when p = ∞, the metric is also called weighted Tchebycheff metric, and
it is of the form:

uL∞(~a : ~r, ~w) = max
i=1,...,m

{wi|ai − ri|} . (4.6)

It has been shown that the minimization of the weighted Tchebycheff metric is
weakly Pareto optimal, if all the weighting coefficients are positive [32]. Thus, an
auxiliary calculation is needed in order to identify weak solutions. The geometric
interpretation of equation (4.6) is presented in Figure 4.1 (e)-(f).

4.2.2 Variants of the L∞ Metric

Weakly Pareto optimal solutions can be avoided by giving a slight slope to the contour
of the metric. The price to be paid is that in some cases it may be impossible to find
every Pareto optimal solution [32]. It is suggested in Steuer [195] and Steuer and
Choo [196] that the weighted Tchebycheff problem can be varied by an augmentation
term. This metric is named augmented weighted Tchebycheff metric and it is of the
form:

uaug(~a : ~r, ~w) = max
i=1,...,m

{wi|ai − ri|}+ ρ

m∑
j=1

|aj − rj|, (4.7)

where ρ is a sufficiently small positive scalar (see Figure 4.2).

A slightly different modified weighted Tchebycheff metric is used in the modified
weighted Tchebycheff metric:

umod(~a : ~r, ~w) = max
i=1,...,m

{
wi

(
|ai − ri|+ ρ

m∑
j=1

|aj − rj|

)}
. (4.8)

The difference between the augmented and the modified weighted Tchebycheff
metrics is in the way the slope takes place in the metrics. In the augmented weighted
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Figure 4.1: Contour lines of the Lp metrics for the weight vectors ~w = (0.5, 0.5) and
~w = (0.7, 0.3). p = 1: (a)-(b), p = 2: (c)-(d) and p =∞: (e)-(f).
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Figure 4.2: Contour lines of the augmented weighted Tchebycheff metric.

Tchebycheff problem the slope is a function of the weighting coefficients and the pa-
rameter ρ.3 In other words, the slope may be different for each objective function. As
far as the modified weighted Tchebycheff metric is concerned, the slope is a function
of the parameter ρ and, thus, constant for all the objective functions.4

When objectives are incommensurable, it is advisable to rescale or normalize the
objective functions, so that their objective values are of approximately the same
magnitude. In this case, the expression |ak − rk| of the utility functions previously
described is replaced by:

ak − z ∗k
z nadk − z ∗k

, ∀k ∈ {1, · · · ,m} (4.9)

where ~z ∗ and ~z nad are the ideal and nadir objective vectors, respectively (see Defi-
nitions 2.3.3 and 2.3.1). With this modification, the range of each new objective
function is [0, 1].

4.2.3 Penalty-based Boundary Intersection

The Penalty-based Boundary Intersection (PBI) metric, originally proposed by Zhang
and Li [14], is a modification of the Normal Boundary Intersections (NBI) [197], and
it is of the form:

upbi(~a : ~r, ~w) = d1 + θd2, (4.10)

d1 =

∣∣∣∣∣∣(~a− ~r)T ~w∣∣∣∣∣∣
||~w||

, (4.11)

3 βi = arctan ρ
1−wi+ρ

4β = arctan ρ
1+ρ
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d2 =

∣∣∣∣∣∣∣∣~a− (~r + d1
~w

||~w||

)∣∣∣∣∣∣∣∣ . (4.12)

where θ > 0 is a penalty parameter.

The minimization of the PBI technique produces Pareto optimal solutions much
more uniformly distributed than those obtained by the weighted L∞ metric. Addi-
tionally, this approach is able to deal with concave Pareto optimal fronts. A too large
or too small penalty factor will worsen the performance of the penalty method, and,
therefore, a value of θ = 5 is recommended [14]. This method produces results simi-
lar to those produced by the weighted sum function (when θ = 0), and the weighted
Tchebycheff metric (when θ = 1). In the second case, the axis are rotated. This is
depicted in Figure 4.3.

It is important to mention that all the described utility functions can be imple-
mented in O(m) time complexity.

4.3 Weights

The utility functions require a specified number of weight vectors ~w = (w1, ..., wm),
such that wi ≥ 0 for all i = 1, ...,m and

∑m
i=1 wi = 1. These vectors describe a

simplex surface, and must be uniformly distributed across objective space in order to
obtain different solutions of the Pareto optimal front. In this section, we will present
four different ways in which they can be generated. This way, the decision maker
avoids the difficult task of specifying the coefficient values, and only generates and
stores once these samples, for then integrating them into a metaheuristic.

4.3.1 Randomized Design

In this approach, the normalized weight vectors are drawn at random. Algorithm 13,
proposed by Steuer in 1986 (see [195]), uniformly samples the whole simplex space.

Algorithm 13 Random Design by Steuer

Input: Dimension m, number of weight vectors l
Output: Set of normalized weight vectors

1: W ← ∅
2: while |W | < l do
3: ∀i ∈ {1, ...,m}. wi ← rand(0, 1)
4: s←

∑m
i=1 wi

5: if s 6= 1 then
6: ~w ← ~w/s
7: W ← W ∪ {~w}
8: return W
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Figure 4.3: Contour lines of the PBI approach.
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Figure 4.4: Weight vector generation for m = 3: (a) randomized design, (b) simplex-lattice
design, (c) hypervolume-based design and (d) uniform design.

Here, ~w ∈ IRm is a weight vector, and the function rand(0, 1) returns a random
value within the range (0, 1] with uniform probability.

Another variant, proposed by Jaszkiewicz in 2002 (see [198]), is described by the
following expression:

w1 = 1− m−1
√

rand(0, 1)
...

wi =
(

1−
∑i−1

j=1wj

)(
1− m−1−i

√
rand(0, 1)

)
...

wm = 1−
∑m−1

j=1 wj,

(4.13)

Random design is easy to implement; however, the distribution produced of the
Pareto optimal front is poor. An example for 3D is shown in Figure 4.4-(a).

4.3.2 The Simplex-Lattice Design

This method, introduced by Scheffé in 1958-1965 (see [199], [200], [201]), is the foun-
dation on which the theory of experimental designs for mixtures was built, and these
designs are still in use today. In this case, the distribution of the weight vectors
are equally spaced over the simplex, forming an ordered arrangement called {m,h}
simplex-lattice, where m is the number of objectives and h is a parameter of pro-
portion. This structure consists of all possible combinations of proportions of each
objective function, thus every weight coefficient takes h + 1 equally spaced values
from 0 to 1, that is:

wi = ε,
1

h
,

2

h
, ..., 1 (4.14)

where ε is a value close to zero (10−4 is recommended), in order to prevent cancellation
in subsequent calculations. The number of weight vectors in the {m,h} simplex-lattice
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Algorithm 14 Simplex-Lattice Design

Input: Dimension m, parameter of proportion h
Output: Set of normalized weight vectors

1: Initialize vector ~x = (x1, ..., xm), such that:

xi ←

{
h if i = 1

0 otherwise

2: W ← ∅
3: j ← 1 {Target element}
4: repeat

5: W ← W ∪
{
~x

h

}
6: xj ← xj − 1
7: if j < m− 1 then
8: xj+1 ← h−

∑j
i=1 xj

9: ∀i ∈ {j + 2, ...,m}. xi ← 0
10: j ← j + 1
11: else
12: xm ← xm + 1
13: I ← {i|xi > 0, i = 1, ...,m− 1}
14: if I 6= ∅ then
15: j ← max(I)
16: until xm = h

17: W ← W ∪
{
~x

h

}
18: return W

is given by the combinatorial number5 Ch+m−1
m−1 = (h+m−1)!

h!(m−1)!
.

There are several proposed algorithms that implement the simplex-lattice design.
In Algorithm 14, we present an efficient one described by Chasalow and Brand in
1995 [202].

The disadvantage of the simplex-lattice design is that the points are not uniformly
distributed over the domain, because if there are too many points at the boundary,
it produces too many insignificant weight values, and, in consequence, the quality of
the Pareto optimal solutions is affected. In addition, this approach is not scalable,
since the number of weight vectors is restricted to a combinatorial number, which
becomes impractical in evolutionary algorithms when the population size is related
to the number of weight vectors. See Figure 4.4-(b) for an example.

5Cab is the combinatorial symbol for the number of ways a things can be taken b at a time and
Cab = a!

b!(a−b)! .
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Algorithm 15 Hypervolume-Based Design by Phan

Input: Dimension m, number of weight vectors l, maximum number of iterations T ,
reference point ~z

Output: Set of normalized weight vectors
1: t← 0
2: W ← ∅
3: while t < T do
4: Create a random vector ~x: ∀i ∈ {1, . . . ,m− 1}. xi ← rand(0, 1)
5: Sort ~x in increasing order
6: ~w ← (x1, x2 − x1, . . . , xm−1 − xm−2, 1− xm−1)
7: W ← W ∪ {~w}
8: if |W | > l then
9: ~w∗ ← arg min

~w∈W
CHV (~w,W : ~z) (see eq. (3.2))

10: W ← W \ {~w∗}
11: t← t+ 1
12: return W

4.3.3 Hypervolume-Based Design

This design, introduced by Phan in 2013 (see [15]), generates distributed weight
vectors using an approach similar to SMS-EMOA (see Subsection 3.2.2 in page 44).
In this case, the hypervolume indicator is used for quantifying the distribution of the
weight vectors in objective space, normalized into [0, 1].

Algorithm 15 presents the pseudocode of this design. In lines 1 and 2, it is
initialized the number of generations and the set of weight vectors. At each iteration,
a vector ~x is randomly chosen from [0, 1]m−1, following a uniform distribution (line
4). In lines 5 and 6, an m-dimensional vector w is created by sorting ~x. This vector
is added to the set W in line 7. If the number of weight vectors is greater than the
allowed vectors, then the hypervolume contributions are calculated for all the weight
vectors, removing the one that contributes less to the hypervolume indicator (lines 8
to 10). At the end, the set W is returned.

This method ensures maximizing the hypervolume indicator of the solutions pro-
duced, but at a high computational cost. The computational complexity at each
iteration is O(lm−1), assuming the hypervolume algorithm described by Zitzler (see
Table 3.1). Figure 4.4-(c) shows the weight vectors generated by using this method
with m = 3, l = 21, T = 5000 and the reference point is at (2, 2).

4.3.4 Uniform Design

Uniform design was proposed by Fang and Wang [203, 204] and has been applied
in many areas since 1980, such as industry, systems engineering, chemistry, pharma-
ceutics, natural sciences, etc. Its purpose is to look for points uniformly scattered
on the experimental domain and predict the response when the underlying model is
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unknown. The incorporation of this approach in the weight vector generation for
MOEAs was first proposed by Tan et al. in 2012 (see [205]). We will provide next
some basic definitions related to uniform design.

Definition 4.1. A U -type design6 denoted by U : G ⊂ Zl×n>0 is a matrix of l rows and
n columns, such that each column is a permutation of the entries {1, ..., l}.

Note that many of the elements of G (the set of all U -type designs) may have a
poor uniformity.

Definition 4.2. A transformation T : Zl×n>0 → [0, 1]l×n of a U -type design U to the
n-dimensional unit cube, is expressed by T (U) = C = (cij), where:

cij =
(uij − 0.5)

l
for all i = 1, ..., l and j = 1, ..., n. (4.15)

Definition 4.3. Let M : [0, 1]l×n → R be a measure of uniformity such that the
smaller value of M , the better the uniformity of the design.

Definition 4.4. U ∈ G is called a uniform design under the measure M if:

M(T (U)) = min
V∈G

M(T (V)). (4.16)

The most popular measures of uniformity rely on quasi-Monte-Carlo methods,
such as the Lp-discrepancy [206, 207]. This measure is invariant to the permutation
of rows and columns. However it is expensive to compute, thus attempts have been
made to evaluate the discrepancy algorithmically.

One approach is the centered L2-discrepancy (CD for short), it is also invariant
under coordinate rotations. Hickernell [208] gave an analytical expression for the CD:

(CD(C))2 =

(
13

12

)n
− 2

l

l∑
k=1

n∏
j=1

(
1 +

1

2
|ckj − 0.5| − 1

2
|ckj − 0.5|2

)

+
1

l2

l∑
k=1

l∑
j=1

n∑
i=1

[
1 +

1

2
|cki − 0.5|+ 1

2
|cji − 0.5| − 1

2
|cki − cji|

]
, (4.17)

where C = (cki) is a l × n matrix.
The solution of the combinatorial optimization problem in (4.16) is not unique

when n > 1. Additionally, the search for uniform designs is an NP hard problem, as l
and n increase [209]. Due to this, there are several methods that can provide a good
approximation to the uniform design, such as the good lattice method, Latin square
method, expending orthogonal design method, and optimization searching [209].

In the remainder of this section, we will focus on finding a nearly uniform design of
the set of weight vectors W (for simplicity l = |W | and m is the number of objective

6U stands for uniform design.
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Algorithm 16 Uniform Design + Tabu Search

Input: Dimension m, number of weight vectors l, maximum number of iterations T ,
neighborhood size S

Output: Set of normalized weight vectors
1: Find the candidate set of positive integers:

Hl ← {h ∈ Z>0|h < l, gcd(l, h) = 1} .

2: Create a random vector:

~x← {(x1, ..., xm−1) | 0 < i < m, xi ∈ Hl} .

3: ~x ∗ ← ~x
4: L← {~x}
5: t← 0
6: while t < T do
7: N ← neighborhood(~x,m− 1, Hl, S) \ L
8: if N = ∅ then
9: L← L ∪ {~x}

10: Execute step 2
11: else
12: ~x← arg min~y∈N CD(U -type(~y, l,m− 1)) (see eq. (4.17))
13: L← L ∪ (N \ {~x})
14: if ~x is better than or equal to ~x ∗ then
15: ~x ∗ ← ~x
16: t← t+ 1
17: Build l × (m− 1) matrix:

(cij)← U -type(~x ∗, l,m− 1)

18: Generate the set of weight vectors W = {~wk = (wk1, ..., wkm) | k = 1, ..., l}, such
that:

wki =

(
1− c

1
m−i

ki

)∏i−1
j=1 c

1
m−j

kj , i = 1, ...,m− 1,

wkm =
∏m−1

j=1 c
1

m−j

kj

19: return W

functions) using our proposed technique, which is based on Tabu search and the good
lattice point method.7

In Algorithm 16 we present our proposal. In step 1, the candidate set of positive

7The good lattice point method is an efficient quasi Monte Carlo method, proposed by Korobov
in 1959 [210].
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Algorithm 17 U -type

Input: Vector ~x, number of weight vectors l, dimension n
Output: U -type matrix of l rows and n columns

1: Generate l × n matrix U← (uij), where:

uij = (ixj) mod l,

and the multiplication operation modulo l is modified as 1 ≤ uij ≤ l.
2: Apply transformation U← T (U) using eq. (4.15)
3: return U

integers is generated by finding the co-prime numbers of l. Here, gcd corresponds to
the greatest common divisor. In line 2, the vector ~x is generated from any m − 1
distinct elements of Hl. Then, in lines 3 and 4, the best solution found so far ~x ∗

and the Tabu list L are initialized using ~x. At each generation, in line 7, a set of
candidate solutions N is generated by exchanging one element of ~x by one in Hl.
These solutions must not be included in the Tabu list and it is advisable that the
elements in each vector must be sorted. The cardinality of this set is at most S. If
the set N is empty, then the solution ~x is added to the Tabu list and a new solution
is generated (lines 8 to 10). Otherwise, in line 12, the best candidate solution from
N is found by applying the measure CD on a U -type matrix (see Algorithm 17). In
line 13, the Tabu list is updated, incorporating the worst solutions of N . In lines 14
and 15, if the best candidate solution outperforms the current best solution, then it
is updated. At the end of the iterations, the U -type matrix is built using ~x ∗ (line
17), and from this result, the set of normalized weight vectors is generated in line 18.

For fast implementation, the Tabu list can be represented by a hash table [17], in
which the key is the product of all co-prime numbers of a candidate solution module
the size of the Tabu list (it is recommended to use a prime number in order to avoid
collisions). Then, the store and seek operations can be done in O(1).8

The complexity of this algorithm is ruled by the generation of new solutions in
O(Sm log(m−1)) and the evaluation of the measure in O(l2m). However, S � l, thus
the complexity is O(l2m). Further, O(|L|m) storage is required. Here |L| represents
the size of the Tabu list (usually |L| ≈ 3|P |).

When the number of Hl is too small, the nearly uniform design obtained by
this algorithm may be far from the uniform design. The cardinality of Hl can be
determined by the Euler function φ(l).9 For example, φ(n) = n − 1 if n is a prime,
and φ(l) < l/2 if l is even.

Uniform design overcomes the drawbacks that the random and the simplex-lattice
design have, it is relatively easy to implement and its computational complexity is
polynomial. An example of this approach is depicted in Figure 4.4-(d) for m = 3,

8If there are collisions, the vectors can be concatenated as strings.
9 Let l = pr11 · · · p

rt
t be the prime decomposition of l, where p1, ..., pt are different primes and

r1, ..., rt are positive integers. Then φ(l) = l
(

1− 1
p1

)
· · ·
(

1− 1
pt

)
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Algorithm 18 Main Loop of MOMBI

Input: MOP, termination condition, utility function u, set of weight vectors W
Output: Pareto set approximation

1: i← 0
2: Initialize population Pi
3: Evaluate population Pi
4: Calculate norms L1 and L2

5: Obtain reference points {~z ∗, ~z nad}
6: Set (∀p ∈ Pi) p.rank ← p.u∗ ←∞
7: Execute R2 ranking algorithm (Pi, {u(· : ~z ∗, wj)|wj ∈ W})
8: while termination condition is not fulfilled do
9: Perform tournament selection

10: Generate offspring P ′i using variation operators
11: Evaluate population P ′i
12: Calculate norms L1 and L2

13: Update reference points { ~z ∗, ~z nad}
14: Set (∀p ∈ Pi

⋃
P ′i ) p.rank ← p.u∗ ←∞

15: Execute R2 ranking algorithm (Pi
⋃
P ′i , {u(· : ~z ∗, wj)|wj ∈ W})

16: Reduce population Pi+1 ← {Pi
⋃
P ′i}

17: i←i + 1
18: return Pi

l = 21, T = 1000 and S = 20.

4.4 Construction of a Metaheuristic

We are now ready to introduce the proposed approach in Algorithm 18, called MOMBI
(Many-Objective Metaheuristic Based on the R2 Indicator). This approach is based
on a Genetic Algorithm, and it first initializes the population by randomly selecting
N solutions from the feasible space F using a uniform distribution.

In lines 3 to 5, we obtain the objective function values, the norms, and the reference
points. In line 6 we initialize the variables rank and u∗ for each individual to the worst
values. In line 7, the ranking of the population is executed (see Algorithm 11). At each
generation, the algorithm performs a binary tournament selection (see Algorithm 1),
using the rank of each solution (line 9). In line 10, we use mutation and crossover
operators to produce an offspring of N individuals. Again, in lines 11 to 13, we
evaluate the objective functions, calculate the norms and the reference points are
updated with the minimum and maximum objective function values. The structure
of each individual is initialized in line 14. The parent and offspring population are
ranked in line 15. In line 16, the reduction of the population is performed by selecting
the best N candidates according to their rank, the best utility value obtained, and
the norms.
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Figure 4.5: Illustration of the proposed ranking procedure based on the R2 indicator.

Table 4.1: A hypothetical example for MOMBI.
Solution f1 f2 u∗(~a)

a 1.0 7.5 0.00009
b 3.0 4.0 0.18018
c 4.0 2.8 0.16161
d 8.4 1.2 0.00010
e 1.1 5.5 0.01351
f 2.0 5.0 0.13513
g 5.5 2.0 0.12121
h 6.8 2.0 0.12121
i 1.2 7.8 0.02702
j 2.8 5.1 0.19696
k 3.3 3.4 0.20720
l 7.0 2.2 0.15151

It is worth indicating that this approach produces a finer-grained ranking (with
fewer ties) than the nondominated sorting procedure adopted by NSGA-II.

The complexity of the tournament selection is O(N), as well as the offspring
generation. The evaluation of population, calculation of norms, upgrade of the
reference points and the normalization can be performed in O(Nm) each. The
initialization of the structure is made in O(N). As seen before, the ranking takes
O(|W |N(logN +m)) and the reduction can be done in O(N log |N |). Therefore, the
overall complexity of MOMBI at each generation is O(|W |N(logN+m)). If the num-
ber of weight vectors |W | is the same as the population size, the complexity becomes
quadratic logarithmic for m� N , O(N2(logN +m)). The storage is the same as the
ranking algorithm, O(Nm).

In order to illustrate our proposal, we present here a hypothetical example of a
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bi-objective problem. We assume an approximation of the Pareto optimal set, which
consists of twelve solutions, as shown in Figure 4.5. The dashed lines represent the
weight vectors {(10−4, 1), (1/3, 2/3), (2/3, 1/3), (1, 10−4)}, the reference points are set
to ~z ∗ = (1.0, 1.2) and ~z nad = (8.4, 7.8). In Table 4.1, the objective functions and the
optimum Tchebycheff value of each solution are shown. The first rank is formed with
the solutions that are closest to the weights, according to the Tchebycheff metric,
that is points {a, b, c, d}. The second rank consists of the remainder solutions, which
are now closest to the weights, i.e., points {e, f, g}. The third rank consists of points
{h, i, j, k}. Finally, the farthest solution l belongs to the last rank. It is worth noticing
that, in this case, solutions g and h contribute equally to the weight (10−4, 1). However
g has a lower Euclidean norm than h (5.8 vs 7.0) and is, therefore, considered to be
better than h. If we wanted to select half of the solutions, using MOMBI, we would
keep the individuals {a, b, c, d, e, g}, since e, f and g are in the same rank. In this
case, we choose the solutions with the lowest Tchebycheff values. According to Pareto
dominance, the nondominated solutions are {a, b, c, d, e, f, g, k}. Although f and k
are nondominated, in this case R2 removes them with the aim of preserving diversity.

4.5 Integrating Preferences into MOMBI

When dealing with many-objective optimization problems it is impossible to cover
the entire Pareto surface without increasing exponentially the population size. There-
fore, the decision maker may be making poor resolutions as a result of the missing
information. This weakness can be overcome by incorporating preferences into the
MOEA. As we have seen in Chapter 1, this property is known as pertinency [41], and
in the remainder of this section we will describe how to adapt MOMBI in order to
guide the search only to the regions of main interest.

The proposed algorithm proceeds in two stages. In the first stage, the global
Pareto optimal front is generated and then the decision maker is asked to provide the
solutions that best suits his needs. In the second stage, these solutions are taken as
reference points and for each of them, the population is ranked in such a way that
the algorithm produces subregions of the Pareto optimal front. Unlike traditional
interactive methods, the intervention of the decision maker comes after the maximum
number of generations has elapsed, and not at each iteration. Figure 4.6 shows the
flow chart of this proposal.

Let R be the set of reference points selected by the decision maker, and δ ∈ IR a
positive scalar that tunes the density of the solutions around the reference points. In
Algorithm 19, we present the modified version of MOMBI for handling preferences. In
line 6 we establish the reference point in a lower position, subtracting the parameter δ
given by the decision maker. The differences with respect to Algorithm 18 are in lines
8 to 9 and 17 to 18. Here, a solution gets a better rank if it is closer to a reference
point. Thus, the individuals tend to be divided in subpopulations as shown in Figure
4.7.

The advantages of this method is that the decision maker does not need to specify
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Figure 4.6: Flow chart of the proposed interactive method.

ranges or hierarchies among the solutions; therefore it is intuitive to express user
preferences. The complexity of the algorithm is O(|W ||R|N(logN +m)), where N is
the population size.

(a) (b) (c)

Figure 4.7: Decision maker’s preference in the DTLZ1 problem: (a) normal execution, (b) at
point (0.16, 0.16, 0.16), (c) at points (0.2, 0.15, 0.15) and (0.12, 0.14, 0.24), using a resolution
of δ = 0.01.
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Algorithm 19 Interactive MOMBI

Input: MOP, termination condition, utility function u, set of weight vectors W , set
of reference points R, density of solutions δ

Output: Pareto set approximation
1: i← 0
2: Initialize population Pi
3: Evaluate population Pi
4: Calculate norms L1 and L2

5: Obtain reference points {~z ∗, ~z nad}
6: Set ~r ← ~r − δ
7: Set (∀p ∈ Pi) p.rank ← p.u∗ ←∞
8: for all ~r ∈ R do
9: Execute R2 ranking algorithm (Pi, {u(· : ~r, wj)|wj ∈ W})

10: while termination condition is not fulfilled do
11: Perform tournament selection
12: Generate offspring P ′i using variation operators
13: Evaluate population P ′i
14: Calculate norms L1 and L2

15: Update reference points { ~z ∗, ~z nad}
16: Set (∀p ∈ Pi

⋃
P ′i ) p.rank ← p.u∗ ←∞

17: for all ~r ∈ R do
18: Execute R2 ranking algorithm (Pi

⋃
P ′i , {u(· : ~r, wj)|wj ∈ W})

19: Reduce population Pi+1 ← {Pi
⋃
P ′i}

20: i←i + 1
21: return Pi

4.6 Summary

In this chapter, we have introduced a new multi-objective evolutionary algorithm,
named MOMBI, whose selection mechanism is based on the R2 indicator. It is worth
emphasizing that the proposed approach is entirely based on the R2 indicator, since
it does not incorporate Pareto dominance anywhere. MOMBI ranks individuals using
utility functions. When there is a tie, the L2 and L1 norms are used as a secondary
selection criterion.

The utility functions can be represented by the weighted Lp metrics and some
variants that are based on optimization techniques. The main features of these utility
functions are summarized in Table 4.2.

There are several methods for generating the weight vectors that come with the
utility functions. The main features are also summarized in Table 4.3.

The runtime complexity of MOMBI is O(|W ||R|N(logN +m)) and the required
storage is O(Nm), where |W | is the number of weight vectors, |R| represents the
number of reference points, N is the population size and m is the number of objectives.

Finally, the preferences of the decision maker can be incorporated intuitively into
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Table 4.2: Main features of the utility functions.
Metric Geometry Generated Solutions Extra Parameters
L1 convex and continuous Pareto optimal no
L2 convex and linear Pareto optimal no
L∞ Any weakly Pareto optimal no

Augmented Any Pareto optimal ρ, augmentation
Modified Any Pareto optimal ρ, augmentation

PBI Any, more uniform Pareto optimal θ, penalization

Table 4.3: Main features of the design of weight vectors. Here m represents the number of
objectives.

Design Distribution Implementation
Computational
Complexity

Extra
Parameters

Randomized none easy O(lm) l, weight vectors

Simplex-
Lattice

poor easy O((h+m)m−1) h, proportion

Hypervolume-
based

good, not
uniform

medium O(T lm−1)
l, weight vectors
T iterations
~z reference point

Uniform
good, nearly
uniform

medium O(T l2m)

l, weight vectors
T iterations
S neighborhood
size

MOMBI, just providing a reduced set of meaningful solutions to the decision maker.
Additionally, the user can specify the density around the reference points, thus al-
lowing him to regulate the number of solutions that are generated within the region
of his interest.
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Experimental Study

In this chapter we investigate the efficacy of our proposed MOMBI with respect
to that of seven state-of-the-art MOEAs and some of its variants, from two to ten
objectives. Further, we examine the behavior of MOMBI when varying parameters
specific to the R2 indicator, such as utility functions, design of the weight vectors,
and normalization of the objective functions.

The experimental methodology is based on nonparametric statistics (see Ap-
pendix B for a quick introduction). In order to determine outperformance of optimi-
zers, we employed one of the most popular, one-tailed test in the area of multi-
objective optimization, the Wilcoxon rank sum test. Here, we rely on the R-project
package to compute the test values.

All the experiments were executed 100 times and independently to each other, so
that data is not reused in inferential analysis. The study is shown in Appendix C.1

The experiments were conducted on identical PCs having Intel(R) Core(TM) i7
processors running at 2.67GHz and with 3.8 GBytes in RAM, under Linux.

In Section 5.1, we established the sixteen test problems adopted for the compa-
rative studies, as well as their features and parameters employed. In Section 5.2, we
specify the performance indicators. In Section 5.3, we describe the conditions of the
first experiment, in which we compare different state-of-the-art MOEAs with respect
to MOMBI. In the analysis, we discuss the results of each optimizer. In Section 5.4,
we investigate the behavior of MOMBI when varying utility functions. Here, we
examine the performance of the utility functions described in Section 4.2, in each of
the test instances. In Section 5.5, we analyze the sensitivity to the design of weight
vectors, using the different approaches defined in Section 4.3. Finally, we conclude in
Section 5.6 with some observed patterns of the experiments made.

1Due to its extent, the complete version is included on the CD that accompanies this report or
is available for download at: http://computacion.cs.cinvestav.mx/~rhernandez/mombi.
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Table 5.1: Properties of the test problems.
Problem Separability Modality Geometry Bias
DTLZ1 separable multi linear no
DTLZ2 separable uni concave no
DTLZ3 separable multi concave no
DTLZ4 separable uni concave polynomial

DTLZ5 unknown uni
arc, parameter

degenerated dependent

DTLZ6 unknown uni
arc, parameter

degenerated dependent

DTLZ7
f1:m−1 not applicable f1:m−1 uni disconnected,

no
fm separable fm multi mixed

WFG1 separable uni
f1:m−1 convex polynomial,
fm mixed flat

WFG2 non-separable
f1:m−1 uni convex,

no
fm multi disconnected

WFG3 non-separable uni linear, degenerated no
WFG4 separable multi concave no
WFG5 separable deceptive concave no
WFG6 non-separable uni concave no

WFG7 separable uni concave
parameter
dependent

WFG8 non-separable uni concave
parameter
dependent

WFG9 non-separable
multi,

concave
parameter

deceptive dependent

Table 5.2: Configuration adopted for the WFG test suite.

Parameter
Objective space dimension

2D 3D 4D 5D 6D 7D 8D 9D 10D
position-related 4 4 6 8 10 12 14 16 18
decision variables 24 24 36 47 59 70 82 93 105

5.1 Test problems

For comparison purposes, we adopted the Deb-Thiele-Laumanns-Zitzler [211] and
the Walking-Fish-Group [48] test suites (see Appendix A for their definition). All the
minimization problems adopted are scalable with respect to the number of objectives
and have a variety of geometries for the Pareto optimal front, such as linear, mixed
(concave/convex), degenerated and disconnected. They also include some aspects
such as separability and multi-frontality which make them more difficult to solve. In
Table 5.1 we summarize the main features of these test problems [47].

In DTLZ, the total number of variables is given by n = m+ k− 1, where m is the
number of objectives. k was set to 5 for DTLZ1, 10 for DTLZ2-6 and 20 for DTLZ7.
In WFG, the number of decision variables and the position-related parameter are
shown in Table 5.2.
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Table 5.3: Reference points for the test instances.
Test Problem Reference Point

DTLZ1 (1, 1, 1, . . .)
DTLZ2, DTLZ4 (2, 2, 2, . . .)

DTLZ3 (7, 7, 7, . . .)
DTLZ5 (4, 4, 4, . . .)
DTLZ6 (11, 11, 11, . . .)
DTLZ7 (1, 1, 1, . . . , 21)
WFG (3, 5, 7, . . . , 2m+ 1)

5.2 Performance Assessment

For comparing results, we selected the hypervolume indicator, which is equal to the
sum of all the rectangular areas, bounded by some reference point. Since this reference
point is important, we provide the values that we adopted for each test problem in
Table 5.3. Mathematically, the hypervolume can be described using equation (5.1).
It is worth noting that higher hypervolume values are preferred.

IHV (A : ~z ref ) =
{⋃

volume(v : ~z ref )|v ∈ A
}
. (5.1)

We used the algorithm proposed by Fonseca et al. [175] for calculating the
hypervolume from 2D to 9D,2 and the one proposed by While et al. [178], for 10
objectives, since it is a faster way of calculating exact hypervolumes.3

We also employed the R2 indicator in combination with the the Tchebycheff utility
functions, where the reference point ~z ∗ is at the origin and the weight vectors were
produced using the uniform design approach, described in Section 4.3.4 of Chapter 4.
The number of weight vectors is proportional to the number of objectives, given by
|W | = m ∗ 100. As we defined before, the R2 indicator is given by equation (5.2). It
is worth noting that lower values are preferred.

R2(A,W ) =
1

|W |
∑
w∈W

min
a∈A

{
max

i∈{1,...,m}
wi |ai − z∗i |

}
. (5.2)

Additionally, we also considered the running time for comparison purposes of
MOEAs, measured in milliseconds. Running times are particularly relevant in this
case, since we are interested in analyzing the way in which each of the algorithms
behaves when increasing the number of objectives, and this includes measuring their
computational cost.

2The source code is available at http://iridia.ulb.ac.be/~manuel/hypervolume.
3We used the 1.03 version, available at http://www.wfg.csse.uwa.edu.au/hypervolume.
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5.3 Experiment 1: Comparison of MOEAs

In this experiment, we compared the performance of MOMBI with respect to that
of seven state-of-the-art MOEAs, which have already been mentioned in Chapters 2
and 3. In the following, we provide a brief review and the details of the parameters
settings:

1. NSGA-II: the Nondominating Sorting Genetic Algorithm II [13] ranks indivi-
duals using a nondomination criterion and a crowding distance for maintaining
diversity (see Section 2.7.2 in page 31). We used version 1.1.6 for real-numbers
encoding, available at http://www.iitk.ac.in/kangal/codes.shtml.

2. MOEA/D: the Multi-Objective Evolutionary Algorithm based on Decompo-
sition [14] transforms an optimization problem into a number of scalar opti-
mization subproblems that are simultaneously optimized (see Section 3.5.1 in
page 54). The ideal point is employed as a reference point, which is updated
at each generation. The weight vectors are generated using the simplex-lattice
design. We analyzed this algorithm using three utility functions: the weighted
Tchebycheff metric (MOEA/D-TCH), normalized weighted Tchebycheff metric
(MOEA/D-NTCH), and the PBI approach (MOEA/D-PBI). We used a neigh-
borhood size of 20, and the implementation from 2007 for continuous search
spaces, available at http://dces.essex.ac.uk/staff/zhang/webofmoead.htm.

3. SMS-EMOA: the S Metric Selection-Evolutionary Multi-objective Optimiza-
tion Algorithm [3] is a popular hypervolume-based MOEA, that adopts nondomi-
nated sorting as its primary selection criterion and the hypervolume contri-
bution as its secondary criterion (see Section 3.2.2 in page 44). Since SMS-
EMOA requires a considerably large computational time in problems of high
dimensionality [9], we used here a version that incorporates the algorithm pro-
posed by Bader and Zitzler [10] for estimating the hypervolume using Monte
Carlo sampling, instead of the exact hypervolume calculations adopted in the
original algorithm [3], for MOPs having 4 or more objectives. The number of
samples was set to 105.

4. ∆p-DDE: This MOEA, proposed by Rodriguez and Coello [9], uses the ∆p

indicator as the selection mechanism of differential evolution. The approxi-
mation to the true Pareto optimal front is made by means of the discretization
of the nondominated solutions, using a resolution parameter that influences the
quality of the outcome sets, as well as its computational cost (see Section 3.3.2
in page 47). We set this parameter to 120, 11, 5, 4 and 3 for 2D, 3D, 4D, 5D
and 6-10D, respectively.

5. R2-MOGA: This genetic algorithm, proposed by Diaz et al. [16], integrates
the R2 indicator in a modified version of the nondominated sorting method of
NSGA-II. It uses the weighted Tchebycheff metric and the utopian point as
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utility functions and reference point, respectively. The weight vectors change
dynamically in each generation using the randomized design proposed by Jasz-
kiewicz [198] (see Section 3.4.2 in page 50). We used the implementation from
2013, available at http://www.tamps.cinvestav.mx/~adiazm, and a modified
version, called R2-MOGAw, in which the weights vectors are generated once,
using the simplex-lattice design, with the purpose of studying the effects of
dynamic weight generation.

6. R2-MODE: This approach is the same as R2-MOGA, but it uses differential
evolution as its search engine (see Section 3.4.2 in page 50). We used the imple-
mentation from 2013, available at http://www.tamps.cinvestav.mx/~adiazm.

7. R2-IBEA: The R2 Indicator Based Evolutionary Algorithm [15] eliminates
dominance ranking in its selection mechanism and performs indicator-based
selection with the R2 indicator, in combination with the weighted Tchebycheff
metric. The reference point is updated at each generation according to the
extent of the population, and the vector generation method is based on the
hypervolume (see Section 3.4.3 in page 51). Here, we used as weight vector
generation the hypervolume design for 2 up to 7 objectives (with reference
point at (2, 2)), and the simplex-lattice design for 8 up to 10 objectives. This
was done because the hypervolume takes too much time to be computed for
high dimensionality.

For MOMBI, the ideal point is employed as the reference point, and we update it
at each generation. The weight vectors are generated using the simplex-lattice design.
We considered, the same utility functions as in MOEA/D: the weighted Tchebycheff
metric (MOMBI-TCH), normalized weighted Tchebycheff metric (MOMBI-NTCH),
and the PBI approach (MOMBI-PBI).

We performed 100 independent runs of each of the thirteenth MOEAs compared,
in each of the test instances adopted. All the algorithms were implemented using
real-numbers encoding in C/C++, except for R2-IBEA, which was implemented in
Java 1.6.

The variation operators adopted for NSGA-II, MOEA/D, SMS-EMOA,R2-MOGA,
R2-IBEA and MOMBI were: simulated binary crossover (SBX) and polynomial-based
mutation [64] (see Section 2.7 in page 27). According to [13], the crossover rate was
set to 0.9, while the mutation rate was set to 1/n (here, n represents the number of
variables). The distribution indexes for both SBX and the polynomial-based muta-
tion were set to 20. In the algorithms R2-MODE and ∆p-DDE, based on Differential
Evolution, the value for both F and CR was set to 0.5 [212, 213].

The population size and the maximum number of generations adopted in the
experiment are shown in Table 5.4, and varied according to the value of m (i.e.,
number of objectives) and h (parameter of proportion in the simplex-lattice design,
see Section 4.3.2 in page 66). The total number of function evaluations was set in such
a way that it did not exceed 50,000. Following the proposal described by Zhang and
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Table 5.4: Parameters.

m h Population Size Generations Function Evaluations
2 119

120 416 499203 14
4 7
5 5

126 396 49896
6 4
7

3

84 595 49980
8 120 416 49920
9 165 303 49995
10 220 227 49940

Li [14], in MOEA/D, R2-MOGA, R2-MODE, R2-IBEA and MOMBI, the number of
weight vectors is the same as the population size.

Discussion of Results

In Figures 5.1 and 5.2, we present the outperformance percentage of all the compared
MOEAs in the DTLZ and the WFG test suites. These values were obtained counting
the number of times in which one algorithm outperforms another one in the Wilcoxon
Rank Sum Test with respect to the hypervolume indicator using a significance level
of 5%. If no information is shown, it means that an algorithm did not outperform
another one, or that the data is not available due to lack of convergence. The bars in
each plot are sorted by algorithm. The last row and column summarize information
by dimension and test problem, respectively.

In this case, the R2 indicator was omitted in the statistical test, since it revealed
similar results to the hypervolume indicator, giving a slight advantage to those algo-
rithms based on this indicator. Therefore, the information of the R2 indicator was
used only to corroborate outliers. In the following paragraphs, we discuss our findings
derived from this experiment.

As we expected, in DTLZ, the performance of NSGA-II decreases as the number of
objectives increases. This algorithm completely misses convergence in the multimodal
problems DTLZ1 from 5 to 10 objectives and DTLZ3 from 4 to 10D. Even in low
dimensionality (2D and 3D), NSGA-II is outperformed by SMS-EMOA, R2-IBEA,
MOEA/D-TCH, MOEA/D-PBI, MOMBI-TCH, and MOMBI-PBI. In DTLZ7, it gets
acceptable performance for two, three, and apparently ten objectives. However, for
the latest, the R2 indicator reveals no improvement. In the WFG test suite, NSGA-II
obtains poor performance, surpassing only MOEA/D-NTCH. Only in WFG3, this al-
gorithm obtains competitive results from 3 to 10 objectives, outperforming MOEA/D-
PBI, R2-MODE, MOMBI-PBI, ∆p-DDE, MOEA/D-TCH, MOMBI-TCH, and SMS-
EMOA. In general, this algorithm gets the worst rank of all the compared MOEAs
in the DTLZ test suite and ranks twelfth in the WFG test problems.
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Figure 5.1: Outperformance percentage of MOEAs in the DTLZ test suite with respect to
the hypervolume indicator using a significance level of 5% in the Wilcoxon Rank Sum Test.
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Figure 5.2: Outperformance percentage of MOEAs in the WFG test suite with respect to
the hypervolume indicator using a significance level of 5% in the Wilcoxon Rank Sum Test.
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In the DTLZ test problems, MOEA/D-TCH gets good results for 2 objectives. On
average, this algorithm outperforms NSGA-II, MOEA/D-NTCH, SMS-EMOA, and
∆p-DDE. In the WFG test suite, MOEA/D-TCH gets results that are not too im-
pressive, outperforming MOEA/D-NTCH, NSGA-II, ∆p-DDE, and MOEA/D-PBI.
In more than five objectives, it loses diversity, since several of the objectives converge
to zero values. In general, MOEA/D-TCH ranks ninth in both, the DTLZ and the
WFG test suites.

MOEA/D-NTCH outperformed only NSGA-II, obtaining poor performance from
3 to 10 objectives in DTLZ1, DTLZ2, DTLZ3, and DTLZ4. In DTLZ7, from 5 objec-
tives onwards, it gets good results. In the WFG test suite, this algorithm obtains good
results only in 2 objectives, outperforming NSGA-II, MOEA/D-TCH, MOEA/D-
PBI, R2-MOGA, R2-MOGAw, R2-MODE, and MOMBI-PBI. In the WFG3 test
problem, it obtains acceptable results from 2 to 10 objectives, being outperformed
by R2-MOGA, R2-MOGAw, R2-IBEA, MOMBI-NTCH. From 3 objectives onwards,
it loses diversity, since several of the objectives converge to zero values. In general,
MOEA/D-NTCH ranks twelfth and thirteenth in the DTLZ and the WFG test suites,
respectively.

MOEA/D-PBI outperforms the algorithms NSGA-II, MOEA/D-NTCH, SMS-
EMOA, ∆p-DDE, MOEA/D-TCH, and MOMBI-TCH in the DTLZ test suite. It gets
good results in DTLZ1 and DTLZ2, and it faces convergence difficulties in DTLZ1
(9-10D), DTLZ3 (from 5-10D), DTLZ4 (wide variation in data), and DTLZ7 (from
5-10D). In WFG(4,5) from 3 to 10 objectives and in WFG(6-9) for 4D, MOEA/D-PBI
gets acceptable performance, being outperformed by R2-MOGA, R2-MOGAw, R2-
IBEA, and MOMBI-PBI. In general, MOEA/D-PBI ranks fifth in DTLZ and eleventh
in the WFG test suites.

SMS-EMOA has a very good performance in low dimensionality and in almost all
objectives of the DTLZ7 test problem. However, its performance goes down from 4 to
10 objectives, since it loses convergence, mainly in the multimodal problem DTLZ3,
and in smaller proportion, in the DTLZ1, DTLZ5 and DTLZ6 test problems. In
DTLZ2 (4-10D) and DTLZ4 (4-9D), SMS-EMOA loses diversity, since the outcome
sets do not cover the entire Pareto optimal front. In the degenerated DTLZ5 (9-10D)
and biased DTLZ4 (10D) test problems, SMS-EMOA recovers performance, maybe
because the population size increases. Moreover, in the DTLZ test suite, it gets the
highest standard deviations, which means that its behavior is not very robust. In
the WFG test suite, SMS-EMOA gets the best performance for 3 objectives, and
competitive results for 2 and 10 objectives in WFG(3-9), since it loses convergence.
In general, it is outperformed by R2-MOGA, R2-MOGAw, R2-MODE, R2-IBEA,
MOMBI-TCH, and MOMBI-NTCH. Summarizing, this algorithm ranks tenth and
eight in the DTLZ and the WFG test problems, respectively.

∆p-DDE gets good results in DTLZ2 and DTLZ4 for 3 up to 10 objectives, be-
ing outperformed by R2-IBEA and MOMBI-PBI in all dimensions. In DTLZ3, it
provides competitive results for 2 up to 4 objectives. In DTLZ5, this MOEA has
difficulties with the degenerated Pareto optimal front, getting a wide variation in its
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performance. Surprisingly, in DTLZ6, which is a test problem harder than DTLZ5,
∆p performs much better for 2 up to 5 objectives. In DTLZ7, ∆p-DDE has diffi-
culties, obtaining high standard deviations. Even though the hypervolume indicator
shows better results in DTLZ7 for 10 objectives, the R2 indicator does not reveal any
improvement. In DTLZ1, DTLZ3, DTLZ5 and DTLZ7, ∆p-DDE loses convergence
from 7, 5, 2 and 8 objectives, respectively.

In WFG1-3 and WFG6-7, ∆p-DDE obtains competitive results for 2 objectives,
and in WFG9 from 3 to 9 objectives. In WFG1, it gets good spread of the Pareto
optimal front. In general, this algorithm outperforms NSGA-II and MOEA/D-NTCH,
ranking eleventh in DTLZ and tenth in the WFG test suites.

R2-MOGA and R2-MOGAw have poor convergence and distribution in low di-
mensionality. However, as the number of objectives increases, their performance also
improves, obtaining competitive results from 4 or 6 to 10 objectives, in both, the
DTLZ and the WFG test suites. In almost all problems of high dimensionality in
the DTLZ test suite, these MOEAs are outperformed by R2-IBEA, MOMBI-PBI,
and R2-MODE. In DTLZ3, R2-MOGAw and R2-MOGA obtained the best results.
DTLZ7 is a hard problem for these algorithms, since they tend to obtain poor results
with a high variability. In the majority of the WFG test problems, these algorithms
are outperformed only by R2-IBEA. In WFG1, they also obtained competitive re-
sults in low dimensionality. There is not too much difference in the performance of
these algorithms in the DTLZ test problems. In the WFG test suite, R2-MOGAw
outperforms R2-MODE in the majority of the test instances. In almost all problems
R2-MOGAw slightly produces more diversity in the outcome sets. In general, R2-
MOGA ranks sixth, while R2-MOGAw ranks seventh in the DTLZ test suite, and
R2-MOGAw ranks second, while R2-MOGA ranks third in the WFG test suite.

R2-MODE has poor convergence and distribution in low dimensionality. However,
this algorithm scales well as the number of objectives increases. In DTLZ5 and
DTLZ6, R2-MODE obtains very good approximations. In the remainder problems
of the DTLZ test suite, it obtains competitive results, being overcome only by R2-
IBEA and sometimes by MOMBI-PBI or MOMBI-NTCH. In DTLZ3, this MOEA
loses convergence and diversity for 9 and 10 objectives. In the WFG test problems,
R2-MODE obtains competitive results from 5 to 10 objectives, being overcome by
R2-IBEA, R2-MOGAw, R2-MOGA, and MOMBI-NTCH. In WFG6, for 2 objectives
and WFG2 for 2 and 7 objectives, it achieves the best results. In WFG1, it gets
good spread of the Pareto optimal optimal front. Only in WFG3, this algorithm has
convergence difficulties. In general, R2-MODE ranks second in the DTLZ test suite
and fifth in the WFG test suite.

R2-IBEA is the best optimizer, in both, the DTLZ and the WFG test suites.
It obtains remarkable results in convergence, as well as in diversity. Even in low
dimensionality, it is competitive with SMS-EMOA. It seems that in more than 7 ob-
jectives the simplex-lattice design for the weight vectors does not affect performance.
It presents convergence difficulties in the DTLZ7 test problem, for 7 up to 10 objec-
tives, where the standard deviations are high. Even though spread is poor in WFG1,
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it obtains the best convergence.

MOMBI-TCH produces approximation sets with good convergence and distribu-
tion in low dimensionality. In more than three objectives, it has low variation in data,
outperforming NSGA-II, MOEA/D-NTCH, SMS-EMOA, ∆p-DDE, and MOEA/D-
TCH in several of the test instances of the DTLZ test suite. It presents difficul-
ties of spread and convergence in DTLZ4, DTLZ6 and DTLZ7. In WFG, MOMBI-
TCH gets competitive results, outperforming NSGA-II, MOEA/D-TCH, MOEA/D-
NTCH, MOEA/D-PBI, ∆p-DDE, SMS-EMOA, and MOMBI-PBI. Moreover, in high
dimensionality, this algorithm tends to lose diversity, since some of the objectives
converge to zero values. In general, MOMBI-TCH ranks eighth in the DTLZ test
suite, and sixth in the WFG test suite.

MOMBI-NTCH has poor distribution of solutions in low dimensionality, due to
normalization. In high dimensionality, it loses diversity, since several of the objec-
tives converge to zero values. However, in DTLZ7, which is scaled in different units,
this algorithm obtains competitive results from 2D to 7D. In the DTLZ test suite,
this algorithm outperforms NSGA-II, MOEA/D-NTCH, SMS-EMOA, MOEA/D-
TCH, ∆p-DDE, MOEA/D-PBI, and MOMBI-TCH. This algorithm also outperforms
MOMBI-PBI and R2-MODE in the WFG test suite, obtaining good performance in
low dimensionality and in WFG2 and WFG3 for all objectives. In general, MOMBI-
NTCH ranks fourth in the DTLZ test suite and the WFG test suite.

MOMBI-PBI produces uniform distributions of Pareto optimal fronts. In the
DTLZ test suite, for 2 objectives, its results are competitive, and from 3D to 10D,
it obtains good results, being outperformed only by R2-IBEA and R2-MODE. This
algorithm faces convergence difficulties in DTLZ5, DTLZ6 and DTLZ7. In the WFG
test problems, MOMBI-PBI outperforms MOEA/D-PBI, MOEA/D-NTCH, NSGA-
II, ∆p-DDE, and MOEA/D-TCH. Its best results are obtained in WFG4, WFG5,
WFG6, and WFG8 from 4 to 8 objectives, and in WFG7 and WFG9 for 3 and 4
objectives. In high dimensionality it has convergence difficulties. In general, MOMBI-
PBI ranks third in the DTLZ test suite and seventh in the WFG test suite.

With respect to the execution time, in Figure 5.3, we depict the average runtime
in milliseconds of each optimizer. It is worth noting that these results agree with the
computational complexity estimated in Chapter 3, except for R2-IBEA.

The computational cost increases very rapidly for SMS-EMOA in 2 and 3 objec-
tives; this is because we are using the exact hypervolume calculation. Even though
in more than 3 objectives, we are using an estimation method, the time consumption
is the highest (only for 10 objectives, it lasts almost 3 hours to complete a single
execution!). R2-IBEA is the second in terms of running time (1 hour and 20 minutes
for 10 objectives). It is possible that the implementation made in Java worsens time.
However, the slope increases from 7 objectives. On the other hand, ∆p-DDE also
increases a little bit the running time from 6 objectives (it takes 2.75 minutes for
10 objectives). Between R2-MOGA and R2-MODE there is not too much difference,
since they are both stable, taking a low computational cost (on average, 12.2 seconds).
Then, there is our proposed MOMBI, which increases in time similarly to the last
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Figure 5.3: Average runtime of MOEAs.

two algorithms (it requires 4.7s for 10 objectives). MOMBI’s performance is followed
by that of NSGA-II, and then MOEA/D, which, on average, take almost 2.2 seconds
for 10 objectives. It is important to mention that, the inverted peak in 7 objectives
is due to the reduction in population size (see Table 5.4).

5.4 Experiment 2: Performance of Utility

Functions

In this experiment, we investigate the behavior of MOMBI when varying the utility
functions. We consider the following approaches, which are based on the metrics
described in Section 4.2, page 59:

• MOMBI-WS (weighted sum function)

• MOMBI-NWS (normalized weighted sum function)

• MOMBI-LS (metric of least squares)

• MOMBI-NLS (normalized metric of least squares)

• MOMBI-TCH (weighted Tchebycheff metric)
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• MOMBI-NTCH (normalized weighted Tchebycheff metric)

• MOMBI-ATCH (augmented weighted Tchebycheff metric)

• MOMBI-NATCH (normalized augmented weighted Tchebycheff metric)

• MOMBI-MTCH (modified weighted Tchebycheff metric)

• MOMBI-NMTCH (normalized modified weighted Tchebycheff metric)

• MOMBI-PBI (Penalty-based Boundary Intersection metric)

In the case of MOMBI-ATCH, MOMBI-MTCH, and their normalized versions,
the parameter ρ is set to 0.01. For MOMBI-PBI, the penalty parameter θ was set to
5. The remainder parameters settings are the same of those of the first experiment.

In Figures 5.4 and 5.5, we present the outperformance percentage of all the ap-
proaches in the DTLZ and the WFG test suites. These values were obtained counting
the number of times in which one approach outperformed another one in the Wilcoxon
Rank Sum Test with respect to the hypervolume indicator using a significance level
of 5%. If no information is shown, it means that an algorithm did not outperform
any other. The bars in each plot are sorted by approach. The last row and column
summarize information by dimension and test problem, respectively.

As in the previous experiment, the R2 indicator was used only to corroborate
hypervolume values. In the following, we discuss the observed results.

MOMBI-WS cannot deal with linear and concave Pareto optimal fronts, producing
very poor diversity (only extreme values are found). In the DTLZ and the WFG test
suites, it only outperforms MOMBI-NWS. It achieves its best results in WFG1 from
2 to 7 objectives, since it generates good spread, but the Pareto optimal front is
biased. Moreover, in DTLZ7 for 5 up to 10 objectives, it obtains acceptable results.
MOMBI-WS ranks tenth and eleventh in the DTLZ and the WFG test problems,
respectively.

MOMBI-NWS obtains the best results in WFG1. It also obtains competitive
results in WFG2 for 3, 4 and 5 objectives and in DTLZ7 from 6 to 10 objectives.
In the same way as in MOMBI-WS, it cannot deal with linear and concave Pareto
optimal fronts. MOMBI-NWS ranks eleventh in the DTLZ test suite and tenth in
the WFG test suite.

MOMBI-LS obtains good results from 6 to 10 objectives in the DTLZ and the
WFG test problems, being outperformed by MOMBI-TCH, MOMBI-NTCH and
MOMBI-PBI. It gets competitive results in WFG1 and it can deal with linear Pareto
optimal fronts. However, it faces difficulties of diversity in concave geometries.
MOMBI-LS ranks sixth and fourth in the DTLZ and the WFG test problems, res-
pectively.

MOMBI-NLS outperforms MOMBI-WS, MOMBI-NWS and MOMBI-NATCH in
the DTLZ test problems, and outperforms MOMBI-NATCH in the WFG test suite.
It can deal with linear Pareto optimal fronts, but it faces difficulties in concave geo-
metries, and it produces bad distributions in low dimensionality. This approach
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Figure 5.4: Outperformance percentage of utility functions in the DTLZ test suite with
respect to the hypervolume indicator using a significance level of 5% in the Wilcoxon Rank
Sum Test.
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Figure 5.5: Outperformance percentage of utility functions in the WFG test suite with
respect to the hypervolume indicator using a significance level of 5% in the Wilcoxon Rank
Sum Test.
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obtains the best results in DTLZ7 from 4 objectives, and good performance in WFG1
and WFG3 from 2 objectives. MOMBI-NLS ranks ninth, in both, the DTLZ and the
WFG test problems.

MOMBI-TCH is outperformed by MOMBI-PBI, MOMBI-NTCH and MOMBI-
ATCH in the DTLZ test problems. In the WFG test problems, it is outperformed
by MOMBI-NTCH. The main features of this approach have been described in the
previous experiment. MOMBI-TCH ranks fourth in the DTLZ test suite and second
in the WFG test suite.

MOMBI-NTCH ranks second and first in the DTLZ and the WFG test problems,
respectively. It is outperformed by MOMBI-PBI and MOMBI-ATCH in the DTLZ
test problems. In the WFG test suite it obtains the best results (for more features of
this approach, the reader can review the previous experiment).

MOMBI-ATCH is outperformed only by MOMBI-PBI in the DTLZ test problems,
and in the WFG test problems, it is also outperformed by MOMBI-LS, MOMBI-
TCH and MOMBI-NTCH. In DTLZ6, it obtains the best results of convergence,
it outperforms MOMBI-TCH and MOMBI-PBI. However, in general, the produced
distributions are not uniform, since they are biased to the knee (see Definition 2.5.14)
and edges, and in more than five objectives, it loses diversity, since several of the
objectives converge to zero values. MOMBI-ATCH ranks third in the DTLZ test
suite and fifth in the WFG test problems.

MOMBI-NATCH outperforms MOMBI-WS and MOMBI-NWS, in both, the DTLZ
and the the WFG test problems. It obtains competitive results in the DTLZ test pro-
blems, and in WFG4-9 for 3 and 4 objectives. In WFG3, this approach gets the best
results. In the same way as in MOMBI-ATCH, the distributions are not uniform. In
more than five objectives, it loses diversity, since several of the objectives converge
to zero values. MOMBI-NATCH ranks eighth in the DTLZ test suite and seventh in
the WFG test suite.

MOMBI-MTCH is outperformed by MOMBI-TCH, MOMBI-NTCH, and MOMBI-
ATCH in the DTLZ test suite. In the WFG test problems, this approach outperforms
MOMBI-WS, MOMBI-NWS, MOMBI-NLS and MOMBI-NATCH. It obtains the best
results in DTLZ5, outperforming even MOMBI-PBI, MOMBI-TCH and MOMBI-
NTCH. Moreover, it gets competitive results in two objectives for all instances of the
DTLZ test suite. In more than five objectives, this approach loses diversity, since
several of the objectives converge to zero values. MOMBI-MTCH ranks fifth and
sixth in the DTLZ and the WFG test problems, respectively.

MOMBI-NMTCH outperforms MOMBI-WS, MOMBI-NWS and MOMBI-NATCH
in the DTLZ test suite, and also MOMBI-MTCH in the WFG test problems. This
approach obtains competitive results for 3 and 4 objectives, in both test problems. In
low dimensionality, distributions are poor, and in more than five objectives, it loses
diversity, since several of the objectives converge to zero values. MOMBI-NMTCH
ranks seventh and eight in the DTLZ and the WFG test problems, respectively.

MOMBI-PBI ranks first in the DTLZ test suite and third in the WFG test pro-
blems. In the WFG test problem, this approach is outperformed by MOMBI-TCH
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and MOMBI-NTCH. The main features of this approach have been described in the
previous experiment.

5.5 Experiment 3: Sensitivity to the Design of

Weight Vectors

In this experiment, we analyze the sensitivity to the design of weight vectors in
MOMBI, combined with the PBI approach adopted for the utility functions. Here,
we consider the following designs, which were described in Section 4.3, page 64:

• MOMBI-RND (random design of Jaszkiewicz [198])

• MOMBI-SLD (simplex-lattice design)

• MOMBI-HV (hypervolume based design)

• MOMBI-UD (uniform design)

In all cases, the weight vectors were generated once. In MOMBI-HV, we only
consider up to 7 objectives, due to the high time consumption in the weight vector
generation. The number of iterations was set to 5000 (see Algorithm 15). In MOMBI-
UD, the number of generations was set to 2000 (see Algorithm 16). It is worth noting
that MOMBI-SLD is equivalent to MOMBI-PBI. The remainder parameters settings
are the same of those of the first experiment.

In Figures 5.6 and 5.7, we present the outperformance percentage of all the ap-
proaches in the DTLZ and the WFG test problems. These values were obtained
counting the number of times in which one approach outperformed another one in
the Wilcoxon Rank Sum Test with respect to the hypervolume indicator using a sig-
nificance level of 5%. If no information is shown, it means that an algorithm did
not outperform any other, or that data is not available due to missing convergence.
The bars in each plot are sorted by approach. The last row and column summarize
information by dimension and test problem, respectively.

As in the first experiment, the R2 indicator was used to corroborate hypervolume
values. We also used the algorithm proposed by While et al. [178] for calculating the
hypervolume indicator for 9 and 10 objectives (see Section 5.2 in page 81). In the
following, we discuss the results.

MOMBI-RND presents poor diversity with a high variability. In the WFG test
suite, it outperforms MOMBI-UD in the majority of the test instances and sometimes
MOMBI-SLD. In WFG1, it obtains good performance from 5 to 10 objectives. This
approach gets the worst rank in the DTLZ test suite, and ranks third in the WFG
test suite.

MOMBI-SLD ranks first, in both, the DTLZ and the WFG test suites. In the
DTLZ test problems, this approach obtained indicator values very close to those
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Figure 5.6: Outperformance percentage of weight vectors in the DTLZ test suite with
respect to the hypervolume indicator using a significance level of 5% in the Wilcoxon Rank
Sum Test.
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Figure 5.7: Outperformance of weight vectors in the WFG test suite with respect to the
hypervolume indicator using a significance level of 5% in the Wilcoxon Rank Sum Test.
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produced by MOMBI-HV, being the latter slightly better. It produces uniform dis-
tributions, but it loses convergence in more than 5 objectives. In 9 and 10 objectives
of the WFG test suite, MOMBI-SLD is outperformed by MOMBI-RND.

MOMBI-HV outperforms MOMBI-SLD, ranking second, in both, the DTLZ and
the WFG test problems. It produces good diversity, but as the number of objectives
increases it loses uniformity, spread and convergence.

MOMBI-UD ranks third in the DTLZ test problems and fourth in the WFG test
suite. It produces good distributions, but it loses spread from 3 objectives, since
points at the boundary are missing. In DTLZ5 and DTLZ6, this approach loses
diversity, as well as convergence from 5 and 3 objectives, respectively.

5.6 Summary

We present, in this chapter, the numerical results of the comparison made among the
proposed MOMBI and some other state-of-the-art MOEAs.

These results indicate that MOMBI is a suitable optimizer for solving MOPs,
requiring a low computational cost, and outperforming, in the majority of the ins-
tances of the DTLZ and the WFG test suites, to NSGA-II and ∆p-DDE for any
number of objectives; to MOEA/D for more than 2 objectives; and to SMS-EMOA
for more than 3 objectives. MOMBI also outperforms R2-MOGA and R2-MODE in
low dimensionality.

As we expected, NSGA-II performed poorly as the number of objective functions
increased, while maintaining a low computational cost.

∆p-DDE was competitive with the compared algorithms and obtained good di-
versity in all dimensions. However, it faced convergence difficulties in multimodal,
degenerated, deceptive and disconnected problems. We hypothesize that in the de-
generated DTLZ6 test problem, this MOEA obtained good results due to the use
of differential evolution, as it happened for R2-MODE. The computational cost of
∆p-DDE is also low.

MOEA/D showed a deterioration in the diversity of its outcome sets as the number
of objective functions increased, since several of these objectives tend to converge
to zero values.4 Diversity varies with respect to the utility functions used. The
Tchebycheff approach produces poor distributions, and its normalized version worsens
the spread of solutions. However, it seems that normalization improves performance
in disconnected and degenerated problems. The PBI approach generates a uniform
distribution of solutions, but it loses convergence in high dimensionality. All these
issues are also present in MOMBI, but in a lower extent than in MOEA/D. On the
other hand, MOEA/D obtained the lowest computational cost of all the approaches
compared in our study.

SMS-EMOA showed a deterioration in the quality of its solutions as the number
of objectives increased. Here, it is important to mention that the approximation

4This observation was recently pointed out by Ishibuchi [214].
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method used for the hypervolume contributions produces acceptable solutions when
the number of generations, population size and/or samples increases with respect to
the number of objectives. However, its high computational cost makes it prohibitive.
On average, SMS-EMOA obtained the highest computational cost.

R2-MOGA and R2-MODE showed an improvement in their performance as the
number of objective functions increased. In the majority of the test instances adopted,
the random weight vector generation did not affect convergence, but it impacted
diversity. It seems that the search engine has a significant impact on performance
in some MOPs. R2-MOGA had difficulties with disconnected problems, while R2-
MODE had problems with degenerated problems. The computational cost of these
approaches is low.

It is remarkable to note that R2-IBEA was the best algorithm in the experiment.
This approach produced good convergence, as well as diversity in its outcome sets,
although this does not necessarily mean that such solutions were uniformly distributed
along the Pareto optimal front. The weight vector generation based on hypervolume
seems to be suitable up to 5 objectives. From 6 objectives onwards, diversity is
degraded. Although the weight vectors are generated once, the computational cost
involved in their generation is very high. An alternative choice could be to use an
approximation method instead. The computational cost of R2-IBEA is still high, but
this may be due to its implementation.

In this chapter, we also investigated the sensitivity of MOMBI when varying
parameters specific to the R2 indicator.

The utility functions that performed best were PBI and normalized Tchebycheff
metrics for the DTLZ and the WFG test problems, respectively. It is corroborated
that the different choice of utilities helps to improve or worsen performance in some
MOPs. As it occurred in MOEA/D, normalization also affects the performance of
disconnected and degenerated problems.

Finally, the weight vector generation influences the performance of MOMBI. The
approach that maximized the hypervolume indicator was the simplex-lattice design.
In uniform design, the number of weight vectors is not restricted to a combinatorial
number (as in simplex-lattice design), which makes it scalable with respect to the
number of objectives. However, the quality of the Pareto optimal solutions produced
did not maximize the hypervolume, because boundary points are not considered in
this approach. An improvement of this design would include such points.
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Conclusions and Future Work

In this work, we have introduced a new multi-objective evolutionary algorithm whose
selection mechanism is based on the R2 indicator. It is worth emphasizing that the
proposed approach is entirely based on the R2 indicator, since it does not incorporate
Pareto dominance anywhere. Therefore, the nondominated solutions must be filtered
after the outcome sets are generated.

Our experimental results show that the proposed MOMBI is able to deal with hard
problems, outperforming NSGA-II, which is based on Pareto dominance, MOEA/D,
based on scalarization, ∆p-DDE, based on the ∆p indicator, and SMS-EMOA, based
on the hypervolume indicator1, in most cases and that it requires a considerably
lower computational cost than SMS-EMOA, since MOMBI requires polynomial exe-
cution time, while SMS-EMOA needs exponential time with respect to the number
of objectives. MOMBI also outperforms the two MOEAs based on the R2 indicator:
R2-MOGA and R2-MODE, in low dimensionality. Even though, these approaches are
similar, they produce different results. This, perhaps, is due to the fact that MOMBI
introduces a high selection pressure. In contrast, R2-MOGA and R2-MODE are less
elitist.

In MOMBI, diversity varies with respect to the utility functions used. Here, we no-
ticed that the Tchebycheff approach produces poor distributions, and its normalized
version worsens the spread of solutions. However, it seems that normalization im-
proves performance in disconnected and degenerated problems. On the other hand,
the Penalty-based Boundary Intersection approach generates uniform distributions of
solutions, but it loses convergence in high dimensionality. MOMBI is also sensitive
to the choice of the weight vector generation. Here, the simplex-lattice design ob-
tained the best results. The use of uniform design produced low performance, but
such results can be improved by adding boundary points.

The use of search engines, such as differential evolution, can influence the per-
formance of some MOEAs under certain problems. For example, ∆p and R2-MODE
performs better in the DTLZ test problems.

1We used the approach to approximate the hypervolume contribution proposed by Bader and
Zitzler [10].
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Table 6.1: Comparison of MOEAs. Here m represents the number of objectives, N is the
population size, K is the neighborhood size, S is the number of samples, and W is the
number of weight vectors.

Algorithm
Complexity Selection Criterion Rank

Difficulties
Runtime Storage 1° 2° DTLZ WFG

NSGA-II O(mN2)
O(N2 +
Nm)

Pareto domi-
nance

crowding dis-
tance

13 12
Loose of convergence,
when m > 3.

MOEA/D-TCH
O(NKm) O(Nm)

scalarizing
none

9 9
Loss of diversity in
high

MOEA/D-NTCH functions 12 13 dimensionality.
MOEA/D-PBI 5 11

SMS-EMOA O(SN2m)
O(N2 +
Nm)

Pareto domi-
nance

hypervolume 10 8
Loose of convergence,
when m > 3.

∆p-DDE (O(Nm))
O(N2 +
Nm)

∆p indicator
Pareto domi-
nance

11 10

Multimodal, degen-
erated, deceptive
and disconnected
problems.

R2-MOGA
O(N2Wm)

O(WN+
R2 indicator none

6 3
Poor distribution.R2-MOGAw m(N+W )) 7 2

R2-MODE 2 5

R2-IBEA O(N2Wm)
O(WN +
m(N+W ))

R2 indicator none 1 1
Distribution is not
uniform.

MOMBI-TCH O(WN( O(WN+
R2 indicator Lp norms

8 6
Loss of diversity in
high

MOMBI-NTCH logN+m)) m(N+W )) 4 4 dimensionality.
MOMBI-PBI 3 7

The inferential analysis was made by means of the Wilcoxon rank sum test of
hypervolume indicator values, using a confidence interval of 95%. In Table 6.1 we
summarize the behavior of the compared MOEAs.

Evidently, much more work is required. We are interested, for example, in incor-
porating a mechanism to handle constraints, but first we need to design restricted test
problems, since the only known scalable problems are DTLZ8 and DTLZ9 [215], and
none of them is deceptive, nonseparable or scaled in different units. Here, it would
be interesting to modify the approach for generating the WFG test problems [48].

We are also interested in studying the sensitivity of MOMBI to the choice of the
reference set, in order to determine which approach performs better: static, dynamic,
ideal, utopian, and proportional, as in R2-IBEA. Additionally, we want to investi-
gate the behavior of MOMBI when varying the number of weight vectors and the
population size. We also would like to perform more experiments, using real-world
problems and different statistical tests.

It would be interesting to combine this indicator with another one (e.g., ∆p,
entropy or ε), with the aim of combining their advantages and compensate for their
possible limitations. Here, there are two scenarios, one is two use an indicator in
order to explore the search space, and then to exploit solutions using an accurate
indicator. Other idea is to parallelize subpopulations using different indicators, and
then interchange individuals.

Finally, the algorithm ∆p-IBEA can be proposed using weight vectors, instead of
the grid in the building of the reference set.
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Test Problems

With the aim of having a better understanding of the working principles of optimizers,
there are several benchmarks that have been suggested in the field of multi-objective
optimization [47]. These artificial test problems examine the ability to control dif-
ficulties in both converging to the true Pareto optimal front and in maintaining a
widely distributed set of solutions. Moreover, they offer many advantages over real-
world problems, such as scalability, knowledge of the exact shape and location of the
resulting Pareto optimal front, fast execution time, as well as ease of understanding,
implementation and visualization.

In this Appendix, we review two important test suites, which are commonly used
in many-objective optimization, and are defined for real-valued and unconstrained
problems.

The implementation in C++ and Java of the test problems described here, can
be found in the following web pages:

PISA: http://www.tik.ee.ethz.ch/pisa (C++)

jMetal: http://jmetal.sourceforge.net (Java)

MOEA Framework: http://www.moeaframework.org (Java)

Walking Fish Group: www.wfg.csse.uwa.edu.au/toolkit (C++)

Shark machine learning library (DTLZ): http://image.diku.dk/shark (C++)

For downloading samples of the Pareto optimal front in 3D, the reader should
consult the following web site1:

EMOOBOOK: http://www.cs.cinvestav.mx/~emoobook

Additional information, such as hypervolume values and formulation of the Pareto
optimal front can be consulted in the site:

ETH Systems Optimization: http://people.ee.ethz.ch/~sop/download/

supplementary/testproblems

1jMetal also provides this feature for 2D.
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A.1 Deb-Thiele-Laumanns-Zitzler Test Suite

The Deb-Thiele-Laumanns-Zitzler (DTLZ) test suite [215, 83, 211] includes nine re-
presentative test problems for comparing optimizers, which are scalable to any number
of decision variables and objectives. The majority of these problems are separable, in-
cluding degenerated and multimodal Pareto optimal fronts, of which the exact shape
and location are known.

In the following, we present the seven unconstrained problems of the DTLZ test
suite. Here, the total number of decision variables is given by n = m+ k − 1, where
m represents the number of objectives and k is the number of distance parameters.

DTLZ1

This test problem is separable and multimodal. Its Pareto optimal front is linear and
is given by the following expression:

Given ~x = {x1, . . . , xm−1, xm, . . . , xn}

Minimize f1(~x) = 0.5 (1 + g(~y))
m−1∏
i=1

xi

fj=2:m−1(~x) = 0.5 (1 + g(~y)) (1− xm−j+1)

m−j∏
i=1

xi

fm(~x) = 0.5 (1 + g(~y)) (1− x1)

where yi=1:k = {xm, xm+1, . . . , xn}

g(~y) = 100

[
k +

k∑
i=1

(yi − 0.5)2 − cos(20π(yi − 0.5))

]
subject to ∀i ∈ {1, . . . , n} 0 ≤ xi ≤ 1.

(A.1)

All objective function values lie on the linear hyper-plane
∑m

i=1 fi = 0.5. The
Pareto optimal solution corresponds to ~y = (0, 0, . . .)T , and a value of k = 5 is
suggested here. The difficulty in this problem is to converge to the hyper-plane. The
search space contains (11k− 1) local Pareto optimal fronts, each of which can attract
an optimizer. The Pareto optimal front is shown in Figure A.1.

DTLZ2

This problem is separable and unimodal. The geometry of its Pareto optimal front is
concave (see Figure A.2), and is defined as follows:
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Figure A.1: DTLZ1 Pareto optimal front for two (left) and three (right) objectives.

Given ~x = {x1, . . . , xm−1, xm, . . . , xn}

Minimize f1(~x) = (1 + g(~y))
m−1∏
i=1

cos(xiπ/2)

fj=2:m−1(~x) = (1 + g(~y))

(
m−j∏
i=1

cos(xiπ/2)

)
sin(xm−j+1π/2)

fm(~x) = (1 + g(~y)) sin(x1π/2)

where yi=1:k = {xm, xm+1, . . . , xn}

g(~y) =
k∑
i=1

(yi − 0.5)2

subject to ∀i ∈ {1, . . . , n} 0 ≤ xi ≤ 1.

(A.2)

The Pareto optimal solutions corresponds to ~y = (0.5, 0.5, . . .)T and all objective
functions values must satisfy that

∑m
i=1(fi)

2 = 1. It is recommended to use k = 10.

DTLZ3

This problem is the same as DTLZ2 except for a new g function, that makes it
multimodal. The definition is given as follows:
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Figure A.2: DTLZ2 Pareto optimal front for two (left) and three (right) objectives.

Given ~x = {x1, . . . , xm−1, xm, . . . , xn}

Minimize f1(~x) = (1 + g(~y))
m−1∏
i=1

cos(xiπ/2)

fj=2:m−1(~x) = (1 + g(~y))

(
m−j∏
i=1

cos(xiπ/2)

)
sin(xm−j+1π/2)

fm(~x) = (1 + g(~y)) sin(x1π/2)

where yi=1:k = {xm, xm+1, . . . , xn}

g(~y) = 100

[
k +

k∑
i=1

(yi − 0.5)2 − cos(20π(yi − 0.5))

]
subject to ∀i ∈ {1, . . . , n} 0 ≤ xi ≤ 1.

(A.3)

It is suggested that k = 10. The above function g introduces (3k − 1) local
Pareto optimal fronts, and one global Pareto optimal front (see Figure A.3). All local
Pareto optimal fronts are parallel to the global Pareto optimal front and an optimizer
can get stuck at any of these local Pareto optimal fronts, before converging to the
global Pareto optimal front at g = 0. The global Pareto optimal front corresponds to
~y = (0.5, 0.5, . . .)T . The next local Pareto optimal front is at g = 1.
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Figure A.3: DTLZ3 Pareto optimal front for two (left) and three (right) objectives.

DTLZ4

This problem is concave, separable and unimodal (see Figure A.4). It tests an opti-
mizer’s ability to maintain a good distribution of solutions, and is defined as follows:

Given ~x = {x1, . . . , xm−1, xm, . . . , xn}

Minimize f1(~x) = (1 + g(~y))
m−1∏
i=1

cos(xαi π/2)

fj=2:m−1(~x) = (1 + g(~y))

(
m−j∏
i=1

cos(xαi π/2)

)
sin(xαm−j+1π/2)

fm(~x) = (1 + g(~y)) sin(xα1π/2)

where yi=1:k = {xm, xm+1, . . . , xn}

g(~y) =
k∑
i=1

(yi − 0.5)2

subject to ∀i ∈ {1, . . . , n} 0 ≤ xi ≤ 1.

(A.4)

The parameters α = 100 and k = 10 are suggested here. This problem allows a
dense set of solutions to exist near the fm − f1 plane. It is interesting to note, that
although the search space has a variable density of solutions, the classical weighted-
sum approaches or other directional methods may not have any added difficulty in
solving this problem compared to DTLZ2.
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Figure A.4: DTLZ4 Pareto optimal front for two (left) and three (right) objectives.

DTLZ5

This problem is unimodal and degenerated (see Figure A.5). It is defined as:

Given ~x = {x1, . . . , xm−1, xm, . . . , xn}

Minimize f1(~x) = (1 + g(~y))
m−1∏
i=1

cos(θiπ/2)

fj=2:m−1(~x) = (1 + g(~y))

(
m−j∏
i=1

cos(θiπ/2)

)
sin(θm−j+1π/2)

fm(~x) = (1 + g(~y)) sin(θ1π/2)

where yi=1:k = {xm, xm+1, . . . , xn}

θi =

{
xi, i = 1
1+2g(~y)

2(1+g(~y))
xi, ∀i ∈ {2, 3, . . . ,m− 1}

g(~y) =
k∑
i=1

(yi − 0.5)2

subject to ∀i ∈ {1, . . . , n} 0 ≤ xi ≤ 1.

(A.5)

This problem will test an optimizer’s ability to converge to a curve. The g function
with k = 10 variables is suggested. The Pareto optimal front corresponds to ~y =
(0.5, 0.5, . . .)T , and all objective function values must satisfy

∑m
i=1(fi)

2 = 1.
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Figure A.5: DTLZ5 Pareto optimal front for two (left) and three (right) objectives.

DTLZ6

Modifying DTLZ5, a harder problem evolves by changing the function g. The resul-
ting problem is unimodal and degenerated:

Given ~x = {x1, . . . , xm−1, xm, . . . , xn}

Minimize f1(~x) = (1 + g(~y))
m−1∏
i=1

cos(θiπ/2)

fj=2:m−1(~x) = (1 + g(~y))

(
m−j∏
i=1

cos(θiπ/2)

)
sin(θm−j+1π/2)

fm(~x) = (1 + g(~y)) sin(θ1π/2)

where yi=1:k = {xm, xm+1, . . . , xn}

θi =

{
xi, i = 1
1+2g(~y)

2(1+g(~y))
xi, ∀i ∈ {2, 3, . . . ,m− 1}

g(~y) =
k∑
i=1

y0.1
i

subject to ∀i ∈ {1, . . . , n} 0 ≤ xi ≤ 1.

(A.6)

The Pareto optimal front corresponds to ~y = (0, 0, . . .)T and is shown in Fi-
gure A.6. The value of k is chosen as 10. The lack of convergence to the Pareto
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Figure A.6: DTLZ6 Pareto optimal front for two (left) and three (right) objectives.

optimal front in this problem makes optimizers to find a dominated surface as the
obtained front, whereas the true Pareto optimal front is a curve. In real-world pro-
blems, this aspect may provide misleading information about the properties of the
Pareto optimal front.

DTLZ7

This problem has a disconnected set of 2m−1 Pareto optimal regions in the search
space and will test an algorithm’s ability to maintain subpopulations in different
Pareto optimal regions.

Given ~x = {x1, . . . , xm−1, xm, . . . , xn}
Minimize fj=1:m−1(~x) = xj

fm(~x) = (1 + g(~y))

(
m−

m−1∑
i=1

[
fi

1 + g(~y)
(1 + sin(3πfi))

])
where yi=1:k = {xm, xm+1, . . . , xn}

g(~y) = 1 +
9

k

k∑
i=1

yi

subject to ∀i ∈ {1, . . . , n} 0 ≤ xi ≤ 1.

(A.7)

The function g requires k = 20 decision variables. The Pareto optimal solutions
correspond to ~y = (0, 0, . . .)T . The Pareto optimal front is shown in Figure A.7.
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Figure A.7: DTLZ7 Pareto optimal front for two (left) and three (right) objectives.

A.2 Walking Fish Group Test Suite

The Walking-Fish-Group test suite, published in 2005 by Huband et al. [48], suggests
nine multi-objective test problems (WFG1-WFG9), that are scalable with respect to
both objectives and variables, and have known Pareto optimal sets. These problems
include a wide variety of Pareto optimal geometries. Moreover, characteristics such
as bias, multi-modality, and non-separability are defined by a set of transformations.

In the following, we present these benchmark problems. Here, m represents the
number of objectives, and each problem is defined in terms of an underlying vector of
parameters ~x ∈ IRm that defines the fitness space. All xi ∈ ~x will have domain [0, 1].
xm is known as the underlying distance parameter, and x1:m−1 are the underlying
position parameters. The vector ~x is derived, via a series of transition vectors, from
a vector of working parameters ~z ∈ IRn (also known as vector of variables). The
domain of all zi ∈ ~z is [0, 2i]. It is worth noting, that n ≥ m and n = k + l. The
first k ∈ {m− 1, 2(m− 1), 3(m− 1), . . .} working parameters are the position related
parameters and the last l ∈ {1, 2, . . .} working parameters are the distance related
parameters. Each transition vector adds complexity to the underlying problem. The
optimizer directly manipulates ~z, through which ~x is indirectly manipulated.

WFG1

This problem is separable and unimodal, but it has a polynomial and flat region. It
is strongly biased toward small values of the variables, which makes it very difficult
for some optimizers. It is defined as follows:
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Figure A.8: WFG1 Pareto optimal front for two (left) and three (right) objectives.

Given ~z = {z1, . . . , zk, zk+1, . . . , zn}

Minimize f1(~x) = xm + 2
m−1∏
i=1

(1− cos(xiπ/2))

fj=2:m−1(~x) = xm + 2j

(
m−j∏
i=1

(1− cos(xiπ/2))

)
(1− sin(xm−j+1π/2))

fm(~x) = xm + 2m

(
1− x1 −

cos(10πx1 + π/2)

10π

)
where xi=1:m−1 = r sum(

{
y(i−1)k/(m−1)+1, . . . , yik/(m−1)

}
,

{2(i− 1)k/(m− 1) + 1, . . . , 2ik/(m− 1)})
xm = r sum({yk+1, . . . , yn} , {2(k + 1), . . . , 2n})

yi=1:n = b poly(y′i, 0.02)

y′i=1:k = y′′i
y′i=k+1:n = b flat(y′′i , 0.8, 0.75, 0.85)

y′′i=1:k = zi/(2i)

y′′i=k+1:n = s linear(zi/(2i), 0.35)
(A.8)

The Pareto optimal front of the WFG1 test problem is shown in Figure A.8.

CINVESTAV-IPN Computer Science Department



Test Problems 113

 1

 2

 3

 4

 0  1  2

f 2

f1

 1

 2
 1

 2
 3

 4
 5

 1

 2

 3

 4

 5

 6

 7

f3

f1 f2

f3

Figure A.9: WFG2 Pareto optimal front for two (left) and three (right) objectives.

WFG2

This problem is nonseparable and multimodal. The Pareto optimal front is discon-
nected (see Figure A.9), and is given by the following expression:

Given ~z = {z1, . . . , zk, zk+1, . . . , zn}

Minimize f1(~x) = xm + 2
m−1∏
i=1

(1− cos(xiπ/2))

fj=2:m−1(~x) = xm + 2j

(
m−j∏
i=1

(1− cos(xiπ/2))

)
(1− sin(xm−j+1π/2))

fm(~x) = xm + 2m
(
1− x1 cos2(5x1π)

)
where xi=1:m−1 = r sum(

{
y(i−1)k/(m−1)+1, . . . , yik/(m−1)

}
, {1, . . . , 1})

xm = r sum(
{
yk+1, . . . , yk+l/2

}
, {1, . . . , 1})

yi=1:k = y′i

yi=k+1:k+l/2 = r nonsep(
{
y′k+2(i−k)−1, y

′
k+2(i−k)

}
, 2)

y′i=1:k = zi/(2i)

y′i=k+1:n = s linear(zi/(2i), 0.35)
(A.9)
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WFG3

This problem is nonseparable but unimodal. It has a linear and degenerated Pareto
optimal front,2 which is given by the following expression:

Given ~z = {z1, . . . , zk, zk+1, . . . , zn}

Minimize f1(~x) = xm + 2
m−1∏
i=1

xi

fj=2:m−1(~x) = xm + 2j

(
m−j∏
i=1

xi

)
(1− xm−j+1)

fm(~x) = xm + 2m (1− x1)

where xi=1 = ui

xi=2:m−1 = xm (ui − 0.5) + 0.5

xm = r sum(
{
yk+1, . . . , yk+l/2

}
, {1, . . . , 1})

ui = r sum(
{
y(i−1)k/(m−1)+1, . . . , yik/(m−1)

}
, {1, . . . , 1})

yi=1:k = y′i

yi=k+1:k+l/2 = r nonsep(
{
y′k+2(i−k)−1, y

′
k+2(i−k)

}
, 2)

y′i=1:k = zi/(2i)

y′i=k+1:n = s linear(zi/(2i), 0.35)

(A.10)

In Figure A.10, the Pareto optimal front is represented for 2D and 3D, respectively.

WFG4

In this case, the problem is separable, but highly multimodal. The Pareto optimal
front is concave (see Figure A.11) and is defined as follows:

Given ~z = {z1, . . . , zk, zk+1, . . . , zn}

Minimize f1(~x) = xm + 2
m−1∏
i=1

sin(xiπ/2)

fj=2:m−1(~x) = xm + 2j

(
m−j∏
i=1

sin(xiπ/2)

)
cos(xm−j+1π/2)

fm(~x) = xm + 2m cos(x1π/2)

where xi=1:m−1 = r sum(
{
y(i−1)k/(m−1)+1, . . . , yik/(m−1)

}
, {1, . . . , 1})

xm = r sum({yk+1, . . . , yn} , {1, . . . , 1})
yi=1:n = s multi(zi/(2i), 30, 10, 0.35)

(A.11)

2The dimensionality of the Pareto optimal front is m− 2.

CINVESTAV-IPN Computer Science Department



Test Problems 115

-2

-1

 0

 1

 2

 3

 4

 0  0.5  1  1.5  2  2.5  3

f 2

f1

 0

 0.2

 0.4

 0.6

 0.8

 1
 0

 0.5
 1

 1.5
 2

 0

 1

 2

 3

 4

 5

 6

f3

f1

f2

f3

Figure A.10: WFG3 Pareto optimal front for two (left) and three (right) objectives.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

f 2

f1

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 0  0.5  1  1.5  2  2.5  3  3.5  4

 0

 1

 2

 3

 4

 5

 6

f3

f1

f2

f3

Figure A.11: WFG4 Pareto optimal front for two (left) and three (right) objectives.
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Figure A.12: WFG5 Pareto optimal front for two (left) and three (right) objectives.

WFG5

A deceptive and separable problem. The Pareto optimal front is concave (see Fi-
gure A.12) and is defined by the following expression:

Given ~z = {z1, . . . , zk, zk+1, . . . , zn}

Minimize f1(~x) = xm + 2
m−1∏
i=1

sin(xiπ/2)

fj=2:m−1(~x) = xm + 2j

(
m−j∏
i=1

sin(xiπ/2)

)
cos(xm−j+1π/2)

fm(~x) = xm + 2m cos(x1π/2)

where xi=1:m−1 = r sum(
{
y(i−1)k/(m−1)+1, . . . , yik/(m−1)

}
, {1, . . . , 1})

xm = r sum({yk+1, . . . , yn} , {1, . . . , 1})
yi=1:n = s decept(zi/(2i), 0.35, 0.001, 0.05)

(A.12)
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Figure A.13: WFG6 Pareto optimal front for two (left) and three (right) objectives.

WFG6

This problem is nonseparable and unimodal. Its Pareto optimal front is concave (see
Figure A.13), and is defined as follows:

Given ~z = {z1, . . . , zk, zk+1, . . . , zn}

Minimize f1(~x) = xm + 2
m−1∏
i=1

sin(xiπ/2)

fj=2:m−1(~x) = xm + 2j

(
m−j∏
i=1

sin(xiπ/2)

)
cos(xm−j+1π/2)

fm(~x) = xm + 2m cos(x1π/2)

where xi=1:m−1 = r nonsep(
{
y(i−1)k/(m−1)+1, . . . , yik/(m−1)

}
, k/(m− 1))

xm = r nonsep({yk+1, . . . , yn} , l)
yi=1:k = zi/(2i)

yi=k+1:n = s linear(zi/(2i), 0.35)
(A.13)

WFG7

Having a parameter dependent bias, this problem is also separable and unimodal.
The concave Pareto optimal front is depicted in Figure A.14, and is defined as:
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Figure A.14: WFG7 Pareto optimal front for two (left) and three (right) objectives.

Given ~z = {z1, . . . , zk, zk+1, . . . , zn}

Minimize f1(~x) = xm + 2
m−1∏
i=1

sin(xiπ/2)

fj=2:m−1(~x) = xm + 2j

(
m−j∏
i=1

sin(xiπ/2)

)
cos(xm−j+1π/2)

fm(~x) = xm + 2m cos(x1π/2)

where xi=1:m−1 = r sum(
{
y(i−1)k/(m−1)+1, . . . , yik/(m−1)

}
, {1, . . . , 1})

xm = r sum({yk+1, . . . , yn} , {1, . . . , 1})
yi=1:k = y′i

yi=k+1:n = s linear(y′i, 0.35)

y′i=1:k = b param(zi/(2i), r sum({zi+1/(2(i+ 1)), . . . , zn/(2n)} ,

{1, . . . , 1}), 0.98

49.98
, 0.02, 50)

y′i=k+1:n = zi/(2i)
(A.14)
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Figure A.15: WFG8 Pareto optimal front for two (left) and three (right) objectives.

WFG8

This problem also has a parameter dependent bias, but is also nonseparable and uni-
modal. The concave Pareto optimal front (see Figure A.15) is given by the expression:

Given ~z = {z1, . . . , zk, zk+1, . . . , zn}

Minimize f1(~x) = xm + 2
m−1∏
i=1

sin(xiπ/2)

fj=2:m−1(~x) = xm + 2j

(
m−j∏
i=1

sin(xiπ/2)

)
cos(xm−j+1π/2)

fm(~x) = xm + 2m cos(x1π/2)

where xi=1:m−1 = r sum(
{
y(i−1)k/(m−1)+1, . . . , yik/(m−1))

}
, {1, . . . , 1})

xm = r sum({yk+1, . . . , yn} , {1, . . . , 1})
yi=1:k = y′i

yi=k+1:n = s linear(y′i, 0.35)

y′i=k = zi/(2i)

y′i=k+1:n = b param(zi/(2i), r sum({z1/2, . . . , zi−1/(2(i− 1))} ,

{1, . . . , 1}), 0.98

49.98
, 0.02, 50)

(A.15)
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WFG9

The last problem of the suite is nonseparable, multimodal, deceptive, and has a
parameter dependent bias. All these features make it a very difficult problem. The
concave Pareto optimal front (see Figure A.16) is defined as:

Given ~z = {z1, . . . , zk, zk+1, . . . , zn}

Minimize f1(~x) = xm + 2
m−1∏
i=1

sin(xiπ/2)

fj=2:m−1(~x) = xm + 2j

(
m−j∏
i=1

sin(xiπ/2)

)
cos(xm−j+1π/2)

fm(~x) = xm + 2m cos(x1π/2)

where xi=1:m−1 = r nonsep(
{
y(i−1)k/(m−1)+1, . . . , yik/(m−1)

}
, k/(m− 1))

xm = r nonsep({yk+1, . . . , yn} , l)
yi=1:k = s decept(y′i, 0.35, 0.001, 0.05)

yi=k+1:n = s multi(y′i, 30, 95, 0.35)

y′i=1:n−1 = b param(zi/(2i), r sum({zi+1/(2(i+ 1)), . . . , zn/(2n)} ,

{1, . . . , 1}), 0.98

49.98
, 0.02, 50)

y′n = zn/(2n)
(A.16)

For WFG1-WFG7, a solution is Pareto optimal if zi=k+1:n = (2i)0.35. Note that
WFG2 is disconnected. For WFG8, it is required that all of:

zi=k+1:n = (2i)0.35(0.02+49.98( 0.98
49.98

−(1−2u)|b0.5−uc+ 0.98
49.98

|))
−1

,

u = r sum({z1, . . . , zi−1} , {1, . . . , 1}).

To obtain a Pareto optimal solution, the position should first be determined by set-
ting z1:k appropriately. The required distance-related parameter values can then be
calculated by first determining zk+1, then zk+2, and so on, until zn has been calculated.

In the case of WFG9, for a solution to be Pareto optimal, it is required that all
of:

zi=k+1:n = (2i)

{
0.35(0.02+1.96 r sum({zi+1,...,zn},{1,...,1}))−1

, i 6= n

0.35, i = n,

which can be found by first determining zn, then zn−1, and so on, until the required
value for zk+1 is determined. Once the optimal values for zk+1:n are determined,
the position-related parameters can be varied arbitrarily to obtain different Pareto
optimal solutions.
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Figure A.16: WFG9 Pareto optimal front for two (left) and three (right) objectives.

Transformation Functions

The previous problems are defined in terms of a set of transformation functions,
which map parameters with domain [0, 1] onto the range [0, 1]. There are three
types of transformation functions: bias, shift and reduction functions. Bias and shift
functions only employ one parameter, whereas reduction functions can employ many.
Bias transformations have a natural impact on the search process by biasing the fitness
landscape. Shift transformations move the location of optimal values, and are used
to apply a linear shift, or to produce deceptive and multimodal problems. Reduction
transformations are used to produce non-separability of the problem (dependency
between variables). In the following, we define such transformation functions.

Bias: Polynomial

When α > 1 or when α < 1, y is biased towards zero or towards one, respectively.

b poly(y, α) = yα, (A.17)

where α > 0 and α 6= 1.

Bias: Flat Region

Values of y between B and C, the area of the flat region, are mapped to the value A.
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b flat(y, A,B,C) = A+ min(0, by −Bc)A(B − y)

B

−min(0, bC − yc)(1− A)(y − C)

1− C
,

(A.18)

where A,B,C ∈ [0, 1], B < C, B = 0⇒ A = 0∧C 6= 1, and C = 1⇒ A = 1∧B 6= 0.

Bias: Parameter Dependent

A,B,C, the parameter vector ~w ∈ [0, 1]|~w|, and the reduction function u together
determine the degree to which y is biased by being raised to an associated power:
values of u(~w) ∈ [0, 0.5] are mapped linearly onto [B,B + (C − B)A], and values of
u(~w) ∈ [0.5, 1] are mapped linearly onto [B + (C −B)A,C].

b param(y, u(~w), A,B,C) = yB+(C−B)(A−(1−2u(~w))|b0.5−u(~w)c+A|), (A.19)

where A ∈ (0, 1), and 0 < B < C.

Shift: Linear

A ∈ (0, 1) is the value for which y is mapped to zero.

s linear(y, A) =
|y − A|

|bA− yc+ A|
. (A.20)

Shift: Deceptive

A is the value at which y is mapped to zero, and the global minimum of the trans-
formation. B is the “aperture” size of the well/basin leading to the global minimum
at A, and C is the value of the deceptive minima (there are always two deceptive
minima).

s decept(y, A,B,C) = 1 + (|y − A| −B)

(
by − A+Bc

(
1− C + A−B

B

)
A−B

+
bA+B − yc

(
1− C + 1−A−B

B

)
1− A−B

+
1

B

)
,

(A.21)

where A ∈ (0, 1), 0 < B � 1, 0 < C � 1, A−B > 0, and A+B < 1.
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Shift: Multi-modal

A controls the number of minima, B controls the magnitude of the “hill sizes” of
the multimodality, and C is the value for which y is mapped to zero. When B = 0,
2A + 1 values of y (one at C) are mapped to zero, and when B 6= 0, there are 2A
local minima, and one global minimum at C. Larger values of A and smaller values
of B create more difficult problems.

s multy(y, A,B,C) =
1 + cos

[
(4A+ 2) π

(
0.5− |y−C|

2(bC−yc+C)

)]
+ 4B

(
|y−C|

2(bC−yc+C)

)2

B + 2
,

(A.22)
where A ∈ {1, 2, . . .}, B ≥ 0, (4A+ 2)π > 4B, and C ∈ (0, 1).

Reduction: Weighted Sum

By varying the constants of the weight vector ~w, optimizers can be forced to treat
parameters differently.

r sum(~y, ~w) =

(∑|~y|
i=1wiyi

)
∑|~y|

i=1 wi
, (A.23)

where |w| = |y|, and w1, . . . , w|~y|>0.

Reduction: Non-separable

A controls the degree of non-separability.3

r nonsep(~y, A) =

∑|~y|
j=1

(
yj +

∑A−2
k=0 |yj − y1+(j+k)mod|~y||

)
|~y|
A
dA/2e (1 + 2A− 2dA/2e)

, (A.24)

where A ∈ {1, . . . , |~y|}, and |~y|modA = 0.

A.3 Summary

When attempting to better understand the strengths and weaknesses of an optimizer,
it is important to have a strong understanding of the problem at hand. For this reason,
a large set of artificial test problems have been proposed.

In this appendix, we reviewed two important benchmarks in the field of many-
objective optimization: the DTLZ test suite, which includes seven unconstrained
problems with degenerate and multimodal Pareto optimal fronts, and the WFG test
suite, which includes nine problems with a wide variety of Pareto optimal geometries
and fitness landscape, such as, bias, multi-modality, and non-separability.

3It is worth noting that, r nonsep(~y, 1) = r sum(~y, {1, . . . , }).
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Both benchmarks are scalable with respect to the number of objectives and va-
riables. In the case of the DTLZ test suite, the exact location of the Pareto optimal
sets are known, as well as the exact shapes and locations of almost all their corre-
sponding Pareto optimal fronts. On the other hand, for the WFG test suite, only the
Pareto optimal sets are known.

Therefore, information in objective space can be used by performance indicators
that measure convergence to the true Pareto optimal front, such as, generational
distance, inverse generational distance, etc., allowing to perform a statistical analysis
of results.

There is some controversy about the DTLZ test suite, since it has several limita-
tions, such as the following:

• None of its problems is deceptive.

• None of its problems is (practically) nonseparable.

• The number of position parameters is always fixed, relative to the number of
objectives.

• DTLZ5 y DTLZ6 are both meant to be problems with degenerate Pareto opti-
mal fronts. However, this is untrue for instances with four or more objectives.
Additionally, their Pareto optimal fronts are unclear beyond three objectives.

Because of this, the WFG test suite is a better choice, since it relies on a set of
transformations, that cover the missing features of the DTLZ test suite. In conse-
quence, it is more difficult to solve for optimizers, specially for those that are based
on hill climbing strategies.

As a final comment, these benchmarks were suggested in order to cover represen-
tative cases. However, the user can design their own problems following the metho-
dology described by Deb [215] and Huband [48].
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Statistics Applied to Stochastic
Optimizers

One important task in Evolutionary Computation is the analysis of optimizers in
terms of efficiency, i.e., the computational effort required (CPU time, memory, num-
ber of evaluations/iterations) and effectiveness, which can be measured in terms of
convergence, distribution and accuracy of the obtained solutions. One may wish to
determine if a given MOEA performs “better” than another over a specific problem
domain class or classes, and if so, we also wish to determine the reason for that.

The proper way to compare efficiency is by analyzing the complexity of the al-
gorithms, and then, corroborate this theoretical result experimentally. On the other
hand, the traditional modus operandi when comparing effectiveness is by generating
random samples and then applying transformations that can allow us to describe and
make inferences about the approximations produced by MOEAs. However, we cannot
determine this fact definitively because we only have access to finite-sized samples of
approximation sets. Instead, we should show these inferences statistically.

The aim of this Appendix is to present the adopted methodology for the ana-
lysis of MOEAs made in Chapter 5, which is based on nonparametric statistics.1 In
Section B.1, we present some basic concepts about probability theory and statistical
inference, in order to understand the methodology described in Section B.2. We also
provide a guide to the use of the most appropriate inferential test, as well as some
of the most popular software packages currently available. Then, in Section B.3, we
introduce the Wilcoxon Rank Sum Test, which is a powerful nonparametric technique
that can compare two algorithms under certain assumptions. To make it easier to
understand, we give an illustrative example of its use. Finally, in Section B.4 we
present the summary of the Appendix.

1A statistical method wherein the data is not required to fit a normal distribution. Nonparametric
statistics use data that is often ordinal, which means that it does not rely on numbers, but rather
on a ranking or order of sorts.
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B.1 Basic Definitions

In the following, we provide some basic terminology of probability theory and statis-
tical inference, that will be employed in subsequent sections. If the reader is familiar
with these topics, he/she may skip this subsection.

Definition B.1.1. A sample space is the set of all possible outcomes of a random
experiment.

Definition B.1.2. A random variable X is a function that assigns real numbers to
the points in a sample space.

Definition B.1.3. The probability function of the random variable X, usually de-
noted by f(x), is the function that gives the probability of X assuming the value x,
for any real number x. In other words:

f(x) = P (X = x). (B.1)

Definition B.1.4. The distribution function of a random variable X, usually denoted
by F (X), is the function that gives the probability of X being less than or equal to
any real number x. In other words:

F (x) = P (X ≤ x) =
∑
t≤x

f(t), (B.2)

where the summation extends over all values of t that do not exceed x.

If the graph of a distribution function has no steps but rises gradually, then
the distribution function is called continuous, and the random variable with that
distribution function is called a continuous random variable.

Definition B.1.5. The expected value (or, synonymously, expectation or mean) of a
random variable X with probability function f(x), is:

µ = E(X) =
∑
x

xf(x) =
1

n

∑
x

x. (B.3)

Definition B.1.6. The median is the middle score for a set of data that has been
arranged by order of magnitude. If there is an even number of observations, then the
median is defined to be the average of the two middle values.2 This measure is less
affected by outliers and skewed data.

Definition B.1.7. The variance of a random variable X with mean E(X) and the
probability function f(x), is:

σ2 = V ar(X) = E(X2)− µ2. (B.4)

2 In this work, we take as median the minimum of the two middle values, since the average is
not representative in a sample.
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x

f(
x) 65%

x0.65 = 0.38

(a)

x

f(
x) 1 − α

−T −C C T

p−value
α

(b)
Figure B.1: Remarkable values in a distribution function. (a) Representation of the 0.65
quantile. (b) Illustration of the critical value (C), confidence interval ([-C,C]), confidence
level (1−α), significance level (α), and the test value (T) for determining the p-value (more
extreme shaded values).

Definition B.1.8. The standard deviation of a random variable X is the positive
square root of the variance of X, usually denoted by σ.

Definition B.1.9. Let X be a random variable. Then X is said to have the normal
distribution if the distribution function of X is given by:

F (x) = P (X ≤ x) =

∫ x

−∞

1√
2πσ

e−
1
2

([y−µ]/σ)2dy, (B.5)

where µ and σ are the mean and standard deviation of X. The standard normal
distribution is the normal distribution with µ equal to 0 and σ equal to 1.

Definition B.1.10. The number xp for a given value of p between 0 and 1, is called
the pth quantile of the random variable X, if P (X < xp) ≤ p and P (X > xp) ≤ 1−p.

That is, X is less than xp with probability p or less, and X exceeds xp with
probability 1 − p or less. The median is the 0.5 quantile, the third decile is the 0.3
quantile, the upper and lower quartiles are the 0.75 and 0.25 quantiles, respectively,
and the sixty-five percentile is the 0.65 quantile.

The easiest method of finding the pth quantile involves using the graph of the
distribution function of the random variable. The pth quantile is the abscissa of the
point on the graph which has the ordinate value of p, as illustrated in Figure B.1-a.

Theorem B.1.1. (Central Limit Theorem) Let Yn be the sum of n random
variables X1, X2, ..., Xn, let µn be the mean of Yn and let σ2

n be the variance of Yn.
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Table B.1: Measurement Levels of Data.

Level
Data

Description Example
Category

-
Nominal/

Numbers or labels are employed merely to identify - “even” or “odd”
mutually exclusive categories, but cannot be

categorical manipulated in a meaningful mathematical manner. - Indicator value

Ordinal/
The numbers represent rank-orders, and do not give - CPU benchmark
any information regarding the differences between - “HypE is better

rank-order adjacent ranks. than MOEA/D”

Interval

It considers the relative order of the measures - Temperature
involved but, in addition, the size of the interval - “HypE is 60%
between measurements. better than

MOEA/D ”

+
The same characteristics as in ordinal and interval, - “MOEA/D is

Ratio but also the ratio between two measurements is twice faster than
meaningful. It has a true zero point. NSGA-II”

As n, the number of random variables, goes to infinity, the distribution function of
the random variable

Yn − µn
σn

approaches the standard normal distribution function.

The theorem says that the distribution function of the sum of several random
variables approaches the normal distribution function, as the number of random va-
riables being added becomes large (i.e., goes to infinity), and when other general
conditions are met [216].

We say that a population3 is a collection of all elements under investigation, and
a sample is a collection of some of these elements.

If each element in the population has an equal likelihood of being selected, then
we refer to as a random sample. A more formal definition is the following:

Definition B.1.11. A random sample of size n is a sequence of n independent and
identically distributed random variables X1, X2, ..., Xn.

On the other hand, the information is categorized with respect to the level of
measurement that the data represents. Different levels of measurement contain diffe-
rent amounts of information, and hence, meaningful mathematical operations can be
performed. In Table B.1, we present this classification.

Hypothesis testing is the process of inferring from a sample whether or not to
accept a certain statement about the population. The statement itself is called the
hypothesis. In each case the hypothesis is tested on the basis of the evidence contained
in the sample. The hypothesis is either rejected, meaning the evidence from the sample

3This term should not be confused with the population concept in Evolutionary Computation,
unless stated otherwise.
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casts enough doubt on the hypothesis for us to say with some degree of confidence
that the hypothesis is false, or accepted, meaning that it is not rejected.

The hypothesis to be tested is called the null hypothesis and is denoted by H0.
The alternative hypothesis, denoted by H1, is the negation of the null hypothesis.
The decision to reject H0 is equivalent to the opinion “H0 is false”, and is equivalent
to acceptance of H1, or the opinion “H1 is true”. The decision to accept H0 is not
equivalent to the opinion “H0 is true” but, instead, represents the opinion “H0 has not
been shown to be false”, which could be the result of insufficient evidence. Therefore,
if we wish to determine if a statement concerning some population is false, we make
it the null hypothesis. If we wish to determine whether a statement is true, we make
it the alternative hypothesis.

H0 will often be of the form “samples A and B are drawn from the same distribu-
tion” or “samples A and B are drawn from distributions with the same mean value”.
Some other important definitions are presented next.

Definition B.1.12. A test statistic is a statistic used to help make the decision in a
hypothesis test.

When a test is conducted and a claim is made about the hypotheses, two distinct
errors are possible:

Definition B.1.13. The type I error is the action of rejecting H0 when H0 was
actually true. The maximum probability of rejecting a true null hypothesis is usually
labeled by α, and referred to as significance level of the test.

Definition B.1.14. The type II error is an action of failing to reject H0 when H1

was actually true. The probability of the type II error is denoted by β. Power is
defined as 1 − β. In simple terms, the power is propensity of a test to reject wrong
alternative hypothesis.

Definition B.1.15. The critical region is the set of all points in the sample space
that result in the decision to reject the null hypothesis.

Definition B.1.16. The probability, assuming H0 is true, that the test statistic
would take a value as extreme or more extreme than actually observed is called the
p-value.

The main difference between α and p-value is that α is a parameter defined by the
user, while the p-value is the result of a statistical test applied to the sampled data.
The smaller the α, the more stringent the test. The smaller the p-value, the stronger
the evidence is in favor of the alternative hypothesis.

To determine if an observed outcome is statistically significant, we compare the
values of α and the p-value. There are two possibilities that emerge:

• If the p-value is less than or equal to the α, then the null hypothesis should be
rejected, and the result is said to be statistically significant.
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Figure B.2: Flow chart of the experimental methodology.

• If the p-value is greater than α, then we fail to reject the null hypothesis, and
we say that the result is statistically non-significant.

Definition B.1.17. A 1− α level confidence interval is a statistic, in the form of a
region or interval, that contains an unknown parameter with probability 1− α.

The confidence interval can take any number of probabilities, with the most
common being 95% or 99%. Some of these definitions are depicted in Figure B.1-b.

B.2 Experimental Methodology

In this section we describe the statistical comparison methodology, following the
recommendations made by Knowles et al. [217]. It is worth noting that these steps
rely on the scientific method [218].

One of the major goals in Evolutionary Computation is to check whether an al-
gorithm provides significantly better approximation sets than another optimizer with
respect to some test problem. To determine this fact, random samples of finite size
must be generated by each optimizer, and then, every approximation set in objec-
tive space is transformed into a real value using a performance indicator that should
be compliant with Pareto dominance. Next, the resulting data is summarized using
descriptive statistics, such as the mean and variance,4 in order to build tables and
box-plots [219] that are useful to identify patterns, make observations, and in conse-
quence, ask some question that will be formulated in a hypothesis. Such hypothesis
will be accepted or rejected by means of an statistical test. From these results, we
are now ready to draw conclusions. This process is depicted in Figure B.2.

The use of a quality indicator reduces the dimension of an approximation set to
a single figure of merit. In many studies on multi-objective algorithm performance,
more than one Pareto compliant indicator is used to compare approximation sets.
If that is the case, the data on which the test has been carried out should be used
once, and in consequence, a new independent data must be generated to make more
inferences. In the case when the tests are computationally expensive, it is possible

4 The mean, median and mode are sometimes referred to as first order moments of a distribution
or measures of central tendency, and they describe or summarize the location of the distribution
on the real number line. The variance, standard deviation, and inter-quartile range are known as
second-order moments or measures of variability and they describe the spread of the data.
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to use methods for correcting the p-values for the reduction in confidence, like the
Bonferroni correction [217] or methods based on re-samplings [220].

Some statistical tests are based on assuming the data is drawn from a distribution
that closely approximates a known distribution, for example the normal distribu-
tion. Such known distributions are completely defined by their parameters (e.g. the
mean and standard deviation), and tests based on these known distributions are thus
termed parametric statistical tests. However, the assumption of normality cannot be
theoretically justified for stochastic optimizers, in general, and it is difficult to empiri-
cally test for normality with relatively small samples (less than 100 runs). Therefore,
it is safer to rely on nonparametric tests, which make no assumptions about the
distributions of the variables.

There exist two main types of nonparametric tests: rank tests and permutation
tests. Rank tests pool the values from several samples and convert them into ranks
by sorting them, and then employ tables describing the limited number of ways in
which ranks can be distributed (between two or more algorithms) to determine the
probability that the samples come from the same source. Permutation tests use the
original values without converting them to ranks but estimate the likelihood that
samples come from the same source explicitly by Monte Carlo simulation [221].

Rank tests are the less powerful but are also less sensitive to outliers and are
computationally cheap. If there are just two optimizers, for example, the Wilcoxon
rank sum test [216, 222] can be applied. The Kruskal-Wallis rank test [216, 222] is an
extension that works for multiple algorithms. Permutation tests are more powerful
because information is not thrown away. They are also better when there are many
tied values in the samples and, in certain circumstances, when it may be important
to compare the worst-case or best-case performance of optimizers. However, they can
be expensive to compute for large samples. Examples of permutation methods are
Bootstrapping [222, 223], Jacknife [222] or Fisher’s permutation test [216, 222].

When comparing a pair of stochastic optimizers, two slightly different scenarios
are possible. In one case, each run of each optimizer is a completely independent
random sample; that is, the initial population,5 the random seed, and all other random
variables are drawn independently at random on each run. In the other case, the
influence of one or more random variables is partially removed from consideration; i.e.,
the initial population used by the two algorithms may be matched in corresponding
runs, so that the runs (and hence the final quality indicator values) should be taken
as pairs. In the former scenario, the statistical testing will reveal, in quite general
terms, whether there is a difference in the distributions of indicator values resulting
from the two stochastic optimizers, from which a general performance difference can
be inferred. In the latter scenario, the statistical testing reveals whether there is
a difference in the indicator value distributions given the same initial population,
and the inference in this case relates to the optimizer’s ability to improve the initial
population. While the former scenario is more general, the latter may give more
statistically significant results. If matched samples have been collected, then the

5 Here, we refer to the term population in Evolutionary Computation
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Table B.2: Decision Table for Inferential Statistical Test. The measurement scale is indi-
cated by the symbol + (at least ordinal) or - (at least interval).

Number of Hypothesis
Random Independent Samples Dependent Samples Test
Samples Involving

Two

+ Wilcoxon rank sum test (a, b, d, e) - Wilcoxon matched- a. Means
- Squared ranks test (c, d) pairs signed-ranks test (medians)
+ Klotz test (c, d) (a, b, d, e)
+ Kolmogorov-Smirnov test (b, d, e)
+ Cramér-von Mises test (d) + Binomial sign test b. Confidence
- Randomization test or (b, d, e) interval
Fisher’s permutation test (a)
+ Bootstrap (a, c, d) - Randomization test
+ Jacknife (a, c, d) for matched pairs or c. Variances
+ Siegel-Tukey test (c) Fisher’s matched
- Moses test (c) samples test (a)

Several

+ Median test (a) d. Identical
+ Kruskal-Wallis test (a, d, e) + Friedman two-way populations or
+ van der Waerden test (a, d, e) analysis of variance distributions
- Squared ranks test (c, d) by ranks (a)
+ Birnbaum-Hall test (d)
+ k-sample Smirnov test (d, e) e. Ordering

Wilcoxon matched-pairs signed-ranks test or Fisher’s matched samples test [216] can
be used. Similarly, the Friedman test [222] extends to any number of related samples.

In Table B.2, we provide a classification of the most popular statistical tests
[216, 222, 224], separated by the number of samples to be evaluated, dependence,
measurement scale, and the property they evaluate; such as if the hypothesis is based
on the mean/median/variance, or if the distributions are similar, or if the test provides
some indication about the ordering of distributions.

There are several statistical software packages that implement these tests. Here
is a short list of them [225]:

Matlab http://www.mathworks.com

R-project www.r-project.org

StatXact http://www.cytel.com/software/statxact

Minitab http://www.minitab.com

TESTIMATE http://www.idv-cro.eu/cms/index.php?id=testimate&L=1

statgraphics http://www.statgraphics.com

SPSS http://www-01.ibm.com/software/analytics/spss

BMDP http://www.statistical-solutions-software.com
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SAS http://www.sas.com

Stata http://www.stata.com

STATISTICA http://www.statsoft.com

In the following section, we will describe the Wilcoxon rank sum test, which was
used to deduce the inferences in Chapter 5.

B.3 The Wilcoxon Rank Sum Test

This test, also known as the Mann-Whitney U test, was invented by Frank Wilcoxon6

in 1945. Later, Mann and Whitney (1947) considered unequal sample sizes and
furnished tables suitable for use with small samples. Equivalent forms of the same
test appeared in the literature under other names (see [216, 225]). This nonparametric
test is employed with ordinal data in a hypothesis testing situation involving a design
with two independent samples. If the result is significant, it indicates there is a
significant difference between the two sample medians, and as a result of the latter,
the researcher can conclude that there is a high likelihood that the samples represent
populations with different median values.

In this case, ranks may be considered preferable to the actual data, since they
retain only the ordering of the observations and make no other use of their numerical
values. Additionally, the probability theory of statistics based on ranks is relatively
simple and does not make any specific assumptions about the shape of the distri-
bution, such as normality. Another reason for preferring ranks is that outliers are
eliminated, thus the influence in variability is dramatically reduced. However, some
information is sacrificed in the transformation of the data from interval/ratio into
ranks.

Assumptions

The Wilcoxon rank sum test is based on the following assumptions:

1. Each sample has been randomly selected from the population it represents.

2. In addition to independence within each sample, there is mutual independence
between the two samples.

3. The original variable observed (which is subsequently ranked) is a continuous
random variable.

4. The underlying distributions from which the samples are derived are identical
in shape.

6Wilcoxon (1892-1965) was a chemist who encountered statistical problems in his work at the
research laboratories of the American Cyanimid Company.
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Hypotheses

Let E(X) and E(Y ) be the means of the populations X and Y , respectively. Then,
the hypotheses may be stated as follows:

A. Two-Tailed Test
H0 : E(X) = E(Y ) versus H1 : E(X) 6= E(Y )

B. One-Tailed Test
H0 : E(X) ≥ E(Y ) versus H1 : E(X) < E(Y )

C. One-Tailed Test
H0 : E(X) ≤ E(Y ) versus H1 : E(X) > E(Y )

The definition of the alternative hypothesis usually takes one of two forms. If H1

is of the form “sample X comes from a better distribution than sample Y ”, then the
inferential test is a one-tailed test. If H1 does not specify a prediction about which
distribution is better, and is of the form “sample X and sample Y are from different
distributions”, then it is a two-tailed test. A one-tailed test is more powerful than a
two-tailed test, meaning that for a given α value, it rejects the null hypothesis more
readily in cases where it is actually false.

In Algorithm 20, we present the Wilcoxon rank sum test [216]. In line 1, the
ranking assignment is performed. In this case, both samples are combined into a single
ordered sample, and then, the ranks are assigned to each observation, starting from
1, for the smallest value, to n+m, for the largest, without regard to the population
each value came from. If several sample values are exactly equal to each other (tied),
it is assigned to each the average of the ranks that would have been assigned to them
if there had been no ties. Then, in line 2, the statistic W is calculated. If there
are no ties or just a few, it is equal to the sum of the ranks assigned to the values
from the sample X. Otherwise, it is the subtracted mean from the previous value,
and divided by the standard deviation. In the following lines, the decision rule is
applied depending on whether the hypothesis of interest is classified as A, B, or C.
Here, wp is the pth quantile of the random variable W (see Definition B.1.10). If W
was calculated using the formula for many ties, then the quantile can be obtained
directly from the quantiles of the standard normal distribution. Otherwise, the upper
quantiles may be computed by subtraction from n(n+m+ 1). That is,

w1−p = n(n+m+ 1)− wp. (B.6)

As an alternative to using upper quantiles, the statistic W ′, defined as:

W ′ = n(n+m+ 1)−W, (B.7)

may be used; just the flow of decision rules changes in Algorithm 20, since instead
of rejecting the null hypothesis, this is accepted, and vice versa.
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Algorithm 20 Wilcoxon Rank Sum Test

Input: The random samples X1, X2, ..., Xn and Y1, Y2, ..., Ym from two distinct po-
pulations, the significance level α and the hypothesis type.

Output: Rejection or acceptance of H0 at the level of significance α.
1: Assign the ranks R(Xi) and R(Yj) for all i ∈ {1, ..., n} and j ∈ {1, ...,m}
2: Compute the Wilcoxon rank sum statistic:

W ←


∑n

i=1R(Xi) if there are few ties

∑n
i=1R(Xi)−nN+1

2√
nm

N(N−1)(
∑n

i=1R(Xi)2+
∑m

j=1R(Yj)2)−nm(N+1)2

4(N−1)

otherwise,

where N = n+m.
3: if type is A then
4: Calculate the quantiles wα/2 and w1−α/2
5: if W < wα/2 or W > w1−α/2 then
6: Reject H0

7: else
8: Accept H0

9: else if type is B then
10: Calculate the quantile wα
11: if W < wα then
12: Reject H0

13: else
14: Accept H0

15: else if type is C then
16: Calculate the quantile w1−α
17: if W > w1−α then
18: Reject H0

19: else
20: Accept H0

Because W is the sum of the ranks of the nXs, for large n and m the central limit
theorem (see Theorem B.1.1) may be applied to obtain an approximate distribution
for W . Therefore, W is approximately normal with mean and variance:

E(W ) =
n(n+m+ 1)

2
, (B.8)

and

V ar(W ) =
nm(n+m+ 1)

12
. (B.9)

Thus, the quantiles of W may be approximated as:
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wp = E(W ) + xp
√
V ar(W ), (B.10)

where xp is the pth quantile of the standard normal distribution.
It should be noted that if the sum is too small (or too large) with respect to

its mean, there is some indication that the values from that population tend to be
smaller (or larger, as the case may be) than the values from the other population.
Hence, for the case A, the null hypothesis of no differences between populations may
be rejected if the ranks associated with one sample tend to be larger than those of
the other sample. For case B, small values of W indicate that H1 is true, and in
consequence for C, large values of W indicate that H1 is true.

Example

As an illustrative example, suppose we want to evaluate the performance of two
optimizers on the DTLZ1 test problem for two objectives,7 so each algorithm is
executed independently at random 10 times,8 and from the outcome Pareto front
approximations, the hypervolume is computed using the reference point at (1, 1).
The adopted significance level is α = 0.05.

The indicator values of Optimizer 1 (Xi) and Optimizer 2 (Yi) are shown in the
second column of Table B.3. According to Figure B.3, one may guess that Optimizer 1
outperforms Optimizer 2 (assuming the hypervolume is to be maximized). Therefore,
the Wilcoxon rank sum test can be applied to verify this fact. Since we wish to
determine if the assumption is true, we make it in H1. Thus, the hypotheses are:

• H0: Optimizer 1 does not perform better on DTLZ1 than Optimizer 2.

• H1: Optimizer 1 performs better on DTLZ1 than Optimizer 2.

The null hypothesis could also be stated as H0 : E(X) ≤ E(Y ) versus H1 :
E(X) > E(Y ), according to the set C of hypotheses.

Following the steps of Algorithm 20, the values are ranked, as it is shown in the
third column of Table B.3. Since there are seven groups of tied values, the ranks are
averaged within each group, as it is shown in the fourth column.

The next step is to calculate the Wilcoxon rank sum statistic for many ties. Then,
we have n = m = 10, so N = 20. Then, the sum of the ranks assigned to Xs is:

W ′ =
n∑
i=1

R(Xi)

= 2 + 4.5 + 12.5 + 14 + 15 + (3)(17) + 19 + 20

= 138,

7See Appendix A for the problem definition.
8The parameters employed are the same as the described in Chapter 5.
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Table B.3: Indicator values and rank assignment for the example.

Optimizer Hypervolume Tied Rank Final Rank
1 0.87351 1 2
2 0.87351 2 2
2 0.87351 3 2
1 0.87352 4 4.5
2 0.87352 5 4.5
2 0.87353 6 6.5
2 0.87353 7 6.5
2 0.87354 8 8.5
2 0.87354 9 8.5
2 0.87355 10 10.5
2 0.87355 11 10.5
1 0.87356 12 12.5
2 0.87356 13 12.5
1 0.87358 14 14
1 0.87359 15 15
1 0.87361 16 17
1 0.87361 17 17
1 0.87361 18 17
1 0.87362 19 19
1 0.87363 20 20

and the sum of the squares of all 20 ranks is:

n∑
i=1

R(Xi)
2 +

m∑
j=1

R(Yj)
2 = 2863.5.

Now, we can compute W :

W =
W ′ − nN+1

2√
nm

N(N−1)

(∑n
i=1R(Xi)2 +

∑m
j=1R(Yj)2

)
− nm(N+1)2

4(N−1)

=
138− 1020+1

2√
(10)(10)
20(20−1)

(2863.5)− (10)(10)(20+1)2

4(20−1)

= 2.5068.

In the following, we calculate the w1−α quantile, which is equivalent to the x1−α
quantile of the standard normal distribution. Thus, assuming w0.95 = 1.6449,9 we

9This value was obtained directly from tables (see Table A1 from [216]). It can also be approxi-
mated using statistical software packages, as we will see later in this Appendix.
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Figure B.3: Histogram and normal approximation curve for the example.

notice that W > w0.95, i.e., 2.5068 > 1.6449; therefore. the null hypothesis is rejected
at the significance level of 0.05.

On the other hand, if we had used the Wilcoxon rank sum statistic for few ties,
W ′ = 138, then we would have obtained from equations (B.8), (B.9), (B.10), and
assuming x0.05 = −1.6449:

E(W ) =
n(n+m+ 1)

2
=

10(20 + 1)

2
= 105.

V ar(W ) =
nm(n+m+ 1)

12
=

(10)(10)(20 + 1)

12
= 175.

w0.05 = E(W ) + x0.05

√
V ar(W )

= 105− 1.6449
√

175

= 83.24,

and finally, from eq. (B.6):

w0.95 = n(n+m+ 1)− wp
= 10(20 + 1)− 83.24

= 126.7599,

CINVESTAV-IPN Computer Science Department



Statistics Applied to Stochastic Optimizers 139

which is less than W ′, i.e., 138 > 126.7599, and again, H0 is rejected.
From these results, we can conclude that:

• “Optimizer 1 performs significantly better on DTLZ1 than Optimizer 2 with
respect to the hypervolume indicator, using a significance level α of 5%.”

Another way to express this idea is:

• “We are 95% confident that Optimizer 1 performs significantly better on DTLZ1
than Optimizer 2 with respect to the hypervolume indicator.”

As we mentioned before, the Wilcoxon rank sum test can be obtained from several
software packages. Here, we present an implementation of the previous example in
Matlab and R-project.

The function ranksum of Matlab performs a two-sided rank sum test of the hy-
pothesis that two independent samples come from distributions with equal medians.
It returns the following information:

• p-value

• h, which indicates if H0 can be rejected (h = 1) or not (h = 0) at the significance
level α.

• stats, which is composed of zval (the value of the normal statistic) and ranksum
(statistic W ).

The following code computes this test for the previous example, assuming the
files optimizer1.dat and optimizer2.dat contain the hypervolume values of the two
optimizers.

fid = fopen(’optimizer1.dat’);

a = fscanf(fid, ’%g’, [1 inf]);

fclose(fid);

fid = fopen(’optimizer2.dat’);

b = fscanf(fid, ’%g’, [1 inf]);

fclose(fid);

[p-value,h,stats] = ranksum(a,b)

Output:

p-value = 0.0136

h = 1

stats =

zval: 2.4689

ranksum: 138
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Similarly, the function wilcox.test of R-project performs the one and two-sided
tests. It is worth mentioning that when there are tied values, an approximation of
the p-value is computed (see help(wilcox.test) for more details).

The implementation of the previous example is given in the following lines:

x = read.table(file="optimizer1.dat",header=FALSE)$V1

y = read.table(file="optimizer2.dat",header=FALSE)$V1

wilcox.test(x,y, alternative="greater",conf.level=0.95,exact=FALSE)

Output:

Wilcoxon rank sum test with continuity correction

data: x and y

W = 83, p-value = 0.006777

alternative hypothesis: true location shift is greater than 0

Since in both cases the p-value is less than the 0.05 significance level, the null
hypothesis is again rejected.

B.4 Summary

This appendix has presented a rigorous statistical methodology for the comparison
of MOEAs, which has strong links with the scientific method.

Even though when looking at the data or graph of one optimizer it may seem better
than another, it is necessary to validate its performance in a statistical way. The use
of descriptive statistics is limited, and should usually be given only to supplement
any statistical inferences that can be made from the data.

The most commonly used methods for inference assume that the variables in
question have a Normal distribution in the populations. In practice, this is, of course,
false, and if after inspection using plots or applying some test of normality,10 the data
is clearly not Normal, we can adopt some of the following approaches:

• Nonparametric methods: These tests use ranks instead of actual values. Exam-
ples are Wilcoxon test, the Kolmogorov-Smirnov test, Fisher’s test, etc.

• Permutation methods: These methods are computationally expensive and must
be applied for representative samples (not small). Examples of this kind of test
are the Bootstrap and Jacknife tests.

10 For example: D’Agostino’s K-squared test, the Jarque–Bera test, the Anderson–Darling test,
the Cramér–von Mises criterion or the Lilliefors test (see [216]).
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When we are interested in the performance comparison of algorithms, we need
to be confident in the conclusion. Even if the average is better, we need to take
variance into account, so that we can assess our results in a more appropriate way.
Sometimes, we would need to find the confidence intervals around both means and
verify that they do not overlap. In some other occasions, we would want to test if
one algorithm is better than its previous version. For this scenario, we need to check
if the difference between means is greater than zero. Another recommendation is
to minimize the number of different tests carried out on the same data by carefully
choosing which tests to apply before collecting the data. That is, we must not do
tests unless there is some realistic chance that the null hypothesis can be rejected,
and in consequence, the result would be interesting. It is also not advisable to reuse
data in more than one inference.

Additionally, it is important to mention, that one should not claim that MOEAs
are the only algorithms able to solve a set of test problems efficiently and effectively,
since the No Free Lunch Theorem (see the last part of Section 2.6 in Chapter 2)
indicates that stochastic algorithms are not individually robust over all problems, by
definition.
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Numerical Results of Experiments

This appendix presents a summary of the numerical results obtained from the experi-
ments made in Chapter 5.1 The data is organized in tables and figures as follows:

• Comparison table of optimizers: The values of a performance indicator for
100 independent runs from 2 to 10 objective functions are summarized using
descriptive statistics, such as the median (med.), mean or average (avg.), mini-
mum (min.), maximum (max.) and standard deviation (std.). The three best
values are shown in gray scale, where the darker tone corresponds to the best
value. In the case of the hypervolume indicator, a zero value means that the
approximation set in objective space is outside the enclosed region described by
the reference point. This indicates that, the optimizer did not converge to the
Pareto optimal front.

• Box-plot of optimizers: The information of the previous point is represented
graphically using box-plots (outliers are omitted). Optimizers are sorted from
the best to the worst median for each dimension. In the case of the hypervolume
indicator, the widths of the boxes are proportional to the number of samples
different from zero.

• Statistical test table: The Wilcoxon rank sum test (one-tailed) is applied to
hypervolume indicator values in order to compare the performance of approxi-
mation sets. The information shown in these tables corresponds to the p-values
computed in the R-project. A p-value greater than 0.05 (the significance level
α) means that there is not enough evidence that one optimizer performs better
than another one in a specific problem of certain dimensionality. No information
is shown if the hypervolume indicator value is zero.

• Approximation plot: The Pareto optimal front (POF) and True Pareto front
(True PF) is depicted for 2D and 3D. For higher dimensionality, parallel coor-
dinates are used for representing approximation sets.

1Due to its extent, the complete version is included on the CD that accompanies this report or
is available for download at: http://computacion.cs.cinvestav.mx/~rhernandez/mombi.
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Table C.1: Comparison of hypervolume indicator values for different optimizers on the DTLZ1 test problem.

Dim. Stat. NSGA-II
MOEA/D MOEA/D MOEA/D

SMS-EMOA ∆p-DDE R2-MOGA R2-MOGAw R2-MODE R2-IBEA
MOMBI MOMBI MOMBI

TCH NTCH PBI TCH NTCH PBI

2D

med. 8.734346e− 01 8.738003e− 01 8.737079e− 01 8.735956e− 01 8.738857e− 01 8.724069e− 01 8.673199e− 01 8.691769e− 01 8.716020e− 01 8.737985e− 01 8.738110e− 01 8.733910e− 01 8.736873e− 01
avg. 8.733844e− 01 8.737439e− 01 8.732419e− 01 8.735514e− 01 8.738489e− 01 8.722998e− 01 8.670841e− 01 8.686361e− 01 8.704983e− 01 8.737835e− 01 8.737656e− 01 8.733319e− 01 8.736318e− 01
min. 8.722344e− 01 8.713626e− 01 8.531973e− 01 8.725104e− 01 8.733583e− 01 8.704749e− 01 8.574558e− 01 8.563981e− 01 8.618752e− 01 8.734285e− 01 8.731185e− 01 8.720716e− 01 8.729240e− 01
max. 8.737079e− 01 8.739366e− 01 8.739218e− 01 8.739280e− 01 8.739452e− 01 8.739266e− 01 8.714175e− 01 8.721508e− 01 8.727579e− 01 8.738595e− 01 8.739348e− 01 8.735767e− 01 8.738774e− 01
std. 2.440076e− 04 2.748538e− 04 2.206064e− 03 2.654077e− 04 1.068987e− 04 6.338654e− 04 2.603557e− 03 2.998287e− 03 2.662856e− 03 7.160696e− 05 1.549755e− 04 2.136591e− 04 2.153411e− 04

3D

med. 9.555524e− 01 9.689333e− 01 8.708503e− 01 9.742206e− 01 9.745157e− 01 9.637425e− 01 9.641550e− 01 9.621279e− 01 9.704498e− 01 9.742265e− 01 9.689257e− 01 9.690623e− 01 9.742623e− 01
avg. 9.550525e− 01 9.689145e− 01 8.704594e− 01 9.741546e− 01 9.744879e− 01 9.635953e− 01 9.638756e− 01 9.616669e− 01 9.703763e− 01 9.742197e− 01 9.689603e− 01 9.689667e− 01 9.742264e− 01
min. 9.249775e− 01 9.681165e− 01 8.009318e− 01 9.734604e− 01 9.741681e− 01 9.425283e− 01 9.577672e− 01 9.498465e− 01 9.674370e− 01 9.740395e− 01 9.683805e− 01 9.649935e− 01 9.735498e− 01
max. 9.687004e− 01 9.693121e− 01 9.630539e− 01 9.744246e− 01 9.745695e− 01 9.730126e− 01 9.682085e− 01 9.680136e− 01 9.717142e− 01 9.743164e− 01 9.699062e− 01 9.707590e− 01 9.744226e− 01
std. 8.591776e− 03 1.763741e− 04 2.989390e− 02 2.153037e− 04 7.440985e− 05 6.836488e− 03 2.520996e− 03 3.748257e− 03 7.861322e− 04 5.325901e− 05 2.587439e− 04 1.042212e− 03 1.650704e− 04

4D

med. 9.639580e− 01 9.884687e− 01 8.624844e− 01 9.943298e− 01 8.047787e− 01 9.747133e− 01 9.864824e− 01 9.850237e− 01 9.925731e− 01 9.944370e− 01 9.884326e− 01 9.873143e− 01 9.943974e− 01
avg. 8.154121e− 01 9.884614e− 01 8.480667e− 01 9.943105e− 01 8.654303e− 01 9.711843e− 01 9.862139e− 01 9.847283e− 01 9.925270e− 01 9.944316e− 01 9.884203e− 01 9.865345e− 01 9.943703e− 01
min. 1.837876e− 02 9.882232e− 01 3.228452e− 01 9.938169e− 01 7.719201e− 01 9.110759e− 01 9.808208e− 01 9.773680e− 01 9.913645e− 01 9.943297e− 01 9.880964e− 01 9.794132e− 01 9.937398e− 01
max. 9.854703e− 01 9.886414e− 01 9.405262e− 01 9.944755e− 01 9.936205e− 01 9.923599e− 01 9.897951e− 01 9.903498e− 01 9.930385e− 01 9.944927e− 01 9.888881e− 01 9.895632e− 01 9.944775e− 01
std. 2.639458e− 01 7.778014e− 05 6.207241e− 02 1.268563e− 04 9.245684e− 02 1.570521e− 02 1.764767e− 03 2.631145e− 03 3.039182e− 04 2.980228e− 05 1.412847e− 04 2.451571e− 03 1.050998e− 04

5D

med. 0.000000e+ 00 9.967163e− 01 8.537713e− 01 9.985024e− 01 9.918092e− 01 9.814189e− 01 9.935068e− 01 9.933993e− 01 9.980028e− 01 9.987106e− 01 9.967983e− 01 9.939385e− 01 9.986310e− 01
avg. 0.000000e+ 00 9.962519e− 01 8.343190e− 01 9.984717e− 01 9.589651e− 01 9.776263e− 01 9.933586e− 01 9.931676e− 01 9.980065e− 01 9.987085e− 01 9.967950e− 01 9.935337e− 01 9.986193e− 01
min. 0.000000e+ 00 9.905500e− 01 2.543076e− 01 9.977365e− 01 3.506129e− 01 9.314181e− 01 9.895773e− 01 9.888739e− 01 9.976485e− 01 9.986677e− 01 9.966289e− 01 9.870903e− 01 9.983420e− 01
max. 0.000000e+ 00 9.968710e− 01 9.305960e− 01 9.986334e− 01 9.983578e− 01 9.961791e− 01 9.955494e− 01 9.962413e− 01 9.982529e− 01 9.987327e− 01 9.968840e− 01 9.961862e− 01 9.986928e− 01
std. 0.000000e+ 00 1.414327e− 03 7.842749e− 02 1.364560e− 04 9.349789e− 02 1.359742e− 02 1.176658e− 03 1.802964e− 03 1.051194e− 04 1.518398e− 05 4.314019e− 05 1.797592e− 03 4.847156e− 05

6D

med. 0.000000e+ 00 9.951489e− 01 8.463574e− 01 9.994771e− 01 9.920169e− 01 9.575644e− 01 9.961916e− 01 9.962213e− 01 9.994027e− 01 9.996664e− 01 9.978145e− 01 9.946612e− 01 9.995881e− 01
avg. 0.000000e+ 00 9.932675e− 01 8.211537e− 01 9.994641e− 01 9.380970e− 01 9.560991e− 01 9.959681e− 01 9.959699e− 01 9.994011e− 01 9.996662e− 01 9.977215e− 01 9.944595e− 01 9.995843e− 01
min. 0.000000e+ 00 9.616526e− 01 1.221068e− 01 9.991791e− 01 9.921699e− 02 9.080335e− 01 9.919554e− 01 9.899476e− 01 9.992723e− 01 9.996433e− 01 9.963297e− 01 9.821905e− 01 9.994191e− 01
max. 0.000000e+ 00 9.980609e− 01 9.330311e− 01 9.996062e− 01 9.995476e− 01 9.929916e− 01 9.981697e− 01 9.979415e− 01 9.995203e− 01 9.996791e− 01 9.986019e− 01 9.980946e− 01 9.996362e− 01
std. 0.000000e+ 00 5.651639e− 03 9.257611e− 02 7.989127e− 05 1.330509e− 01 1.823559e− 02 1.109005e− 03 1.308754e− 03 4.010875e− 05 6.978851e− 06 6.360691e− 04 2.108687e− 03 3.396471e− 05

7D

med. 0.000000e+ 00 9.872554e− 01 8.315116e− 01 9.997551e− 01 9.519868e− 01 9.546691e− 01 9.944006e− 01 9.946647e− 01 9.996740e− 01 9.998409e− 01 9.927873e− 01 9.811349e− 01 9.998043e− 01
avg. 0.000000e+ 00 9.816736e− 01 8.221327e− 01 9.997416e− 01 9.099563e− 01 8.609945e− 01 9.940195e− 01 9.946996e− 01 9.996599e− 01 9.998402e− 01 9.925764e− 01 9.797401e− 01 9.997975e− 01
min. 0.000000e+ 00 9.515551e− 01 7.579787e− 01 9.995612e− 01 2.364616e− 01 1.921871e− 01 9.892251e− 01 9.891611e− 01 9.994752e− 01 9.998041e− 01 9.857445e− 01 9.628000e− 01 9.997339e− 01
max. 0.000000e+ 00 9.952074e− 01 9.442175e− 01 9.998397e− 01 9.995339e− 01 9.973798e− 01 9.973009e− 01 9.977685e− 01 9.997396e− 01 9.998633e− 01 9.956641e− 01 9.916458e− 01 9.998370e− 01
std. 0.000000e+ 00 1.123620e− 02 3.208858e− 02 5.498313e− 05 1.149606e− 01 1.963424e− 01 1.802111e− 03 1.821607e− 03 5.357032e− 05 1.165437e− 05 1.806478e− 03 5.835605e− 03 2.501178e− 05

8D

med. 0.000000e+ 00 9.803649e− 01 8.314924e− 01 9.995553e− 01 9.853202e− 01 5.987649e− 01 9.972330e− 01 9.975402e− 01 9.999318e− 01 9.999584e− 01 9.938804e− 01 9.853580e− 01 9.998455e− 01
avg. 0.000000e+ 00 9.765100e− 01 8.061287e− 01 9.995014e− 01 8.895187e− 01 6.857738e− 01 9.971573e− 01 9.972795e− 01 9.999307e− 01 9.999567e− 01 9.936584e− 01 9.854466e− 01 9.998382e− 01
min. 0.000000e+ 00 9.496235e− 01 5.581130e− 02 9.986764e− 01 1.550827e− 02 5.967515e− 01 9.945028e− 01 9.928544e− 01 9.999002e− 01 9.999373e− 01 9.872191e− 01 9.780277e− 01 9.996004e− 01
max. 0.000000e+ 00 9.957381e− 01 8.963430e− 01 9.998332e− 01 9.998264e− 01 9.972331e− 01 9.986403e− 01 9.991893e− 01 9.999464e− 01 9.999653e− 01 9.962274e− 01 9.938527e− 01 9.999354e− 01
std. 0.000000e+ 00 1.297069e− 02 1.051993e− 01 2.273272e− 04 1.917848e− 01 1.439005e− 01 8.544291e− 04 1.072928e− 03 7.180052e− 06 6.339493e− 06 1.707611e− 03 3.118081e− 03 5.384674e− 05

9D

med. 0.000000e+ 00 9.777119e− 01 8.332023e− 01 9.971328e− 01 9.508728e− 01 6.016146e− 01 9.986087e− 01 9.987843e− 01 9.999860e− 01 9.999879e− 01 9.942508e− 01 9.861928e− 01 9.996873e− 01
avg. 0.000000e+ 00 9.760705e− 01 8.161496e− 01 9.967018e− 01 7.548349e− 01 6.473564e− 01 9.985447e− 01 9.986536e− 01 9.999859e− 01 9.999874e− 01 9.940920e− 01 9.867293e− 01 9.996597e− 01
min. 0.000000e+ 00 9.472606e− 01 5.570900e− 02 9.906709e− 01 9.819143e− 03 2.282549e− 01 9.965181e− 01 9.965254e− 01 9.999807e− 01 9.999763e− 01 9.882504e− 01 9.797701e− 01 9.992602e− 01
max. 0.000000e+ 00 9.943222e− 01 9.381262e− 01 9.986328e− 01 9.994021e− 01 9.927075e− 01 9.994551e− 01 9.993544e− 01 9.999886e− 01 9.999919e− 01 9.971039e− 01 9.931990e− 01 9.998756e− 01
std. 0.000000e+ 00 1.142592e− 02 8.415794e− 02 1.447313e− 03 3.302179e− 01 1.085995e− 01 4.764604e− 04 5.504621e− 04 1.376429e− 06 2.715327e− 06 1.663979e− 03 2.424245e− 03 1.397253e− 04

10D

med. 0.000000e+ 00 9.690008e− 01 8.327973e− 01 9.899974e− 01 9.693538e− 01 7.087199e− 01 9.991662e− 01 9.991788e− 01 9.999971e− 01 9.999944e− 01 9.948660e− 01 9.868172e− 01 9.993001e− 01
avg. 0.000000e+ 00 9.694891e− 01 8.124819e− 01 9.889401e− 01 8.809190e− 01 7.087199e− 01 9.990837e− 01 9.991686e− 01 9.999971e− 01 9.999939e− 01 9.937261e− 01 9.874692e− 01 9.992103e− 01
min. 0.000000e+ 00 9.022552e− 01 6.700127e− 02 9.665092e− 01 2.171787e− 01 7.087199e− 01 9.974336e− 01 9.979344e− 01 9.999966e− 01 9.999857e− 01 8.883990e− 01 9.841380e− 01 9.976498e− 01
max. 0.000000e+ 00 9.934270e− 01 9.161362e− 01 9.947932e− 01 9.999511e− 01 7.087199e− 01 9.997017e− 01 9.997776e− 01 9.999976e− 01 9.999968e− 01 9.976748e− 01 9.958395e− 01 9.998046e− 01
std. 0.000000e+ 00 1.552235e− 02 9.087680e− 02 4.742975e− 03 1.792805e− 01 0.000000e+ 00 3.885113e− 04 3.235526e− 04 2.327347e− 07 2.583823e− 06 1.074986e− 02 2.291253e− 03 4.031810e− 04
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Figure C.1: Box-plot of hypervolume indicator values for different optimizers on the DTLZ1 test problem.
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Table C.2: Wilcoxon rank sum test applied to hypervolume indicator values on the DTLZ1 test problem. The table contains for each
pair of optimizers OR (row) and OC (column) the p-values with respect to the alternative hypothesis that the indicator values for
OR are significantly better than those for OC .

Optimizer NSGA-II
MOEA/D MOEA/D MOEA/D

SMS-EMOA ∆p-DDE R2-MOGA R2-MOGAw R2-MODE R2-IBEA
MOMBI MOMBI MOMBI

TCH NTCH PBI TCH NTCH PBI

2D

NSGA-II − > 0.05 > 0.05 > 0.05 > 0.05 4.95e− 29 1.28e− 34 1.28e− 34 4.64e− 34 > 0.05 > 0.05 9.31e− 03 > 0.05
MOEA/D-TCH 2.40e− 26 − 4.76e− 07 9.76e− 12 > 0.05 3.27e− 32 1.32e− 34 1.89e− 34 6.63e− 34 > 0.05 > 0.05 6.60e− 30 9.79e− 08
MOEA/D-NTCH 1.70e− 09 > 0.05 − 4.24e− 02 > 0.05 1.86e− 25 2.31e− 32 1.55e− 31 1.12e− 29 > 0.05 > 0.05 1.35e− 12 > 0.05
MOEA/D-PBI 3.54e− 08 > 0.05 > 0.05 − > 0.05 2.12e− 31 1.28e− 34 1.28e− 34 1.78e− 34 > 0.05 > 0.05 9.49e− 14 > 0.05
SMS-EMOA 3.09e− 32 4.06e− 08 1.77e− 19 1.56e− 22 − 1.52e− 33 1.28e− 34 1.28e− 34 1.28e− 34 1.70e− 13 1.07e− 07 1.87e− 33 4.30e− 21
∆p-DDE > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 − 3.05e− 34 7.61e− 31 2.93e− 11 > 0.05 > 0.05 > 0.05 > 0.05
R2-MOGA > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 − > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
R2-MOGAw > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 3.29e− 07 − > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
R2-MODE > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 4.85e− 18 4.55e− 10 − > 0.05 > 0.05 > 0.05 > 0.05
R2-IBEA 1.24e− 32 > 0.05 6.28e− 08 2.05e− 16 > 0.05 2.51e− 33 1.28e− 34 1.28e− 34 1.28e− 34 − > 0.05 4.50e− 34 9.01e− 11
MOMBI-TCH 3.93e− 26 > 0.05 4.46e− 08 2.28e− 12 > 0.05 3.47e− 33 1.28e− 34 1.28e− 34 1.28e− 34 > 0.05 − 5.91e− 30 1.03e− 08
MOMBI-NTCH > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 4.82e− 29 1.28e− 34 1.32e− 34 4.12e− 34 > 0.05 > 0.05 − > 0.05
MOMBI-PBI 3.96e− 15 > 0.05 > 0.05 4.34e− 03 > 0.05 1.89e− 32 1.28e− 34 1.28e− 34 1.28e− 34 > 0.05 > 0.05 1.39e− 20 −

3D

NSGA-II − > 0.05 5.05e− 32 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
MOEA/D-TCH 2.26e− 34 − 1.28e− 34 > 0.05 > 0.05 1.47e− 07 1.36e− 34 1.28e− 34 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
MOEA/D-NTCH > 0.05 > 0.05 − > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
MOEA/D-PBI 1.28e− 34 1.28e− 34 1.28e− 34 − > 0.05 1.28e− 34 1.28e− 34 1.28e− 34 1.28e− 34 > 0.05 1.28e− 34 1.28e− 34 > 0.05
SMS-EMOA 1.28e− 34 1.28e− 34 1.28e− 34 3.25e− 31 − 1.28e− 34 1.28e− 34 1.28e− 34 1.28e− 34 6.70e− 33 1.28e− 34 1.28e− 34 1.72e− 29
∆p-DDE 6.97e− 13 > 0.05 1.61e− 33 > 0.05 > 0.05 − > 0.05 1.04e− 03 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
R2-MOGA 2.44e− 17 > 0.05 5.38e− 34 > 0.05 > 0.05 > 0.05 − 8.29e− 06 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
R2-MOGAw 4.09e− 10 > 0.05 2.44e− 33 > 0.05 > 0.05 > 0.05 > 0.05 − > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
R2-MODE 1.78e− 34 1.32e− 29 1.28e− 34 > 0.05 > 0.05 4.58e− 16 1.68e− 34 1.40e− 34 − > 0.05 2.40e− 28 2.62e− 20 > 0.05
R2-IBEA 1.28e− 34 1.28e− 34 1.28e− 34 > 0.05 > 0.05 1.28e− 34 1.28e− 34 1.28e− 34 1.28e− 34 − 1.28e− 34 1.28e− 34 > 0.05
MOMBI-TCH 2.07e− 34 > 0.05 1.28e− 34 > 0.05 > 0.05 1.01e− 07 1.28e− 34 1.28e− 34 > 0.05 > 0.05 − > 0.05 > 0.05
MOMBI-NTCH 5.71e− 33 > 0.05 1.28e− 34 > 0.05 > 0.05 1.97e− 08 1.22e− 32 1.31e− 33 > 0.05 > 0.05 > 0.05 − > 0.05
MOMBI-PBI 1.28e− 34 1.28e− 34 1.28e− 34 6.80e− 03 > 0.05 1.28e− 34 1.28e− 34 1.28e− 34 1.28e− 34 8.86e− 03 1.28e− 34 1.28e− 34 −

4D

NSGA-II − > 0.05 3.43e− 04 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
MOEA/D-TCH 1.28e− 34 − 1.28e− 34 > 0.05 9.23e− 09 2.82e− 27 4.65e− 25 2.68e− 28 > 0.05 > 0.05 5.25e− 04 2.03e− 10 > 0.05
MOEA/D-NTCH > 0.05 > 0.05 − > 0.05 3.98e− 02 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
MOEA/D-PBI 1.28e− 34 1.28e− 34 1.28e− 34 − 1.28e− 34 1.28e− 34 1.28e− 34 1.28e− 34 1.28e− 34 > 0.05 1.28e− 34 1.28e− 34 > 0.05
SMS-EMOA > 0.05 > 0.05 > 0.05 > 0.05 − > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
∆p-DDE 4.52e− 08 > 0.05 1.84e− 34 > 0.05 3.86e− 06 − > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
R2-MOGA 2.23e− 33 > 0.05 1.28e− 34 > 0.05 5.04e− 08 1.42e− 17 − 5.13e− 06 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
R2-MOGAw 2.48e− 30 > 0.05 1.28e− 34 > 0.05 3.55e− 07 1.76e− 13 > 0.05 − > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
R2-MODE 1.28e− 34 1.28e− 34 1.28e− 34 > 0.05 1.78e− 20 2.55e− 34 1.28e− 34 1.28e− 34 − > 0.05 1.28e− 34 1.28e− 34 > 0.05
R2-IBEA 1.28e− 34 1.28e− 34 1.28e− 34 2.71e− 20 1.28e− 34 1.28e− 34 1.28e− 34 1.28e− 34 1.28e− 34 − 1.28e− 34 1.28e− 34 1.27e− 09
MOMBI-TCH 1.28e− 34 > 0.05 1.28e− 34 > 0.05 8.60e− 09 2.54e− 27 2.57e− 24 7.24e− 28 > 0.05 > 0.05 − 1.62e− 09 > 0.05
MOMBI-NTCH 9.39e− 33 > 0.05 1.28e− 34 > 0.05 4.11e− 08 2.19e− 19 9.22e− 03 8.36e− 08 > 0.05 > 0.05 > 0.05 − > 0.05
MOMBI-PBI 1.28e− 34 1.28e− 34 1.28e− 34 4.40e− 06 1.28e− 34 1.28e− 34 1.28e− 34 1.28e− 34 1.28e− 34 > 0.05 1.28e− 34 1.28e− 34 −

C
IN

V
E

S
T

A
V

-IP
N

C
om

p
u
ter

S
cien

ce
D

ep
artm

en
t



N
u

m
erical

R
esu

lts
of

E
xperim

en
ts

1
4
7

Table C.3: Wilcoxon rank sum test applied to hypervolume indicator values on the DTLZ1 test problem (continuation).

Optimizer NSGA-II
MOEA/D MOEA/D MOEA/D

SMS-EMOA ∆p-DDE R2-MOGA R2-MOGAw R2-MODE R2-IBEA
MOMBI MOMBI MOMBI

TCH NTCH PBI TCH NTCH PBI

5D

NSGA-II − > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
MOEA/D-TCH 2.82e− 39 − 1.87e− 34 > 0.05 2.30e− 17 2.10e− 33 6.17e− 26 1.52e− 26 > 0.05 > 0.05 > 0.05 8.19e− 26 > 0.05
MOEA/D-NTCH 3.61e− 39 > 0.05 − > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
MOEA/D-PBI 2.82e− 39 1.28e− 34 1.87e− 34 − 2.07e− 34 1.28e− 34 1.28e− 34 1.28e− 34 7.34e− 32 > 0.05 1.28e− 34 1.28e− 34 > 0.05
SMS-EMOA 2.82e− 39 > 0.05 1.15e− 22 > 0.05 − 7.46e− 07 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
∆p-DDE 2.82e− 39 > 0.05 1.87e− 34 > 0.05 > 0.05 − > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
R2-MOGA 2.82e− 39 > 0.05 1.87e− 34 > 0.05 1.67e− 03 1.25e− 28 − > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
R2-MOGAw 2.82e− 39 > 0.05 1.87e− 34 > 0.05 2.89e− 03 5.60e− 27 > 0.05 − > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
R2-MODE 2.82e− 39 1.28e− 34 1.87e− 34 > 0.05 1.69e− 31 1.28e− 34 1.28e− 34 1.28e− 34 − > 0.05 1.28e− 34 1.28e− 34 > 0.05
R2-IBEA 2.82e− 39 1.28e− 34 1.87e− 34 1.28e− 34 1.28e− 34 1.28e− 34 1.28e− 34 1.28e− 34 1.28e− 34 − 1.28e− 34 1.28e− 34 5.14e− 34
MOMBI-TCH 2.82e− 39 6.23e− 20 1.87e− 34 > 0.05 8.38e− 21 1.28e− 34 1.28e− 34 1.28e− 34 > 0.05 > 0.05 − 1.28e− 34 > 0.05
MOMBI-NTCH 2.82e− 39 > 0.05 1.87e− 34 > 0.05 3.40e− 04 3.70e− 28 3.28e− 02 > 0.05 > 0.05 > 0.05 > 0.05 − > 0.05
MOMBI-PBI 2.82e− 39 1.28e− 34 1.87e− 34 1.18e− 26 1.32e− 34 1.28e− 34 1.28e− 34 1.28e− 34 1.28e− 34 > 0.05 1.28e− 34 1.28e− 34 −

6D

NSGA-II − > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
MOEA/D-TCH 2.82e− 39 − 1.87e− 34 > 0.05 6.27e− 04 1.54e− 32 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
MOEA/D-NTCH 3.61e− 39 > 0.05 − > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
MOEA/D-PBI 2.82e− 39 1.28e− 34 1.87e− 34 − 1.92e− 33 1.28e− 34 1.28e− 34 1.28e− 34 2.49e− 11 > 0.05 1.28e− 34 1.28e− 34 > 0.05
SMS-EMOA 2.82e− 39 > 0.05 9.09e− 21 > 0.05 − 3.45e− 08 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
∆p-DDE 2.82e− 39 > 0.05 2.77e− 34 > 0.05 > 0.05 − > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
R2-MOGA 2.82e− 39 5.19e− 07 1.87e− 34 > 0.05 8.76e− 10 1.44e− 34 − > 0.05 > 0.05 > 0.05 > 0.05 1.04e− 11 > 0.05
R2-MOGAw 2.82e− 39 7.79e− 07 1.87e− 34 > 0.05 4.03e− 10 1.40e− 34 > 0.05 − > 0.05 > 0.05 > 0.05 3.29e− 11 > 0.05
R2-MODE 2.82e− 39 1.28e− 34 1.87e− 34 > 0.05 2.51e− 33 1.28e− 34 1.28e− 34 1.28e− 34 − > 0.05 1.28e− 34 1.28e− 34 > 0.05
R2-IBEA 2.82e− 39 1.28e− 34 1.87e− 34 1.28e− 34 1.28e− 34 1.28e− 34 1.28e− 34 1.28e− 34 1.28e− 34 − 1.28e− 34 1.28e− 34 1.28e− 34
MOMBI-TCH 2.82e− 39 7.46e− 29 1.87e− 34 > 0.05 2.83e− 22 1.28e− 34 6.33e− 26 3.61e− 25 > 0.05 > 0.05 − 1.30e− 30 > 0.05
MOMBI-NTCH 2.82e− 39 > 0.05 1.87e− 34 > 0.05 5.30e− 05 2.96e− 34 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 − > 0.05
MOMBI-PBI 2.82e− 39 1.28e− 34 1.87e− 34 8.06e− 28 1.78e− 34 1.28e− 34 1.28e− 34 1.28e− 34 4.24e− 34 > 0.05 1.28e− 34 1.28e− 34 −

7D

NSGA-II − > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
MOEA/D-TCH 2.82e− 39 − 1.28e− 34 > 0.05 > 0.05 1.50e− 14 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 1.43e− 04 > 0.05
MOEA/D-NTCH 2.82e− 39 > 0.05 − > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
MOEA/D-PBI 2.82e− 39 1.28e− 34 1.28e− 34 − 1.28e− 34 1.87e− 34 1.28e− 34 1.28e− 34 1.04e− 20 > 0.05 1.28e− 34 1.28e− 34 > 0.05
SMS-EMOA 2.82e− 39 > 0.05 1.23e− 19 > 0.05 − 8.00e− 03 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
∆p-DDE 3.61e− 39 > 0.05 1.15e− 10 > 0.05 > 0.05 − > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
R2-MOGA 2.82e− 39 6.00e− 28 1.28e− 34 > 0.05 1.43e− 03 4.53e− 28 − > 0.05 > 0.05 > 0.05 2.26e− 08 2.71e− 34 > 0.05
R2-MOGAw 2.82e− 39 4.23e− 30 1.28e− 34 > 0.05 2.26e− 04 7.07e− 29 6.82e− 03 − > 0.05 > 0.05 9.75e− 15 2.13e− 34 > 0.05
R2-MODE 2.82e− 39 1.28e− 34 1.28e− 34 > 0.05 1.40e− 34 1.87e− 34 1.28e− 34 1.28e− 34 − > 0.05 1.28e− 34 1.28e− 34 > 0.05
R2-IBEA 2.82e− 39 1.28e− 34 1.28e− 34 8.39e− 34 1.28e− 34 1.87e− 34 1.28e− 34 1.28e− 34 1.28e− 34 − 1.28e− 34 1.28e− 34 1.48e− 30
MOMBI-TCH 2.82e− 39 1.01e− 21 1.28e− 34 > 0.05 8.24e− 03 2.90e− 27 > 0.05 > 0.05 > 0.05 > 0.05 − 1.00e− 33 > 0.05
MOMBI-NTCH 2.82e− 39 > 0.05 1.28e− 34 > 0.05 > 0.05 3.45e− 12 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 − > 0.05
MOMBI-PBI 2.82e− 39 1.28e− 34 1.28e− 34 4.27e− 18 1.28e− 34 1.87e− 34 1.28e− 34 1.28e− 34 1.53e− 34 > 0.05 1.28e− 34 1.28e− 34 −
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Table C.4: Wilcoxon rank sum test applied to hypervolume indicator values on the DTLZ1 test problem (continuation).

Optimizer NSGA-II
MOEA/D MOEA/D MOEA/D

SMS-EMOA ∆p-DDE R2-MOGA R2-MOGAw R2-MODE R2-IBEA
MOMBI MOMBI MOMBI

TCH NTCH PBI TCH NTCH PBI

8D

NSGA-II − > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
MOEA/D-TCH 2.82e− 39 − 1.28e− 34 > 0.05 > 0.05 4.69e− 24 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
MOEA/D-NTCH 2.82e− 39 > 0.05 − > 0.05 > 0.05 5.48e− 12 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
MOEA/D-PBI 2.82e− 39 1.28e− 34 1.28e− 34 − 3.57e− 30 1.87e− 34 1.28e− 34 1.84e− 34 > 0.05 > 0.05 1.28e− 34 1.28e− 34 > 0.05
SMS-EMOA 5.97e− 39 > 0.05 1.70e− 13 > 0.05 − 4.61e− 16 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
∆p-DDE 3.61e− 39 > 0.05 > 0.05 > 0.05 > 0.05 − > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
R2-MOGA 2.82e− 39 1.53e− 34 1.28e− 34 > 0.05 7.98e− 18 4.07e− 33 − > 0.05 > 0.05 > 0.05 7.65e− 33 1.28e− 34 > 0.05
R2-MOGAw 2.82e− 39 1.78e− 34 1.28e− 34 > 0.05 2.26e− 18 3.31e− 33 > 0.05 − > 0.05 > 0.05 1.30e− 31 1.36e− 34 > 0.05
R2-MODE 2.81e− 39 1.28e− 34 1.28e− 34 1.28e− 34 4.04e− 34 1.87e− 34 1.28e− 34 1.28e− 34 − > 0.05 1.28e− 34 1.28e− 34 4.85e− 33
R2-IBEA 2.82e− 39 1.28e− 34 1.28e− 34 1.28e− 34 4.04e− 34 1.87e− 34 1.28e− 34 1.28e− 34 4.42e− 34 − 1.28e− 34 1.28e− 34 1.28e− 34
MOMBI-TCH 2.82e− 39 8.48e− 30 1.28e− 34 > 0.05 3.13e− 05 1.01e− 29 > 0.05 > 0.05 > 0.05 > 0.05 − 2.12e− 32 > 0.05
MOMBI-NTCH 2.82e− 39 2.67e− 04 1.28e− 34 > 0.05 > 0.05 4.62e− 26 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 − > 0.05
MOMBI-PBI 2.82e− 39 1.28e− 34 1.28e− 34 7.45e− 32 2.77e− 33 1.87e− 34 1.28e− 34 1.28e− 34 > 0.05 > 0.05 1.28e− 34 1.28e− 34 −

9D

NSGA-II − > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
MOEA/D-TCH 2.82e− 39 − 1.28e− 34 > 0.05 1.78e− 02 1.93e− 32 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
MOEA/D-NTCH 2.82e− 39 > 0.05 − > 0.05 > 0.05 1.69e− 22 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
MOEA/D-PBI 2.82e− 39 2.01e− 34 1.28e− 34 − 1.01e− 21 1.93e− 34 > 0.05 > 0.05 > 0.05 > 0.05 2.13e− 22 1.95e− 34 > 0.05
SMS-EMOA 4.64e− 39 > 0.05 1.32e− 03 > 0.05 − 4.31e− 08 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
∆p-DDE 3.61e− 39 > 0.05 > 0.05 > 0.05 > 0.05 − > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
R2-MOGA 2.82e− 39 1.28e− 34 1.28e− 34 2.82e− 27 5.82e− 29 1.87e− 34 − > 0.05 > 0.05 > 0.05 1.44e− 34 1.28e− 34 > 0.05
R2-MOGAw 2.82e− 39 1.28e− 34 1.28e− 34 1.66e− 27 1.06e− 29 1.87e− 34 7.37e− 03 − > 0.05 > 0.05 1.44e− 34 1.28e− 34 > 0.05
R2-MODE 2.79e− 39 1.27e− 34 1.27e− 34 1.27e− 34 2.72e− 34 1.86e− 34 1.27e− 34 1.27e− 34 − > 0.05 1.27e− 34 1.27e− 34 1.27e− 34
R2-IBEA 2.80e− 39 1.27e− 34 1.27e− 34 1.27e− 34 2.73e− 34 1.86e− 34 1.27e− 34 1.27e− 34 1.66e− 09 − 1.27e− 34 1.27e− 34 1.27e− 34
MOMBI-TCH 2.82e− 39 9.39e− 33 1.28e− 34 > 0.05 2.02e− 14 3.13e− 34 > 0.05 > 0.05 > 0.05 > 0.05 − 8.85e− 33 > 0.05
MOMBI-NTCH 2.82e− 39 3.31e− 14 1.28e− 34 > 0.05 6.57e− 05 3.51e− 33 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 − > 0.05
MOMBI-PBI 2.82e− 39 1.28e− 34 1.28e− 34 1.28e− 34 3.40e− 34 1.87e− 34 1.95e− 34 1.73e− 34 > 0.05 > 0.05 1.28e− 34 1.28e− 34 −

10D

NSGA-II − > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
MOEA/D-TCH 7.88e− 20 − 1.36e− 34 > 0.05 > 0.05 4.48e− 02 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
MOEA/D-NTCH 7.88e− 20 > 0.05 − > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
MOEA/D-PBI 7.88e− 20 2.84e− 24 1.28e− 34 − 6.78e− 07 4.48e− 02 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 1.76e− 07 > 0.05
SMS-EMOA 5.59e− 19 > 0.05 6.89e− 12 > 0.05 − > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
∆p-DDE > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 − > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05
R2-MOGA 7.88e− 20 1.28e− 34 1.28e− 34 1.28e− 34 9.45e− 29 4.48e− 02 − > 0.05 > 0.05 > 0.05 1.32e− 34 1.28e− 34 > 0.05
R2-MOGAw 7.88e− 20 1.28e− 34 1.28e− 34 1.28e− 34 7.70e− 29 4.48e− 02 > 0.05 − > 0.05 > 0.05 1.28e− 34 1.28e− 34 > 0.05
R2-MODE 7.29e− 20 1.11e− 34 1.11e− 34 1.11e− 34 3.84e− 33 4.36e− 02 1.11e− 34 1.11e− 34 − 1.63e− 34 1.11e− 34 1.11e− 34 1.11e− 34
R2-IBEA 7.86e− 20 1.27e− 34 1.27e− 34 1.27e− 34 4.47e− 33 4.47e− 02 1.27e− 34 1.27e− 34 > 0.05 − 1.27e− 34 1.27e− 34 1.27e− 34
MOMBI-TCH 7.88e− 20 9.39e− 33 1.36e− 34 1.30e− 27 1.62e− 17 4.48e− 02 > 0.05 > 0.05 > 0.05 > 0.05 − 6.79e− 30 > 0.05
MOMBI-NTCH 7.88e− 20 8.40e− 22 1.28e− 34 > 0.05 3.85e− 04 4.48e− 02 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 − > 0.05
MOMBI-PBI 7.88e− 20 1.28e− 34 1.28e− 34 1.28e− 34 6.85e− 29 4.48e− 02 1.65e− 03 4.37e− 02 > 0.05 > 0.05 1.32e− 34 1.28e− 34 −
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Table C.5: Comparison of R2 indicator values for different optimizers on the DTLZ1 test problem.

Dim. Stat. NSGA-II
MOEA/D MOEA/D MOEA/D

SMS-EMOA ∆p-DDE R2-MOGA R2-MOGAw R2-MODE R2-IBEA
MOMBI MOMBI MOMBI

TCH NTCH PBI TCH NTCH PBI

2D

med. 8.385074e− 02 8.372010e− 02 8.375051e− 02 8.376840e− 02 8.370542e− 02 8.368671e− 02 8.440180e− 02 8.410993e− 02 8.416171e− 02 8.373354e− 02 8.371485e− 02 8.383756e− 02 8.373073e− 02
avg. 8.387052e− 02 8.373446e− 02 8.391282e− 02 8.378113e− 02 8.371807e− 02 8.369134e− 02 8.443781e− 02 8.413814e− 02 8.418518e− 02 8.374013e− 02 8.373025e− 02 8.385909e− 02 8.375069e− 02
min. 8.375748e− 02 8.368085e− 02 8.368644e− 02 8.368010e− 02 8.368124e− 02 8.367663e− 02 8.418900e− 02 8.395160e− 02 8.402386e− 02 8.370817e− 02 8.367925e− 02 8.375705e− 02 8.367832e− 02
max. 8.425286e− 02 8.384963e− 02 9.174951e− 02 8.401523e− 02 8.388412e− 02 8.379699e− 02 8.480666e− 02 8.477390e− 02 8.455391e− 02 8.386054e− 02 8.395013e− 02 8.425462e− 02 8.398607e− 02
std. 8.144398e− 05 4.367285e− 05 8.413448e− 04 7.285276e− 05 3.498272e− 05 1.995449e− 05 1.361729e− 04 1.276486e− 04 9.546413e− 05 2.402972e− 05 5.199513e− 05 6.952766e− 05 6.937738e− 05

3D

med. 3.511511e− 02 3.302707e− 02 5.608644e− 02 3.231443e− 02 3.222944e− 02 3.295353e− 02 3.334104e− 02 3.287088e− 02 3.313518e− 02 3.242773e− 02 3.300843e− 02 3.339101e− 02 3.228973e− 02
avg. 3.571466e− 02 3.304185e− 02 5.625453e− 02 3.233669e− 02 3.223257e− 02 3.301123e− 02 3.332621e− 02 3.289627e− 02 3.314273e− 02 3.243327e− 02 3.302590e− 02 3.344065e− 02 3.230917e− 02
min. 3.336875e− 02 3.295928e− 02 3.480163e− 02 3.223014e− 02 3.210057e− 02 3.248863e− 02 3.292960e− 02 3.256125e− 02 3.280510e− 02 3.227766e− 02 3.292144e− 02 3.299791e− 02 3.222137e− 02
max. 4.206462e− 02 3.337677e− 02 7.329071e− 02 3.258436e− 02 3.240561e− 02 3.366187e− 02 3.378800e− 02 3.376255e− 02 3.351496e− 02 3.259226e− 02 3.322313e− 02 3.426621e− 02 3.257814e− 02
std. 1.886720e− 03 6.001562e− 05 7.064818e− 03 8.352625e− 05 5.590796e− 05 2.004498e− 04 1.901797e− 04 1.998662e− 04 1.212611e− 04 5.020220e− 05 5.538035e− 05 2.292650e− 04 7.026704e− 05

4D

med. 2.380465e− 02 2.067428e− 02 4.327824e− 02 1.815940e− 02 3.612566e− 02 1.933165e− 02 1.849178e− 02 1.812627e− 02 1.841000e− 02 1.790737e− 02 2.068479e− 02 2.098440e− 02 1.811428e− 02
avg. 3.672688e− 02 2.067669e− 02 4.558573e− 02 1.818322e− 02 3.086051e− 02 1.943022e− 02 1.850923e− 02 1.815813e− 02 1.841859e− 02 1.790918e− 02 2.069069e− 02 2.119110e− 02 1.813441e− 02
min. 1.996967e− 02 2.056859e− 02 2.943675e− 02 1.807106e− 02 1.826573e− 02 1.841516e− 02 1.820051e− 02 1.783888e− 02 1.813560e− 02 1.777702e− 02 2.048579e− 02 2.034299e− 02 1.806582e− 02
max. 1.011482e− 01 2.080705e− 02 9.839260e− 02 1.854938e− 02 3.817969e− 02 2.194369e− 02 1.897667e− 02 1.861518e− 02 1.875237e− 02 1.803716e− 02 2.085206e− 02 2.320697e− 02 1.853196e− 02
std. 2.137609e− 02 4.584309e− 05 7.891262e− 03 8.947101e− 05 7.854645e− 03 5.896343e− 04 1.439326e− 04 1.778563e− 04 1.121107e− 04 5.785786e− 05 6.243442e− 05 6.375727e− 04 7.275515e− 05

5D

med. 1.538539e+ 00 1.441970e− 02 3.586743e− 02 1.241561e− 02 1.608386e− 02 1.316910e− 02 1.236398e− 02 1.207117e− 02 1.233718e− 02 1.189470e− 02 1.433294e− 02 1.552536e− 02 1.220159e− 02
avg. 1.645142e+ 00 1.459830e− 02 3.963484e− 02 1.241456e− 02 1.773069e− 02 1.329807e− 02 1.236966e− 02 1.209490e− 02 1.234055e− 02 1.189087e− 02 1.434022e− 02 1.561340e− 02 1.221597e− 02
min. 6.267370e− 01 1.415217e− 02 2.632329e− 02 1.212947e− 02 1.247020e− 02 1.235684e− 02 1.198295e− 02 1.178485e− 02 1.209160e− 02 1.177697e− 02 1.419539e− 02 1.453311e− 02 1.214845e− 02
max. 2.987237e+ 00 1.700467e− 02 1.905702e− 01 1.274572e− 02 4.496842e− 02 1.509710e− 02 1.268345e− 02 1.250317e− 02 1.270481e− 02 1.201656e− 02 1.448524e− 02 1.739552e− 02 1.247271e− 02
std. 5.037213e− 01 5.825554e− 04 1.681758e− 02 1.351271e− 04 4.980183e− 03 5.785307e− 04 1.311621e− 04 1.710067e− 04 1.090622e− 04 4.673402e− 05 4.537194e− 05 5.895229e− 04 5.280573e− 05

6D

med. 3.368002e+ 00 1.263114e− 02 3.055603e− 02 8.819247e− 03 1.251661e− 02 1.099805e− 02 8.720381e− 03 8.516255e− 03 8.676293e− 03 8.338173e− 03 1.145309e− 02 1.252880e− 02 8.624612e− 03
avg. 3.407155e+ 00 1.282812e− 02 3.729839e− 02 8.830817e− 03 1.433844e− 02 1.099722e− 02 8.734253e− 03 8.530570e− 03 8.682295e− 03 8.338251e− 03 1.163436e− 02 1.260640e− 02 8.639366e− 03
min. 1.863253e+ 00 1.107264e− 02 2.200590e− 02 8.585989e− 03 8.617235e− 03 9.716002e− 03 8.457257e− 03 8.256013e− 03 8.493021e− 03 8.258753e− 03 1.081280e− 02 1.111303e− 02 8.585540e− 03
max. 5.389775e+ 00 1.778660e− 02 4.679480e− 01 9.072356e− 03 3.302069e− 02 1.310498e− 02 8.997348e− 03 8.970798e− 03 8.905098e− 03 8.413354e− 03 1.268313e− 02 1.570174e− 02 8.823907e− 03
std. 7.306827e− 01 1.109950e− 03 4.416550e− 02 1.157802e− 04 4.568801e− 03 7.675765e− 04 1.096513e− 04 1.462861e− 04 7.627201e− 05 3.446036e− 05 4.502356e− 04 6.082169e− 04 4.373760e− 05

7D

med. 4.074695e+ 00 1.262226e− 02 2.783701e− 02 6.955768e− 03 1.391703e− 02 9.081126e− 03 7.394306e− 03 7.150244e− 03 7.075159e− 03 6.704738e− 03 1.199106e− 02 1.356857e− 02 6.843416e− 03
avg. 3.982829e+ 00 1.326928e− 02 2.883675e− 02 6.970629e− 03 1.281230e− 02 1.513928e− 02 7.404865e− 03 7.167509e− 03 7.099456e− 03 6.707208e− 03 1.212769e− 02 1.371012e− 02 6.853955e− 03
min. 1.238641e+ 00 1.094994e− 02 1.798826e− 02 6.814987e− 03 7.538943e− 03 7.390429e− 03 7.069642e− 03 6.556944e− 03 6.884335e− 03 6.630220e− 03 1.084126e− 02 1.263654e− 02 6.812435e− 03
max. 5.676402e+ 00 1.728792e− 02 3.489126e− 02 7.241262e− 03 2.654798e− 02 7.160176e− 02 7.898214e− 03 7.870792e− 03 7.556828e− 03 6.833093e− 03 1.381652e− 02 1.552167e− 02 7.000768e− 03
std. 8.833205e− 01 1.480894e− 03 3.135724e− 03 7.816529e− 05 4.004891e− 03 1.282587e− 02 1.540721e− 04 2.597167e− 04 1.305124e− 04 4.343099e− 05 8.185360e− 04 6.455343e− 04 3.606924e− 05

8D

med. 4.593328e+ 00 1.166084e− 02 2.450944e− 02 5.409252e− 03 1.008923e− 02 2.080289e− 02 5.453639e− 03 5.386111e− 03 5.329522e− 03 5.053873e− 03 1.034324e− 02 1.129017e− 02 5.225100e− 03
avg. 4.434247e+ 00 1.206464e− 02 2.634852e− 02 5.425904e− 03 1.213666e− 02 2.380381e− 02 5.464507e− 03 5.404871e− 03 5.335763e− 03 5.056324e− 03 1.031187e− 02 1.137417e− 02 5.231620e− 03
min. 2.164358e+ 00 9.188365e− 03 1.791018e− 02 5.276984e− 03 5.885885e− 03 6.435851e− 03 5.297021e− 03 5.042237e− 03 5.172752e− 03 4.974724e− 03 9.143791e− 03 1.053461e− 02 5.178599e− 03
max. 6.042133e+ 00 1.514940e− 02 8.254573e− 02 5.790345e− 03 3.590651e− 02 5.884447e− 01 5.699419e− 03 5.898154e− 03 5.525670e− 03 5.131232e− 03 1.146526e− 02 1.233845e− 02 5.343359e− 03
std. 8.506108e− 01 1.471225e− 03 7.030882e− 03 9.557108e− 05 5.770139e− 03 5.726075e− 02 7.481486e− 05 1.853366e− 04 6.107140e− 05 2.685240e− 05 6.187582e− 04 3.190228e− 04 3.138622e− 05

9D

med. 4.122397e+ 00 1.056012e− 02 2.135718e− 02 4.559128e− 03 1.062616e− 02 1.716218e− 02 4.210159e− 03 4.220869e− 03 4.149619e− 03 3.975563e− 03 8.959473e− 03 9.959290e− 03 4.036481e− 03
avg. 3.967654e+ 00 1.082990e− 02 2.258146e− 02 4.567771e− 03 1.300223e− 02 1.698132e− 02 4.215019e− 03 4.236080e− 03 4.153083e− 03 3.974557e− 03 8.980014e− 03 9.991739e− 03 4.046453e− 03
min. 2.027321e+ 00 8.615530e− 03 1.442916e− 02 4.255535e− 03 5.789860e− 03 5.944334e− 03 4.101722e− 03 3.966643e− 03 4.079717e− 03 3.940821e− 03 7.789284e− 03 9.581809e− 03 3.976041e− 03
max. 5.003975e+ 00 1.375822e− 02 7.004212e− 02 4.845897e− 03 3.168857e− 02 8.959756e− 02 4.358280e− 03 4.719741e− 03 4.286632e− 03 4.016907e− 03 1.050988e− 02 1.068242e− 02 4.173123e− 03
std. 6.174998e− 01 1.122155e− 03 5.422224e− 03 1.213968e− 04 6.082589e− 03 8.553691e− 03 4.910179e− 05 1.471167e− 04 3.951595e− 05 1.765324e− 05 5.890921e− 04 2.136280e− 04 4.399161e− 05

10D

med. 3.297547e+ 00 1.017124e− 02 1.935478e− 02 4.180140e− 03 1.083809e− 02 1.360416e− 02 3.359203e− 03 3.358274e− 03 3.320644e− 03 3.203359e− 03 7.844122e− 03 8.813942e− 03 3.290140e− 03
avg. 3.268733e+ 00 1.026991e− 02 2.047036e− 02 4.189758e− 03 1.348278e− 02 1.310704e− 02 3.361429e− 03 3.410268e− 03 3.321271e− 03 3.204765e− 03 7.934386e− 03 8.776893e− 03 3.302600e− 03
min. 2.214025e+ 00 7.724546e− 03 1.396950e− 02 3.793774e− 03 5.436434e− 03 7.549345e− 03 3.274146e− 03 3.183213e− 03 3.243797e− 03 3.179371e− 03 6.814512e− 03 7.330872e− 03 3.185148e− 03
max. 4.079931e+ 00 1.457792e− 02 4.865170e− 02 4.862619e− 03 3.862482e− 02 1.438692e− 02 3.612650e− 03 3.776102e− 03 3.387521e− 03 3.243294e− 03 1.630381e− 02 9.313915e− 03 3.484617e− 03
std. 3.989123e− 01 1.210794e− 03 3.930391e− 03 1.835765e− 04 6.760764e− 03 1.709068e− 03 5.194446e− 05 1.289282e− 04 2.575418e− 05 1.366408e− 05 9.852051e− 04 2.943461e− 04 6.354346e− 05
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Figure C.2: Box-plot of R2 indicator values for different optimizers on the DTLZ1 test problem.
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Table C.6: Comparison of runtime (in milliseconds) for different optimizers on the DTLZ1 test problem.

Dim. Stat. NSGA-II
MOEA/D MOEA/D MOEA/D

SMS-EMOA ∆p-DDE R2-MOGA R2-MOGAw R2-MODE R2-IBEA
MOMBI MOMBI MOMBI

TCH NTCH PBI TCH NTCH PBI

2D

med. 1.391130e+ 02 3.585500e+ 02 8.890920e+ 02 8.430090e+ 02 2.195065e+ 04 1.008147e+ 03 2.075753e+ 03 1.659484e+ 03 2.008625e+ 03 5.854420e+ 05 1.941276e+ 03 1.495085e+ 03 2.641578e+ 03
avg. 1.397804e+ 02 3.630220e+ 02 8.837353e+ 02 8.298641e+ 02 2.122329e+ 04 1.017312e+ 03 1.998703e+ 03 1.635794e+ 03 1.986146e+ 03 5.895935e+ 05 1.881835e+ 03 1.505769e+ 03 2.622540e+ 03
min. 1.306990e+ 02 3.306930e+ 02 6.170960e+ 02 5.426120e+ 02 1.522593e+ 04 9.197430e+ 02 1.444663e+ 03 1.197029e+ 03 1.347716e+ 03 5.513610e+ 05 1.432049e+ 03 1.474689e+ 03 2.186127e+ 03
max. 1.525670e+ 02 4.208590e+ 02 1.210603e+ 03 1.064243e+ 03 2.438248e+ 04 1.159957e+ 03 2.760808e+ 03 2.096304e+ 03 2.614321e+ 03 6.352280e+ 05 2.309959e+ 03 1.628995e+ 03 2.978548e+ 03
std. 4.793493e+ 00 1.597084e+ 01 1.573511e+ 02 8.379470e+ 01 2.289796e+ 03 4.562875e+ 01 3.722775e+ 02 2.445412e+ 02 3.295403e+ 02 2.304065e+ 04 2.183163e+ 02 3.386895e+ 01 1.461823e+ 02

3D

med. 2.227720e+ 02 5.261070e+ 02 1.236478e+ 03 9.189210e+ 02 3.657331e+ 05 1.173243e+ 03 2.080344e+ 03 1.590688e+ 03 2.101381e+ 03 5.792150e+ 05 1.917696e+ 03 1.839201e+ 03 2.861312e+ 03
avg. 2.309763e+ 02 5.301123e+ 02 1.219268e+ 03 9.111462e+ 02 3.586857e+ 05 1.161146e+ 03 2.065732e+ 03 1.607572e+ 03 2.089505e+ 03 5.828010e+ 05 1.894798e+ 03 1.867943e+ 03 2.856074e+ 03
min. 1.901210e+ 02 3.845070e+ 02 9.457770e+ 02 6.842580e+ 02 2.526093e+ 05 7.658650e+ 02 1.448911e+ 03 1.119894e+ 03 1.377074e+ 03 5.283550e+ 05 1.512564e+ 03 1.611729e+ 03 2.353641e+ 03
max. 3.477900e+ 02 8.270200e+ 02 1.466421e+ 03 1.392306e+ 03 4.344593e+ 05 1.715951e+ 03 2.557514e+ 03 2.307402e+ 03 2.503613e+ 03 6.270280e+ 05 2.280909e+ 03 2.184837e+ 03 3.134970e+ 03
std. 3.382368e+ 01 9.523016e+ 01 1.155408e+ 02 9.675797e+ 01 3.373515e+ 04 1.933304e+ 02 2.642836e+ 02 1.999351e+ 02 2.211111e+ 02 2.150778e+ 04 1.662622e+ 02 1.347468e+ 02 1.322137e+ 02

4D

med. 3.030930e+ 02 5.257360e+ 02 1.342439e+ 03 9.522530e+ 02 6.526423e+ 05 1.211161e+ 03 2.343130e+ 03 1.783164e+ 03 2.487400e+ 03 4.838380e+ 05 1.926371e+ 03 2.118641e+ 03 3.177616e+ 03
avg. 3.116593e+ 02 5.444823e+ 02 1.310323e+ 03 9.510556e+ 02 7.365434e+ 05 1.197820e+ 03 2.291805e+ 03 1.784849e+ 03 2.427117e+ 03 4.846312e+ 05 1.920583e+ 03 2.097295e+ 03 3.160794e+ 03
min. 2.497280e+ 02 3.936580e+ 02 8.587430e+ 02 6.923800e+ 02 2.194115e+ 05 8.297930e+ 02 1.673061e+ 03 1.264352e+ 03 1.698642e+ 03 4.822670e+ 05 1.553307e+ 03 1.726381e+ 03 2.686032e+ 03
max. 4.326080e+ 02 1.003001e+ 03 1.722781e+ 03 1.294281e+ 03 1.885482e+ 06 1.483117e+ 03 2.724454e+ 03 2.274551e+ 03 2.836077e+ 03 4.951190e+ 05 2.415609e+ 03 2.622699e+ 03 3.420097e+ 03
std. 4.486370e+ 01 1.023649e+ 02 1.392530e+ 02 7.939919e+ 01 4.228194e+ 05 1.483485e+ 02 2.410393e+ 02 2.086896e+ 02 2.904422e+ 02 2.807689e+ 03 1.643593e+ 02 1.594938e+ 02 1.290294e+ 02

5D

med. 4.634650e+ 02 5.936830e+ 02 1.716056e+ 03 9.008690e+ 02 3.688071e+ 05 1.966702e+ 03 2.752027e+ 03 2.170170e+ 03 2.952324e+ 03 6.723700e+ 05 2.056078e+ 03 2.316038e+ 03 3.466887e+ 03
avg. 4.656389e+ 02 5.994942e+ 02 1.646845e+ 03 9.293176e+ 02 4.758052e+ 05 1.952076e+ 03 2.728022e+ 03 2.182887e+ 03 2.910408e+ 03 6.719233e+ 05 2.091996e+ 03 2.317876e+ 03 3.470743e+ 03
min. 3.604860e+ 02 4.508890e+ 02 6.825210e+ 02 6.944790e+ 02 2.277904e+ 05 1.357003e+ 03 1.965132e+ 03 1.696206e+ 03 2.031878e+ 03 6.638520e+ 05 1.674114e+ 03 2.037259e+ 03 2.865395e+ 03
max. 6.387590e+ 02 9.130550e+ 02 2.092520e+ 03 1.910748e+ 03 1.774725e+ 06 2.566455e+ 03 3.170497e+ 03 2.770856e+ 03 3.378682e+ 03 6.787380e+ 05 2.885268e+ 03 2.657465e+ 03 3.845690e+ 03
std. 5.204335e+ 01 7.438336e+ 01 2.534973e+ 02 1.595797e+ 02 3.174793e+ 05 2.471749e+ 02 2.888072e+ 02 2.265143e+ 02 3.242308e+ 02 3.054223e+ 03 2.487035e+ 02 1.450260e+ 02 1.994397e+ 02

6D

med. 6.200720e+ 02 6.141290e+ 02 1.848598e+ 03 9.525350e+ 02 4.499790e+ 05 2.803394e+ 03 2.951671e+ 03 2.389304e+ 03 3.135965e+ 03 7.114200e+ 05 2.161011e+ 03 2.292713e+ 03 3.870049e+ 03
avg. 6.165837e+ 02 6.255701e+ 02 1.772065e+ 03 9.484281e+ 02 4.952557e+ 05 2.890935e+ 03 2.900353e+ 03 2.376442e+ 03 3.139869e+ 03 7.108565e+ 05 2.221818e+ 03 2.318226e+ 03 3.865938e+ 03
min. 4.665750e+ 02 4.753340e+ 02 8.113770e+ 02 6.754810e+ 02 2.749547e+ 05 1.865957e+ 03 2.019626e+ 03 1.774967e+ 03 2.291378e+ 03 6.820630e+ 05 1.722768e+ 03 2.069538e+ 03 3.343604e+ 03
max. 7.517850e+ 02 8.888790e+ 02 2.319126e+ 03 1.544135e+ 03 2.412645e+ 06 6.193999e+ 03 3.673554e+ 03 3.023985e+ 03 3.796013e+ 03 7.193500e+ 05 3.848331e+ 03 2.712226e+ 03 4.422082e+ 03
std. 6.442564e+ 01 7.630287e+ 01 2.816327e+ 02 1.517815e+ 02 2.520657e+ 05 6.518767e+ 02 4.336122e+ 02 2.763189e+ 02 3.150468e+ 02 4.755295e+ 03 3.290843e+ 02 1.409623e+ 02 1.848074e+ 02

7D

med. 5.668250e+ 02 6.436060e+ 02 1.862152e+ 03 1.050558e+ 03 6.375392e+ 05 6.320692e+ 03 2.301871e+ 03 1.750564e+ 03 2.328598e+ 03 3.320390e+ 05 1.309713e+ 03 1.622033e+ 03 2.691921e+ 03
avg. 5.592820e+ 02 6.507151e+ 02 1.826127e+ 03 1.018635e+ 03 9.082189e+ 05 7.318769e+ 03 2.274965e+ 03 1.755827e+ 03 2.309991e+ 03 3.316906e+ 05 1.320385e+ 03 1.648061e+ 03 2.688187e+ 03
min. 4.345300e+ 02 4.482360e+ 02 8.116300e+ 02 7.495980e+ 02 3.803580e+ 05 3.203776e+ 03 1.576329e+ 03 1.306602e+ 03 1.623444e+ 03 3.237260e+ 05 1.100182e+ 03 1.433981e+ 03 2.240756e+ 03
max. 6.920420e+ 02 9.999210e+ 02 2.387335e+ 03 1.203862e+ 03 3.100206e+ 06 8.760375e+ 04 2.709367e+ 03 2.129320e+ 03 2.771965e+ 03 3.409000e+ 05 1.654394e+ 03 1.908542e+ 03 2.982349e+ 03
std. 6.004572e+ 01 8.400877e+ 01 2.872730e+ 02 1.222994e+ 02 5.416824e+ 05 8.317682e+ 03 2.320062e+ 02 1.598826e+ 02 2.393009e+ 02 3.332070e+ 03 1.270077e+ 02 1.049933e+ 02 1.351849e+ 02

8D

med. 8.159570e+ 02 6.783160e+ 02 2.077417e+ 03 1.125317e+ 03 6.283459e+ 05 1.500830e+ 04 3.738893e+ 03 2.894609e+ 03 3.572563e+ 03 1.286300e+ 06 2.149195e+ 03 2.437462e+ 03 4.128187e+ 03
avg. 8.189387e+ 02 6.796730e+ 02 1.957683e+ 03 1.089778e+ 03 7.241444e+ 05 1.527586e+ 04 3.610490e+ 03 2.904420e+ 03 3.598642e+ 03 1.262558e+ 06 2.134565e+ 03 2.477580e+ 03 4.158959e+ 03
min. 6.388400e+ 02 5.368020e+ 02 9.169490e+ 02 7.878600e+ 02 4.086652e+ 05 6.627723e+ 03 2.466567e+ 03 2.013319e+ 03 2.560665e+ 03 1.180581e+ 06 1.677838e+ 03 2.129564e+ 03 3.952921e+ 03
max. 9.931090e+ 02 1.041771e+ 03 2.346116e+ 03 1.308768e+ 03 2.727483e+ 06 3.323225e+ 04 4.229315e+ 03 3.580988e+ 03 4.169719e+ 03 1.320895e+ 06 2.493505e+ 03 2.900989e+ 03 4.630268e+ 03
std. 7.387042e+ 01 6.217066e+ 01 3.351714e+ 02 1.107520e+ 02 3.931621e+ 05 3.392000e+ 03 4.045766e+ 02 3.132332e+ 02 3.851677e+ 02 4.956893e+ 04 1.682012e+ 02 1.741348e+ 02 1.264868e+ 02

9D

med. 1.240255e+ 03 7.164020e+ 02 2.389168e+ 03 1.003383e+ 03 7.079355e+ 05 2.045421e+ 04 5.734188e+ 03 4.904337e+ 03 5.663101e+ 03 2.261923e+ 06 3.078124e+ 03 3.663268e+ 03 5.901198e+ 03
avg. 1.231863e+ 03 7.140057e+ 02 2.276141e+ 03 1.019763e+ 03 6.680845e+ 05 2.155547e+ 04 5.572087e+ 03 4.919542e+ 03 5.663036e+ 03 2.397717e+ 06 3.048442e+ 03 3.663122e+ 03 5.931006e+ 03
min. 9.860790e+ 02 5.258470e+ 02 1.209291e+ 03 8.057080e+ 02 4.253358e+ 05 1.241373e+ 04 3.492038e+ 03 3.734452e+ 03 4.143048e+ 03 2.255279e+ 06 2.282077e+ 03 3.157888e+ 03 5.006455e+ 03
max. 1.460314e+ 03 8.503130e+ 02 2.769486e+ 03 1.342671e+ 03 1.120927e+ 06 8.158077e+ 04 6.801850e+ 03 6.086019e+ 03 6.824145e+ 03 2.732663e+ 06 4.003875e+ 03 4.148471e+ 03 6.785785e+ 03
std. 9.385167e+ 01 5.617570e+ 01 3.953869e+ 02 1.361076e+ 02 1.442550e+ 05 7.382135e+ 03 8.530517e+ 02 5.129304e+ 02 5.648437e+ 02 1.906202e+ 05 2.279737e+ 02 2.399234e+ 02 2.892536e+ 02

10D

med. 1.680458e+ 03 7.436550e+ 02 2.691724e+ 03 1.224423e+ 03 9.026339e+ 05 2.271864e+ 04 9.807306e+ 03 7.366557e+ 03 9.776943e+ 03 4.876777e+ 06 3.644358e+ 03 5.065917e+ 03 8.482151e+ 03
avg. 1.686060e+ 03 7.399302e+ 02 2.546968e+ 03 1.189198e+ 03 8.963058e+ 05 7.054734e+ 05 9.269635e+ 03 7.435923e+ 03 9.810816e+ 03 4.879721e+ 06 3.720732e+ 03 5.149782e+ 03 8.568786e+ 03
min. 1.320334e+ 03 5.700380e+ 02 1.242019e+ 03 8.753670e+ 02 6.736666e+ 05 1.442056e+ 04 6.584946e+ 03 5.435974e+ 03 6.837352e+ 03 4.584884e+ 06 3.041339e+ 03 4.464239e+ 03 7.315172e+ 03
max. 2.008135e+ 03 1.017033e+ 03 3.227710e+ 03 1.615639e+ 03 1.025446e+ 06 6.753073e+ 07 1.081728e+ 04 8.943583e+ 03 1.134960e+ 04 5.122731e+ 06 4.343668e+ 03 5.847625e+ 03 9.972161e+ 03
std. 1.138808e+ 02 7.258330e+ 01 3.678156e+ 02 1.215940e+ 02 6.571153e+ 04 6.750438e+ 06 1.093257e+ 03 7.555923e+ 02 1.052918e+ 03 1.509802e+ 05 3.525844e+ 02 3.392520e+ 02 5.104703e+ 02
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Figure C.3: Box-plot of runtime (in logarithmic scale) for different optimizers on the DTLZ1 test problem.
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Figure C.4: Plots of the approximations obtained by MOMBI-PBI from 2 to 10 objectives
on the DTLZ1 test problem. These plots correspond to the median hypervolume value for
100 independent runs.
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Table C.7: Comparison of hypervolume indicator values for different optimizers on the DTLZ2 test problem.

Dim. Stat. NSGA-II
MOEA/D MOEA/D MOEA/D

SMS-EMOA ∆p-DDE R2-MOGA R2-MOGAw R2-MODE R2-IBEA
MOMBI MOMBI MOMBI

TCH NTCH PBI TCH NTCH PBI

2D

med. 3.210041e+ 00 3.210867e+ 00 3.210768e+ 00 3.210853e+ 00 3.211608e+ 00 3.196187e+ 00 3.192914e+ 00 3.193951e+ 00 3.205840e+ 00 3.211129e+ 00 3.210818e+ 00 3.209403e+ 00 3.210499e+ 00
avg. 3.210061e+ 00 3.210861e+ 00 3.210713e+ 00 3.210840e+ 00 3.211602e+ 00 3.196953e+ 00 3.190293e+ 00 3.192027e+ 00 3.205000e+ 00 3.211126e+ 00 3.210804e+ 00 3.209413e+ 00 3.210489e+ 00
min. 3.209661e+ 00 3.210728e+ 00 3.209581e+ 00 3.210688e+ 00 3.211480e+ 00 3.155571e+ 00 3.147819e+ 00 3.158375e+ 00 3.175711e+ 00 3.210942e+ 00 3.210618e+ 00 3.208809e+ 00 3.209876e+ 00
max. 3.210394e+ 00 3.210875e+ 00 3.210862e+ 00 3.210874e+ 00 3.211621e+ 00 3.210569e+ 00 3.204530e+ 00 3.206834e+ 00 3.207691e+ 00 3.211267e+ 00 3.210873e+ 00 3.209972e+ 00 3.210841e+ 00
std. 1.678848e− 04 2.242557e− 05 1.883532e− 04 3.708775e− 05 1.951191e− 05 1.274213e− 02 1.083726e− 02 1.085974e− 02 3.957175e− 03 6.865480e− 05 5.254509e− 05 2.074029e− 04 1.823577e− 04

3D

med. 7.204697e+ 00 7.383422e+ 00 6.411807e+ 00 7.422151e+ 00 7.431534e+ 00 7.414369e+ 00 7.354045e+ 00 7.326577e+ 00 7.393166e+ 00 7.427648e+ 00 7.383677e+ 00 7.388695e+ 00 7.421743e+ 00
avg. 7.200007e+ 00 7.383686e+ 00 6.442565e+ 00 7.422149e+ 00 7.431539e+ 00 7.392500e+ 00 7.353170e+ 00 7.322264e+ 00 7.392679e+ 00 7.427598e+ 00 7.383834e+ 00 7.388654e+ 00 7.421723e+ 00
min. 7.009836e+ 00 7.382357e+ 00 6.408709e+ 00 7.421998e+ 00 7.431399e+ 00 7.315550e+ 00 7.310730e+ 00 7.226704e+ 00 7.382249e+ 00 7.426628e+ 00 7.382309e+ 00 7.383618e+ 00 7.421200e+ 00
max. 7.320675e+ 00 7.386898e+ 00 7.294744e+ 00 7.422207e+ 00 7.431686e+ 00 7.417668e+ 00 7.380991e+ 00 7.365824e+ 00 7.401333e+ 00 7.428481e+ 00 7.386836e+ 00 7.394248e+ 00 7.422053e+ 00
std. 5.839806e− 02 9.095784e− 04 1.403833e− 01 3.623787e− 05 4.884768e− 05 3.233107e− 02 1.270901e− 02 3.015986e− 02 4.243701e− 03 4.059323e− 04 1.044390e− 03 2.242911e− 03 1.569161e− 04

4D

med. 1.472552e+ 01 1.542231e+ 01 1.276200e+ 01 1.556777e+ 01 1.189937e+ 01 1.556396e+ 01 1.544233e+ 01 1.540849e+ 01 1.551662e+ 01 1.557638e+ 01 1.542123e+ 01 1.542185e+ 01 1.556709e+ 01
avg. 1.471135e+ 01 1.542236e+ 01 1.283631e+ 01 1.556775e+ 01 1.190944e+ 01 1.556162e+ 01 1.544101e+ 01 1.539563e+ 01 1.551597e+ 01 1.557642e+ 01 1.542163e+ 01 1.542248e+ 01 1.556708e+ 01
min. 1.422657e+ 01 1.542081e+ 01 1.255945e+ 01 1.556748e+ 01 1.179363e+ 01 1.544907e+ 01 1.539562e+ 01 1.514228e+ 01 1.549381e+ 01 1.557358e+ 01 1.542060e+ 01 1.542067e+ 01 1.556669e+ 01
max. 1.510316e+ 01 1.542509e+ 01 1.506838e+ 01 1.556797e+ 01 1.240005e+ 01 1.556979e+ 01 1.548211e+ 01 1.548554e+ 01 1.553360e+ 01 1.557900e+ 01 1.542921e+ 01 1.542972e+ 01 1.556741e+ 01
std. 1.253025e− 01 7.948853e− 04 3.559775e− 01 1.047063e− 04 7.836827e− 02 1.238593e− 02 1.794148e− 02 5.147422e− 02 8.098221e− 03 1.162881e− 03 1.447282e− 03 1.742783e− 03 1.663787e− 04

5D

med. 2.941493e+ 01 3.153333e+ 01 2.542240e+ 01 3.166794e+ 01 2.430152e+ 01 3.164526e+ 01 3.147832e+ 01 3.144111e+ 01 3.160021e+ 01 3.167825e+ 01 3.153407e+ 01 3.153469e+ 01 3.166723e+ 01
avg. 2.942620e+ 01 3.153316e+ 01 2.547165e+ 01 3.166796e+ 01 2.432020e+ 01 3.164193e+ 01 3.147656e+ 01 3.143405e+ 01 3.159404e+ 01 3.167816e+ 01 3.153368e+ 01 3.153493e+ 01 3.166721e+ 01
min. 2.849557e+ 01 3.153089e+ 01 2.532464e+ 01 3.166701e+ 01 2.383752e+ 01 3.149548e+ 01 3.139351e+ 01 3.127965e+ 01 3.136684e+ 01 3.167360e+ 01 3.148752e+ 01 3.153403e+ 01 3.166591e+ 01
max. 3.014224e+ 01 3.153708e+ 01 2.859078e+ 01 3.166860e+ 01 2.488747e+ 01 3.167489e+ 01 3.152941e+ 01 3.154584e+ 01 3.162630e+ 01 3.168224e+ 01 3.153828e+ 01 3.154294e+ 01 3.166800e+ 01
std. 2.857214e− 01 8.701011e− 04 3.241538e− 01 2.834108e− 04 2.096831e− 01 2.538691e− 02 2.933922e− 02 5.166054e− 02 3.665720e− 02 1.857753e− 03 4.695449e− 03 1.140466e− 03 3.626224e− 04

6D

med. 5.534950e+ 01 6.282535e+ 01 5.046712e+ 01 6.374009e+ 01 5.305381e+ 01 6.372645e+ 01 6.346045e+ 01 6.346204e+ 01 6.364523e+ 01 6.375161e+ 01 6.308353e+ 01 6.297146e+ 01 6.373806e+ 01
avg. 5.515635e+ 01 6.276079e+ 01 5.069441e+ 01 6.374007e+ 01 5.305347e+ 01 6.370626e+ 01 6.345828e+ 01 6.344206e+ 01 6.357568e+ 01 6.375149e+ 01 6.304713e+ 01 6.297100e+ 01 6.373805e+ 01
min. 5.041419e+ 01 6.136742e+ 01 5.045624e+ 01 6.373933e+ 01 5.109607e+ 01 6.231192e+ 01 6.333743e+ 01 6.322149e+ 01 6.233958e+ 01 6.374371e+ 01 6.283107e+ 01 6.285097e+ 01 6.373635e+ 01
max. 5.866762e+ 01 6.317272e+ 01 5.736945e+ 01 6.374083e+ 01 5.432416e+ 01 6.375568e+ 01 6.354051e+ 01 6.359628e+ 01 6.368353e+ 01 6.375564e+ 01 6.318907e+ 01 6.317983e+ 01 6.373926e+ 01
std. 1.748605e+ 00 2.481620e− 01 1.057031e+ 00 3.540214e− 04 6.497207e− 01 1.433321e− 01 4.170817e− 02 7.973354e− 02 2.460603e− 01 2.278054e− 03 1.006873e− 01 7.957350e− 02 5.375246e− 04

7D

med. 7.097237e+ 01 1.221604e+ 02 1.004964e+ 02 1.277545e+ 02 1.003146e+ 02 1.263361e+ 02 1.270800e+ 02 1.269847e+ 02 1.275699e+ 02 1.277741e+ 02 1.218068e+ 02 1.228784e+ 02 1.277496e+ 02
avg. 6.907730e+ 01 1.218160e+ 02 1.011378e+ 02 1.277545e+ 02 1.002544e+ 02 1.262013e+ 02 1.270752e+ 02 1.269319e+ 02 1.273958e+ 02 1.277739e+ 02 1.217793e+ 02 1.225544e+ 02 1.277494e+ 02
min. 2.680668e+ 01 1.198434e+ 02 9.987591e+ 01 1.277538e+ 02 9.589385e+ 01 1.240811e+ 02 1.268092e+ 02 1.258948e+ 02 1.252577e+ 02 1.277628e+ 02 1.194244e+ 02 1.203942e+ 02 1.277455e+ 02
max. 9.654712e+ 01 1.235530e+ 02 1.153471e+ 02 1.277548e+ 02 1.041526e+ 02 1.271519e+ 02 1.272888e+ 02 1.274816e+ 02 1.276417e+ 02 1.277822e+ 02 1.235331e+ 02 1.231983e+ 02 1.277521e+ 02
std. 1.194559e+ 01 1.092969e+ 00 2.665939e+ 00 1.706577e− 04 1.725065e+ 00 6.213868e− 01 9.754212e− 02 3.222027e− 01 4.775350e− 01 3.257479e− 03 1.301388e+ 00 5.964771e− 01 1.459325e− 03

8D

med. 4.046867e+ 01 2.436705e+ 02 2.009920e+ 02 2.558229e+ 02 2.182929e+ 02 2.539939e+ 02 2.552032e+ 02 2.552207e+ 02 2.556410e+ 02 2.558317e+ 02 2.439155e+ 02 2.457868e+ 02 2.558167e+ 02
avg. 4.731003e+ 01 2.428031e+ 02 2.016406e+ 02 2.558228e+ 02 2.178562e+ 02 2.539778e+ 02 2.551761e+ 02 2.551927e+ 02 2.554974e+ 02 2.558317e+ 02 2.436226e+ 02 2.452225e+ 02 2.558164e+ 02
min. 1.019203e+ 01 2.330937e+ 02 1.986191e+ 02 2.558201e+ 02 2.110694e+ 02 2.521568e+ 02 2.548047e+ 02 2.547165e+ 02 2.533401e+ 02 2.558213e+ 02 2.364699e+ 02 2.413145e+ 02 2.558089e+ 02
max. 1.044286e+ 02 2.480525e+ 02 2.275435e+ 02 2.558243e+ 02 2.226235e+ 02 2.552319e+ 02 2.553962e+ 02 2.555856e+ 02 2.557183e+ 02 2.558409e+ 02 2.486940e+ 02 2.491416e+ 02 2.558200e+ 02
std. 2.423026e+ 01 3.457472e+ 00 3.801588e+ 00 8.937217e− 04 2.513306e+ 00 6.518251e− 01 1.251305e− 01 2.043639e− 01 4.230122e− 01 3.084503e− 03 3.031558e+ 00 1.193651e+ 00 2.101846e− 03

9D

med. 9.291244e+ 01 4.878235e+ 02 4.019926e+ 02 5.118658e+ 02 4.624523e+ 02 5.098186e+ 02 5.113053e+ 02 5.113666e+ 02 5.116906e+ 02 5.118745e+ 02 4.881349e+ 02 4.916219e+ 02 5.118529e+ 02
avg. 9.800724e+ 01 4.859490e+ 02 4.026848e+ 02 5.118654e+ 02 4.620671e+ 02 5.098094e+ 02 5.113004e+ 02 5.113446e+ 02 5.115584e+ 02 5.118738e+ 02 4.877085e+ 02 4.910696e+ 02 5.118520e+ 02
min. 2.548915e+ 01 4.633840e+ 02 3.989053e+ 02 5.118548e+ 02 4.509915e+ 02 5.073781e+ 02 5.108276e+ 02 5.108124e+ 02 5.054671e+ 02 5.118642e+ 02 4.694249e+ 02 4.865505e+ 02 5.118332e+ 02
max. 2.112485e+ 02 4.933729e+ 02 4.513644e+ 02 5.118727e+ 02 4.678390e+ 02 5.111735e+ 02 5.114953e+ 02 5.116310e+ 02 5.117689e+ 02 5.118806e+ 02 4.957771e+ 02 4.977965e+ 02 5.118630e+ 02
std. 4.742846e+ 01 6.444997e+ 00 4.987750e+ 00 3.654564e− 03 3.343018e+ 00 7.599114e− 01 1.087475e− 01 1.548704e− 01 6.714275e− 01 4.041045e− 03 5.941868e+ 00 1.743546e+ 00 5.992567e− 03

10D

med. 3.256503e+ 02 9.573993e+ 02 8.039549e+ 02 1.023867e+ 03 9.616218e+ 02 1.022179e+ 03 1.023398e+ 03 1.023392e+ 03 1.023824e+ 03 1.023884e+ 03 9.785497e+ 02 9.827967e+ 02 1.023844e+ 03
avg. 3.263275e+ 02 9.608083e+ 02 8.063469e+ 02 1.023866e+ 03 9.637606e+ 02 1.022115e+ 03 1.023368e+ 03 1.023371e+ 03 1.023823e+ 03 1.023882e+ 03 9.781965e+ 02 9.815709e+ 02 1.023843e+ 03
min. 1.464623e+ 02 9.271927e+ 02 8.008404e+ 02 1.023811e+ 03 9.520352e+ 02 1.020583e+ 03 1.022759e+ 03 1.022947e+ 03 1.023784e+ 03 1.023843e+ 03 9.497005e+ 02 9.729246e+ 02 1.023779e+ 03
max. 6.107166e+ 02 9.857649e+ 02 9.076187e+ 02 1.023897e+ 03 1.023867e+ 03 1.023651e+ 03 1.023540e+ 03 1.023623e+ 03 1.023850e+ 03 1.023905e+ 03 9.972909e+ 02 9.949128e+ 02 1.023878e+ 03
std. 8.937217e+ 01 1.582786e+ 01 1.460699e+ 01 1.562131e− 02 1.292354e+ 01 6.017819e− 01 1.310344e− 01 1.389968e− 01 1.352330e− 02 1.303181e− 02 1.037190e+ 01 3.926336e+ 00 1.818843e− 02
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Table C.8: Comparison of hypervolume indicator values for different optimizers on the DTLZ3 test problem.

Dim. Stat. NSGA-II
MOEA/D MOEA/D MOEA/D

SMS-EMOA ∆p-DDE R2-MOGA R2-MOGAw R2-MODE R2-IBEA
MOMBI MOMBI MOMBI

TCH NTCH PBI TCH NTCH PBI

2D

med. 4.793872e+ 01 4.820301e+ 01 4.820073e+ 01 4.818855e+ 01 4.820349e+ 01 4.815838e+ 01 4.810939e+ 01 4.813783e+ 01 4.820299e+ 01 4.820412e+ 01 4.820382e+ 01 4.820261e+ 01 4.819491e+ 01
avg. 4.712444e+ 01 4.820218e+ 01 4.816813e+ 01 4.816728e+ 01 4.820226e+ 01 4.812366e+ 01 4.808735e+ 01 4.812894e+ 01 4.624848e+ 01 4.817794e+ 01 4.820281e+ 01 4.820219e+ 01 4.819223e+ 01
min. 4.032887e+ 01 4.817661e+ 01 4.537692e+ 01 4.713437e+ 01 4.818234e+ 01 4.559775e+ 01 4.778582e+ 01 4.787813e+ 01 2.041612e+ 01 4.581234e+ 01 4.819127e+ 01 4.818335e+ 01 4.813612e+ 01
max. 4.819656e+ 01 4.820897e+ 01 4.820735e+ 01 4.820704e+ 01 4.821009e+ 01 4.821055e+ 01 4.819145e+ 01 4.819984e+ 01 4.820720e+ 01 4.820994e+ 01 4.820949e+ 01 4.820809e+ 01 4.820610e+ 01
std. 1.641499e+ 00 4.947107e− 03 2.823876e− 01 1.146260e− 01 6.000856e− 03 2.638653e− 01 7.358689e− 02 6.025181e− 02 4.310835e+ 00 2.390952e− 01 4.236134e− 03 4.143913e− 03 1.035987e− 02

3D

med. 3.213374e+ 02 3.423777e+ 02 3.373545e+ 02 3.423414e+ 02 3.422325e+ 02 3.423023e+ 02 3.420924e+ 02 3.421533e+ 02 3.423912e+ 02 3.424009e+ 02 3.423709e+ 02 3.423696e+ 02 3.423748e+ 02
avg. 3.052842e+ 02 3.423744e+ 02 3.368608e+ 02 3.421748e+ 02 3.401175e+ 02 3.421819e+ 02 3.420638e+ 02 3.420966e+ 02 3.420053e+ 02 3.423971e+ 02 3.423677e+ 02 3.423247e+ 02 3.423669e+ 02
min. 1.411289e+ 00 3.423316e+ 02 2.974115e+ 02 3.374949e+ 02 3.024061e+ 02 3.370165e+ 02 3.415497e+ 02 3.412183e+ 02 3.380363e+ 02 3.423097e+ 02 3.422914e+ 02 3.380038e+ 02 3.422218e+ 02
max. 3.421537e+ 02 3.423923e+ 02 3.381744e+ 02 3.424071e+ 02 3.424178e+ 02 3.424147e+ 02 3.422924e+ 02 3.423524e+ 02 3.424005e+ 02 3.424205e+ 02 3.423867e+ 02 3.423871e+ 02 3.424101e+ 02
std. 4.926037e+ 01 1.065280e− 02 3.997101e+ 00 7.917299e− 01 5.826830e+ 00 5.555253e− 01 1.593543e− 01 2.185725e− 01 1.230164e+ 00 1.635944e− 02 1.565883e− 02 4.366046e− 01 3.080946e− 02

4D

med. 5.349303e+ 02 2.400411e+ 03 2.360720e+ 03 2.399898e+ 03 1.895105e+ 03 2.400530e+ 03 2.399598e+ 03 2.399739e+ 03 2.400514e+ 03 2.400475e+ 03 2.400392e+ 03 2.400311e+ 03 2.400418e+ 03
avg. 8.269671e+ 02 2.400141e+ 03 2.352650e+ 03 2.289692e+ 03 1.594025e+ 03 2.400462e+ 03 2.399354e+ 03 2.399609e+ 03 2.400297e+ 03 2.400376e+ 03 2.400375e+ 03 2.400203e+ 03 2.400077e+ 03
min. 0.000000e+ 00 2.390138e+ 03 2.053514e+ 03 3.552413e+ 01 1.376684e+ 01 2.399290e+ 03 2.386875e+ 03 2.397582e+ 03 2.393233e+ 03 2.393348e+ 03 2.399581e+ 03 2.390753e+ 03 2.372014e+ 03
max. 2.398314e+ 03 2.400430e+ 03 2.394949e+ 03 2.400511e+ 03 2.396303e+ 03 2.400560e+ 03 2.400142e+ 03 2.400263e+ 03 2.400533e+ 03 2.400541e+ 03 2.400418e+ 03 2.400423e+ 03 2.400535e+ 03
std. 8.756001e+ 02 1.521141e+ 00 4.290223e+ 01 4.089104e+ 02 7.515604e+ 02 1.845585e− 01 1.371752e+ 00 5.899891e− 01 1.243124e+ 00 7.158601e− 01 8.521183e− 02 9.606724e− 01 2.840605e+ 00

5D

med. 0.000000e+ 00 1.680644e+ 04 1.651858e+ 04 1.678493e+ 04 4.275212e+ 03 1.680493e+ 04 1.680328e+ 04 1.680401e+ 04 1.680660e+ 04 1.680608e+ 04 1.680645e+ 04 1.680599e+ 04 1.680579e+ 04
avg. 0.000000e+ 00 1.676627e+ 04 1.645687e+ 04 1.593028e+ 04 6.268773e+ 03 1.612477e+ 04 1.680275e+ 04 1.680338e+ 04 1.680641e+ 04 1.680556e+ 04 1.680471e+ 04 1.680385e+ 04 1.680202e+ 04
min. 0.000000e+ 00 1.336326e+ 04 1.456703e+ 04 6.149889e+ 03 2.341716e+ 02 6.141943e+ 02 1.679356e+ 04 1.678979e+ 04 1.679428e+ 04 1.679028e+ 04 1.676616e+ 04 1.677309e+ 04 1.660730e+ 04
max. 0.000000e+ 00 1.680653e+ 04 1.652714e+ 04 1.680628e+ 04 1.599316e+ 04 1.680645e+ 04 1.680578e+ 04 1.680580e+ 04 1.680662e+ 04 1.680652e+ 04 1.680652e+ 04 1.680617e+ 04 1.680651e+ 04
std. 0.000000e+ 00 3.442933e+ 02 2.768688e+ 02 1.633556e+ 03 4.792609e+ 03 2.619019e+ 03 2.125738e+ 00 2.357944e+ 00 1.347691e+ 00 2.097801e+ 00 5.950424e+ 00 7.413873e+ 00 2.033024e+ 01

6D

med. 0.000000e+ 00 1.176217e+ 05 1.155231e+ 05 1.152287e+ 05 3.929994e+ 04 1.173290e+ 05 1.176315e+ 05 1.176355e+ 05 1.176486e+ 05 1.176458e+ 05 1.176438e+ 05 1.176417e+ 05 1.176435e+ 05
avg. 0.000000e+ 00 1.175576e+ 05 1.148434e+ 05 1.080861e+ 05 3.784408e+ 04 1.002488e+ 05 1.176278e+ 05 1.176335e+ 05 1.176412e+ 05 1.176446e+ 05 1.176206e+ 05 1.175901e+ 05 1.175517e+ 05
min. 0.000000e+ 00 1.168421e+ 05 9.633443e+ 04 1.151553e+ 03 3.913995e+ 03 8.325118e+ 03 1.175867e+ 05 1.175684e+ 05 1.173995e+ 05 1.176025e+ 05 1.169391e+ 05 1.161017e+ 05 1.144221e+ 05
max. 0.000000e+ 00 1.176446e+ 05 1.156564e+ 05 1.176478e+ 05 1.058375e+ 05 1.176487e+ 05 1.176448e+ 05 1.176447e+ 05 1.176487e+ 05 1.176482e+ 05 1.176463e+ 05 1.176430e+ 05 1.176481e+ 05
std. 0.000000e+ 00 1.266218e+ 02 2.795486e+ 03 1.497795e+ 04 2.923682e+ 04 3.003094e+ 04 1.275138e+ 01 1.108892e+ 01 3.268303e+ 01 5.393422e+ 00 8.758718e+ 01 2.229975e+ 02 4.167394e+ 02

7D

med. 0.000000e+ 00 8.221654e+ 05 8.085397e+ 05 7.082812e+ 05 2.183438e+ 05 8.192135e+ 05 8.232860e+ 05 8.234046e+ 05 8.235410e+ 05 8.235376e+ 05 8.231668e+ 05 8.231992e+ 05 8.235289e+ 05
avg. 0.000000e+ 00 8.213314e+ 05 8.075167e+ 05 7.539703e+ 05 3.469506e+ 05 8.192135e+ 05 8.232340e+ 05 8.233721e+ 05 8.214184e+ 05 8.235348e+ 05 8.225843e+ 05 8.226020e+ 05 8.234634e+ 05
min. 0.000000e+ 00 7.681267e+ 05 7.313920e+ 05 7.026605e+ 05 3.696587e+ 04 8.192135e+ 05 8.225989e+ 05 8.229368e+ 05 6.450634e+ 05 8.235005e+ 05 8.050887e+ 05 7.959358e+ 05 8.200723e+ 05
max. 0.000000e+ 00 8.233655e+ 05 8.211467e+ 05 8.235416e+ 05 7.641955e+ 05 8.192135e+ 05 8.234662e+ 05 8.235152e+ 05 8.235426e+ 05 8.235423e+ 05 8.233655e+ 05 8.232577e+ 05 8.235414e+ 05
std. 0.000000e+ 00 5.935662e+ 03 7.850325e+ 03 5.705895e+ 04 2.708601e+ 05 0.000000e+ 00 1.866183e+ 02 1.060150e+ 02 1.788382e+ 04 7.747027e+ 00 2.209381e+ 03 2.949610e+ 03 3.614195e+ 02

8D

med. 0.000000e+ 00 5.753074e+ 06 5.658651e+ 06 4.951553e+ 06 1.399787e+ 06 0.000000e+ 00 5.764095e+ 06 5.764350e+ 06 5.764797e+ 06 5.764708e+ 06 5.762570e+ 06 5.762418e+ 06 5.764668e+ 06
avg. 0.000000e+ 00 5.753649e+ 06 5.649521e+ 06 5.172251e+ 06 2.028621e+ 06 0.000000e+ 00 5.763932e+ 06 5.764276e+ 06 5.756736e+ 06 5.764653e+ 06 5.758753e+ 06 5.758742e+ 06 5.763755e+ 06
min. 0.000000e+ 00 5.661550e+ 06 5.300696e+ 06 4.223887e+ 06 3.163269e+ 04 0.000000e+ 00 5.761008e+ 06 5.763060e+ 06 5.234734e+ 06 5.762581e+ 06 5.635654e+ 06 5.631064e+ 06 5.744668e+ 06
max. 0.000000e+ 00 5.763305e+ 06 5.665631e+ 06 5.764786e+ 06 5.464338e+ 06 0.000000e+ 00 5.764685e+ 06 5.764724e+ 06 5.764801e+ 06 5.764782e+ 06 5.763474e+ 06 5.762808e+ 06 5.764777e+ 06
std. 0.000000e+ 00 1.425340e+ 04 4.793877e+ 04 3.719995e+ 05 1.923115e+ 06 0.000000e+ 00 7.049237e+ 02 3.384521e+ 02 5.664051e+ 04 2.361244e+ 02 1.485226e+ 04 1.544533e+ 04 3.295671e+ 03

9D

med. 0.000000e+ 00 4.028434e+ 07 3.959925e+ 07 3.463346e+ 07 3.863997e+ 06 0.000000e+ 00 4.035174e+ 07 4.035195e+ 07 3.855149e+ 06 4.035250e+ 07 4.033735e+ 07 4.033694e+ 07 4.035237e+ 07
avg. 0.000000e+ 00 4.025899e+ 07 3.955216e+ 07 3.642906e+ 07 5.542757e+ 06 0.000000e+ 00 4.035128e+ 07 4.035152e+ 07 8.697830e+ 06 4.035019e+ 07 4.022370e+ 07 4.025918e+ 07 4.034382e+ 07
min. 0.000000e+ 00 3.965149e+ 07 3.554514e+ 07 3.424600e+ 07 1.417671e+ 05 0.000000e+ 00 4.034653e+ 07 4.034207e+ 07 2.508055e+ 03 4.025475e+ 07 3.662127e+ 07 3.897948e+ 07 3.988873e+ 07
max. 0.000000e+ 00 4.034176e+ 07 4.025057e+ 07 4.035342e+ 07 1.108295e+ 07 0.000000e+ 00 4.035326e+ 07 4.035335e+ 07 3.991437e+ 07 4.035338e+ 07 4.034770e+ 07 4.034056e+ 07 4.035347e+ 07
std. 0.000000e+ 00 1.422278e+ 05 4.142387e+ 05 2.652132e+ 06 4.656641e+ 06 0.000000e+ 00 1.490800e+ 03 1.722900e+ 03 1.035168e+ 07 1.043684e+ 04 5.059664e+ 05 2.115673e+ 05 4.891929e+ 04

10D

med. 0.000000e+ 00 2.818423e+ 08 2.771458e+ 08 2.423332e+ 08 0.000000e+ 00 0.000000e+ 00 2.824655e+ 08 2.824677e+ 08 0.000000e+ 00 2.824480e+ 08 2.823592e+ 08 2.823644e+ 08 2.824593e+ 08
avg. 0.000000e+ 00 2.815766e+ 08 2.766366e+ 08 2.521595e+ 08 0.000000e+ 00 0.000000e+ 00 2.824640e+ 08 2.824660e+ 08 0.000000e+ 00 2.823974e+ 08 2.814701e+ 08 2.820167e+ 08 2.824391e+ 08
min. 0.000000e+ 00 2.773404e+ 08 2.494457e+ 08 2.413170e+ 08 0.000000e+ 00 0.000000e+ 00 2.824230e+ 08 2.824320e+ 08 0.000000e+ 00 2.812081e+ 08 2.545363e+ 08 2.743435e+ 08 2.819267e+ 08
max. 0.000000e+ 00 2.847144e+ 08 2.775625e+ 08 2.824715e+ 08 0.000000e+ 00 0.000000e+ 00 2.824730e+ 08 2.824737e+ 08 0.000000e+ 00 2.824733e+ 08 2.824485e+ 08 2.824587e+ 08 2.824735e+ 08
std. 0.000000e+ 00 1.222892e+ 06 3.247150e+ 06 1.721338e+ 07 0.000000e+ 00 0.000000e+ 00 7.606590e+ 03 6.706675e+ 03 0.000000e+ 00 1.688795e+ 05 3.285153e+ 06 1.313959e+ 06 8.197293e+ 04
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Table C.9: Comparison of hypervolume indicator values for different optimizers on the DTLZ4 test problem.

Dim. Stat. NSGA-II
MOEA/D MOEA/D MOEA/D

SMS-EMOA ∆p-DDE R2-MOGA R2-MOGAw R2-MODE R2-IBEA
MOMBI MOMBI MOMBI

TCH NTCH PBI TCH NTCH PBI

2D

med. 3.210149e+ 00 3.210860e+ 00 1.999708e+ 00 3.210851e+ 00 3.211608e+ 00 3.201619e+ 00 3.198168e+ 00 3.195479e+ 00 3.201593e+ 00 3.211102e+ 00 3.210831e+ 00 3.209385e+ 00 3.210601e+ 00
avg. 3.210122e+ 00 2.702303e+ 00 2.396899e+ 00 2.739264e+ 00 2.969280e+ 00 3.199920e+ 00 3.195330e+ 00 3.191610e+ 00 3.198665e+ 00 3.090001e+ 00 3.210826e+ 00 3.161013e+ 00 3.198485e+ 00
min. 3.209658e+ 00 2.000000e+ 00 1.671832e+ 00 2.000000e+ 00 2.000000e+ 00 3.149873e+ 00 3.162008e+ 00 3.147484e+ 00 3.152955e+ 00 2.000000e+ 00 3.210672e+ 00 2.000000e+ 00 2.000000e+ 00
max. 3.210479e+ 00 3.210875e+ 00 3.210869e+ 00 3.210876e+ 00 3.211620e+ 00 3.210550e+ 00 3.204615e+ 00 3.208349e+ 00 3.206501e+ 00 3.211253e+ 00 3.210875e+ 00 3.210033e+ 00 3.210844e+ 00
std. 1.853330e− 04 6.006445e− 01 5.882748e− 01 5.927049e− 01 4.870815e− 01 1.100418e− 02 8.890213e− 03 1.182593e− 02 8.803606e− 03 3.651640e− 01 3.962216e− 05 2.381848e− 01 1.210591e− 01

3D

med. 7.277431e+ 00 7.383355e+ 00 6.409801e+ 00 6.412261e+ 00 7.431505e+ 00 7.413040e+ 00 7.378895e+ 00 7.348439e+ 00 7.387845e+ 00 7.427891e+ 00 7.384547e+ 00 7.391404e+ 00 7.421943e+ 00
avg. 7.173554e+ 00 6.407321e+ 00 5.359066e+ 00 6.400387e+ 00 6.923149e+ 00 7.386701e+ 00 7.358296e+ 00 7.278159e+ 00 7.386808e+ 00 7.309029e+ 00 7.375186e+ 00 7.264244e+ 00 7.421934e+ 00
min. 6.419276e+ 00 4.000000e+ 00 3.983272e+ 00 4.000000e+ 00 4.000000e+ 00 7.270192e+ 00 6.393456e+ 00 6.321684e+ 00 7.366738e+ 00 4.000000e+ 00 6.411823e+ 00 6.407630e+ 00 7.421693e+ 00
max. 7.389143e+ 00 7.397226e+ 00 7.382987e+ 00 7.422278e+ 00 7.431620e+ 00 7.416357e+ 00 7.394331e+ 00 7.383941e+ 00 7.397521e+ 00 7.428706e+ 00 7.388772e+ 00 7.397662e+ 00 7.422126e+ 00
std. 2.827282e− 01 1.345481e+ 00 1.246715e+ 00 1.318655e+ 00 8.721746e− 01 3.794521e− 02 1.381646e− 01 2.484379e− 01 6.101679e− 03 5.236683e− 01 9.732370e− 02 3.321381e− 01 9.456045e− 05

4D

med. 1.502053e+ 01 1.465528e+ 01 1.274663e+ 01 1.482292e+ 01 1.224131e+ 01 1.556324e+ 01 1.549269e+ 01 1.545411e+ 01 1.551190e+ 01 1.557719e+ 01 1.542131e+ 01 1.542161e+ 01 1.556774e+ 01
avg. 1.498084e+ 01 1.386932e+ 01 1.160564e+ 01 1.375895e+ 01 1.231870e+ 01 1.556109e+ 01 1.546275e+ 01 1.540696e+ 01 1.551077e+ 01 1.554099e+ 01 1.536473e+ 01 1.525327e+ 01 1.556028e+ 01
min. 1.447353e+ 01 8.000000e+ 00 7.999968e+ 00 8.000000e+ 00 1.196911e+ 01 1.554723e+ 01 1.474858e+ 01 1.464395e+ 01 1.548646e+ 01 1.485645e+ 01 1.461214e+ 01 1.373597e+ 01 1.482287e+ 01
max. 1.519870e+ 01 1.543181e+ 01 1.463081e+ 01 1.556821e+ 01 1.399390e+ 01 1.557086e+ 01 1.551459e+ 01 1.550128e+ 01 1.552811e+ 01 1.557910e+ 01 1.542950e+ 01 1.542837e+ 01 1.556794e+ 01
std. 1.749098e− 01 2.084705e+ 00 2.181828e+ 00 2.491119e+ 00 2.970671e− 01 5.811339e− 03 1.444430e− 01 1.817467e− 01 9.567033e− 03 1.577170e− 01 1.775341e− 01 3.356692e− 01 7.448562e− 02

5D

med. 3.028211e+ 01 3.071708e+ 01 2.535720e+ 01 3.112059e+ 01 2.475294e+ 01 3.165155e+ 01 3.157379e+ 01 3.154159e+ 01 3.158805e+ 01 3.167999e+ 01 3.152377e+ 01 3.151715e+ 01 3.166883e+ 01
avg. 3.025828e+ 01 2.944722e+ 01 2.404397e+ 01 2.947164e+ 01 2.480758e+ 01 3.161426e+ 01 3.152457e+ 01 3.149010e+ 01 3.157764e+ 01 3.164863e+ 01 3.142473e+ 01 3.131007e+ 01 3.166883e+ 01
min. 2.936246e+ 01 1.600000e+ 01 1.600000e+ 01 1.600000e+ 01 2.395866e+ 01 2.919050e+ 01 2.952463e+ 01 3.084945e+ 01 3.057649e+ 01 3.116446e+ 01 3.011126e+ 01 3.009258e+ 01 3.166828e+ 01
max. 3.084981e+ 01 3.153403e+ 01 2.902022e+ 01 3.166948e+ 01 2.735323e+ 01 3.167397e+ 01 3.160514e+ 01 3.158061e+ 01 3.161411e+ 01 3.168399e+ 01 3.153602e+ 01 3.153664e+ 01 3.166923e+ 01
std. 2.653464e− 01 2.997700e+ 00 3.812113e+ 00 3.361294e+ 00 5.199166e− 01 2.507203e− 01 2.396994e− 01 1.624858e− 01 1.017825e− 01 1.227367e− 01 2.511012e− 01 3.391787e− 01 1.961366e− 04

6D

med. 5.739084e+ 01 6.153080e+ 01 5.032599e+ 01 6.209191e+ 01 5.328989e+ 01 6.370963e+ 01 6.360839e+ 01 6.358864e+ 01 6.361504e+ 01 6.375348e+ 01 6.290226e+ 01 6.297911e+ 01 6.374110e+ 01
avg. 5.721177e+ 01 5.925554e+ 01 4.898291e+ 01 6.046982e+ 01 5.209563e+ 01 6.368325e+ 01 6.356596e+ 01 6.352445e+ 01 6.351476e+ 01 6.372305e+ 01 6.290487e+ 01 6.270649e+ 01 6.374002e+ 01
min. 5.236490e+ 01 3.200000e+ 01 3.200000e+ 01 3.200000e+ 01 4.822283e+ 01 6.195952e+ 01 6.199693e+ 01 6.191744e+ 01 6.074476e+ 01 6.336856e+ 01 6.225694e+ 01 5.794332e+ 01 6.371496e+ 01
max. 6.062179e+ 01 6.312065e+ 01 6.080083e+ 01 6.374193e+ 01 5.531635e+ 01 6.373619e+ 01 6.365563e+ 01 6.365519e+ 01 6.366653e+ 01 6.375749e+ 01 6.312389e+ 01 6.307829e+ 01 6.374149e+ 01
std. 1.758783e+ 00 7.072223e+ 00 7.608370e+ 00 6.741727e+ 00 2.506627e+ 00 1.825711e− 01 1.944233e− 01 2.228918e− 01 4.001178e− 01 1.034776e− 01 1.863104e− 01 6.967011e− 01 4.224970e− 03

7D

med. 3.726546e+ 01 1.225806e+ 02 1.000291e+ 02 1.263956e+ 02 9.948648e+ 01 1.270706e+ 02 1.274621e+ 02 1.273411e+ 02 1.274318e+ 02 1.277739e+ 02 1.210226e+ 02 1.221638e+ 02 1.277534e+ 02
avg. 3.960844e+ 01 1.189622e+ 02 1.010195e+ 02 1.218551e+ 02 9.958144e+ 01 1.267717e+ 02 1.271365e+ 02 1.272256e+ 02 1.259330e+ 02 1.276300e+ 02 1.210806e+ 02 1.217699e+ 02 1.277295e+ 02
min. 1.268244e+ 01 6.400000e+ 01 6.399830e+ 01 6.400000e+ 01 7.740984e+ 01 1.207549e+ 02 1.170288e+ 02 1.255314e+ 02 9.632143e+ 01 1.265529e+ 02 1.193990e+ 02 1.089168e+ 02 1.273791e+ 02
max. 7.404039e+ 01 1.234743e+ 02 1.219218e+ 02 1.277564e+ 02 1.076220e+ 02 1.277477e+ 02 1.275627e+ 02 1.275759e+ 02 1.275590e+ 02 1.277802e+ 02 1.234812e+ 02 1.231732e+ 02 1.277542e+ 02
std. 1.366799e+ 01 1.091385e+ 01 1.543154e+ 01 1.441631e+ 01 5.080616e+ 00 9.354019e− 01 1.136780e+ 00 3.061829e− 01 4.449080e+ 00 2.540410e− 01 9.926296e− 01 2.025386e+ 00 8.329525e− 02

8D

med. 3.063069e+ 01 2.445554e+ 02 2.002306e+ 02 2.527888e+ 02 2.219828e+ 02 2.553495e+ 02 2.556052e+ 02 2.556407e+ 02 2.552505e+ 02 2.558344e+ 02 2.393977e+ 02 2.439254e+ 02 2.558094e+ 02
avg. 3.508411e+ 01 2.424790e+ 02 2.093058e+ 02 2.467548e+ 02 2.210593e+ 02 2.550720e+ 02 2.555434e+ 02 2.555261e+ 02 2.533218e+ 02 2.557864e+ 02 2.395485e+ 02 2.432014e+ 02 2.557819e+ 02
min. 8.595970e+ 00 1.993214e+ 02 1.280000e+ 02 1.280000e+ 02 1.966670e+ 02 2.484290e+ 02 2.549959e+ 02 2.526925e+ 02 2.248775e+ 02 2.550271e+ 02 2.348143e+ 02 2.278456e+ 02 2.552753e+ 02
max. 1.111926e+ 02 2.469791e+ 02 2.429424e+ 02 2.558267e+ 02 2.294180e+ 02 2.557566e+ 02 2.556891e+ 02 2.557270e+ 02 2.555971e+ 02 2.558414e+ 02 2.464383e+ 02 2.462729e+ 02 2.558256e+ 02
std. 2.012999e+ 01 7.566822e+ 00 2.361322e+ 01 2.096668e+ 01 5.436193e+ 00 1.121006e+ 00 1.526685e− 01 3.687652e− 01 5.960340e+ 00 1.182879e− 01 2.435533e+ 00 2.783348e+ 00 7.755240e− 02

9D

med. 8.104468e+ 01 4.890328e+ 02 4.453757e+ 02 5.085828e+ 02 4.728898e+ 02 5.108284e+ 02 5.116154e+ 02 5.117584e+ 02 5.105300e+ 02 5.118498e+ 02 4.745343e+ 02 4.850100e+ 02 5.117262e+ 02
avg. 8.866927e+ 01 4.870021e+ 02 4.303082e+ 02 5.043512e+ 02 4.713741e+ 02 5.104330e+ 02 5.115577e+ 02 5.117049e+ 02 5.015850e+ 02 5.117757e+ 02 4.747901e+ 02 4.830957e+ 02 5.116711e+ 02
min. 1.365448e+ 01 4.588531e+ 02 2.560000e+ 02 4.533062e+ 02 4.330758e+ 02 5.003058e+ 02 5.109369e+ 02 5.107048e+ 02 3.626788e+ 02 5.106257e+ 02 4.512683e+ 02 4.395552e+ 02 5.111166e+ 02
max. 2.378389e+ 02 4.939586e+ 02 4.900513e+ 02 5.118650e+ 02 5.118513e+ 02 5.116471e+ 02 5.117740e+ 02 5.118092e+ 02 5.114906e+ 02 5.118911e+ 02 4.900741e+ 02 4.925824e+ 02 5.118768e+ 02
std. 4.858997e+ 01 6.967582e+ 00 4.452209e+ 01 1.143426e+ 01 1.041781e+ 01 1.518490e+ 00 1.777154e− 01 1.475158e− 01 2.761388e+ 01 2.110266e− 01 6.762019e+ 00 8.245416e+ 00 1.752481e− 01

10D

med. 5.695858e+ 02 9.797368e+ 02 9.175904e+ 02 1.019569e+ 03 1.023838e+ 03 1.023763e+ 03 1.023772e+ 03 1.023841e+ 03 1.023780e+ 03 1.023920e+ 03 9.429039e+ 02 9.703514e+ 02 1.023911e+ 03
avg. 5.764488e+ 02 9.785347e+ 02 9.014572e+ 02 1.017506e+ 03 1.009283e+ 03 1.023763e+ 03 1.023764e+ 03 1.023830e+ 03 1.023780e+ 03 1.023918e+ 03 9.442357e+ 02 9.708227e+ 02 1.023910e+ 03
min. 4.291681e+ 02 9.588862e+ 02 7.829478e+ 02 9.361663e+ 02 9.705047e+ 02 1.023627e+ 03 1.023525e+ 03 1.023587e+ 03 1.023737e+ 03 1.023814e+ 03 9.235966e+ 02 9.526820e+ 02 1.023904e+ 03
max. 8.044108e+ 02 9.899378e+ 02 9.789942e+ 02 1.023813e+ 03 1.023904e+ 03 1.023874e+ 03 1.023818e+ 03 1.023864e+ 03 1.023819e+ 03 1.023925e+ 03 9.722101e+ 02 9.925361e+ 02 1.023913e+ 03
std. 7.907505e+ 01 6.513080e+ 00 6.128623e+ 01 1.117045e+ 01 2.047838e+ 01 6.334860e− 02 4.902870e− 02 4.569562e− 02 1.830458e− 02 1.495436e− 02 1.204980e+ 01 7.530500e+ 00 1.812367e− 03
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Table C.10: Comparison of hypervolume indicator values for different optimizers on the DTLZ5 test problem.

Dim. Stat. NSGA-II
MOEA/D MOEA/D MOEA/D

SMS-EMOA ∆p-DDE R2-MOGA R2-MOGAw R2-MODE R2-IBEA
MOMBI MOMBI MOMBI

TCH NTCH PBI TCH NTCH PBI

2D

med. 1.520999e+ 01 1.521085e+ 01 1.521056e+ 01 1.521081e+ 01 1.521160e+ 01 1.516908e+ 01 1.516627e+ 01 1.516524e+ 01 1.520575e+ 01 1.521113e+ 01 1.521070e+ 01 1.520922e+ 01 1.520974e+ 01
avg. 1.520999e+ 01 1.521084e+ 01 1.521054e+ 01 1.521077e+ 01 1.521158e+ 01 1.516954e+ 01 1.516244e+ 01 1.515895e+ 01 1.520023e+ 01 1.521113e+ 01 1.521067e+ 01 1.520922e+ 01 1.520971e+ 01
min. 1.520920e+ 01 1.521070e+ 01 1.520942e+ 01 1.521032e+ 01 1.521135e+ 01 1.504341e+ 01 1.505132e+ 01 1.503765e+ 01 1.504976e+ 01 1.521092e+ 01 1.521008e+ 01 1.520835e+ 01 1.520828e+ 01
max. 1.521038e+ 01 1.521087e+ 01 1.521085e+ 01 1.521087e+ 01 1.521162e+ 01 1.521069e+ 01 1.520421e+ 01 1.520678e+ 01 1.520716e+ 01 1.521125e+ 01 1.521087e+ 01 1.520973e+ 01 1.521085e+ 01
std. 1.998792e− 04 3.519189e− 05 2.165744e− 04 1.100434e− 04 5.125677e− 05 3.812974e− 02 2.755311e− 02 3.404771e− 02 2.402171e− 02 6.876960e− 05 1.637167e− 04 2.541724e− 04 5.479907e− 04

3D

med. 5.986497e+ 01 5.984301e+ 01 5.984079e+ 01 5.973712e+ 01 5.987523e+ 01 5.837975e+ 01 5.937567e+ 01 5.926090e+ 01 5.984303e+ 01 5.987225e+ 01 5.984261e+ 01 5.984361e+ 01 5.973376e+ 01
avg. 5.986478e+ 01 5.984286e+ 01 5.984208e+ 01 5.973648e+ 01 5.987512e+ 01 5.809331e+ 01 5.933040e+ 01 5.920509e+ 01 5.970159e+ 01 5.987216e+ 01 5.984232e+ 01 5.984356e+ 01 5.973364e+ 01
min. 5.986062e+ 01 5.983897e+ 01 5.983662e+ 01 5.972660e+ 01 5.987343e+ 01 5.557799e+ 01 5.845189e+ 01 5.850461e+ 01 5.826771e+ 01 5.987068e+ 01 5.983906e+ 01 5.983326e+ 01 5.972221e+ 01
max. 5.986745e+ 01 5.984317e+ 01 5.985897e+ 01 5.973802e+ 01 5.987540e+ 01 5.924392e+ 01 5.983309e+ 01 5.978325e+ 01 5.985181e+ 01 5.987284e+ 01 5.984422e+ 01 5.985318e+ 01 5.973823e+ 01
std. 1.414396e− 03 5.839059e− 04 4.073780e− 03 1.847066e− 03 3.554225e− 04 9.973197e− 01 2.993668e− 01 2.936249e− 01 3.069391e− 01 4.307426e− 04 9.635920e− 04 4.171840e− 03 3.067849e− 03

4D

med. 2.381492e+ 02 2.388869e+ 02 2.384235e+ 02 2.381687e+ 02 2.385305e+ 02 2.255927e+ 02 2.377670e+ 02 2.367137e+ 02 2.387219e+ 02 2.393174e+ 02 2.388254e+ 02 2.392075e+ 02 2.381392e+ 02
avg. 2.381213e+ 02 2.388775e+ 02 2.381588e+ 02 2.381681e+ 02 2.384699e+ 02 2.265212e+ 02 2.376615e+ 02 2.365548e+ 02 2.387022e+ 02 2.393029e+ 02 2.388414e+ 02 2.391977e+ 02 2.381417e+ 02
min. 2.375795e+ 02 2.378144e+ 02 2.364138e+ 02 2.381181e+ 02 2.374674e+ 02 2.157342e+ 02 2.352136e+ 02 2.330736e+ 02 2.368650e+ 02 2.389353e+ 02 2.387546e+ 02 2.387306e+ 02 2.380980e+ 02
max. 2.385441e+ 02 2.391163e+ 02 2.390895e+ 02 2.382059e+ 02 2.390961e+ 02 2.357597e+ 02 2.388759e+ 02 2.390029e+ 02 2.393266e+ 02 2.395660e+ 02 2.391098e+ 02 2.395256e+ 02 2.381848e+ 02
std. 2.201643e− 01 1.577649e− 01 6.918479e− 01 1.362063e− 02 3.177071e− 01 4.885508e+ 00 6.545821e− 01 1.107709e+ 00 3.267352e− 01 1.355417e− 01 6.435098e− 02 1.587000e− 01 1.945659e− 02

5D

med. 9.476034e+ 02 9.454845e+ 02 9.450054e+ 02 9.463834e+ 02 9.117782e+ 02 8.663383e+ 02 9.490793e+ 02 9.458106e+ 02 9.541181e+ 02 9.586628e+ 02 9.457171e+ 02 9.497518e+ 02 9.471577e+ 02
avg. 9.471790e+ 02 9.446491e+ 02 9.450232e+ 02 9.464136e+ 02 9.135127e+ 02 8.695492e+ 02 9.488449e+ 02 9.454277e+ 02 9.539682e+ 02 9.586229e+ 02 9.459043e+ 02 9.497604e+ 02 9.470515e+ 02
min. 9.387188e+ 02 9.380837e+ 02 9.374721e+ 02 9.450435e+ 02 8.440617e+ 02 8.088996e+ 02 9.427675e+ 02 9.337932e+ 02 9.490681e+ 02 9.570900e+ 02 9.452696e+ 02 9.451472e+ 02 9.461580e+ 02
max. 9.524148e+ 02 9.504251e+ 02 9.519282e+ 02 9.473757e+ 02 9.571931e+ 02 9.339269e+ 02 9.544960e+ 02 9.533241e+ 02 9.569942e+ 02 9.597234e+ 02 9.484153e+ 02 9.533358e+ 02 9.482842e+ 02
std. 2.325150e+ 00 2.061564e+ 00 3.023611e+ 00 3.932463e− 01 3.371316e+ 01 2.526097e+ 01 2.537586e+ 00 4.524202e+ 00 1.623245e+ 00 5.152468e− 01 5.100080e− 01 1.790231e+ 00 4.143114e− 01

6D

med. 3.736509e+ 03 3.752916e+ 03 3.754141e+ 03 3.759985e+ 03 3.295496e+ 03 3.702004e+ 03 3.784296e+ 03 3.782469e+ 03 3.806124e+ 03 3.832566e+ 03 3.752983e+ 03 3.770434e+ 03 3.770343e+ 03
avg. 3.733598e+ 03 3.746428e+ 03 3.756554e+ 03 3.758882e+ 03 3.305928e+ 03 3.599989e+ 03 3.781805e+ 03 3.778322e+ 03 3.806603e+ 03 3.832533e+ 03 3.752934e+ 03 3.770655e+ 03 3.770362e+ 03
min. 3.657452e+ 03 3.689267e+ 03 3.707190e+ 03 3.741322e+ 03 3.145706e+ 03 3.180297e+ 03 3.742643e+ 03 3.720706e+ 03 3.793585e+ 03 3.825664e+ 03 3.749763e+ 03 3.749975e+ 03 3.763968e+ 03
max. 3.777694e+ 03 3.761177e+ 03 3.793439e+ 03 3.773582e+ 03 3.499108e+ 03 3.780341e+ 03 3.803193e+ 03 3.810248e+ 03 3.819079e+ 03 3.837932e+ 03 3.763958e+ 03 3.798445e+ 03 3.777086e+ 03
std. 2.241531e+ 01 1.285490e+ 01 1.530130e+ 01 6.537366e+ 00 7.605954e+ 01 1.743838e+ 02 1.291392e+ 01 1.965152e+ 01 5.437745e+ 00 2.335078e+ 00 1.983541e+ 00 1.120980e+ 01 2.767205e+ 00

7D

med. 1.473506e+ 04 1.491922e+ 04 1.489100e+ 04 1.493145e+ 04 1.164738e+ 04 1.197908e+ 04 1.490074e+ 04 1.499258e+ 04 1.508832e+ 04 1.527910e+ 04 1.492062e+ 04 1.494703e+ 04 1.493659e+ 04
avg. 1.468789e+ 04 1.491383e+ 04 1.488319e+ 04 1.492906e+ 04 1.164894e+ 04 1.194205e+ 04 1.489161e+ 04 1.497953e+ 04 1.508390e+ 04 1.527346e+ 04 1.492060e+ 04 1.495188e+ 04 1.491422e+ 04
min. 1.385514e+ 04 1.481252e+ 04 1.474773e+ 04 1.487578e+ 04 1.135994e+ 04 1.038981e+ 04 1.454943e+ 04 1.465079e+ 04 1.497670e+ 04 1.521042e+ 04 1.491637e+ 04 1.482753e+ 04 1.228801e+ 04
max. 1.498080e+ 04 1.493584e+ 04 1.501803e+ 04 1.497385e+ 04 1.195748e+ 04 1.313440e+ 04 1.508953e+ 04 1.513865e+ 04 1.517323e+ 04 1.530555e+ 04 1.492518e+ 04 1.506193e+ 04 1.500021e+ 04
std. 2.044862e+ 02 2.188129e+ 01 5.296301e+ 01 1.995835e+ 01 1.152769e+ 02 5.653585e+ 02 1.074693e+ 02 1.049027e+ 02 3.554445e+ 01 2.329846e+ 01 1.836667e+ 00 4.883167e+ 01 2.656117e+ 02

8D

med. 5.757684e+ 04 5.954174e+ 04 5.948930e+ 04 5.948859e+ 04 4.972209e+ 04 4.739453e+ 04 6.018290e+ 04 6.023941e+ 04 6.068430e+ 04 6.119227e+ 04 5.978587e+ 04 5.981579e+ 04 5.962648e+ 04
avg. 5.718632e+ 04 5.941622e+ 04 5.947072e+ 04 5.949243e+ 04 4.969802e+ 04 4.774374e+ 04 6.016760e+ 04 6.018728e+ 04 6.067652e+ 04 6.116308e+ 04 5.978473e+ 04 5.983358e+ 04 5.964046e+ 04
min. 4.924415e+ 04 5.787595e+ 04 5.839421e+ 04 5.934399e+ 04 4.788538e+ 04 4.371038e+ 04 5.943169e+ 04 5.875184e+ 04 5.995163e+ 04 6.085203e+ 04 5.976953e+ 04 5.947990e+ 04 5.957604e+ 04
max. 5.904669e+ 04 5.966074e+ 04 6.010016e+ 04 5.971451e+ 04 5.124033e+ 04 5.853645e+ 04 6.061351e+ 04 6.082294e+ 04 6.088010e+ 04 6.128942e+ 04 5.980834e+ 04 6.038215e+ 04 5.990995e+ 04
std. 1.426610e+ 03 3.024604e+ 02 2.704078e+ 02 7.145102e+ 01 7.247018e+ 02 2.726543e+ 03 2.532080e+ 02 3.606234e+ 02 1.339872e+ 02 1.006032e+ 02 6.507176e+ 00 1.747192e+ 02 5.226583e+ 01

9D

med. 2.280304e+ 05 2.376416e+ 05 2.380527e+ 05 2.373668e+ 05 2.407108e+ 05 1.904470e+ 05 2.420702e+ 05 2.417916e+ 05 2.435827e+ 05 2.451339e+ 05 2.398837e+ 05 2.392650e+ 05 2.381565e+ 05
avg. 2.276276e+ 05 2.371870e+ 05 2.380792e+ 05 2.374341e+ 05 2.396177e+ 05 1.924328e+ 05 2.420771e+ 05 2.416817e+ 05 2.434721e+ 05 2.450340e+ 05 2.398836e+ 05 2.392163e+ 05 2.382060e+ 05
min. 2.124206e+ 05 2.337533e+ 05 2.284056e+ 05 2.370485e+ 05 2.154540e+ 05 1.697838e+ 05 2.404748e+ 05 2.377301e+ 05 2.405608e+ 05 2.437626e+ 05 2.398028e+ 05 2.359967e+ 05 2.379745e+ 05
max. 2.353520e+ 05 2.384989e+ 05 2.408822e+ 05 2.382538e+ 05 2.449261e+ 05 2.346567e+ 05 2.434202e+ 05 2.433761e+ 05 2.445810e+ 05 2.454298e+ 05 2.401026e+ 05 2.410058e+ 05 2.389368e+ 05
std. 4.298323e+ 03 9.518471e+ 02 1.522618e+ 03 2.448896e+ 02 4.888284e+ 03 1.260591e+ 04 7.139773e+ 02 1.063417e+ 03 6.074697e+ 02 3.412859e+ 02 3.109416e+ 01 8.033314e+ 02 1.909000e+ 02

10D

med. 9.096627e+ 05 9.487965e+ 05 9.519180e+ 05 9.476140e+ 05 9.770070e+ 05 7.754288e+ 05 9.713438e+ 05 9.693654e+ 05 9.765996e+ 05 9.813316e+ 05 9.613636e+ 05 9.575009e+ 05 9.518069e+ 05
avg. 9.075072e+ 05 9.480562e+ 05 9.504779e+ 05 9.477215e+ 05 9.770444e+ 05 7.847471e+ 05 9.711617e+ 05 9.687502e+ 05 9.764990e+ 05 9.810410e+ 05 9.610642e+ 05 9.575279e+ 05 9.521429e+ 05
min. 8.642879e+ 05 9.392657e+ 05 9.304636e+ 05 9.465297e+ 05 9.725713e+ 05 6.951348e+ 05 9.656803e+ 05 9.573114e+ 05 9.735754e+ 05 9.751037e+ 05 9.587309e+ 05 9.469802e+ 05 9.507105e+ 05
max. 9.340905e+ 05 9.543243e+ 05 9.615215e+ 05 9.498431e+ 05 9.797380e+ 05 9.321077e+ 05 9.746233e+ 05 9.743584e+ 05 9.782059e+ 05 9.828043e+ 05 9.617521e+ 05 9.647401e+ 05 9.560001e+ 05
std. 1.303655e+ 04 3.972481e+ 03 6.303247e+ 03 6.929602e+ 02 1.395012e+ 03 4.865684e+ 04 2.193105e+ 03 3.129130e+ 03 9.817994e+ 02 1.266587e+ 03 8.329607e+ 02 3.208374e+ 03 1.085091e+ 03
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Table C.11: Comparison of hypervolume indicator values for different optimizers on the DTLZ6 test problem.

Dim. Stat. NSGA-II
MOEA/D MOEA/D MOEA/D

SMS-EMOA ∆p-DDE R2-MOGA R2-MOGAw R2-MODE R2-IBEA
MOMBI MOMBI MOMBI

TCH NTCH PBI TCH NTCH PBI

2D

med. 1.201020e+ 02 1.200317e+ 02 1.200285e+ 02 1.200294e+ 02 1.201051e+ 02 1.202101e+ 02 1.199172e+ 02 1.199622e+ 02 1.202007e+ 02 1.202110e+ 02 1.201022e+ 02 1.201041e+ 02 1.201152e+ 02
avg. 1.201032e+ 02 1.200245e+ 02 1.200340e+ 02 1.200291e+ 02 1.200979e+ 02 1.202101e+ 02 1.199037e+ 02 1.199219e+ 02 1.201576e+ 02 1.201983e+ 02 1.201013e+ 02 1.201021e+ 02 1.201159e+ 02
min. 1.200082e+ 02 1.198607e+ 02 1.199063e+ 02 1.198989e+ 02 1.200020e+ 02 1.202093e+ 02 1.191403e+ 02 1.195468e+ 02 1.198362e+ 02 1.201394e+ 02 1.199868e+ 02 1.199514e+ 02 1.200145e+ 02
max. 1.202069e+ 02 1.201453e+ 02 1.201816e+ 02 1.201756e+ 02 1.202092e+ 02 1.202105e+ 02 1.201220e+ 02 1.201626e+ 02 1.202089e+ 02 1.202112e+ 02 1.202105e+ 02 1.202079e+ 02 1.202093e+ 02
std. 4.116030e− 02 6.205293e− 02 5.813202e− 02 6.025583e− 02 4.614133e− 02 2.356806e− 04 1.403922e− 01 1.408713e− 01 7.874017e− 02 1.953278e− 02 4.511892e− 02 4.744676e− 02 4.083221e− 02

3D

med. 1.316194e+ 03 1.316780e+ 03 1.316992e+ 03 1.316475e+ 03 1.318068e+ 03 1.319014e+ 03 1.313263e+ 03 1.312541e+ 03 1.316484e+ 03 1.319059e+ 03 1.317911e+ 03 1.317839e+ 03 1.313426e+ 03
avg. 1.316229e+ 03 1.316800e+ 03 1.317035e+ 03 1.316194e+ 03 1.318126e+ 03 1.311892e+ 03 1.312923e+ 03 1.312129e+ 03 1.316260e+ 03 1.318970e+ 03 1.317903e+ 03 1.317828e+ 03 1.313456e+ 03
min. 1.314691e+ 03 1.315464e+ 03 1.314953e+ 03 1.312472e+ 03 1.317192e+ 03 1.286301e+ 03 1.304209e+ 03 1.301357e+ 03 1.308908e+ 03 1.318038e+ 03 1.316875e+ 03 1.317078e+ 03 1.312225e+ 03
max. 1.317339e+ 03 1.318279e+ 03 1.318605e+ 03 1.318241e+ 03 1.319044e+ 03 1.319039e+ 03 1.317872e+ 03 1.316570e+ 03 1.319034e+ 03 1.319062e+ 03 1.318703e+ 03 1.318646e+ 03 1.315432e+ 03
std. 5.204294e− 01 6.015902e− 01 6.281976e− 01 1.127131e+ 00 3.854136e− 01 9.581243e+ 00 2.700341e+ 00 2.936565e+ 00 2.550088e+ 00 1.981351e− 01 4.157073e− 01 3.518532e− 01 5.971971e− 01

4D

med. 1.389381e+ 04 1.448145e+ 04 1.447167e+ 04 1.446337e+ 04 1.451076e+ 04 1.452931e+ 04 1.447799e+ 04 1.447177e+ 04 1.450534e+ 04 1.452917e+ 04 1.446003e+ 04 1.448216e+ 04 1.442520e+ 04
avg. 1.389362e+ 04 1.448153e+ 04 1.446330e+ 04 1.445388e+ 04 1.444119e+ 04 1.452900e+ 04 1.447721e+ 04 1.446604e+ 04 1.450271e+ 04 1.452907e+ 04 1.445999e+ 04 1.448211e+ 04 1.442449e+ 04
min. 1.372099e+ 04 1.446059e+ 04 1.416101e+ 04 1.430828e+ 04 1.355867e+ 04 1.452397e+ 04 1.442947e+ 04 1.436575e+ 04 1.446963e+ 04 1.452117e+ 04 1.443849e+ 04 1.445944e+ 04 1.440541e+ 04
max. 1.403360e+ 04 1.450294e+ 04 1.450888e+ 04 1.448447e+ 04 1.452391e+ 04 1.452990e+ 04 1.451532e+ 04 1.450382e+ 04 1.451469e+ 04 1.453449e+ 04 1.447877e+ 04 1.450095e+ 04 1.444214e+ 04
std. 5.933168e+ 01 9.387593e+ 00 4.380031e+ 01 3.082246e+ 01 2.213570e+ 02 9.265028e− 01 1.736762e+ 01 2.658315e+ 01 9.758201e+ 00 3.153544e+ 00 7.547882e+ 00 9.244019e+ 00 7.328462e+ 00

5D

med. 1.337831e+ 05 1.581836e+ 05 1.587838e+ 05 1.587183e+ 05 1.514058e+ 05 1.595525e+ 05 1.593137e+ 05 1.590080e+ 05 1.595858e+ 05 1.597496e+ 05 1.566880e+ 05 1.571681e+ 05 1.586208e+ 05
avg. 1.334224e+ 05 1.581705e+ 05 1.585674e+ 05 1.583583e+ 05 1.528779e+ 05 1.583533e+ 05 1.593022e+ 05 1.589476e+ 05 1.595276e+ 05 1.597313e+ 05 1.565806e+ 05 1.570593e+ 05 1.586049e+ 05
min. 1.254850e+ 05 1.573987e+ 05 1.524036e+ 05 1.544122e+ 05 1.468078e+ 05 1.419973e+ 05 1.586688e+ 05 1.577514e+ 05 1.585021e+ 05 1.594583e+ 05 1.543905e+ 05 1.538183e+ 05 1.582441e+ 05
max. 1.390749e+ 05 1.589530e+ 05 1.595374e+ 05 1.592571e+ 05 1.597809e+ 05 1.598039e+ 05 1.596459e+ 05 1.593738e+ 05 1.597127e+ 05 1.599085e+ 05 1.574090e+ 05 1.581485e+ 05 1.588557e+ 05
std. 2.826994e+ 03 2.803259e+ 02 9.209921e+ 02 8.963776e+ 02 3.995871e+ 03 4.060067e+ 03 2.118988e+ 02 2.784262e+ 02 1.928830e+ 02 8.917166e+ 01 5.250783e+ 02 7.430711e+ 02 1.313005e+ 02

6D

med. 1.210968e+ 06 1.732205e+ 06 1.741453e+ 06 1.743351e+ 06 1.649778e+ 06 1.593341e+ 06 1.752872e+ 06 1.747305e+ 06 1.755173e+ 06 1.755393e+ 06 1.706020e+ 06 1.708308e+ 06 1.741812e+ 06
avg. 1.215285e+ 06 1.732053e+ 06 1.740146e+ 06 1.738818e+ 06 1.658341e+ 06 1.598306e+ 06 1.752371e+ 06 1.747082e+ 06 1.754668e+ 06 1.754939e+ 06 1.703816e+ 06 1.707671e+ 06 1.741468e+ 06
min. 1.135294e+ 06 1.722783e+ 06 1.692235e+ 06 1.681721e+ 06 1.602003e+ 06 1.552980e+ 06 1.745158e+ 06 1.739490e+ 06 1.744455e+ 06 1.750687e+ 06 1.677046e+ 06 1.666214e+ 06 1.731337e+ 06
max. 1.319016e+ 06 1.741580e+ 06 1.751741e+ 06 1.750400e+ 06 1.755433e+ 06 1.747672e+ 06 1.755821e+ 06 1.751798e+ 06 1.757194e+ 06 1.757296e+ 06 1.721637e+ 06 1.728577e+ 06 1.744787e+ 06
std. 4.415965e+ 04 3.792582e+ 03 8.568077e+ 03 1.235798e+ 04 3.987790e+ 04 3.754295e+ 04 2.268159e+ 03 2.208225e+ 03 1.870405e+ 03 1.416366e+ 03 1.010515e+ 04 9.898368e+ 03 2.050546e+ 03

7D

med. 1.168007e+ 07 1.909011e+ 07 1.904541e+ 07 1.920948e+ 07 1.738885e+ 07 1.741972e+ 07 1.920979e+ 07 1.922346e+ 07 1.927005e+ 07 1.925550e+ 07 1.893897e+ 07 1.874329e+ 07 1.921673e+ 07
avg. 1.175591e+ 07 1.907949e+ 07 1.900003e+ 07 1.920478e+ 07 1.743038e+ 07 1.750680e+ 07 1.920494e+ 07 1.921286e+ 07 1.926325e+ 07 1.925762e+ 07 1.890595e+ 07 1.869999e+ 07 1.921573e+ 07
min. 1.027179e+ 07 1.890719e+ 07 1.794389e+ 07 1.910799e+ 07 1.714364e+ 07 1.623055e+ 07 1.904504e+ 07 1.905088e+ 07 1.913544e+ 07 1.918992e+ 07 1.843171e+ 07 1.797550e+ 07 1.919679e+ 07
max. 1.319674e+ 07 1.919176e+ 07 1.920868e+ 07 1.922990e+ 07 1.822878e+ 07 1.909564e+ 07 1.928380e+ 07 1.927980e+ 07 1.929755e+ 07 1.930782e+ 07 1.905040e+ 07 1.891535e+ 07 1.923390e+ 07
std. 5.724149e+ 05 5.460275e+ 04 2.066098e+ 05 2.283205e+ 04 2.138554e+ 05 6.874916e+ 05 4.757208e+ 04 4.537574e+ 04 2.737833e+ 04 2.286155e+ 04 1.244126e+ 05 1.631819e+ 05 7.808895e+ 03

8D

med. 1.198509e+ 08 2.103817e+ 08 2.094805e+ 08 2.107424e+ 08 1.961256e+ 08 1.924939e+ 08 2.118353e+ 08 2.112575e+ 08 2.122648e+ 08 2.119485e+ 08 2.066746e+ 08 2.047652e+ 08 2.102798e+ 08
avg. 1.198592e+ 08 2.102487e+ 08 2.087880e+ 08 2.103144e+ 08 1.965255e+ 08 1.935899e+ 08 2.117849e+ 08 2.111999e+ 08 2.121740e+ 08 2.118617e+ 08 2.066310e+ 08 2.045215e+ 08 2.102659e+ 08
min. 1.080740e+ 08 2.090471e+ 08 2.001751e+ 08 2.065091e+ 08 1.912261e+ 08 1.792699e+ 08 2.102655e+ 08 2.104823e+ 08 2.107168e+ 08 2.109519e+ 08 2.033939e+ 08 1.999911e+ 08 2.094643e+ 08
max. 1.309974e+ 08 2.112283e+ 08 2.115651e+ 08 2.115388e+ 08 2.125192e+ 08 2.117038e+ 08 2.122784e+ 08 2.118611e+ 08 2.124617e+ 08 2.123065e+ 08 2.095003e+ 08 2.081151e+ 08 2.107782e+ 08
std. 4.373778e+ 06 4.762804e+ 05 2.284221e+ 06 1.161841e+ 06 3.385985e+ 06 9.258986e+ 06 3.235957e+ 05 3.271154e+ 05 3.129269e+ 05 3.225402e+ 05 1.225256e+ 06 1.594303e+ 06 2.730634e+ 05

9D

med. 1.322960e+ 09 2.314140e+ 09 2.287429e+ 09 2.306547e+ 09 2.182929e+ 09 2.101791e+ 09 2.328692e+ 09 2.317241e+ 09 2.337242e+ 09 2.328549e+ 09 2.260390e+ 09 2.235726e+ 09 2.291314e+ 09
avg. 1.325013e+ 09 2.313602e+ 09 2.277142e+ 09 2.305552e+ 09 2.184065e+ 09 2.108699e+ 09 2.328394e+ 09 2.316845e+ 09 2.336784e+ 09 2.327612e+ 09 2.259795e+ 09 2.231659e+ 09 2.291353e+ 09
min. 1.251015e+ 09 2.296709e+ 09 2.140775e+ 09 2.267034e+ 09 2.147368e+ 09 2.003190e+ 09 2.310279e+ 09 2.303943e+ 09 2.331822e+ 09 2.310682e+ 09 2.237133e+ 09 2.157961e+ 09 2.278600e+ 09
max. 1.410060e+ 09 2.326582e+ 09 2.324737e+ 09 2.324737e+ 09 2.278063e+ 09 2.326528e+ 09 2.333922e+ 09 2.325372e+ 09 2.338853e+ 09 2.332595e+ 09 2.281124e+ 09 2.265226e+ 09 2.304158e+ 09
std. 3.614170e+ 07 6.314110e+ 06 3.957895e+ 07 1.748808e+ 07 2.446264e+ 07 8.038022e+ 07 3.198094e+ 06 4.111177e+ 06 1.585609e+ 06 3.724599e+ 06 7.551349e+ 06 2.061718e+ 07 5.535784e+ 06

10D

med. 1.506882e+ 10 2.548168e+ 10 2.504475e+ 10 2.553986e+ 10 2.396791e+ 10 2.338596e+ 10 2.558130e+ 10 2.543025e+ 10 2.572329e+ 10 2.555653e+ 10 2.476779e+ 10 2.432235e+ 10 2.492524e+ 10
avg. 1.511206e+ 10 2.546630e+ 10 2.485604e+ 10 2.536970e+ 10 2.402331e+ 10 2.357800e+ 10 2.557610e+ 10 2.542392e+ 10 2.572129e+ 10 2.554594e+ 10 2.475435e+ 10 2.432592e+ 10 2.491579e+ 10
min. 1.403183e+ 10 2.522269e+ 10 2.331958e+ 10 2.418818e+ 10 2.367331e+ 10 2.212991e+ 10 2.548321e+ 10 2.520742e+ 10 2.566648e+ 10 2.527497e+ 10 2.440655e+ 10 2.353210e+ 10 2.466304e+ 10
max. 1.628967e+ 10 2.557659e+ 10 2.554893e+ 10 2.557207e+ 10 2.475394e+ 10 2.570769e+ 10 2.562975e+ 10 2.551541e+ 10 2.573830e+ 10 2.560977e+ 10 2.491899e+ 10 2.475823e+ 10 2.510424e+ 10
std. 4.081312e+ 08 6.705519e+ 07 5.824512e+ 08 2.827193e+ 08 2.189607e+ 08 1.003616e+ 09 2.616204e+ 07 5.253210e+ 07 1.190040e+ 07 5.728045e+ 07 9.075315e+ 07 2.122051e+ 08 8.095296e+ 07
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Table C.12: Comparison of hypervolume indicator values for different optimizers on the DTLZ7 test problem.

Dim. Stat. NSGA-II
MOEA/D MOEA/D MOEA/D

SMS-EMOA ∆p-DDE R2-MOGA R2-MOGAw R2-MODE R2-IBEA
MOMBI MOMBI MOMBI

TCH NTCH PBI TCH NTCH PBI

2D

med. 1.772480e+ 01 1.737751e+ 01 1.737719e+ 01 1.771931e+ 01 1.772581e+ 01 1.761423e+ 01 1.738405e+ 01 1.728211e+ 01 1.770631e+ 01 1.772491e+ 01 1.772192e+ 01 1.772291e+ 01 1.771474e+ 01
avg. 1.772479e+ 01 1.750186e+ 01 1.744287e+ 01 1.766095e+ 01 1.772574e+ 01 1.760818e+ 01 1.728308e+ 01 1.710696e+ 01 1.758817e+ 01 1.772492e+ 01 1.772198e+ 01 1.772275e+ 01 1.771466e+ 01
min. 1.772444e+ 01 1.737699e+ 01 1.737639e+ 01 1.737531e+ 01 1.772478e+ 01 1.701471e+ 01 1.588911e+ 01 1.505963e+ 01 1.648050e+ 01 1.772430e+ 01 1.771780e+ 01 1.772070e+ 01 1.770228e+ 01
max. 1.772510e+ 01 1.772406e+ 01 1.772460e+ 01 1.772181e+ 01 1.772584e+ 01 1.772257e+ 01 1.770816e+ 01 1.769911e+ 01 1.771637e+ 01 1.772521e+ 01 1.772410e+ 01 1.772409e+ 01 1.772230e+ 01
std. 1.418413e− 04 1.667318e− 01 1.365132e− 01 1.294566e− 01 1.812639e− 04 1.171247e− 01 3.712635e− 01 5.811945e− 01 2.570454e− 01 1.634515e− 04 1.413655e− 03 8.078977e− 04 4.464758e− 03

3D

med. 1.625727e+ 01 1.611884e+ 01 1.574321e+ 01 1.624352e+ 01 1.616077e+ 01 1.568592e+ 01 1.522768e+ 01 1.510171e+ 01 1.619958e+ 01 1.636467e+ 01 1.611713e+ 01 1.630053e+ 01 1.624761e+ 01
avg. 1.621093e+ 01 1.603450e+ 01 1.586085e+ 01 1.623135e+ 01 1.616356e+ 01 1.562234e+ 01 1.512256e+ 01 1.466061e+ 01 1.604402e+ 01 1.636393e+ 01 1.611807e+ 01 1.628683e+ 01 1.624675e+ 01
min. 1.585559e+ 01 1.574287e+ 01 1.572072e+ 01 1.574385e+ 01 1.590868e+ 01 1.400619e+ 01 1.255174e+ 01 9.719387e+ 00 1.347709e+ 01 1.633119e+ 01 1.611037e+ 01 1.605853e+ 01 1.622681e+ 01
max. 1.630807e+ 01 1.612751e+ 01 1.630188e+ 01 1.625842e+ 01 1.637037e+ 01 1.630684e+ 01 1.616368e+ 01 1.612044e+ 01 1.630300e+ 01 1.637204e+ 01 1.618206e+ 01 1.632061e+ 01 1.625708e+ 01
std. 1.016939e− 01 1.204839e− 01 1.731456e− 01 7.079816e− 02 1.155159e− 01 4.323448e− 01 6.824288e− 01 1.406949e+ 00 4.312167e− 01 5.900564e− 03 7.286148e− 03 5.769655e− 02 5.312461e− 03

4D

med. 1.423275e+ 01 1.405896e+ 01 1.408219e+ 01 1.403204e+ 01 1.451449e+ 01 1.220876e+ 01 1.214944e+ 01 1.187276e+ 01 1.440554e+ 01 1.480566e+ 01 1.383563e+ 01 1.449625e+ 01 1.410244e+ 01
avg. 1.417787e+ 01 1.401840e+ 01 1.417979e+ 01 1.400633e+ 01 1.431565e+ 01 1.224598e+ 01 1.209790e+ 01 1.144165e+ 01 1.424559e+ 01 1.479669e+ 01 1.384247e+ 01 1.449576e+ 01 1.409655e+ 01
min. 1.334970e+ 01 1.383230e+ 01 1.403648e+ 01 1.343959e+ 01 1.015739e+ 01 8.335459e+ 00 8.878037e+ 00 4.785225e+ 00 1.155970e+ 01 1.435243e+ 01 1.382334e+ 01 1.433534e+ 01 1.399082e+ 01
max. 1.442015e+ 01 1.419204e+ 01 1.452598e+ 01 1.414910e+ 01 1.469439e+ 01 1.402565e+ 01 1.406742e+ 01 1.418329e+ 01 1.461041e+ 01 1.484578e+ 01 1.406102e+ 01 1.455359e+ 01 1.413556e+ 01
std. 1.959550e− 01 1.402125e− 01 1.481472e− 01 1.110643e− 01 7.982446e− 01 1.159265e+ 00 1.042412e+ 00 2.162405e+ 00 5.284867e− 01 5.235353e− 02 3.373519e− 02 3.097528e− 02 2.672768e− 02

5D

med. 1.128330e+ 01 1.207228e+ 01 1.239050e+ 01 6.632180e+ 00 1.254955e+ 01 9.530219e+ 00 9.327853e+ 00 9.002057e+ 00 1.204837e+ 01 1.301004e+ 01 1.195363e+ 01 1.246622e+ 01 7.930343e+ 00
avg. 1.127591e+ 01 1.215301e+ 01 1.245269e+ 01 6.582571e+ 00 1.254674e+ 01 9.112810e+ 00 9.271454e+ 00 8.485852e+ 00 1.159792e+ 01 1.300513e+ 01 1.199014e+ 01 1.249499e+ 01 6.397375e+ 00
min. 9.938904e+ 00 1.195956e+ 01 1.233506e+ 01 1.942670e+ 00 1.237415e+ 01 6.004364e+ 00 4.295885e+ 00 1.752453e+ 00 5.004023e+ 00 1.283646e+ 01 1.193280e+ 01 1.238484e+ 01 3.957258e− 01
max. 1.218175e+ 01 1.243445e+ 01 1.271663e+ 01 1.214119e+ 01 1.266316e+ 01 1.212565e+ 01 1.136384e+ 01 1.202672e+ 01 1.265419e+ 01 1.312772e+ 01 1.222778e+ 01 1.267267e+ 01 1.147891e+ 01
std. 4.292879e− 01 1.555332e− 01 1.098797e− 01 1.421676e+ 00 5.516576e− 02 1.681988e+ 00 9.929234e− 01 2.485358e+ 00 1.318756e+ 00 6.379519e− 02 6.862621e− 02 7.419639e− 02 3.662227e+ 00

6D

med. 7.201025e+ 00 1.001897e+ 01 1.071389e+ 01 3.010195e− 01 1.049732e+ 01 8.707716e+ 00 6.587967e+ 00 6.483835e+ 00 9.483471e+ 00 1.087549e+ 01 6.026100e+ 00 9.679229e+ 00 1.689105e− 01
avg. 7.198799e+ 00 9.709019e+ 00 1.070585e+ 01 7.559983e− 01 1.049120e+ 01 8.295555e+ 00 6.524449e+ 00 6.328746e+ 00 8.973341e+ 00 1.081639e+ 01 7.514874e+ 00 9.013127e+ 00 3.009163e− 01
min. 5.398210e+ 00 5.944880e+ 00 1.006647e+ 01 1.680153e− 02 1.020933e+ 01 2.221281e+ 00 2.322481e+ 00 4.254753e− 01 1.761578e+ 00 9.721319e+ 00 5.884775e+ 00 7.209575e+ 00 1.101620e− 02
max. 8.373582e+ 00 1.066714e+ 01 1.087544e+ 01 4.611917e+ 00 1.070468e+ 01 9.000100e+ 00 8.727890e+ 00 1.021762e+ 01 1.058413e+ 01 1.129017e+ 01 1.040089e+ 01 1.082052e+ 01 8.685237e+ 00
std. 4.721324e− 01 1.157947e+ 00 1.119831e− 01 1.106340e+ 00 1.116773e− 01 1.142310e+ 00 1.126137e+ 00 2.519902e+ 00 1.452061e+ 00 3.095007e− 01 1.743132e+ 00 1.192963e+ 00 8.880978e− 01

7D

med. 3.419147e+ 00 5.386171e+ 00 8.744941e+ 00 3.270779e− 02 8.255152e+ 00 4.921470e+ 00 3.521101e+ 00 2.171392e+ 00 4.634357e+ 00 3.943842e+ 00 1.297963e+ 00 5.000797e+ 00 5.457545e− 03
avg. 3.492283e+ 00 5.079091e+ 00 8.715724e+ 00 3.418151e− 01 7.660584e+ 00 4.815163e+ 00 3.224791e+ 00 2.646788e+ 00 4.675548e+ 00 4.464070e+ 00 1.518496e+ 00 4.949603e+ 00 1.160390e− 02
min. 2.342515e+ 00 4.903421e− 01 8.001329e+ 00 1.734397e− 03 9.536540e− 03 1.919996e+ 00 4.283396e− 01 4.177557e− 02 4.454769e− 01 2.956974e+ 00 4.805222e− 01 2.261152e+ 00 4.624768e− 04
max. 5.141579e+ 00 8.694043e+ 00 8.892895e+ 00 3.355103e+ 00 8.822642e+ 00 6.826996e+ 00 5.238408e+ 00 7.291774e+ 00 8.121388e+ 00 8.932015e+ 00 5.412484e+ 00 8.485949e+ 00 2.014949e− 01
std. 5.137960e− 01 2.323108e+ 00 1.171019e− 01 7.387445e− 01 2.206066e+ 00 1.032515e+ 00 1.227144e+ 00 2.079665e+ 00 1.961746e+ 00 1.411136e+ 00 1.216228e+ 00 1.640278e+ 00 2.287819e− 02

8D

med. 5.449157e− 01 2.009202e+ 00 6.861234e+ 00 5.760527e− 03 5.982937e+ 00 1.000560e+ 00 2.895890e+ 00 2.772100e+ 00 3.902094e+ 00 1.943097e+ 00 1.212241e− 01 2.681736e+ 00 7.834286e− 04
avg. 5.408725e− 01 2.639309e+ 00 6.841700e+ 00 8.569387e− 02 5.970082e+ 00 1.137232e+ 00 2.766674e+ 00 2.553062e+ 00 3.707429e+ 00 2.968247e+ 00 3.207260e− 01 2.894473e+ 00 1.156260e− 03
min. 1.546198e− 01 1.132322e− 01 6.459977e+ 00 2.953331e− 04 5.113759e+ 00 1.509022e− 02 2.548662e− 01 3.858361e− 02 2.795593e− 01 1.874660e+ 00 1.114375e− 01 1.182214e+ 00 8.665254e− 05
max. 1.099832e+ 00 6.861088e+ 00 7.082651e+ 00 9.749990e− 01 6.721674e+ 00 3.374391e+ 00 3.901195e+ 00 6.106034e+ 00 6.060959e+ 00 7.419353e+ 00 1.993311e+ 00 6.812438e+ 00 4.352052e− 03
std. 1.971527e− 01 1.825037e+ 00 1.269969e− 01 1.908364e− 01 3.488228e− 01 8.292815e− 01 7.788717e− 01 1.628632e+ 00 1.469107e+ 00 1.576627e+ 00 3.075117e− 01 1.284603e+ 00 1.040938e− 03

9D

med. 4.573806e− 03 1.319000e+ 00 4.906740e+ 00 4.076489e− 03 3.130287e+ 00 2.875505e− 01 2.163168e+ 00 1.391094e+ 00 3.177093e+ 00 1.398052e+ 00 2.660244e− 02 1.683408e+ 00 1.196427e− 04
avg. 8.350265e− 03 1.587307e+ 00 4.902256e+ 00 3.022224e− 02 3.099550e+ 00 3.234025e− 01 2.149656e+ 00 1.473555e+ 00 3.022422e+ 00 1.627963e+ 00 6.174390e− 02 2.046943e+ 00 1.156431e− 04
min. 3.866863e− 04 2.597906e− 02 4.534856e+ 00 5.539845e− 05 2.048496e+ 00 1.454994e− 02 6.716342e− 01 2.273063e− 02 8.084795e− 01 1.351538e+ 00 2.265383e− 02 6.732394e− 01 1.761664e− 05
max. 5.837259e− 02 4.521861e+ 00 5.200088e+ 00 2.425406e− 01 3.693270e+ 00 5.875595e− 01 3.085832e+ 00 3.434968e+ 00 4.175770e+ 00 4.566778e+ 00 5.938563e− 01 5.258115e+ 00 6.197188e− 04
std. 8.977934e− 03 1.271320e+ 00 1.627951e− 01 5.959820e− 02 3.378674e− 01 2.400987e− 01 4.680234e− 01 1.014844e+ 00 7.508740e− 01 5.543930e− 01 7.605415e− 02 1.121133e+ 00 8.070427e− 05

10D

med. 5.249787e+ 00 3.903390e− 01 2.893759e+ 00 2.857973e− 03 9.623705e− 01 1.216161e+ 01 1.443151e+ 00 6.934844e− 01 1.585825e+ 00 1.002269e+ 00 5.590796e− 03 9.478212e− 01 1.786547e− 05
avg. 5.455100e+ 00 7.091379e− 01 2.877315e+ 00 1.188268e− 02 1.041105e+ 00 1.220766e+ 01 1.409198e+ 00 8.144383e− 01 1.572889e+ 00 1.063874e+ 00 8.637017e− 03 1.045174e+ 00 1.488646e− 05
min. 2.614008e+ 00 5.438431e− 03 2.248070e+ 00 1.134181e− 05 4.539230e− 02 5.765086e+ 00 2.811418e− 01 1.449959e− 02 1.866188e− 01 9.574546e− 01 4.489874e− 03 3.297817e− 01 1.965790e− 06
max. 9.633890e+ 00 2.919172e+ 00 3.337563e+ 00 1.453774e− 01 2.053183e+ 00 1.944170e+ 01 2.187026e+ 00 3.068195e+ 00 2.004756e+ 00 1.823787e+ 00 5.655958e− 02 2.582186e+ 00 2.649139e− 05
std. 1.606683e+ 00 6.755171e− 01 2.509435e− 01 2.371467e− 02 4.555894e− 01 2.530226e+ 00 3.256343e− 01 5.947873e− 01 2.845953e− 01 1.594379e− 01 9.093379e− 03 4.671878e− 01 6.120255e− 06

C
IN

V
E

S
T

A
V

-IP
N

C
om

p
u
ter

S
cien

ce
D

ep
artm

en
t



1
6
0

A
p
p

en
d
ix

C

Table C.13: Comparison of hypervolume indicator values for different optimizers on the WFG1 test problem.

Dim. Stat. NSGA-II
MOEA/D MOEA/D MOEA/D

SMS-EMOA ∆p-DDE R2-MOGA R2-MOGAw R2-MODE R2-IBEA
MOMBI MOMBI MOMBI

TCH NTCH PBI TCH NTCH PBI

2D

med. 5.462359e+ 00 4.914358e+ 00 5.364344e+ 00 4.299120e+ 00 5.216719e+ 00 5.875994e+ 00 5.846619e+ 00 5.912147e+ 00 5.676851e+ 00 8.532078e+ 00 5.638118e+ 00 5.842622e+ 00 4.906127e+ 00
avg. 5.613198e+ 00 4.994187e+ 00 5.449888e+ 00 4.295479e+ 00 5.218911e+ 00 5.878426e+ 00 5.957711e+ 00 6.005061e+ 00 5.684949e+ 00 8.698179e+ 00 5.626208e+ 00 6.000237e+ 00 4.968546e+ 00
min. 4.871588e+ 00 3.265890e+ 00 3.971556e+ 00 3.617274e+ 00 4.506204e+ 00 5.769845e+ 00 5.067192e+ 00 5.067505e+ 00 5.537496e+ 00 7.754294e+ 00 4.793036e+ 00 5.174677e+ 00 4.398853e+ 00
max. 7.120354e+ 00 6.259757e+ 00 6.538528e+ 00 4.817146e+ 00 7.409844e+ 00 5.983787e+ 00 7.188923e+ 00 7.484200e+ 00 5.849240e+ 00 1.038463e+ 01 6.392600e+ 00 7.452735e+ 00 6.386459e+ 00
std. 5.029624e− 01 5.607255e− 01 5.744606e− 01 2.055168e− 01 3.931786e− 01 4.617552e− 02 5.528027e− 01 5.470447e− 01 5.805579e− 02 7.636584e− 01 3.025477e− 01 5.286265e− 01 2.928271e− 01

3D

med. 3.568445e+ 01 5.298790e+ 01 4.864920e+ 01 4.969971e+ 01 6.018661e+ 01 4.763078e+ 01 5.459438e+ 01 5.695421e+ 01 4.910925e+ 01 7.553449e+ 01 5.391138e+ 01 5.449829e+ 01 4.917298e+ 01
avg. 3.573018e+ 01 5.227857e+ 01 4.853772e+ 01 4.847948e+ 01 5.971890e+ 01 4.766870e+ 01 5.463634e+ 01 5.702944e+ 01 4.909904e+ 01 7.665978e+ 01 5.385996e+ 01 5.439026e+ 01 4.850851e+ 01
min. 3.355509e+ 01 4.756529e+ 01 3.959740e+ 01 4.296551e+ 01 5.274862e+ 01 4.687834e+ 01 5.281628e+ 01 5.474343e+ 01 4.793777e+ 01 6.881641e+ 01 5.055970e+ 01 5.016687e+ 01 4.257459e+ 01
max. 3.878649e+ 01 5.469985e+ 01 5.354379e+ 01 5.176109e+ 01 6.357477e+ 01 4.847397e+ 01 5.775135e+ 01 5.903375e+ 01 5.035301e+ 01 8.392603e+ 01 5.578139e+ 01 5.693552e+ 01 5.126336e+ 01
std. 9.222034e− 01 1.915141e+ 00 2.910133e+ 00 2.715035e+ 00 2.338678e+ 00 3.185352e− 01 9.476713e− 01 9.201671e− 01 4.561858e− 01 4.231603e+ 00 7.929417e− 01 1.243932e+ 00 2.191201e+ 00

4D

med. 2.999472e+ 02 4.363328e+ 02 3.752584e+ 02 3.773955e+ 02 3.843418e+ 02 3.936088e+ 02 4.547109e+ 02 4.676028e+ 02 4.335961e+ 02 5.972767e+ 02 4.335852e+ 02 4.328992e+ 02 3.758139e+ 02
avg. 3.000457e+ 02 4.325936e+ 02 3.743511e+ 02 3.872948e+ 02 3.852523e+ 02 3.951974e+ 02 4.549730e+ 02 4.672755e+ 02 4.335653e+ 02 5.997024e+ 02 4.324732e+ 02 4.322864e+ 02 3.840830e+ 02
min. 2.822502e+ 02 4.008668e+ 02 3.178595e+ 02 3.559593e+ 02 3.675130e+ 02 3.826978e+ 02 4.330471e+ 02 4.447273e+ 02 4.261006e+ 02 5.663855e+ 02 4.136064e+ 02 4.106206e+ 02 3.574447e+ 02
max. 3.177772e+ 02 4.545648e+ 02 4.322106e+ 02 4.299096e+ 02 4.284461e+ 02 4.121265e+ 02 4.757274e+ 02 4.841930e+ 02 4.435653e+ 02 6.722141e+ 02 4.449113e+ 02 4.460360e+ 02 4.140905e+ 02
std. 6.853279e+ 00 1.300987e+ 01 2.340402e+ 01 2.169376e+ 01 1.103903e+ 01 5.704333e+ 00 8.068783e+ 00 7.401526e+ 00 3.409073e+ 00 2.039213e+ 01 6.627654e+ 00 7.281924e+ 00 1.843906e+ 01

5D

med. 3.165284e+ 03 4.205915e+ 03 3.449449e+ 03 3.785514e+ 03 3.637982e+ 03 3.997044e+ 03 4.439048e+ 03 4.551241e+ 03 4.420813e+ 03 5.908312e+ 03 4.346138e+ 03 4.283159e+ 03 3.713781e+ 03
avg. 3.164572e+ 03 4.239323e+ 03 3.442911e+ 03 3.837411e+ 03 3.644455e+ 03 3.992746e+ 03 4.447962e+ 03 4.556431e+ 03 4.424050e+ 03 5.920511e+ 03 4.350517e+ 03 4.299735e+ 03 3.754181e+ 03
min. 3.014939e+ 03 4.022654e+ 03 2.783251e+ 03 3.584182e+ 03 3.391319e+ 03 3.822199e+ 03 4.322882e+ 03 4.377570e+ 03 4.363041e+ 03 5.517745e+ 03 4.170580e+ 03 4.167911e+ 03 3.594959e+ 03
max. 3.295570e+ 03 4.515805e+ 03 4.152484e+ 03 4.493660e+ 03 3.888046e+ 03 4.126977e+ 03 4.618256e+ 03 4.736161e+ 03 4.498066e+ 03 6.495744e+ 03 4.582562e+ 03 4.491752e+ 03 4.179526e+ 03
std. 6.297992e+ 01 1.184932e+ 02 2.327068e+ 02 1.836751e+ 02 8.322119e+ 01 5.933607e+ 01 7.429734e+ 01 9.237423e+ 01 3.024078e+ 01 1.638093e+ 02 6.802183e+ 01 7.933194e+ 01 1.291893e+ 02

6D

med. 3.961896e+ 04 5.058502e+ 04 4.075742e+ 04 4.537424e+ 04 4.178292e+ 04 4.745718e+ 04 5.276427e+ 04 5.397905e+ 04 5.287953e+ 04 7.143837e+ 04 5.261463e+ 04 5.178997e+ 04 4.549634e+ 04
avg. 3.962700e+ 04 5.077014e+ 04 4.079408e+ 04 4.628078e+ 04 4.170160e+ 04 4.749803e+ 04 5.283112e+ 04 5.414936e+ 04 5.291284e+ 04 7.153553e+ 04 5.259595e+ 04 5.186736e+ 04 4.570715e+ 04
min. 3.808494e+ 04 4.837625e+ 04 3.428403e+ 04 4.340534e+ 04 3.833528e+ 04 4.640198e+ 04 5.084747e+ 04 5.253975e+ 04 5.191570e+ 04 6.672165e+ 04 4.925144e+ 04 5.047884e+ 04 4.337861e+ 04
max. 4.099992e+ 04 5.370963e+ 04 4.701061e+ 04 5.194246e+ 04 4.452259e+ 04 4.937755e+ 04 5.537359e+ 04 5.700767e+ 04 5.356893e+ 04 7.811093e+ 04 5.500136e+ 04 5.445637e+ 04 5.040109e+ 04
std. 6.426644e+ 02 9.744763e+ 02 2.550162e+ 03 2.280993e+ 03 1.174205e+ 03 5.115224e+ 02 9.125991e+ 02 8.821086e+ 02 2.894650e+ 02 2.130271e+ 03 9.485106e+ 02 6.750439e+ 02 1.126724e+ 03

7D

med. 5.675085e+ 05 7.103932e+ 05 5.507385e+ 05 6.592825e+ 05 5.947915e+ 05 6.645683e+ 05 7.317450e+ 05 7.710217e+ 05 7.747603e+ 05 1.138909e+ 06 7.601295e+ 05 7.547361e+ 05 6.828833e+ 05
avg. 5.671659e+ 05 7.100479e+ 05 5.483226e+ 05 6.640954e+ 05 5.932660e+ 05 6.651603e+ 05 7.340535e+ 05 7.711226e+ 05 7.750353e+ 05 1.137462e+ 06 7.587543e+ 05 7.553591e+ 05 6.826636e+ 05
min. 5.345314e+ 05 6.827213e+ 05 4.355632e+ 05 6.246522e+ 05 5.279304e+ 05 6.542456e+ 05 7.120322e+ 05 7.355933e+ 05 7.596985e+ 05 1.011569e+ 06 7.097780e+ 05 7.325436e+ 05 6.434942e+ 05
max. 5.836994e+ 05 7.475913e+ 05 6.510853e+ 05 7.375575e+ 05 6.505399e+ 05 6.797777e+ 05 7.671301e+ 05 8.056107e+ 05 7.948739e+ 05 1.222339e+ 06 7.872074e+ 05 7.887441e+ 05 7.536961e+ 05
std. 8.653643e+ 03 1.230891e+ 04 4.182843e+ 04 2.390291e+ 04 2.030456e+ 04 5.905857e+ 03 1.096246e+ 04 1.273553e+ 04 6.319036e+ 03 4.066803e+ 04 1.441700e+ 04 1.079752e+ 04 1.887342e+ 04

8D

med. 9.328351e+ 06 1.136470e+ 07 8.575436e+ 06 1.065207e+ 07 8.692666e+ 06 1.061006e+ 07 1.183472e+ 07 1.210138e+ 07 1.172177e+ 07 1.691765e+ 07 1.190240e+ 07 1.191409e+ 07 1.135197e+ 07
avg. 9.339379e+ 06 1.133524e+ 07 8.693511e+ 06 1.070343e+ 07 8.705381e+ 06 1.060913e+ 07 1.182022e+ 07 1.213613e+ 07 1.172530e+ 07 1.691214e+ 07 1.191395e+ 07 1.191702e+ 07 1.134547e+ 07
min. 9.104162e+ 06 1.083173e+ 07 6.739908e+ 06 1.010184e+ 07 8.097936e+ 06 1.044831e+ 07 1.146003e+ 07 1.175905e+ 07 1.156896e+ 07 1.544364e+ 07 1.142539e+ 07 1.160367e+ 07 1.088232e+ 07
max. 9.649505e+ 06 1.181545e+ 07 1.048732e+ 07 1.185216e+ 07 9.354137e+ 06 1.070902e+ 07 1.212068e+ 07 1.282519e+ 07 1.194497e+ 07 1.791833e+ 07 1.229190e+ 07 1.231945e+ 07 1.189698e+ 07
std. 9.730284e+ 04 2.058054e+ 05 6.597119e+ 05 3.352670e+ 05 2.702971e+ 05 4.808386e+ 04 1.376781e+ 05 1.779200e+ 05 6.899932e+ 04 4.272451e+ 05 1.928349e+ 05 1.354452e+ 05 1.888264e+ 05

9D

med. 1.708704e+ 08 2.009463e+ 08 1.511786e+ 08 1.909083e+ 08 1.504182e+ 08 1.911000e+ 08 2.131923e+ 08 2.166479e+ 08 2.049415e+ 08 2.691906e+ 08 2.110870e+ 08 2.118505e+ 08 2.050601e+ 08
avg. 1.710400e+ 08 2.009571e+ 08 1.525088e+ 08 1.912840e+ 08 1.504794e+ 08 1.912819e+ 08 2.132641e+ 08 2.168482e+ 08 2.050181e+ 08 2.694135e+ 08 2.112527e+ 08 2.117147e+ 08 2.050124e+ 08
min. 1.680926e+ 08 1.892866e+ 08 1.298587e+ 08 1.835622e+ 08 1.363577e+ 08 1.901592e+ 08 2.086256e+ 08 2.120742e+ 08 2.035420e+ 08 2.553186e+ 08 2.051766e+ 08 2.052986e+ 08 1.995332e+ 08
max. 1.754480e+ 08 2.112792e+ 08 1.835066e+ 08 2.091752e+ 08 1.614670e+ 08 1.936965e+ 08 2.218463e+ 08 2.221525e+ 08 2.078647e+ 08 2.832295e+ 08 2.163483e+ 08 2.227167e+ 08 2.101744e+ 08
std. 1.464659e+ 06 3.571941e+ 06 1.073714e+ 07 3.856771e+ 06 4.275982e+ 06 7.473478e+ 05 2.098197e+ 06 1.973221e+ 06 8.098268e+ 05 5.995060e+ 06 2.354342e+ 06 2.214950e+ 06 2.467371e+ 06

10D

med. 3.449011e+ 09 4.000843e+ 09 3.043455e+ 09 3.801957e+ 09 2.836797e+ 09 3.820934e+ 09 4.259319e+ 09 4.295204e+ 09 4.025032e+ 09 4.722387e+ 09 4.163104e+ 09 4.173288e+ 09 4.058654e+ 09
avg. 3.447654e+ 09 4.006121e+ 09 3.041157e+ 09 3.804224e+ 09 2.848816e+ 09 3.824122e+ 09 4.261389e+ 09 4.298027e+ 09 4.026265e+ 09 4.726504e+ 09 4.167185e+ 09 4.176136e+ 09 4.062747e+ 09
min. 3.386511e+ 09 3.830700e+ 09 2.558320e+ 09 3.674781e+ 09 2.536466e+ 09 3.798558e+ 09 4.191595e+ 09 4.212989e+ 09 4.000947e+ 09 4.559714e+ 09 4.048004e+ 09 4.104300e+ 09 3.940567e+ 09
max. 3.517417e+ 09 4.169867e+ 09 3.572187e+ 09 4.149556e+ 09 3.143816e+ 09 3.910851e+ 09 4.333448e+ 09 4.379027e+ 09 4.059071e+ 09 4.925270e+ 09 4.339987e+ 09 4.412840e+ 09 4.191077e+ 09
std. 2.552201e+ 07 6.444808e+ 07 1.629448e+ 08 6.856123e+ 07 9.937826e+ 07 1.559904e+ 07 2.840457e+ 07 3.222883e+ 07 1.081034e+ 07 8.109985e+ 07 4.070563e+ 07 4.216258e+ 07 4.038116e+ 07
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Table C.14: Comparison of hypervolume indicator values for different optimizers on the WFG2 test problem.

Dim. Stat. NSGA-II
MOEA/D MOEA/D MOEA/D

SMS-EMOA ∆p-DDE R2-MOGA R2-MOGAw R2-MODE R2-IBEA
MOMBI MOMBI MOMBI

TCH NTCH PBI TCH NTCH PBI

2D

med. 1.056834e+ 01 1.031620e+ 01 9.254194e+ 00 8.562011e+ 00 1.059374e+ 01 1.110396e+ 01 1.049714e+ 01 1.053975e+ 01 1.133364e+ 01 1.059186e+ 01 1.057496e+ 01 1.058443e+ 01 1.037753e+ 01
avg. 1.059733e+ 01 9.879543e+ 00 9.822272e+ 00 9.038818e+ 00 1.058693e+ 01 1.110198e+ 01 1.048741e+ 01 1.053604e+ 01 1.132532e+ 01 1.058504e+ 01 1.055085e+ 01 1.062808e+ 01 1.028095e+ 01
min. 1.049669e+ 01 8.973490e+ 00 8.802401e+ 00 7.919902e+ 00 1.038937e+ 01 1.103344e+ 01 9.186385e+ 00 1.040859e+ 01 1.122601e+ 01 1.046523e+ 01 9.241406e+ 00 1.051236e+ 01 9.796329e+ 00
max. 1.137921e+ 01 1.056364e+ 01 1.059085e+ 01 1.035798e+ 01 1.061746e+ 01 1.117534e+ 01 1.130595e+ 01 1.129823e+ 01 1.136480e+ 01 1.060982e+ 01 1.137410e+ 01 1.143464e+ 01 1.121664e+ 01
std. 1.555191e− 01 6.595801e− 01 6.758152e− 01 7.352634e− 01 2.935089e− 02 2.935188e− 02 1.569239e− 01 8.551981e− 02 2.838323e− 02 2.477990e− 02 2.047586e− 01 1.974730e− 01 2.523929e− 01

3D

med. 9.676038e+ 01 8.348310e+ 01 7.438178e+ 01 7.930761e+ 01 1.007076e+ 02 9.724574e+ 01 9.773399e+ 01 9.848679e+ 01 9.807757e+ 01 9.976488e+ 01 9.726926e+ 01 9.861582e+ 01 9.680853e+ 01
avg. 9.294482e+ 01 8.530760e+ 01 7.564650e+ 01 8.065022e+ 01 9.358952e+ 01 9.725256e+ 01 9.220152e+ 01 9.414204e+ 01 9.806217e+ 01 9.400347e+ 01 9.262112e+ 01 9.334010e+ 01 9.211069e+ 01
min. 8.202849e+ 01 6.649721e+ 01 6.455183e+ 01 6.426446e+ 01 8.499928e+ 01 9.632287e+ 01 8.252900e+ 01 8.158626e+ 01 9.694848e+ 01 8.401966e+ 01 8.279672e+ 01 8.411528e+ 01 8.171586e+ 01
max. 9.800972e+ 01 9.807069e+ 01 9.284340e+ 01 9.475782e+ 01 1.011362e+ 02 9.812582e+ 01 9.929144e+ 01 9.963081e+ 01 9.888000e+ 01 1.005083e+ 02 9.852800e+ 01 9.982419e+ 01 9.835445e+ 01
std. 6.420325e+ 00 5.624846e+ 00 6.793015e+ 00 5.410482e+ 00 7.825166e+ 00 4.398087e− 01 7.410519e+ 00 7.069748e+ 00 3.937220e− 01 7.473167e+ 00 6.653694e+ 00 7.080228e+ 00 6.999452e+ 00

4D

med. 8.580452e+ 02 7.352646e+ 02 5.972418e+ 02 6.642789e+ 02 9.023297e+ 02 8.070014e+ 02 8.986689e+ 02 9.031349e+ 02 8.853085e+ 02 9.081908e+ 02 8.813632e+ 02 9.058905e+ 02 8.669970e+ 02
avg. 8.367862e+ 02 7.407499e+ 02 6.228836e+ 02 6.718090e+ 02 8.442911e+ 02 8.056685e+ 02 8.376611e+ 02 8.530653e+ 02 8.854664e+ 02 8.637822e+ 02 8.446033e+ 02 8.692146e+ 02 8.311202e+ 02
min. 7.143466e+ 02 5.159311e+ 02 5.189946e+ 02 5.345101e+ 02 7.381353e+ 02 7.647743e+ 02 7.298210e+ 02 7.393345e+ 02 8.748484e+ 02 7.514085e+ 02 7.484682e+ 02 7.516358e+ 02 7.089115e+ 02
max. 8.803917e+ 02 8.964366e+ 02 8.455987e+ 02 8.243408e+ 02 9.237064e+ 02 8.492161e+ 02 9.194767e+ 02 9.167273e+ 02 8.940807e+ 02 9.185441e+ 02 9.159024e+ 02 9.222784e+ 02 8.909363e+ 02
std. 5.197759e+ 01 5.399551e+ 01 6.834466e+ 01 4.417932e+ 01 7.890589e+ 01 1.364741e+ 01 7.752414e+ 01 7.435120e+ 01 3.291263e+ 00 7.080310e+ 01 6.477972e+ 01 6.591363e+ 01 6.475272e+ 01

5D

med. 8.929884e+ 03 7.829372e+ 03 6.044414e+ 03 6.910237e+ 03 9.699517e+ 03 8.234614e+ 03 9.922286e+ 03 9.883547e+ 03 9.727051e+ 03 9.927452e+ 03 9.945436e+ 03 1.004203e+ 04 9.240369e+ 03
avg. 8.715990e+ 03 7.999154e+ 03 6.292882e+ 03 6.966263e+ 03 9.094139e+ 03 8.216906e+ 03 9.360747e+ 03 9.247260e+ 03 9.726322e+ 03 9.588148e+ 03 9.502540e+ 03 9.520055e+ 03 8.788251e+ 03
min. 7.376337e+ 03 5.055141e+ 03 3.863645e+ 03 5.363118e+ 03 7.869579e+ 03 7.691002e+ 03 7.987850e+ 03 8.042248e+ 03 9.617339e+ 03 8.093220e+ 03 8.101632e+ 03 8.198840e+ 03 7.565369e+ 03
max. 9.330339e+ 03 9.715336e+ 03 8.760137e+ 03 8.637415e+ 03 1.005313e+ 04 8.757164e+ 03 1.009657e+ 04 1.007388e+ 04 9.812766e+ 03 1.010269e+ 04 1.018583e+ 04 1.026931e+ 04 9.595323e+ 03
std. 5.528894e+ 02 8.053158e+ 02 8.981644e+ 02 5.276409e+ 02 8.608010e+ 02 1.886424e+ 02 8.593869e+ 02 8.535358e+ 02 2.965877e+ 01 7.006414e+ 02 7.992169e+ 02 8.431929e+ 02 7.393262e+ 02

6D

med. 1.081027e+ 05 9.590283e+ 04 7.243951e+ 04 8.524195e+ 04 1.228404e+ 05 9.727521e+ 04 1.272516e+ 05 1.271174e+ 05 1.251269e+ 05 1.270968e+ 05 1.269257e+ 05 1.286095e+ 05 1.139028e+ 05
avg. 1.074662e+ 05 9.703651e+ 04 7.408828e+ 04 8.645396e+ 04 1.171675e+ 05 9.741925e+ 04 1.190465e+ 05 1.208405e+ 05 1.251863e+ 05 1.211791e+ 05 1.196512e+ 05 1.225002e+ 05 1.091532e+ 05
min. 8.905776e+ 04 6.894487e+ 04 5.163365e+ 04 7.116415e+ 04 9.896231e+ 04 9.098477e+ 04 1.011702e+ 05 1.027996e+ 05 1.241439e+ 05 1.033963e+ 05 1.037204e+ 05 1.042317e+ 05 9.506095e+ 04
max. 1.149832e+ 05 1.185328e+ 05 9.915942e+ 04 1.087461e+ 05 1.284959e+ 05 1.043727e+ 05 1.302028e+ 05 1.309020e+ 05 1.266075e+ 05 1.298999e+ 05 1.322741e+ 05 1.324932e+ 05 1.231415e+ 05
std. 4.732781e+ 03 8.149111e+ 03 9.445114e+ 03 6.322231e+ 03 1.071638e+ 04 3.179418e+ 03 1.191138e+ 04 1.074409e+ 04 4.614298e+ 02 1.015511e+ 04 1.112846e+ 04 1.074149e+ 04 9.773934e+ 03

7D

med. 1.537517e+ 06 1.360209e+ 06 1.015974e+ 06 1.230139e+ 06 1.817102e+ 06 1.447805e+ 06 1.537589e+ 06 1.803138e+ 06 1.858559e+ 06 1.821598e+ 06 1.550316e+ 06 1.572270e+ 06 1.544180e+ 06
avg. 1.511360e+ 06 1.338831e+ 06 1.018542e+ 06 1.230795e+ 06 1.701311e+ 06 1.447141e+ 06 1.684223e+ 06 1.698826e+ 06 1.858580e+ 06 1.723082e+ 06 1.651073e+ 06 1.677069e+ 06 1.528445e+ 06
min. 1.232113e+ 06 8.811574e+ 05 6.816297e+ 05 9.352757e+ 05 1.442884e+ 06 1.346795e+ 06 1.446620e+ 06 1.451882e+ 06 1.832253e+ 06 1.502653e+ 06 1.468409e+ 06 1.441492e+ 06 1.307295e+ 06
max. 1.693106e+ 06 1.686997e+ 06 1.423734e+ 06 1.497698e+ 06 1.919818e+ 06 1.565410e+ 06 1.927773e+ 06 1.921562e+ 06 1.875611e+ 06 1.919701e+ 06 1.936536e+ 06 1.911159e+ 06 1.765878e+ 06
std. 9.043842e+ 04 1.574924e+ 05 1.534324e+ 05 9.873037e+ 04 1.743276e+ 05 4.709328e+ 04 1.917199e+ 05 1.783423e+ 05 8.485134e+ 03 1.618875e+ 05 1.583995e+ 05 1.596484e+ 05 1.328284e+ 05

8D

med. 2.446881e+ 07 2.253557e+ 07 1.686780e+ 07 2.053183e+ 07 2.998301e+ 07 2.148810e+ 07 3.176784e+ 07 3.147606e+ 07 3.109770e+ 07 3.165479e+ 07 2.681464e+ 07 3.099733e+ 07 2.619871e+ 07
avg. 2.434648e+ 07 2.222245e+ 07 1.680252e+ 07 2.068263e+ 07 2.837180e+ 07 2.154779e+ 07 2.977179e+ 07 2.967087e+ 07 3.110851e+ 07 3.008904e+ 07 2.865954e+ 07 2.959286e+ 07 2.566377e+ 07
min. 2.025755e+ 07 1.539614e+ 07 1.131650e+ 07 1.575147e+ 07 2.386410e+ 07 2.027845e+ 07 2.522370e+ 07 2.472044e+ 07 3.079214e+ 07 2.585079e+ 07 2.504881e+ 07 2.463296e+ 07 2.255003e+ 07
max. 2.633585e+ 07 2.786271e+ 07 2.321270e+ 07 2.486662e+ 07 3.142348e+ 07 2.278880e+ 07 3.269185e+ 07 3.279636e+ 07 3.144480e+ 07 3.265354e+ 07 3.262059e+ 07 3.258992e+ 07 2.906286e+ 07
std. 1.085017e+ 06 2.291467e+ 06 1.895094e+ 06 1.250451e+ 06 2.732431e+ 06 5.455143e+ 05 3.083728e+ 06 2.857286e+ 06 1.391374e+ 05 2.649888e+ 06 2.730782e+ 06 2.678507e+ 06 2.148209e+ 06

9D

med. 4.391613e+ 08 4.233744e+ 08 3.156705e+ 08 3.819245e+ 08 5.593446e+ 08 3.685165e+ 08 6.075989e+ 08 6.025596e+ 08 5.592964e+ 08 6.078008e+ 08 5.911064e+ 08 5.965633e+ 08 5.210862e+ 08
avg. 4.392415e+ 08 4.212582e+ 08 3.195349e+ 08 3.875035e+ 08 5.471798e+ 08 3.693754e+ 08 5.834038e+ 08 5.811032e+ 08 5.591493e+ 08 5.899363e+ 08 5.639176e+ 08 5.789271e+ 08 5.069613e+ 08
min. 4.002431e+ 08 2.930129e+ 08 2.111415e+ 08 3.508651e+ 08 4.462704e+ 08 3.550719e+ 08 4.841421e+ 08 4.829563e+ 08 5.448589e+ 08 4.930676e+ 08 4.824572e+ 08 4.867659e+ 08 4.270662e+ 08
max. 4.694057e+ 08 5.229989e+ 08 4.424426e+ 08 4.667665e+ 08 5.793282e+ 08 3.930594e+ 08 6.218282e+ 08 6.173709e+ 08 5.737261e+ 08 6.211857e+ 08 6.232942e+ 08 6.187652e+ 08 5.588184e+ 08
std. 1.231910e+ 07 3.965819e+ 07 4.762269e+ 07 2.343985e+ 07 3.501682e+ 07 8.020867e+ 06 4.947679e+ 07 4.682784e+ 07 5.045957e+ 06 4.196664e+ 07 5.146583e+ 07 4.131862e+ 07 3.942438e+ 07

10D

med. 8.756451e+ 09 8.737562e+ 09 6.642250e+ 09 8.065695e+ 09 1.116544e+ 10 7.208815e+ 09 1.277258e+ 10 1.260315e+ 10 1.054056e+ 10 1.274692e+ 10 1.253637e+ 10 1.255996e+ 10 1.102896e+ 10
avg. 8.781409e+ 09 8.843681e+ 09 6.871359e+ 09 8.204751e+ 09 1.102356e+ 10 7.219050e+ 09 1.237788e+ 10 1.216290e+ 10 1.053285e+ 10 1.250636e+ 10 1.217893e+ 10 1.220692e+ 10 1.080559e+ 10
min. 7.718258e+ 09 7.342721e+ 09 4.344775e+ 09 7.471289e+ 09 8.957500e+ 09 6.855479e+ 09 1.008451e+ 10 1.000153e+ 10 1.023637e+ 10 1.031943e+ 10 9.958952e+ 09 1.022977e+ 10 9.211370e+ 09
max. 9.320955e+ 09 1.094106e+ 10 9.153010e+ 09 1.024960e+ 10 1.177153e+ 10 7.791966e+ 09 1.298303e+ 10 1.290395e+ 10 1.081126e+ 10 1.300051e+ 10 1.301250e+ 10 1.303710e+ 10 1.168455e+ 10
std. 1.986247e+ 08 6.889871e+ 08 1.116406e+ 09 5.906145e+ 08 5.690336e+ 08 1.454627e+ 08 9.445569e+ 08 9.682822e+ 08 1.256696e+ 08 7.374835e+ 08 9.042729e+ 08 8.689123e+ 08 6.336224e+ 08
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Table C.15: Comparison of hypervolume indicator values for different optimizers on the WFG3 test problem.

Dim. Stat. NSGA-II
MOEA/D MOEA/D MOEA/D

SMS-EMOA ∆p-DDE R2-MOGA R2-MOGAw R2-MODE R2-IBEA
MOMBI MOMBI MOMBI

TCH NTCH PBI TCH NTCH PBI

2D

med. 1.080929e+ 01 1.082073e+ 01 1.084268e+ 01 1.062089e+ 01 1.091293e+ 01 1.088348e+ 01 1.075011e+ 01 1.083164e+ 01 1.073261e+ 01 1.088766e+ 01 1.088683e+ 01 1.089172e+ 01 1.081771e+ 01
avg. 1.080367e+ 01 1.079727e+ 01 1.082819e+ 01 1.059923e+ 01 1.091125e+ 01 1.088337e+ 01 1.074028e+ 01 1.082056e+ 01 1.072604e+ 01 1.088460e+ 01 1.088513e+ 01 1.088926e+ 01 1.080348e+ 01
min. 1.072798e+ 01 1.057135e+ 01 1.058798e+ 01 9.929915e+ 00 1.081503e+ 01 1.081213e+ 01 1.063483e+ 01 1.067673e+ 01 1.060252e+ 01 1.083557e+ 01 1.076554e+ 01 1.083578e+ 01 1.045460e+ 01
max. 1.085037e+ 01 1.089914e+ 01 1.090870e+ 01 1.080497e+ 01 1.094099e+ 01 1.092627e+ 01 1.080885e+ 01 1.087582e+ 01 1.078188e+ 01 1.091535e+ 01 1.091715e+ 01 1.092592e+ 01 1.087375e+ 01
std. 2.689809e− 02 7.401296e− 02 5.845298e− 02 1.385856e− 01 1.705812e− 02 1.976086e− 02 3.588083e− 02 3.767611e− 02 3.311820e− 02 1.842918e− 02 1.851391e− 02 1.689314e− 02 6.641551e− 02

3D

med. 7.396661e+ 01 7.358340e+ 01 7.466708e+ 01 6.768157e+ 01 7.605552e+ 01 6.598147e+ 01 7.397549e+ 01 7.437005e+ 01 7.062335e+ 01 7.525225e+ 01 7.413735e+ 01 7.525643e+ 01 7.291207e+ 01
avg. 7.393729e+ 01 7.347701e+ 01 7.446448e+ 01 6.783458e+ 01 7.602105e+ 01 6.590806e+ 01 7.395483e+ 01 7.434212e+ 01 7.064316e+ 01 7.524283e+ 01 7.414499e+ 01 7.522102e+ 01 7.281491e+ 01
min. 7.326206e+ 01 7.064458e+ 01 7.156235e+ 01 6.270223e+ 01 7.537755e+ 01 6.314836e+ 01 7.303794e+ 01 7.284886e+ 01 6.970303e+ 01 7.445464e+ 01 7.297164e+ 01 7.457805e+ 01 6.998879e+ 01
max. 7.445144e+ 01 7.465372e+ 01 7.539304e+ 01 7.239273e+ 01 7.623791e+ 01 6.756226e+ 01 7.473092e+ 01 7.545268e+ 01 7.162136e+ 01 7.564052e+ 01 7.475672e+ 01 7.563180e+ 01 7.355500e+ 01
std. 2.521584e− 01 8.284694e− 01 6.703682e− 01 2.170551e+ 00 1.509563e− 01 7.506648e− 01 3.662618e− 01 4.832915e− 01 4.138130e− 01 2.183356e− 01 2.908267e− 01 2.169986e− 01 6.180284e− 01

4D

med. 6.042265e+ 02 5.654308e+ 02 6.205386e+ 02 5.319824e+ 02 4.114227e+ 02 5.181768e+ 02 6.382255e+ 02 6.406672e+ 02 5.582757e+ 02 6.252561e+ 02 5.710341e+ 02 6.352570e+ 02 5.998385e+ 02
avg. 6.043845e+ 02 5.714357e+ 02 6.201350e+ 02 5.365397e+ 02 4.114308e+ 02 5.193379e+ 02 6.380942e+ 02 6.402401e+ 02 5.580652e+ 02 6.230327e+ 02 5.749988e+ 02 6.356407e+ 02 5.991985e+ 02
min. 5.834848e+ 02 5.409257e+ 02 5.908843e+ 02 4.938397e+ 02 3.963935e+ 02 4.885361e+ 02 6.239606e+ 02 6.203449e+ 02 5.398772e+ 02 5.953855e+ 02 5.534377e+ 02 6.219857e+ 02 5.739971e+ 02
max. 6.239929e+ 02 6.136477e+ 02 6.408495e+ 02 5.861216e+ 02 4.333750e+ 02 5.477353e+ 02 6.494884e+ 02 6.547134e+ 02 5.793513e+ 02 6.410710e+ 02 6.124131e+ 02 6.532811e+ 02 6.119626e+ 02
std. 7.684829e+ 00 1.788037e+ 01 9.858316e+ 00 1.918334e+ 01 7.080513e+ 00 1.149648e+ 01 5.686265e+ 00 6.453276e+ 00 7.170581e+ 00 1.019094e+ 01 1.299633e+ 01 5.479134e+ 00 7.264621e+ 00

5D

med. 5.968174e+ 03 5.442422e+ 03 6.187873e+ 03 5.013715e+ 03 4.076214e+ 03 4.888444e+ 03 6.691556e+ 03 6.728691e+ 03 5.561652e+ 03 6.443108e+ 03 5.584336e+ 03 6.313007e+ 03 5.836843e+ 03
avg. 5.975131e+ 03 5.444623e+ 03 6.169376e+ 03 5.033589e+ 03 4.080444e+ 03 4.876523e+ 03 6.694540e+ 03 6.723385e+ 03 5.571339e+ 03 6.422983e+ 03 5.565168e+ 03 6.314265e+ 03 5.849068e+ 03
min. 5.626657e+ 03 5.090863e+ 03 5.690648e+ 03 4.714730e+ 03 3.892292e+ 03 4.336813e+ 03 6.505695e+ 03 6.394385e+ 03 5.394724e+ 03 6.001860e+ 03 5.202548e+ 03 6.176961e+ 03 5.606006e+ 03
max. 6.285037e+ 03 5.903073e+ 03 6.556340e+ 03 5.503081e+ 03 4.335865e+ 03 5.270422e+ 03 6.911828e+ 03 6.925501e+ 03 5.819613e+ 03 6.707774e+ 03 5.795084e+ 03 6.551263e+ 03 6.161033e+ 03
std. 1.316193e+ 02 1.462548e+ 02 1.579990e+ 02 1.771060e+ 02 9.123342e+ 01 1.980250e+ 02 8.428345e+ 01 1.022821e+ 02 8.753428e+ 01 1.478931e+ 02 9.583778e+ 01 7.104411e+ 01 1.218805e+ 02

6D

med. 6.947715e+ 04 6.118550e+ 04 7.409561e+ 04 5.550813e+ 04 5.110492e+ 04 5.690649e+ 04 8.165422e+ 04 8.285271e+ 04 6.666537e+ 04 8.472536e+ 04 6.503620e+ 04 7.791069e+ 04 6.785660e+ 04
avg. 6.983225e+ 04 6.137359e+ 04 7.383787e+ 04 5.544411e+ 04 5.108420e+ 04 5.639551e+ 04 8.157367e+ 04 8.291366e+ 04 6.675284e+ 04 8.461369e+ 04 6.511463e+ 04 7.792368e+ 04 6.778879e+ 04
min. 6.552391e+ 04 5.804626e+ 04 6.798345e+ 04 4.977190e+ 04 4.779721e+ 04 5.036483e+ 04 7.848407e+ 04 7.889210e+ 04 6.455816e+ 04 8.011002e+ 04 6.148506e+ 04 7.550737e+ 04 6.484860e+ 04
max. 7.387094e+ 04 6.809099e+ 04 8.031128e+ 04 6.241685e+ 04 5.367779e+ 04 6.415447e+ 04 8.487010e+ 04 8.672255e+ 04 6.962332e+ 04 8.757251e+ 04 7.206598e+ 04 8.072205e+ 04 7.080093e+ 04
std. 1.733108e+ 03 1.912985e+ 03 2.136428e+ 03 2.291702e+ 03 1.251632e+ 03 2.992801e+ 03 1.442275e+ 03 1.406138e+ 03 1.010859e+ 03 1.459085e+ 03 1.500636e+ 03 9.474970e+ 02 1.390665e+ 03

7D

med. 9.691010e+ 05 8.122205e+ 05 1.000734e+ 06 6.969254e+ 05 6.265543e+ 05 7.238729e+ 05 1.055682e+ 06 1.157163e+ 06 8.958505e+ 05 1.266649e+ 06 8.939361e+ 05 1.063537e+ 06 9.278825e+ 05
avg. 9.713403e+ 05 8.145525e+ 05 1.005046e+ 06 6.996527e+ 05 6.264764e+ 05 7.234293e+ 05 1.059337e+ 06 1.154533e+ 06 8.991558e+ 05 1.266179e+ 06 8.933735e+ 05 1.061432e+ 06 9.040661e+ 05
min. 9.119627e+ 05 7.538223e+ 05 9.292635e+ 05 5.933325e+ 05 5.684170e+ 05 6.883811e+ 05 9.988626e+ 05 1.035376e+ 06 8.635073e+ 05 1.236996e+ 06 8.240472e+ 05 9.999701e+ 05 7.244090e+ 05
max. 1.052841e+ 06 9.011238e+ 05 1.111506e+ 06 7.843637e+ 05 6.777921e+ 05 7.558265e+ 05 1.123123e+ 06 1.217087e+ 06 9.430463e+ 05 1.289550e+ 06 9.464357e+ 05 1.135122e+ 06 9.788843e+ 05
std. 2.895581e+ 04 2.892285e+ 04 3.084000e+ 04 4.503282e+ 04 2.346811e+ 04 1.388153e+ 04 2.696504e+ 04 3.132954e+ 04 1.840501e+ 04 1.120998e+ 04 2.476407e+ 04 2.160473e+ 04 6.439099e+ 04

8D

med. 1.573432e+ 07 1.349834e+ 07 1.666934e+ 07 9.277903e+ 06 1.239844e+ 07 1.209251e+ 07 1.757073e+ 07 1.882158e+ 07 1.491623e+ 07 2.135198e+ 07 1.496593e+ 07 1.767501e+ 07 1.186300e+ 07
avg. 1.575243e+ 07 1.361386e+ 07 1.664953e+ 07 9.503001e+ 06 1.237393e+ 07 1.209596e+ 07 1.759909e+ 07 1.883578e+ 07 1.494786e+ 07 2.131521e+ 07 1.501481e+ 07 1.770375e+ 07 1.174053e+ 07
min. 1.440350e+ 07 1.249661e+ 07 1.532744e+ 07 7.614940e+ 06 1.160241e+ 07 1.162767e+ 07 1.650301e+ 07 1.764949e+ 07 1.442826e+ 07 1.987108e+ 07 1.409654e+ 07 1.701365e+ 07 7.658894e+ 06
max. 1.681993e+ 07 1.525898e+ 07 1.787993e+ 07 1.151703e+ 07 1.323281e+ 07 1.251061e+ 07 1.884562e+ 07 2.005961e+ 07 1.564438e+ 07 2.172340e+ 07 1.590545e+ 07 1.869919e+ 07 1.417287e+ 07
std. 4.362249e+ 05 5.697359e+ 05 4.689376e+ 05 1.019703e+ 06 3.299865e+ 05 1.862970e+ 05 4.400014e+ 05 5.373520e+ 05 2.619275e+ 05 2.685813e+ 05 3.596242e+ 05 3.377660e+ 05 1.271330e+ 06

9D

med. 2.945376e+ 08 2.494244e+ 08 3.092004e+ 08 1.334286e+ 08 2.627673e+ 08 2.258205e+ 08 3.274848e+ 08 3.434477e+ 08 2.789685e+ 08 3.996065e+ 08 2.839948e+ 08 3.356152e+ 08 2.099746e+ 08
avg. 2.951807e+ 08 2.500507e+ 08 3.089239e+ 08 1.424420e+ 08 2.629889e+ 08 2.255183e+ 08 3.278326e+ 08 3.433815e+ 08 2.792802e+ 08 3.982823e+ 08 2.845720e+ 08 3.355348e+ 08 2.064797e+ 08
min. 2.802294e+ 08 2.300386e+ 08 2.843121e+ 08 1.227793e+ 08 2.539128e+ 08 2.157021e+ 08 3.096017e+ 08 3.212501e+ 08 2.706198e+ 08 3.769503e+ 08 2.613939e+ 08 3.167355e+ 08 1.239402e+ 08
max. 3.182473e+ 08 2.760080e+ 08 3.346849e+ 08 1.952890e+ 08 2.722513e+ 08 2.359073e+ 08 3.482528e+ 08 3.657256e+ 08 2.889755e+ 08 4.050716e+ 08 3.087636e+ 08 3.503008e+ 08 2.516549e+ 08
std. 7.066818e+ 06 1.034951e+ 07 9.743760e+ 06 1.864563e+ 07 4.183469e+ 06 4.008788e+ 06 8.001253e+ 06 9.617603e+ 06 3.753466e+ 06 4.545478e+ 06 8.801272e+ 06 6.275900e+ 06 2.008803e+ 07

10D

med. 6.143779e+ 09 5.263896e+ 09 6.410566e+ 09 2.425768e+ 09 7.722317e+ 09 4.676175e+ 09 6.654170e+ 09 6.944757e+ 09 5.765740e+ 09 8.147315e+ 09 5.945838e+ 09 7.021610e+ 09 3.909088e+ 09
avg. 6.130052e+ 09 5.279773e+ 09 6.400860e+ 09 2.428676e+ 09 7.443058e+ 09 4.671773e+ 09 6.648185e+ 09 6.937659e+ 09 5.769412e+ 09 8.136016e+ 09 6.098895e+ 09 7.065997e+ 09 3.750224e+ 09
min. 5.827035e+ 09 4.824468e+ 09 5.949479e+ 09 2.236274e+ 09 5.892548e+ 09 4.528799e+ 09 6.338627e+ 09 6.537097e+ 09 5.620850e+ 09 7.651215e+ 09 5.575701e+ 09 6.651744e+ 09 2.065892e+ 09
max. 6.395603e+ 09 6.091023e+ 09 6.936544e+ 09 2.657650e+ 09 7.962092e+ 09 4.882896e+ 09 7.018640e+ 09 7.613115e+ 09 5.951529e+ 09 8.341356e+ 09 7.085086e+ 09 7.662851e+ 09 4.564315e+ 09
std. 1.250371e+ 08 2.428456e+ 08 2.338107e+ 08 7.984825e+ 07 6.327740e+ 08 7.032866e+ 07 1.345885e+ 08 1.727941e+ 08 6.603764e+ 07 1.175515e+ 08 4.031995e+ 08 2.186951e+ 08 6.198866e+ 08
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Table C.16: Comparison of hypervolume indicator values for different optimizers on the WFG4 test problem.

Dim. Stat. NSGA-II
MOEA/D MOEA/D MOEA/D

SMS-EMOA ∆p-DDE R2-MOGA R2-MOGAw R2-MODE R2-IBEA
MOMBI MOMBI MOMBI

TCH NTCH PBI TCH NTCH PBI

2D

med. 8.402261e+ 00 8.607865e+ 00 8.621991e+ 00 8.435212e+ 00 8.624041e+ 00 8.217368e+ 00 8.515415e+ 00 8.569914e+ 00 8.172909e+ 00 8.639795e+ 00 8.627164e+ 00 8.626990e+ 00 8.509979e+ 00
avg. 8.402740e+ 00 8.600385e+ 00 8.616291e+ 00 8.431820e+ 00 8.615366e+ 00 8.216373e+ 00 8.512404e+ 00 8.563387e+ 00 8.164967e+ 00 8.628237e+ 00 8.622771e+ 00 8.623034e+ 00 8.509093e+ 00
min. 8.203686e+ 00 8.453109e+ 00 8.521426e+ 00 8.268336e+ 00 8.488859e+ 00 8.144535e+ 00 8.427318e+ 00 8.411010e+ 00 8.054434e+ 00 8.533454e+ 00 8.564456e+ 00 8.537375e+ 00 8.420897e+ 00
max. 8.535149e+ 00 8.641490e+ 00 8.645153e+ 00 8.516000e+ 00 8.672459e+ 00 8.291247e+ 00 8.572662e+ 00 8.608518e+ 00 8.229426e+ 00 8.671199e+ 00 8.651225e+ 00 8.650488e+ 00 8.561596e+ 00
std. 7.233192e− 02 3.054213e− 02 2.226713e− 02 4.591062e− 02 3.747269e− 02 2.789951e− 02 3.140398e− 02 3.379753e− 02 3.368487e− 02 3.233533e− 02 1.664951e− 02 2.015437e− 02 2.641076e− 02

3D

med. 6.624712e+ 01 7.371026e+ 01 6.829832e+ 01 7.255097e+ 01 7.722033e+ 01 7.020343e+ 01 7.297241e+ 01 7.323581e+ 01 6.926202e+ 01 7.602284e+ 01 7.333068e+ 01 7.421111e+ 01 7.332515e+ 01
avg. 6.632662e+ 01 7.375399e+ 01 6.796094e+ 01 7.253488e+ 01 7.722187e+ 01 7.019103e+ 01 7.294510e+ 01 7.320697e+ 01 6.927881e+ 01 7.601575e+ 01 7.339666e+ 01 7.421154e+ 01 7.331585e+ 01
min. 6.285120e+ 01 7.337854e+ 01 5.064696e+ 01 7.120644e+ 01 7.702278e+ 01 6.903319e+ 01 7.158659e+ 01 7.161580e+ 01 6.801149e+ 01 7.562070e+ 01 7.298402e+ 01 7.354928e+ 01 7.218659e+ 01
max. 6.840041e+ 01 7.454147e+ 01 7.536008e+ 01 7.355646e+ 01 7.736688e+ 01 7.098861e+ 01 7.399205e+ 01 7.416222e+ 01 7.047653e+ 01 7.639395e+ 01 7.465349e+ 01 7.478859e+ 01 7.405878e+ 01
std. 1.049171e+ 00 2.190785e− 01 3.962500e+ 00 5.120868e− 01 8.649989e− 02 3.620598e− 01 5.026532e− 01 5.566442e− 01 5.010688e− 01 1.543570e− 01 2.893348e− 01 2.666076e− 01 2.888702e− 01

4D

med. 5.436381e+ 02 6.566333e+ 02 4.794876e+ 02 6.959348e+ 02 3.930478e+ 02 6.613466e+ 02 7.058745e+ 02 7.123503e+ 02 6.609910e+ 02 7.348977e+ 02 6.593933e+ 02 6.749665e+ 02 7.119989e+ 02
avg. 5.440889e+ 02 6.578855e+ 02 4.757090e+ 02 6.970242e+ 02 3.950572e+ 02 6.583558e+ 02 7.053418e+ 02 7.109780e+ 02 6.612472e+ 02 7.348269e+ 02 6.593987e+ 02 6.753218e+ 02 7.119021e+ 02
min. 5.106963e+ 02 6.402526e+ 02 3.511337e+ 02 6.700559e+ 02 3.833243e+ 02 6.208600e+ 02 6.853580e+ 02 6.969828e+ 02 6.419444e+ 02 7.251673e+ 02 6.344163e+ 02 6.500308e+ 02 6.980444e+ 02
max. 5.820597e+ 02 6.878323e+ 02 6.796938e+ 02 7.209944e+ 02 4.350171e+ 02 6.842162e+ 02 7.214957e+ 02 7.261831e+ 02 6.873816e+ 02 7.450069e+ 02 7.054941e+ 02 6.931214e+ 02 7.202057e+ 02
std. 1.456814e+ 01 1.088798e+ 01 7.502973e+ 01 9.625091e+ 00 8.116507e+ 00 1.361310e+ 01 7.716458e+ 00 6.258527e+ 00 7.355996e+ 00 3.797056e+ 00 1.477584e+ 01 8.756623e+ 00 4.381689e+ 00

5D

med. 5.173619e+ 03 7.014378e+ 03 4.197752e+ 03 7.183985e+ 03 4.294043e+ 03 5.785981e+ 03 8.064670e+ 03 8.118096e+ 03 7.449736e+ 03 8.225646e+ 03 7.826277e+ 03 7.611915e+ 03 7.758123e+ 03
avg. 5.178641e+ 03 6.995600e+ 03 4.078744e+ 03 7.160882e+ 03 4.341308e+ 03 5.770549e+ 03 8.058394e+ 03 8.112544e+ 03 7.439987e+ 03 8.222874e+ 03 7.826969e+ 03 7.628931e+ 03 7.753989e+ 03
min. 4.752303e+ 03 6.362235e+ 03 3.247571e+ 03 6.236177e+ 03 4.220233e+ 03 5.350865e+ 03 7.702646e+ 03 7.894278e+ 03 7.227092e+ 03 8.092201e+ 03 7.095634e+ 03 6.942698e+ 03 7.375978e+ 03
max. 5.609634e+ 03 7.713655e+ 03 4.871508e+ 03 7.643359e+ 03 8.534824e+ 03 6.086980e+ 03 8.301093e+ 03 8.295196e+ 03 7.647066e+ 03 8.358094e+ 03 8.191277e+ 03 8.124530e+ 03 7.996644e+ 03
std. 1.946625e+ 02 2.353202e+ 02 4.699194e+ 02 2.884082e+ 02 4.258081e+ 02 1.511573e+ 02 1.004235e+ 02 7.710411e+ 01 7.713842e+ 01 5.461149e+ 01 2.072889e+ 02 2.839131e+ 02 1.026923e+ 02

6D

med. 5.968287e+ 04 6.813388e+ 04 4.405267e+ 04 8.272420e+ 04 5.551979e+ 04 6.039282e+ 04 1.064885e+ 05 1.069683e+ 05 9.653418e+ 04 1.054024e+ 05 8.863893e+ 04 8.522044e+ 04 9.294528e+ 04
avg. 5.966841e+ 04 6.832264e+ 04 4.551140e+ 04 8.253695e+ 04 5.585827e+ 04 6.081722e+ 04 1.063186e+ 05 1.067909e+ 05 9.644725e+ 04 1.053236e+ 05 8.849589e+ 04 8.531579e+ 04 9.228950e+ 04
min. 5.505789e+ 04 5.053486e+ 04 3.716622e+ 04 6.665281e+ 04 5.411255e+ 04 5.347425e+ 04 1.023245e+ 05 1.036746e+ 05 9.310056e+ 04 1.030777e+ 05 7.167535e+ 04 6.174908e+ 04 4.450593e+ 04
max. 6.513949e+ 04 8.785432e+ 04 5.819591e+ 04 9.788082e+ 04 6.227946e+ 04 6.949551e+ 04 1.097182e+ 05 1.093415e+ 05 9.930925e+ 04 1.077189e+ 05 9.910423e+ 04 9.868637e+ 04 9.998659e+ 04
std. 2.170738e+ 03 9.047219e+ 03 5.748510e+ 03 5.877294e+ 03 1.237856e+ 03 2.937652e+ 03 1.536552e+ 03 1.252760e+ 03 1.295710e+ 03 9.748776e+ 02 5.016455e+ 03 7.337352e+ 03 6.288478e+ 03

7D

med. 7.626824e+ 05 7.039987e+ 05 5.992648e+ 05 1.049779e+ 06 7.721466e+ 05 7.837904e+ 05 1.473203e+ 06 1.575570e+ 06 1.359873e+ 06 1.552771e+ 06 1.065118e+ 06 9.982085e+ 05 1.266178e+ 06
avg. 7.681575e+ 05 7.133513e+ 05 6.012694e+ 05 1.046112e+ 06 7.674721e+ 05 7.849812e+ 05 1.472897e+ 06 1.573748e+ 06 1.358055e+ 06 1.550362e+ 06 1.064619e+ 06 9.946800e+ 05 1.149893e+ 06
min. 6.935230e+ 05 5.254554e+ 05 4.970695e+ 05 8.813301e+ 05 7.007245e+ 05 6.823138e+ 05 1.387596e+ 06 1.510828e+ 06 1.289778e+ 06 1.477144e+ 06 9.048193e+ 05 8.007528e+ 05 6.625547e+ 05
max. 8.950067e+ 05 9.484654e+ 05 7.124490e+ 05 1.425434e+ 06 8.064882e+ 05 8.866423e+ 05 1.552191e+ 06 1.615588e+ 06 1.445082e+ 06 1.595986e+ 06 1.231470e+ 06 1.136421e+ 06 1.445869e+ 06
std. 4.043502e+ 04 8.606977e+ 04 5.994848e+ 04 1.215214e+ 05 2.026713e+ 04 3.772201e+ 04 3.212789e+ 04 2.290530e+ 04 3.743394e+ 04 2.704500e+ 04 6.082803e+ 04 6.542364e+ 04 2.760156e+ 05

8D

med. 1.298781e+ 07 1.082788e+ 07 9.412132e+ 06 1.678641e+ 07 1.380735e+ 07 1.384845e+ 07 2.648057e+ 07 2.696762e+ 07 2.367411e+ 07 2.669825e+ 07 1.710310e+ 07 1.629466e+ 07 2.031159e+ 07
avg. 1.297446e+ 07 1.076820e+ 07 9.423581e+ 06 1.688463e+ 07 1.387526e+ 07 1.380412e+ 07 2.651485e+ 07 2.686409e+ 07 2.369309e+ 07 2.669547e+ 07 1.728115e+ 07 1.630008e+ 07 1.852220e+ 07
min. 1.124428e+ 07 7.911378e+ 06 6.791281e+ 06 1.450647e+ 07 1.345856e+ 07 1.149445e+ 07 2.473918e+ 07 2.296455e+ 07 2.260423e+ 07 2.567236e+ 07 1.488189e+ 07 1.174214e+ 07 1.091310e+ 07
max. 1.417993e+ 07 1.378625e+ 07 1.105532e+ 07 2.147867e+ 07 1.614675e+ 07 1.540554e+ 07 2.764875e+ 07 2.774171e+ 07 2.461509e+ 07 2.761079e+ 07 2.022809e+ 07 1.866129e+ 07 2.346539e+ 07
std. 5.548191e+ 05 1.323678e+ 06 9.424407e+ 05 1.622176e+ 06 3.185371e+ 05 7.627866e+ 05 4.627726e+ 05 6.424710e+ 05 3.967887e+ 05 3.585358e+ 05 9.690983e+ 05 1.091205e+ 06 4.572484e+ 06

9D

med. 2.483190e+ 08 1.881403e+ 08 1.739954e+ 08 2.892747e+ 08 3.061929e+ 08 2.568861e+ 08 5.178957e+ 08 4.994474e+ 08 4.356138e+ 08 4.936697e+ 08 3.104687e+ 08 3.016706e+ 08 3.524195e+ 08
avg. 2.479821e+ 08 1.864362e+ 08 1.741570e+ 08 3.035038e+ 08 3.069210e+ 08 2.588273e+ 08 5.156018e+ 08 4.972857e+ 08 4.352006e+ 08 4.936749e+ 08 3.091686e+ 08 2.998064e+ 08 3.194467e+ 08
min. 2.289088e+ 08 1.319176e+ 08 1.463208e+ 08 2.591960e+ 08 2.928161e+ 08 2.152132e+ 08 4.812925e+ 08 4.371322e+ 08 4.099766e+ 08 4.730888e+ 08 2.390237e+ 08 2.474819e+ 08 2.007298e+ 08
max. 2.648017e+ 08 2.504104e+ 08 2.084345e+ 08 3.818363e+ 08 3.419635e+ 08 3.039391e+ 08 5.404442e+ 08 5.250443e+ 08 4.502305e+ 08 5.080616e+ 08 3.421019e+ 08 3.657954e+ 08 4.320006e+ 08
std. 9.024546e+ 06 2.571084e+ 07 1.559876e+ 07 2.721270e+ 07 6.733861e+ 06 2.010524e+ 07 1.046592e+ 07 1.479988e+ 07 7.114416e+ 06 6.696077e+ 06 1.730878e+ 07 2.012126e+ 07 8.346708e+ 07

10D

med. 5.314407e+ 09 3.597912e+ 09 3.459685e+ 09 6.030432e+ 09 8.045404e+ 09 4.971920e+ 09 1.058143e+ 10 9.641915e+ 09 8.727140e+ 09 9.936323e+ 09 6.321575e+ 09 6.016075e+ 09 6.746440e+ 09
avg. 5.318515e+ 09 3.553657e+ 09 3.495181e+ 09 6.243653e+ 09 8.034174e+ 09 5.128531e+ 09 1.053549e+ 10 9.641559e+ 09 8.719371e+ 09 9.935956e+ 09 6.299927e+ 09 5.981243e+ 09 6.234957e+ 09
min. 4.896400e+ 09 2.689995e+ 09 2.771260e+ 09 5.476586e+ 09 7.713205e+ 09 4.189190e+ 09 9.516036e+ 09 8.860524e+ 09 8.417787e+ 09 9.534824e+ 09 5.027208e+ 09 4.755706e+ 09 3.958771e+ 09
max. 5.691618e+ 09 4.876270e+ 09 4.065683e+ 09 8.114881e+ 09 8.572660e+ 09 6.531381e+ 09 1.112250e+ 10 1.044798e+ 10 9.125954e+ 09 1.026240e+ 10 7.107583e+ 09 7.018982e+ 09 8.336053e+ 09
std. 1.520509e+ 08 4.877549e+ 08 2.486847e+ 08 6.002466e+ 08 1.762863e+ 08 5.355756e+ 08 3.338487e+ 08 3.440622e+ 08 1.336270e+ 08 1.458795e+ 08 4.159559e+ 08 4.721691e+ 08 1.549937e+ 09
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Table C.17: Comparison of hypervolume indicator values for different optimizers on the WFG5 test problem.

Dim. Stat. NSGA-II
MOEA/D MOEA/D MOEA/D

SMS-EMOA ∆p-DDE R2-MOGA R2-MOGAw R2-MODE R2-IBEA
MOMBI MOMBI MOMBI

TCH NTCH PBI TCH NTCH PBI

2D

med. 8.043419e+ 00 8.116876e+ 00 8.122947e+ 00 8.074498e+ 00 8.129609e+ 00 8.017967e+ 00 8.090092e+ 00 8.095556e+ 00 8.041423e+ 00 8.134081e+ 00 8.126378e+ 00 8.128996e+ 00 8.095134e+ 00
avg. 8.039761e+ 00 8.116617e+ 00 8.121583e+ 00 8.070394e+ 00 8.129865e+ 00 8.009467e+ 00 8.090813e+ 00 8.097865e+ 00 8.040608e+ 00 8.136253e+ 00 8.131573e+ 00 8.132780e+ 00 8.099139e+ 00
min. 7.907299e+ 00 8.081123e+ 00 8.088496e+ 00 7.999538e+ 00 8.070608e+ 00 7.913530e+ 00 8.045824e+ 00 8.053872e+ 00 7.950874e+ 00 8.122114e+ 00 8.110351e+ 00 8.106734e+ 00 8.074029e+ 00
max. 8.091154e+ 00 8.159794e+ 00 8.146367e+ 00 8.104901e+ 00 8.166340e+ 00 8.094995e+ 00 8.143790e+ 00 8.134816e+ 00 8.096239e+ 00 8.171018e+ 00 8.195226e+ 00 8.181808e+ 00 8.141177e+ 00
std. 2.968168e− 02 1.027119e− 02 9.931583e− 03 1.957614e− 02 1.262214e− 02 3.895232e− 02 1.884348e− 02 1.615282e− 02 2.955215e− 02 1.035994e− 02 1.657966e− 02 1.372834e− 02 1.664093e− 02

3D

med. 6.598639e+ 01 6.973968e+ 01 6.495133e+ 01 7.075213e+ 01 7.399014e+ 01 6.921137e+ 01 7.023336e+ 01 7.001682e+ 01 6.923947e+ 01 7.263338e+ 01 6.972734e+ 01 7.099176e+ 01 7.082050e+ 01
avg. 6.605882e+ 01 6.976597e+ 01 6.506149e+ 01 7.074854e+ 01 7.380784e+ 01 6.918929e+ 01 7.019862e+ 01 6.999604e+ 01 6.923435e+ 01 7.259704e+ 01 6.973229e+ 01 7.098923e+ 01 7.081965e+ 01
min. 6.453793e+ 01 6.936479e+ 01 5.311561e+ 01 7.008848e+ 01 7.340703e+ 01 6.732695e+ 01 6.839176e+ 01 6.776808e+ 01 6.729063e+ 01 7.191027e+ 01 6.929005e+ 01 7.028204e+ 01 6.993921e+ 01
max. 6.761195e+ 01 7.105328e+ 01 7.206676e+ 01 7.136500e+ 01 7.415203e+ 01 7.044328e+ 01 7.141937e+ 01 7.098520e+ 01 7.042415e+ 01 7.336819e+ 01 7.031182e+ 01 7.172502e+ 01 7.179174e+ 01
std. 7.305982e− 01 3.002604e− 01 3.938233e+ 00 2.606644e− 01 2.826087e− 01 5.348797e− 01 6.326657e− 01 5.296783e− 01 6.113510e− 01 3.060789e− 01 2.112301e− 01 2.868983e− 01 3.503949e− 01

4D

med. 5.514359e+ 02 6.446846e+ 02 5.964827e+ 02 6.948729e+ 02 3.752183e+ 02 6.284322e+ 02 6.852148e+ 02 6.856321e+ 02 6.499659e+ 02 7.104471e+ 02 6.324102e+ 02 6.570696e+ 02 6.896220e+ 02
avg. 5.510702e+ 02 6.413575e+ 02 5.914301e+ 02 6.942713e+ 02 3.810921e+ 02 6.274234e+ 02 6.841278e+ 02 6.847188e+ 02 6.509815e+ 02 7.108075e+ 02 6.331595e+ 02 6.573064e+ 02 6.896403e+ 02
min. 5.230625e+ 02 6.088849e+ 02 3.563687e+ 02 6.647383e+ 02 3.674253e+ 02 5.949814e+ 02 6.546677e+ 02 6.723217e+ 02 6.309218e+ 02 7.051284e+ 02 6.055725e+ 02 6.371450e+ 02 6.789653e+ 02
max. 5.761791e+ 02 6.794789e+ 02 6.775783e+ 02 7.158465e+ 02 4.400446e+ 02 6.487402e+ 02 7.013197e+ 02 7.016604e+ 02 6.697088e+ 02 7.208938e+ 02 6.631522e+ 02 6.815279e+ 02 6.973531e+ 02
std. 1.122574e+ 01 1.641960e+ 01 5.692961e+ 01 9.502580e+ 00 1.355341e+ 01 1.130325e+ 01 7.893271e+ 00 5.308831e+ 00 8.643595e+ 00 3.044489e+ 00 1.451067e+ 01 9.302623e+ 00 3.581828e+ 00

5D

med. 5.000345e+ 03 7.443855e+ 03 6.332454e+ 03 7.487174e+ 03 4.322375e+ 03 5.792766e+ 03 7.841457e+ 03 7.862925e+ 03 7.058632e+ 03 8.046322e+ 03 7.294655e+ 03 7.710059e+ 03 7.515820e+ 03
avg. 5.017541e+ 03 7.410630e+ 03 6.025836e+ 03 7.483201e+ 03 5.914798e+ 03 5.796672e+ 03 7.844224e+ 03 7.858257e+ 03 7.056976e+ 03 8.040320e+ 03 7.263320e+ 03 7.669490e+ 03 7.522794e+ 03
min. 4.505780e+ 03 6.686180e+ 03 3.273020e+ 03 7.064514e+ 03 4.011339e+ 03 5.418729e+ 03 7.626487e+ 03 7.707365e+ 03 6.802798e+ 03 7.896554e+ 03 6.704001e+ 03 6.867470e+ 03 7.208881e+ 03
max. 5.381611e+ 03 7.940270e+ 03 7.436792e+ 03 7.901973e+ 03 8.430234e+ 03 6.141593e+ 03 8.055412e+ 03 8.002696e+ 03 7.295184e+ 03 8.163834e+ 03 7.836754e+ 03 8.058533e+ 03 7.927130e+ 03
std. 1.804037e+ 02 2.797719e+ 02 1.038416e+ 03 1.703072e+ 02 2.075138e+ 03 1.343242e+ 02 9.094609e+ 01 6.357653e+ 01 1.187889e+ 02 4.804328e+ 01 2.954439e+ 02 1.960012e+ 02 1.213560e+ 02

6D

med. 5.486112e+ 04 8.693052e+ 04 5.810585e+ 04 9.160808e+ 04 5.326937e+ 04 6.249133e+ 04 1.037413e+ 05 1.038268e+ 05 8.825585e+ 04 1.033310e+ 05 9.405506e+ 04 8.915694e+ 04 9.342507e+ 04
avg. 5.489732e+ 04 8.607212e+ 04 6.098373e+ 04 9.123307e+ 04 5.384990e+ 04 6.262522e+ 04 1.038283e+ 05 1.038731e+ 05 8.826025e+ 04 1.033612e+ 05 9.420949e+ 04 8.883596e+ 04 9.336512e+ 04
min. 4.980051e+ 04 6.873202e+ 04 4.053197e+ 04 8.125284e+ 04 5.160031e+ 04 5.421739e+ 04 9.945873e+ 04 1.012646e+ 05 8.325084e+ 04 1.014139e+ 05 8.055685e+ 04 7.041762e+ 04 7.061912e+ 04
max. 6.108935e+ 04 9.715025e+ 04 8.954424e+ 04 9.760232e+ 04 6.949188e+ 04 6.924790e+ 04 1.083139e+ 05 1.063309e+ 05 9.448103e+ 04 1.052635e+ 05 1.040347e+ 05 1.023627e+ 05 1.023013e+ 05
std. 2.209785e+ 03 5.772381e+ 03 1.169935e+ 04 3.356762e+ 03 2.228292e+ 03 3.156587e+ 03 1.444462e+ 03 1.018763e+ 03 1.745391e+ 03 7.506298e+ 02 4.728157e+ 03 5.377407e+ 03 3.977566e+ 03

7D

med. 7.185489e+ 05 9.468577e+ 05 6.354231e+ 05 1.195745e+ 06 7.470079e+ 05 8.534405e+ 05 1.488831e+ 06 1.542226e+ 06 1.272135e+ 06 1.509402e+ 06 1.231151e+ 06 1.025460e+ 06 1.335266e+ 06
avg. 7.206783e+ 05 9.541403e+ 05 6.540940e+ 05 1.173492e+ 06 7.496225e+ 05 8.512788e+ 05 1.492174e+ 06 1.538578e+ 06 1.276933e+ 06 1.501400e+ 06 1.244622e+ 06 1.024896e+ 06 1.312338e+ 06
min. 6.411052e+ 05 7.076598e+ 05 5.170595e+ 05 8.050368e+ 05 7.015238e+ 05 7.259144e+ 05 1.429273e+ 06 1.474994e+ 06 1.191836e+ 06 1.403983e+ 06 9.854822e+ 05 8.500892e+ 05 8.028283e+ 05
max. 8.018880e+ 05 1.308244e+ 06 8.685789e+ 05 1.357848e+ 06 8.522936e+ 05 9.394218e+ 05 1.567635e+ 06 1.579821e+ 06 1.374304e+ 06 1.570955e+ 06 1.502944e+ 06 1.277734e+ 06 1.456584e+ 06
std. 3.482546e+ 04 1.195674e+ 05 8.043351e+ 04 1.203076e+ 05 2.029143e+ 04 3.868575e+ 04 2.946807e+ 04 1.974325e+ 04 3.667736e+ 04 3.513889e+ 04 1.237238e+ 05 7.432176e+ 04 1.066999e+ 05

8D

med. 1.159778e+ 07 1.368180e+ 07 1.010988e+ 07 1.872563e+ 07 1.351215e+ 07 1.439280e+ 07 2.645510e+ 07 2.650334e+ 07 1.993626e+ 07 2.606022e+ 07 1.750639e+ 07 1.514216e+ 07 2.050383e+ 07
avg. 1.162239e+ 07 1.381954e+ 07 1.022745e+ 07 1.859733e+ 07 1.406756e+ 07 1.432979e+ 07 2.640773e+ 07 2.650940e+ 07 1.995146e+ 07 2.593360e+ 07 1.775193e+ 07 1.512703e+ 07 1.864678e+ 07
min. 1.059010e+ 07 1.056371e+ 07 8.145420e+ 06 1.369752e+ 07 1.289171e+ 07 1.284872e+ 07 2.538709e+ 07 2.583190e+ 07 1.879140e+ 07 2.475067e+ 07 1.452988e+ 07 1.215464e+ 07 1.054172e+ 07
max. 1.257622e+ 07 1.862453e+ 07 1.318537e+ 07 2.181391e+ 07 2.833489e+ 07 1.546386e+ 07 2.752824e+ 07 2.714512e+ 07 2.112294e+ 07 2.691596e+ 07 2.285165e+ 07 1.842073e+ 07 2.313523e+ 07
std. 4.471479e+ 05 1.463352e+ 06 9.840168e+ 05 1.723438e+ 06 2.543940e+ 06 6.049557e+ 05 4.131680e+ 05 2.944521e+ 05 4.501463e+ 05 5.163159e+ 05 1.626468e+ 06 1.338612e+ 06 4.337768e+ 06

9D

med. 2.174094e+ 08 2.305922e+ 08 1.802393e+ 08 3.324307e+ 08 3.068460e+ 08 2.676542e+ 08 5.103371e+ 08 5.025082e+ 08 3.549482e+ 08 4.798160e+ 08 2.913755e+ 08 2.656694e+ 08 2.055817e+ 08
avg. 2.177236e+ 08 2.333834e+ 08 1.847879e+ 08 3.279235e+ 08 3.220910e+ 08 2.659915e+ 08 5.106258e+ 08 5.025733e+ 08 3.555012e+ 08 4.794096e+ 08 2.939024e+ 08 2.638298e+ 08 2.745134e+ 08
min. 1.997491e+ 08 1.854080e+ 08 1.472944e+ 08 2.592417e+ 08 2.917401e+ 08 2.349126e+ 08 4.974271e+ 08 4.868510e+ 08 3.397012e+ 08 4.529265e+ 08 2.504742e+ 08 1.916171e+ 08 1.928997e+ 08
max. 2.404990e+ 08 3.060646e+ 08 2.328872e+ 08 3.917096e+ 08 5.261185e+ 08 2.886417e+ 08 5.225329e+ 08 5.153205e+ 08 3.740309e+ 08 4.930127e+ 08 3.630712e+ 08 3.203371e+ 08 4.420259e+ 08
std. 7.456366e+ 06 2.781763e+ 07 1.861265e+ 07 3.137790e+ 07 5.360345e+ 07 1.243438e+ 07 5.854970e+ 06 5.315019e+ 06 6.799860e+ 06 7.344428e+ 06 2.286232e+ 07 2.605688e+ 07 8.264773e+ 07

10D

med. 4.584477e+ 09 4.574586e+ 09 3.596432e+ 09 6.534129e+ 09 9.654504e+ 09 5.448771e+ 09 1.068818e+ 10 1.035402e+ 10 7.137522e+ 09 9.710447e+ 09 5.747460e+ 09 5.303109e+ 09 4.070623e+ 09
avg. 4.572699e+ 09 4.537539e+ 09 3.616649e+ 09 6.445685e+ 09 9.194611e+ 09 5.455152e+ 09 1.066867e+ 10 1.034157e+ 10 7.137858e+ 09 9.698056e+ 09 5.663694e+ 09 5.303984e+ 09 4.923299e+ 09
min. 4.056620e+ 09 3.546419e+ 09 2.737534e+ 09 5.396896e+ 09 7.589661e+ 09 4.650902e+ 09 1.024830e+ 10 1.007474e+ 10 6.814237e+ 09 9.366984e+ 09 3.893538e+ 09 3.471840e+ 09 3.773702e+ 09
max. 4.848850e+ 09 5.691787e+ 09 4.509543e+ 09 7.489958e+ 09 1.028863e+ 10 5.929412e+ 09 1.098133e+ 10 1.057486e+ 10 7.448482e+ 09 9.984666e+ 09 6.824897e+ 09 6.426266e+ 09 7.849462e+ 09
std. 1.264785e+ 08 5.034787e+ 08 3.894553e+ 08 6.089859e+ 08 8.606275e+ 08 2.369476e+ 08 1.406703e+ 08 1.205180e+ 08 1.203708e+ 08 1.288354e+ 08 5.336725e+ 08 5.571961e+ 08 1.344173e+ 09
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Table C.18: Comparison of hypervolume indicator values for different optimizers on the WFG6 test problem.

Dim. Stat. NSGA-II
MOEA/D MOEA/D MOEA/D

SMS-EMOA ∆p-DDE R2-MOGA R2-MOGAw R2-MODE R2-IBEA
MOMBI MOMBI MOMBI

TCH NTCH PBI TCH NTCH PBI

2D

med. 8.198399e+ 00 7.955993e+ 00 8.082958e+ 00 7.739815e+ 00 8.290557e+ 00 8.383870e+ 00 8.219880e+ 00 8.252860e+ 00 8.414499e+ 00 8.296825e+ 00 8.311365e+ 00 8.311444e+ 00 8.205897e+ 00
avg. 8.197206e+ 00 7.971961e+ 00 8.047853e+ 00 7.747859e+ 00 8.267252e+ 00 8.375367e+ 00 8.213968e+ 00 8.241236e+ 00 8.411896e+ 00 8.291430e+ 00 8.306684e+ 00 8.313134e+ 00 8.204390e+ 00
min. 7.922492e+ 00 7.344567e+ 00 7.419382e+ 00 7.214627e+ 00 7.829334e+ 00 8.131968e+ 00 7.848123e+ 00 7.855328e+ 00 8.249492e+ 00 7.945132e+ 00 8.026150e+ 00 8.104609e+ 00 7.934520e+ 00
max. 8.365323e+ 00 8.406431e+ 00 8.418566e+ 00 8.234679e+ 00 8.416587e+ 00 8.556755e+ 00 8.368359e+ 00 8.398362e+ 00 8.501731e+ 00 8.460240e+ 00 8.483398e+ 00 8.452581e+ 00 8.355683e+ 00
std. 6.707658e− 02 2.132452e− 01 2.065814e− 01 2.097158e− 01 9.423930e− 02 7.334322e− 02 7.654552e− 02 9.204397e− 02 5.186673e− 02 6.856778e− 02 7.285841e− 02 6.007773e− 02 7.214439e− 02

3D

med. 6.533248e+ 01 7.075609e+ 01 6.178565e+ 01 7.037546e+ 01 7.438432e+ 01 6.820303e+ 01 7.061023e+ 01 7.082778e+ 01 7.027634e+ 01 7.344659e+ 01 7.055486e+ 01 7.177054e+ 01 7.064981e+ 01
avg. 6.532154e+ 01 7.069896e+ 01 5.983697e+ 01 7.029907e+ 01 7.437958e+ 01 6.816260e+ 01 7.056013e+ 01 7.084200e+ 01 7.011261e+ 01 7.346859e+ 01 7.057881e+ 01 7.177643e+ 01 7.072292e+ 01
min. 6.315394e+ 01 6.830847e+ 01 4.485882e+ 01 6.328253e+ 01 7.319357e+ 01 6.438016e+ 01 6.838058e+ 01 6.915319e+ 01 6.704986e+ 01 7.228541e+ 01 6.938603e+ 01 7.068194e+ 01 6.945001e+ 01
max. 6.701344e+ 01 7.238491e+ 01 7.057151e+ 01 7.328161e+ 01 7.523925e+ 01 7.054648e+ 01 7.216472e+ 01 7.271915e+ 01 7.231757e+ 01 7.453073e+ 01 7.178119e+ 01 7.323433e+ 01 7.237079e+ 01
std. 8.952243e− 01 8.222284e− 01 6.402817e+ 00 1.307385e+ 00 3.838560e− 01 1.505403e+ 00 7.477918e− 01 6.898669e− 01 1.137004e+ 00 3.755876e− 01 5.212065e− 01 5.334335e− 01 6.127926e− 01

4D

med. 5.310829e+ 02 6.301578e+ 02 4.033159e+ 02 6.916158e+ 02 3.860228e+ 02 5.442857e+ 02 6.896138e+ 02 7.005123e+ 02 6.802800e+ 02 7.287785e+ 02 6.416354e+ 02 6.631739e+ 02 6.995114e+ 02
avg. 5.306902e+ 02 6.321811e+ 02 4.309106e+ 02 6.756297e+ 02 3.928837e+ 02 5.562915e+ 02 6.898694e+ 02 7.006026e+ 02 6.621593e+ 02 7.284762e+ 02 6.409725e+ 02 6.636700e+ 02 6.999433e+ 02
min. 4.983728e+ 02 6.084806e+ 02 2.907193e+ 02 4.779654e+ 02 3.751016e+ 02 4.265367e+ 02 6.678222e+ 02 6.834021e+ 02 5.415568e+ 02 7.154691e+ 02 6.130462e+ 02 6.406045e+ 02 6.841927e+ 02
max. 5.607935e+ 02 6.569206e+ 02 6.188954e+ 02 7.212529e+ 02 5.170160e+ 02 6.617834e+ 02 7.090052e+ 02 7.131034e+ 02 6.996298e+ 02 7.381682e+ 02 6.686926e+ 02 6.868423e+ 02 7.159170e+ 02
std. 1.468210e+ 01 9.595374e+ 00 8.287990e+ 01 4.327641e+ 01 2.356036e+ 01 7.421731e+ 01 9.370016e+ 00 6.364672e+ 00 3.597864e+ 01 3.721526e+ 00 1.144702e+ 01 1.092326e+ 01 6.205130e+ 00

5D

med. 4.629934e+ 03 6.947170e+ 03 3.444497e+ 03 6.083947e+ 03 8.463090e+ 03 5.036667e+ 03 7.873426e+ 03 8.108202e+ 03 7.776712e+ 03 8.314185e+ 03 7.512366e+ 03 8.113862e+ 03 7.742084e+ 03
avg. 4.635416e+ 03 6.950653e+ 03 3.886520e+ 03 6.190272e+ 03 7.760370e+ 03 5.069824e+ 03 7.876071e+ 03 8.107614e+ 03 7.705731e+ 03 8.315038e+ 03 7.490810e+ 03 8.093530e+ 03 7.739955e+ 03
min. 4.120170e+ 03 6.391129e+ 03 3.181937e+ 03 4.703992e+ 03 4.164542e+ 03 4.593307e+ 03 7.602497e+ 03 7.912308e+ 03 5.961302e+ 03 8.136684e+ 03 7.137780e+ 03 7.658902e+ 03 7.506620e+ 03
max. 5.100349e+ 03 7.564287e+ 03 5.793984e+ 03 7.701776e+ 03 8.637264e+ 03 5.650397e+ 03 8.114454e+ 03 8.314738e+ 03 8.038419e+ 03 8.459291e+ 03 7.672111e+ 03 8.378182e+ 03 7.959509e+ 03
std. 2.019826e+ 02 2.513995e+ 02 6.449523e+ 02 8.157317e+ 02 1.598301e+ 03 2.050387e+ 02 1.018171e+ 02 7.909874e+ 01 3.446156e+ 02 5.874370e+ 01 1.133328e+ 02 1.642679e+ 02 9.287244e+ 01

6D

med. 4.761073e+ 04 8.409319e+ 04 3.847487e+ 04 6.359488e+ 04 5.556630e+ 04 4.597019e+ 04 1.042823e+ 05 1.085614e+ 05 1.002484e+ 05 1.081247e+ 05 9.387435e+ 04 9.616293e+ 04 9.634051e+ 04
avg. 4.750881e+ 04 8.403717e+ 04 4.118283e+ 04 6.770052e+ 04 6.781128e+ 04 4.591750e+ 04 1.042277e+ 05 1.084473e+ 05 1.004079e+ 05 1.081302e+ 05 9.476508e+ 04 9.638075e+ 04 9.561168e+ 04
min. 4.158537e+ 04 7.283864e+ 04 3.316718e+ 04 5.723719e+ 04 5.366528e+ 04 3.948072e+ 04 9.975875e+ 04 1.052566e+ 05 9.559366e+ 04 1.059814e+ 05 8.743242e+ 04 8.632237e+ 04 8.639624e+ 04
max. 5.316428e+ 04 9.211034e+ 04 5.885318e+ 04 8.692755e+ 04 1.135627e+ 05 5.205203e+ 04 1.078238e+ 05 1.109185e+ 05 1.056982e+ 05 1.100730e+ 05 1.046794e+ 05 1.072251e+ 05 1.018491e+ 05
std. 2.218968e+ 03 3.702314e+ 03 5.465761e+ 03 9.363197e+ 03 2.279236e+ 04 2.744808e+ 03 1.397019e+ 03 1.063683e+ 03 2.109452e+ 03 8.361316e+ 02 4.452830e+ 03 4.040541e+ 03 2.861954e+ 03

7D

med. 5.758959e+ 05 9.257741e+ 05 5.157778e+ 05 8.174321e+ 05 7.651943e+ 05 5.631466e+ 05 1.460292e+ 06 1.618442e+ 06 1.515949e+ 06 1.636875e+ 06 1.142412e+ 06 1.096667e+ 06 1.273273e+ 06
avg. 5.781532e+ 05 9.320311e+ 05 5.275256e+ 05 8.233028e+ 05 7.861047e+ 05 5.643614e+ 05 1.459999e+ 06 1.618315e+ 06 1.512933e+ 06 1.637251e+ 06 1.138200e+ 06 1.099457e+ 06 1.215035e+ 06
min. 4.749569e+ 05 7.301262e+ 05 3.410576e+ 05 7.805534e+ 05 6.813088e+ 05 4.917092e+ 05 1.367939e+ 06 1.575810e+ 06 1.139877e+ 06 1.591222e+ 06 9.356240e+ 05 1.014342e+ 06 6.496085e+ 05
max. 6.848574e+ 05 1.133770e+ 06 6.874671e+ 05 1.148869e+ 06 1.691054e+ 06 6.604783e+ 05 1.523406e+ 06 1.671660e+ 06 1.598693e+ 06 1.676982e+ 06 1.467280e+ 06 1.289128e+ 06 1.481108e+ 06
std. 3.556166e+ 04 9.074537e+ 04 5.168059e+ 04 4.450323e+ 04 1.289444e+ 05 3.557264e+ 04 3.117700e+ 04 2.096478e+ 04 5.016319e+ 04 1.635700e+ 04 1.197600e+ 05 3.915788e+ 04 2.341787e+ 05

8D

med. 9.296541e+ 06 1.337458e+ 07 8.169218e+ 06 1.390621e+ 07 1.384185e+ 07 9.512056e+ 06 2.655225e+ 07 2.827464e+ 07 2.403116e+ 07 2.815551e+ 07 1.918951e+ 07 1.752966e+ 07 2.007328e+ 07
avg. 9.324613e+ 06 1.337349e+ 07 8.341145e+ 06 1.397680e+ 07 1.464813e+ 07 9.449651e+ 06 2.649272e+ 07 2.825463e+ 07 2.409941e+ 07 2.813432e+ 07 1.885493e+ 07 1.761584e+ 07 1.833705e+ 07
min. 7.916147e+ 06 1.068787e+ 07 5.966225e+ 06 1.308321e+ 07 1.342127e+ 07 7.587994e+ 06 2.539712e+ 07 2.738672e+ 07 2.229417e+ 07 2.677226e+ 07 1.485032e+ 07 1.579089e+ 07 1.104695e+ 07
max. 1.078135e+ 07 1.777074e+ 07 1.258902e+ 07 1.938983e+ 07 2.811992e+ 07 1.085002e+ 07 2.732889e+ 07 2.882212e+ 07 2.603136e+ 07 2.891979e+ 07 2.338487e+ 07 2.180354e+ 07 2.373431e+ 07
std. 4.865645e+ 05 1.532617e+ 06 1.046179e+ 06 7.087609e+ 05 3.038526e+ 06 6.836613e+ 05 4.688279e+ 05 2.634557e+ 05 7.489747e+ 05 3.208167e+ 05 1.932117e+ 06 8.711573e+ 05 4.701845e+ 06

9D

med. 1.797243e+ 08 2.277564e+ 08 1.522483e+ 08 2.616315e+ 08 3.200054e+ 08 1.823990e+ 08 5.245650e+ 08 5.395201e+ 08 3.944129e+ 08 5.127369e+ 08 3.579743e+ 08 2.992875e+ 08 3.463672e+ 08
avg. 1.794065e+ 08 2.274561e+ 08 1.506790e+ 08 2.607860e+ 08 3.571368e+ 08 1.794530e+ 08 5.249169e+ 08 5.398921e+ 08 3.934499e+ 08 5.131126e+ 08 3.552834e+ 08 2.983975e+ 08 3.188133e+ 08
min. 1.620398e+ 08 1.813144e+ 08 8.541120e+ 07 2.430622e+ 08 2.999552e+ 08 1.459607e+ 08 5.076285e+ 08 5.191176e+ 08 3.553208e+ 08 4.943923e+ 08 2.850316e+ 08 2.126582e+ 08 2.079309e+ 08
max. 1.935352e+ 08 3.090712e+ 08 2.441470e+ 08 3.574412e+ 08 5.203575e+ 08 2.080311e+ 08 5.416467e+ 08 5.535201e+ 08 4.328732e+ 08 5.329118e+ 08 4.375812e+ 08 3.782036e+ 08 4.174641e+ 08
std. 6.719862e+ 06 2.938846e+ 07 2.378363e+ 07 1.362119e+ 07 6.946682e+ 07 1.300977e+ 07 6.786004e+ 06 5.857796e+ 06 1.378885e+ 07 7.422836e+ 06 3.585370e+ 07 2.691810e+ 07 7.398673e+ 07

10D

med. 3.837978e+ 09 4.246700e+ 09 3.076697e+ 09 5.310315e+ 09 8.845401e+ 09 3.662930e+ 09 1.113458e+ 10 1.119161e+ 10 7.087531e+ 09 1.001971e+ 10 6.819535e+ 09 4.795547e+ 09 6.700709e+ 09
avg. 3.832608e+ 09 4.364400e+ 09 3.053759e+ 09 5.320243e+ 09 8.888280e+ 09 3.630691e+ 09 1.113564e+ 10 1.118317e+ 10 7.093735e+ 09 1.001362e+ 10 6.766917e+ 09 4.875523e+ 09 6.397196e+ 09
min. 3.528675e+ 09 3.571576e+ 09 1.329755e+ 09 4.987042e+ 09 8.010218e+ 09 2.861973e+ 09 1.077319e+ 10 1.056327e+ 10 6.586990e+ 09 9.576448e+ 09 4.923735e+ 09 3.417946e+ 09 4.297980e+ 09
max. 4.129361e+ 09 5.663319e+ 09 4.248431e+ 09 6.444359e+ 09 1.001556e+ 10 4.201883e+ 09 1.148347e+ 10 1.147126e+ 10 7.537655e+ 09 1.045908e+ 10 8.176068e+ 09 6.441128e+ 09 8.108881e+ 09
std. 1.304981e+ 08 5.610065e+ 08 5.054195e+ 08 2.094273e+ 08 4.208213e+ 08 3.024254e+ 08 1.317243e+ 08 1.608895e+ 08 2.160106e+ 08 1.681741e+ 08 6.598270e+ 08 7.228997e+ 08 1.200734e+ 09
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Table C.19: Comparison of hypervolume indicator values for different optimizers on the WFG7 test problem.

Dim. Stat. NSGA-II
MOEA/D MOEA/D MOEA/D

SMS-EMOA ∆p-DDE R2-MOGA R2-MOGAw R2-MODE R2-IBEA
MOMBI MOMBI MOMBI

TCH NTCH PBI TCH NTCH PBI

2D

med. 8.504703e+ 00 8.626862e+ 00 8.640761e+ 00 8.501081e+ 00 8.648595e+ 00 8.645529e+ 00 8.510212e+ 00 8.594195e+ 00 8.578840e+ 00 8.664916e+ 00 8.640381e+ 00 8.647797e+ 00 8.575772e+ 00
avg. 8.496168e+ 00 8.607483e+ 00 8.635188e+ 00 8.479757e+ 00 8.647091e+ 00 8.636725e+ 00 8.510422e+ 00 8.563717e+ 00 8.571050e+ 00 8.662777e+ 00 8.636950e+ 00 8.647571e+ 00 8.574442e+ 00
min. 8.360640e+ 00 8.311574e+ 00 8.447057e+ 00 8.223255e+ 00 8.605502e+ 00 8.566737e+ 00 8.418814e+ 00 8.095398e+ 00 8.446053e+ 00 8.636817e+ 00 8.537964e+ 00 8.627091e+ 00 8.504507e+ 00
max. 8.571561e+ 00 8.655344e+ 00 8.664380e+ 00 8.564254e+ 00 8.674638e+ 00 8.663867e+ 00 8.591234e+ 00 8.642467e+ 00 8.595462e+ 00 8.676610e+ 00 8.664411e+ 00 8.664633e+ 00 8.611422e+ 00
std. 4.441915e− 02 6.058798e− 02 2.784170e− 02 7.629052e− 02 1.648421e− 02 2.322885e− 02 3.310268e− 02 9.550421e− 02 2.695979e− 02 8.636309e− 03 1.829080e− 02 8.378594e− 03 1.806206e− 02

3D

med. 6.848436e+ 01 7.377252e+ 01 5.806926e+ 01 7.158144e+ 01 7.758681e+ 01 7.433119e+ 01 7.290086e+ 01 7.345501e+ 01 7.290508e+ 01 7.666449e+ 01 7.377041e+ 01 7.494624e+ 01 7.404968e+ 01
avg. 6.847171e+ 01 7.385688e+ 01 6.071312e+ 01 7.084538e+ 01 7.758593e+ 01 7.430486e+ 01 7.292731e+ 01 7.345815e+ 01 7.281803e+ 01 7.666302e+ 01 7.383202e+ 01 7.496039e+ 01 7.397895e+ 01
min. 6.648365e+ 01 7.349459e+ 01 4.782078e+ 01 6.508053e+ 01 7.752450e+ 01 7.310984e+ 01 7.115957e+ 01 7.187388e+ 01 7.073237e+ 01 7.640184e+ 01 7.338281e+ 01 7.455641e+ 01 7.251642e+ 01
max. 7.019949e+ 01 7.470177e+ 01 7.516605e+ 01 7.418575e+ 01 7.762396e+ 01 7.524816e+ 01 7.392816e+ 01 7.466967e+ 01 7.375654e+ 01 7.685646e+ 01 7.460577e+ 01 7.539181e+ 01 7.465891e+ 01
std. 8.051748e− 01 2.554404e− 01 5.597093e+ 00 2.260749e+ 00 1.971970e− 02 4.330730e− 01 5.444382e− 01 5.523644e− 01 5.556086e− 01 8.888271e− 02 2.842080e− 01 1.980329e− 01 4.207457e− 01

4D

med. 4.996780e+ 02 6.815890e+ 02 4.926428e+ 02 7.109104e+ 02 3.934979e+ 02 6.729799e+ 02 7.088413e+ 02 7.201050e+ 02 6.915485e+ 02 7.567138e+ 02 6.780766e+ 02 7.036777e+ 02 7.278043e+ 02
avg. 4.950940e+ 02 6.806759e+ 02 4.793916e+ 02 7.079086e+ 02 3.933686e+ 02 6.695096e+ 02 7.093104e+ 02 7.194620e+ 02 6.915284e+ 02 7.566763e+ 02 6.797429e+ 02 7.041609e+ 02 7.266777e+ 02
min. 4.585869e+ 02 6.454274e+ 02 3.529497e+ 02 6.168809e+ 02 3.845495e+ 02 6.211562e+ 02 6.915378e+ 02 6.961591e+ 02 6.748466e+ 02 7.491660e+ 02 6.534668e+ 02 6.845851e+ 02 7.111254e+ 02
max. 5.295568e+ 02 7.097558e+ 02 6.445533e+ 02 7.364975e+ 02 4.140168e+ 02 6.947232e+ 02 7.275123e+ 02 7.336746e+ 02 7.138966e+ 02 7.616801e+ 02 7.154148e+ 02 7.285928e+ 02 7.376116e+ 02
std. 1.661458e+ 01 1.242416e+ 01 8.774536e+ 01 1.979033e+ 01 4.102186e+ 00 1.548993e+ 01 7.818398e+ 00 7.290635e+ 00 7.570164e+ 00 2.170323e+ 00 1.221340e+ 01 8.774531e+ 00 5.766343e+ 00

5D

med. 4.581494e+ 03 7.613603e+ 03 3.518326e+ 03 6.824832e+ 03 4.389039e+ 03 5.261429e+ 03 8.147017e+ 03 8.280371e+ 03 7.709541e+ 03 8.619556e+ 03 7.692143e+ 03 8.299983e+ 03 7.779964e+ 03
avg. 4.581974e+ 03 7.573569e+ 03 3.987697e+ 03 6.692119e+ 03 6.324375e+ 03 5.266323e+ 03 8.141599e+ 03 8.271861e+ 03 7.711053e+ 03 8.623928e+ 03 7.669825e+ 03 8.227213e+ 03 7.797698e+ 03
min. 4.055973e+ 03 6.646088e+ 03 3.312491e+ 03 5.429259e+ 03 4.230460e+ 03 4.976617e+ 03 7.841723e+ 03 7.972437e+ 03 7.505675e+ 03 8.528252e+ 03 7.147984e+ 03 7.572698e+ 03 7.423948e+ 03
max. 5.063850e+ 03 7.957100e+ 03 6.271653e+ 03 7.647823e+ 03 8.845006e+ 03 5.559716e+ 03 8.410013e+ 03 8.403445e+ 03 7.962784e+ 03 8.720661e+ 03 8.062887e+ 03 8.659450e+ 03 8.197369e+ 03
std. 1.860412e+ 02 2.447673e+ 02 8.130933e+ 02 5.364329e+ 02 2.214465e+ 03 1.226506e+ 02 1.061709e+ 02 7.116472e+ 01 9.641079e+ 01 3.843964e+ 01 1.912596e+ 02 2.267532e+ 02 1.666955e+ 02

6D

med. 5.268889e+ 04 8.801274e+ 04 3.975091e+ 04 7.031332e+ 04 5.595178e+ 04 5.218829e+ 04 1.080754e+ 05 1.104212e+ 05 9.974094e+ 04 1.115394e+ 05 9.629348e+ 04 1.000582e+ 05 9.370454e+ 04
avg. 5.273139e+ 04 8.779621e+ 04 4.176570e+ 04 7.248123e+ 04 5.603654e+ 04 5.246955e+ 04 1.081103e+ 05 1.103203e+ 05 9.968901e+ 04 1.114732e+ 05 9.645915e+ 04 9.997789e+ 04 9.001702e+ 04
min. 4.768233e+ 04 6.975562e+ 04 3.481339e+ 04 6.354243e+ 04 5.497228e+ 04 4.477344e+ 04 1.053113e+ 05 1.081891e+ 05 9.667935e+ 04 1.098409e+ 05 8.434412e+ 04 8.891664e+ 04 4.498396e+ 04
max. 5.675878e+ 04 9.880760e+ 04 6.705377e+ 04 8.938255e+ 04 5.890542e+ 04 6.042130e+ 04 1.115843e+ 05 1.121306e+ 05 1.031626e+ 05 1.132433e+ 05 1.054070e+ 05 1.078565e+ 05 1.015285e+ 05
std. 1.829317e+ 03 5.267269e+ 03 6.412307e+ 03 6.570827e+ 03 6.164381e+ 02 3.070249e+ 03 1.410753e+ 03 8.600368e+ 02 1.491739e+ 03 7.191713e+ 02 4.542967e+ 03 3.251826e+ 03 1.230366e+ 04

7D

med. 6.588675e+ 05 9.412831e+ 05 5.275699e+ 05 8.689784e+ 05 7.718860e+ 05 6.954845e+ 05 1.497727e+ 06 1.628666e+ 06 1.415037e+ 06 1.632747e+ 06 1.108584e+ 06 1.154726e+ 06 6.749686e+ 05
avg. 6.601036e+ 05 9.588548e+ 05 5.365159e+ 05 8.817116e+ 05 7.637689e+ 05 6.951539e+ 05 1.494538e+ 06 1.625337e+ 06 1.414173e+ 06 1.623872e+ 06 1.127245e+ 06 1.171606e+ 06 9.855901e+ 05
min. 5.694477e+ 05 7.165991e+ 05 4.643722e+ 05 8.330884e+ 05 7.002583e+ 05 5.796203e+ 05 1.409066e+ 06 1.580052e+ 06 1.313644e+ 06 1.536628e+ 06 9.296996e+ 05 1.032891e+ 06 6.743840e+ 05
max. 7.374033e+ 05 1.251383e+ 06 7.309912e+ 05 1.173028e+ 06 8.530466e+ 05 7.908863e+ 05 1.573716e+ 06 1.691777e+ 06 1.486610e+ 06 1.682867e+ 06 1.440584e+ 06 1.348358e+ 06 1.528107e+ 06
std. 3.809771e+ 04 1.114411e+ 05 4.236611e+ 04 5.382654e+ 04 2.607919e+ 04 4.521402e+ 04 3.436046e+ 04 2.201532e+ 04 3.476070e+ 04 4.084226e+ 04 1.066234e+ 05 6.155011e+ 04 3.363489e+ 05

8D

med. 1.128588e+ 07 1.371264e+ 07 8.119357e+ 06 1.474089e+ 07 1.410866e+ 07 1.155439e+ 07 2.711783e+ 07 2.837560e+ 07 2.415682e+ 07 2.836729e+ 07 1.849510e+ 07 1.831931e+ 07 1.145757e+ 07
avg. 1.126592e+ 07 1.366528e+ 07 8.472570e+ 06 1.479252e+ 07 1.412459e+ 07 1.149401e+ 07 2.707942e+ 07 2.835807e+ 07 2.413456e+ 07 2.828529e+ 07 1.891702e+ 07 1.832524e+ 07 1.435635e+ 07
min. 9.501038e+ 06 9.492094e+ 06 7.028833e+ 06 1.376811e+ 07 1.377528e+ 07 9.527608e+ 06 2.576277e+ 07 2.757953e+ 07 2.297867e+ 07 2.718126e+ 07 1.281851e+ 07 1.459351e+ 07 1.144279e+ 07
max. 1.259708e+ 07 1.845966e+ 07 1.192321e+ 07 2.065369e+ 07 1.497527e+ 07 1.307830e+ 07 2.799873e+ 07 2.929733e+ 07 2.556623e+ 07 2.912573e+ 07 2.356691e+ 07 2.225555e+ 07 2.496964e+ 07
std. 5.358108e+ 05 1.524736e+ 06 1.101527e+ 06 8.215860e+ 05 1.433778e+ 05 7.254081e+ 05 4.732436e+ 05 2.898557e+ 05 4.850471e+ 05 4.975036e+ 05 2.087757e+ 06 1.101044e+ 06 4.468953e+ 06

9D

med. 2.192067e+ 08 2.372689e+ 08 1.444611e+ 08 2.753702e+ 08 3.127783e+ 08 2.103898e+ 08 5.389564e+ 08 5.448620e+ 08 4.386912e+ 08 5.325717e+ 08 3.438641e+ 08 3.242924e+ 08 2.172197e+ 08
avg. 2.192494e+ 08 2.400425e+ 08 1.502446e+ 08 2.721544e+ 08 3.139217e+ 08 2.091964e+ 08 5.391399e+ 08 5.444462e+ 08 4.382711e+ 08 5.309585e+ 08 3.460286e+ 08 3.247308e+ 08 2.551916e+ 08
min. 2.001196e+ 08 1.771660e+ 08 1.236465e+ 08 2.518592e+ 08 2.930513e+ 08 1.678184e+ 08 5.193023e+ 08 5.279954e+ 08 4.220771e+ 08 5.104017e+ 08 2.180577e+ 08 2.677608e+ 08 2.168127e+ 08
max. 2.348297e+ 08 3.100721e+ 08 2.191585e+ 08 2.989193e+ 08 3.521590e+ 08 2.390311e+ 08 5.549639e+ 08 5.572454e+ 08 4.527455e+ 08 5.482985e+ 08 4.438543e+ 08 3.896908e+ 08 4.378971e+ 08
std. 6.942984e+ 06 3.098686e+ 07 2.000005e+ 07 9.767556e+ 06 9.031780e+ 06 1.667939e+ 07 6.992072e+ 06 5.623291e+ 06 6.556562e+ 06 9.048002e+ 06 3.622318e+ 07 2.313491e+ 07 6.996237e+ 07

10D

med. 4.751688e+ 09 4.239049e+ 09 2.820428e+ 09 5.555775e+ 09 8.587573e+ 09 4.043786e+ 09 1.149293e+ 10 1.128382e+ 10 8.557179e+ 09 1.079123e+ 10 6.746903e+ 09 6.546829e+ 09 4.537529e+ 09
avg. 4.744373e+ 09 4.416705e+ 09 2.990753e+ 09 5.591367e+ 09 9.384584e+ 09 4.065421e+ 09 1.147875e+ 10 1.126482e+ 10 8.568650e+ 09 1.079130e+ 10 6.778277e+ 09 6.592880e+ 09 4.956644e+ 09
min. 4.400981e+ 09 3.370583e+ 09 2.441213e+ 09 5.150938e+ 09 7.680944e+ 09 3.453819e+ 09 1.106173e+ 10 1.077925e+ 10 8.227219e+ 09 1.051288e+ 10 5.475389e+ 09 5.683925e+ 09 4.514491e+ 09
max. 5.076689e+ 09 5.984284e+ 09 4.523598e+ 09 7.524643e+ 09 1.102677e+ 10 4.832496e+ 09 1.176877e+ 10 1.153472e+ 10 9.014280e+ 09 1.116177e+ 10 8.176208e+ 09 7.680751e+ 09 8.289543e+ 09
std. 1.297099e+ 08 5.895958e+ 08 4.621721e+ 08 3.194888e+ 08 1.191104e+ 09 3.155603e+ 08 1.375012e+ 08 1.379507e+ 08 1.384150e+ 08 1.457900e+ 08 4.789153e+ 08 4.010393e+ 08 9.882030e+ 08
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Table C.20: Comparison of hypervolume indicator values for different optimizers on the WFG8 test problem.

Dim. Stat. NSGA-II
MOEA/D MOEA/D MOEA/D

SMS-EMOA ∆p-DDE R2-MOGA R2-MOGAw R2-MODE R2-IBEA
MOMBI MOMBI MOMBI

TCH NTCH PBI TCH NTCH PBI

2D

med. 7.414018e+ 00 7.656952e+ 00 7.690919e+ 00 7.471072e+ 00 7.589346e+ 00 7.497658e+ 00 7.474729e+ 00 7.576929e+ 00 7.378723e+ 00 7.616577e+ 00 7.606740e+ 00 7.630038e+ 00 7.423013e+ 00
avg. 7.410571e+ 00 7.639845e+ 00 7.694180e+ 00 7.452049e+ 00 7.582036e+ 00 7.498123e+ 00 7.476148e+ 00 7.573019e+ 00 7.379619e+ 00 7.613844e+ 00 7.604978e+ 00 7.626727e+ 00 7.413928e+ 00
min. 7.249999e+ 00 7.423127e+ 00 7.509650e+ 00 7.156570e+ 00 7.403324e+ 00 7.440070e+ 00 7.406427e+ 00 7.497625e+ 00 7.329458e+ 00 7.496403e+ 00 7.533713e+ 00 7.567827e+ 00 7.311988e+ 00
max. 7.559110e+ 00 7.758234e+ 00 7.785776e+ 00 7.584452e+ 00 7.655364e+ 00 7.555113e+ 00 7.538277e+ 00 7.648406e+ 00 7.432824e+ 00 7.694835e+ 00 7.662401e+ 00 7.674512e+ 00 7.498454e+ 00
std. 5.872359e− 02 6.728818e− 02 4.521205e− 02 9.989329e− 02 4.636608e− 02 2.254993e− 02 2.800474e− 02 3.551417e− 02 2.282147e− 02 3.352068e− 02 2.634150e− 02 2.348470e− 02 4.488246e− 02

3D

med. 6.136014e+ 01 6.820326e+ 01 5.646411e+ 01 6.708345e+ 01 7.097425e+ 01 6.397082e+ 01 6.531562e+ 01 6.742250e+ 01 6.411767e+ 01 6.975463e+ 01 6.728580e+ 01 6.812604e+ 01 6.730882e+ 01
avg. 6.139574e+ 01 6.817618e+ 01 5.612454e+ 01 6.703574e+ 01 7.094368e+ 01 6.396532e+ 01 6.528575e+ 01 6.740995e+ 01 6.407731e+ 01 6.973631e+ 01 6.729550e+ 01 6.813741e+ 01 6.728380e+ 01
min. 6.001858e+ 01 6.701647e+ 01 3.336945e+ 01 5.917705e+ 01 7.016162e+ 01 6.218915e+ 01 6.370779e+ 01 6.576586e+ 01 6.252444e+ 01 6.920995e+ 01 6.680781e+ 01 6.756006e+ 01 6.638516e+ 01
max. 6.326637e+ 01 6.866650e+ 01 6.044412e+ 01 6.870213e+ 01 7.125347e+ 01 6.517403e+ 01 6.647188e+ 01 6.865250e+ 01 6.548347e+ 01 7.009516e+ 01 6.789230e+ 01 6.856292e+ 01 6.809308e+ 01
std. 6.615193e− 01 3.154008e− 01 3.422397e+ 00 1.036261e+ 00 1.748198e− 01 5.482895e− 01 5.620513e− 01 5.419310e− 01 5.768989e− 01 1.883877e− 01 2.100657e− 01 2.123212e− 01 3.372698e− 01

4D

med. 5.178129e+ 02 5.779936e+ 02 4.038885e+ 02 6.398205e+ 02 3.275459e+ 02 5.861289e+ 02 6.276188e+ 02 6.497390e+ 02 5.938900e+ 02 6.892077e+ 02 5.726299e+ 02 6.012084e+ 02 6.600620e+ 02
avg. 5.171332e+ 02 5.777390e+ 02 4.004869e+ 02 6.340418e+ 02 3.279101e+ 02 5.862035e+ 02 6.256156e+ 02 6.505546e+ 02 5.927055e+ 02 6.891638e+ 02 5.777320e+ 02 6.028895e+ 02 6.598377e+ 02
min. 4.820578e+ 02 5.625277e+ 02 3.085031e+ 02 4.223093e+ 02 3.157218e+ 02 5.605313e+ 02 5.920013e+ 02 6.256638e+ 02 5.639649e+ 02 6.800161e+ 02 5.567845e+ 02 5.844026e+ 02 6.458711e+ 02
max. 5.377159e+ 02 5.912511e+ 02 5.519041e+ 02 6.738891e+ 02 3.480212e+ 02 6.073269e+ 02 6.446698e+ 02 6.652269e+ 02 6.138718e+ 02 6.962646e+ 02 6.072617e+ 02 6.335064e+ 02 6.782308e+ 02
std. 1.139422e+ 01 6.103535e+ 00 4.017219e+ 01 3.256264e+ 01 6.447711e+ 00 9.694184e+ 00 9.742541e+ 00 7.022852e+ 00 9.604922e+ 00 2.966325e+ 00 1.362981e+ 01 1.035031e+ 01 5.742691e+ 00

5D

med. 4.701915e+ 03 5.570846e+ 03 3.778863e+ 03 5.442972e+ 03 3.509819e+ 03 4.897645e+ 03 7.083948e+ 03 7.352185e+ 03 6.497748e+ 03 7.782207e+ 03 5.774852e+ 03 5.863087e+ 03 7.288308e+ 03
avg. 4.689386e+ 03 5.562041e+ 03 3.735984e+ 03 5.314447e+ 03 3.517666e+ 03 4.885363e+ 03 7.060591e+ 03 7.348311e+ 03 6.509441e+ 03 7.781706e+ 03 5.805813e+ 03 5.900438e+ 03 7.288489e+ 03
min. 4.171368e+ 03 4.937473e+ 03 2.014974e+ 03 3.515850e+ 03 3.389561e+ 03 4.528120e+ 03 6.731320e+ 03 7.031697e+ 03 6.273247e+ 03 7.662703e+ 03 5.606126e+ 03 5.684910e+ 03 7.057470e+ 03
max. 5.177757e+ 03 6.076709e+ 03 4.723501e+ 03 6.592384e+ 03 3.756003e+ 03 5.240091e+ 03 7.295738e+ 03 7.631910e+ 03 6.874916e+ 03 7.908423e+ 03 6.138275e+ 03 6.304071e+ 03 7.494259e+ 03
std. 1.809007e+ 02 1.395862e+ 02 4.097390e+ 02 7.984237e+ 02 6.992227e+ 01 1.260683e+ 02 1.230738e+ 02 9.449962e+ 01 1.142037e+ 02 5.245949e+ 01 1.263648e+ 02 1.457249e+ 02 9.843935e+ 01

6D

med. 5.088712e+ 04 5.223261e+ 04 4.072945e+ 04 4.878435e+ 04 4.586166e+ 04 4.691687e+ 04 9.172090e+ 04 9.604253e+ 04 8.272414e+ 04 1.004391e+ 05 5.860406e+ 04 6.274318e+ 04 8.662297e+ 04
avg. 5.105257e+ 04 5.308794e+ 04 4.056820e+ 04 4.829028e+ 04 4.586564e+ 04 4.715374e+ 04 9.174727e+ 04 9.595053e+ 04 8.277720e+ 04 1.005372e+ 05 6.013998e+ 04 6.253890e+ 04 8.592590e+ 04
min. 4.621694e+ 04 4.731843e+ 04 2.964448e+ 04 2.854790e+ 04 4.374862e+ 04 4.083625e+ 04 8.719301e+ 04 9.265241e+ 04 7.785012e+ 04 9.840714e+ 04 5.630949e+ 04 5.076812e+ 04 6.125103e+ 04
max. 5.696151e+ 04 6.545067e+ 04 5.419895e+ 04 6.934252e+ 04 4.891951e+ 04 5.534253e+ 04 9.745408e+ 04 9.936997e+ 04 8.580723e+ 04 1.035575e+ 05 6.848363e+ 04 7.391515e+ 04 9.065210e+ 04
std. 2.081902e+ 03 4.135705e+ 03 4.568342e+ 03 1.143986e+ 04 8.763283e+ 02 3.497003e+ 03 1.881598e+ 03 1.474205e+ 03 1.581094e+ 03 9.739120e+ 02 3.038988e+ 03 4.384717e+ 03 3.543793e+ 03

7D

med. 6.295993e+ 05 5.429104e+ 05 5.197118e+ 05 5.179028e+ 05 5.959733e+ 05 5.992080e+ 05 1.231875e+ 06 1.390706e+ 06 1.175122e+ 06 1.492982e+ 06 6.888843e+ 05 7.093740e+ 05 1.181845e+ 06
avg. 6.330144e+ 05 5.629083e+ 05 5.066791e+ 05 5.242716e+ 05 5.945667e+ 05 6.017049e+ 05 1.234433e+ 06 1.388300e+ 06 1.173963e+ 06 1.492344e+ 06 6.915676e+ 05 7.117015e+ 05 1.159868e+ 06
min. 5.556352e+ 05 4.822746e+ 05 3.075501e+ 05 3.031279e+ 05 5.568856e+ 05 5.010612e+ 05 1.156930e+ 06 1.287122e+ 06 1.089088e+ 06 1.455914e+ 06 5.543968e+ 05 5.629852e+ 05 8.118912e+ 05
max. 7.129799e+ 05 7.299513e+ 05 7.060748e+ 05 1.114366e+ 06 6.188820e+ 05 7.037062e+ 05 1.330749e+ 06 1.455884e+ 06 1.251766e+ 06 1.543029e+ 06 9.120445e+ 05 9.213501e+ 05 1.313261e+ 06
std. 3.606480e+ 04 6.030944e+ 04 6.912706e+ 04 1.569529e+ 05 1.142818e+ 04 4.682738e+ 04 3.862599e+ 04 3.150896e+ 04 3.450404e+ 04 1.867656e+ 04 7.870499e+ 04 7.824725e+ 04 9.786009e+ 04

8D

med. 1.076408e+ 07 8.008727e+ 06 8.256383e+ 06 8.771063e+ 06 1.158736e+ 07 1.002094e+ 07 2.226608e+ 07 2.378661e+ 07 1.952435e+ 07 2.614665e+ 07 1.086252e+ 07 1.058468e+ 07 1.850981e+ 07
avg. 1.067027e+ 07 8.322891e+ 06 8.109114e+ 06 9.097558e+ 06 1.158884e+ 07 1.000957e+ 07 2.228269e+ 07 2.375972e+ 07 1.953351e+ 07 2.612709e+ 07 1.108777e+ 07 1.056747e+ 07 1.822260e+ 07
min. 9.635240e+ 06 6.839033e+ 06 4.298967e+ 06 4.360080e+ 06 1.093574e+ 07 8.223773e+ 06 2.045365e+ 07 2.248448e+ 07 1.838993e+ 07 2.535326e+ 07 8.404531e+ 06 8.213546e+ 06 6.880557e+ 06
max. 1.148794e+ 07 1.150289e+ 07 1.233601e+ 07 1.999896e+ 07 1.214117e+ 07 1.170195e+ 07 2.345003e+ 07 2.507242e+ 07 2.086694e+ 07 2.691552e+ 07 1.470861e+ 07 1.571690e+ 07 2.099143e+ 07
std. 4.409612e+ 05 1.034676e+ 06 1.260024e+ 06 3.002025e+ 06 2.616136e+ 05 8.119872e+ 05 5.680952e+ 05 4.634828e+ 05 5.105384e+ 05 3.253082e+ 05 1.433053e+ 06 1.636957e+ 06 1.764341e+ 06

9D

med. 2.038997e+ 08 1.367203e+ 08 1.495139e+ 08 1.512546e+ 08 2.768925e+ 08 1.805773e+ 08 4.359670e+ 08 4.481271e+ 08 3.549264e+ 08 4.894094e+ 08 1.986093e+ 08 1.848086e+ 08 3.205919e+ 08
avg. 2.042755e+ 08 1.416472e+ 08 1.477315e+ 08 1.498197e+ 08 2.770711e+ 08 1.812214e+ 08 4.351253e+ 08 4.485837e+ 08 3.551497e+ 08 4.887379e+ 08 2.012299e+ 08 1.856252e+ 08 3.106811e+ 08
min. 1.864115e+ 08 1.194040e+ 08 7.581260e+ 07 7.768961e+ 07 2.548909e+ 08 1.434406e+ 08 3.999600e+ 08 4.156698e+ 08 3.310152e+ 08 4.687732e+ 08 1.443829e+ 08 1.355544e+ 08 1.335061e+ 08
max. 2.220711e+ 08 2.112974e+ 08 2.061202e+ 08 2.876264e+ 08 3.033815e+ 08 2.089691e+ 08 4.546783e+ 08 4.686136e+ 08 3.788361e+ 08 5.067261e+ 08 2.800170e+ 08 2.657768e+ 08 3.574663e+ 08
std. 7.372729e+ 06 1.839811e+ 07 2.202065e+ 07 4.564036e+ 07 9.827313e+ 06 1.490355e+ 07 1.073683e+ 07 9.608111e+ 06 8.669565e+ 06 6.072263e+ 06 3.204641e+ 07 3.128124e+ 07 4.224189e+ 07

10D

med. 4.312222e+ 09 2.561497e+ 09 3.043866e+ 09 3.176005e+ 09 7.925282e+ 09 3.545467e+ 09 9.232464e+ 09 9.150706e+ 09 7.087128e+ 09 9.785364e+ 09 4.255596e+ 09 3.530811e+ 09 6.172762e+ 09
avg. 4.321592e+ 09 2.707882e+ 09 3.026470e+ 09 3.208768e+ 09 7.765067e+ 09 3.514929e+ 09 9.191803e+ 09 9.169301e+ 09 7.079780e+ 09 9.787128e+ 09 4.169900e+ 09 3.456948e+ 09 5.905880e+ 09
min. 3.967435e+ 09 2.098695e+ 09 1.951931e+ 09 1.472281e+ 09 6.692926e+ 09 2.756863e+ 09 8.686943e+ 09 8.840177e+ 09 6.701380e+ 09 9.511568e+ 09 2.544255e+ 09 2.538693e+ 09 1.701902e+ 09
max. 4.709810e+ 09 3.898766e+ 09 4.279190e+ 09 7.665369e+ 09 8.802851e+ 09 4.231838e+ 09 9.636592e+ 09 9.549076e+ 09 7.366548e+ 09 1.005151e+ 10 5.770651e+ 09 5.503842e+ 09 6.987059e+ 09
std. 1.550633e+ 08 4.121497e+ 08 3.710229e+ 08 1.156053e+ 09 6.802840e+ 08 3.094936e+ 08 2.138387e+ 08 1.450375e+ 08 1.522943e+ 08 1.179608e+ 08 7.443742e+ 08 6.545885e+ 08 9.424136e+ 08
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Table C.21: Comparison of hypervolume indicator values for different optimizers on the WFG9 test problem.

Dim. Stat. NSGA-II
MOEA/D MOEA/D MOEA/D

SMS-EMOA ∆p-DDE R2-MOGA R2-MOGAw R2-MODE R2-IBEA
MOMBI MOMBI MOMBI

TCH NTCH PBI TCH NTCH PBI

2D

med. 7.691902e+ 00 8.046242e+ 00 7.879194e+ 00 7.865473e+ 00 8.123898e+ 00 7.646212e+ 00 7.672756e+ 00 7.671188e+ 00 7.641120e+ 00 7.703374e+ 00 7.699809e+ 00 7.700877e+ 00 7.695820e+ 00
avg. 7.875740e+ 00 7.973569e+ 00 7.891093e+ 00 7.838712e+ 00 8.011115e+ 00 7.639040e+ 00 7.870638e+ 00 7.879265e+ 00 7.641998e+ 00 7.950802e+ 00 7.893297e+ 00 7.919926e+ 00 7.944253e+ 00
min. 7.668239e+ 00 7.571492e+ 00 7.022037e+ 00 7.219605e+ 00 7.684438e+ 00 7.519595e+ 00 7.620548e+ 00 7.638597e+ 00 7.606183e+ 00 7.677094e+ 00 7.680532e+ 00 7.690265e+ 00 7.678573e+ 00
max. 8.287337e+ 00 8.280538e+ 00 8.327027e+ 00 8.162905e+ 00 8.385896e+ 00 7.695877e+ 00 8.338148e+ 00 8.347446e+ 00 7.674065e+ 00 8.383730e+ 00 8.439334e+ 00 8.369776e+ 00 8.286741e+ 00
std. 2.602582e− 01 2.076009e− 01 2.346923e− 01 2.130769e− 01 3.070772e− 01 3.338346e− 02 2.910519e− 01 2.901944e− 01 1.454610e− 02 3.060959e− 01 2.938971e− 01 3.035863e− 01 2.761519e− 01

3D

med. 6.527962e+ 01 6.534327e+ 01 5.836650e+ 01 6.516279e+ 01 7.369133e+ 01 6.668867e+ 01 6.605526e+ 01 6.602463e+ 01 6.566029e+ 01 7.254621e+ 01 6.527684e+ 01 6.653916e+ 01 6.696926e+ 01
avg. 6.514404e+ 01 6.681222e+ 01 5.870186e+ 01 6.509685e+ 01 7.243494e+ 01 6.660841e+ 01 6.691457e+ 01 6.717851e+ 01 6.565937e+ 01 7.106331e+ 01 6.722452e+ 01 6.793165e+ 01 6.751350e+ 01
min. 6.128491e+ 01 6.456790e+ 01 4.721122e+ 01 5.899720e+ 01 6.827014e+ 01 6.561104e+ 01 6.406720e+ 01 6.468427e+ 01 6.415069e+ 01 6.747216e+ 01 6.494306e+ 01 6.610249e+ 01 6.518482e+ 01
max. 6.780847e+ 01 7.047450e+ 01 6.731869e+ 01 6.949716e+ 01 7.434864e+ 01 6.708276e+ 01 7.168178e+ 01 7.085422e+ 01 6.679318e+ 01 7.344112e+ 01 7.078491e+ 01 7.202515e+ 01 7.064832e+ 01
std. 1.300269e+ 00 2.045506e+ 00 3.217780e+ 00 1.983030e+ 00 2.376786e+ 00 3.038930e− 01 2.084607e+ 00 2.112440e+ 00 4.291575e− 01 2.381627e+ 00 2.428549e+ 00 2.315506e+ 00 1.230659e+ 00

4D

med. 5.300733e+ 02 5.714567e+ 02 5.832796e+ 02 5.886619e+ 02 3.748838e+ 02 6.647851e+ 02 6.523326e+ 02 6.533806e+ 02 6.403066e+ 02 7.012552e+ 02 5.761338e+ 02 6.100624e+ 02 6.485794e+ 02
avg. 5.413780e+ 02 5.765696e+ 02 5.338624e+ 02 5.739912e+ 02 3.788375e+ 02 6.646283e+ 02 6.556279e+ 02 6.551010e+ 02 6.396910e+ 02 6.961588e+ 02 5.820332e+ 02 6.111755e+ 02 6.460903e+ 02
min. 4.582109e+ 02 5.471758e+ 02 3.303547e+ 02 3.908799e+ 02 3.417029e+ 02 6.492662e+ 02 6.241218e+ 02 6.358438e+ 02 6.193526e+ 02 6.791572e+ 02 5.673522e+ 02 6.009936e+ 02 5.991620e+ 02
max. 6.128625e+ 02 6.203928e+ 02 6.380364e+ 02 6.536377e+ 02 4.608396e+ 02 6.753173e+ 02 6.961417e+ 02 6.818845e+ 02 6.555038e+ 02 7.100820e+ 02 6.280856e+ 02 6.460136e+ 02 6.665745e+ 02
std. 4.120578e+ 01 1.351225e+ 01 9.340550e+ 01 5.748357e+ 01 2.273445e+ 01 4.549004e+ 00 1.516911e+ 01 9.342123e+ 00 7.609203e+ 00 1.015836e+ 01 1.412893e+ 01 7.949259e+ 00 1.486217e+ 01

5D

med. 5.764846e+ 03 5.865680e+ 03 4.786984e+ 03 6.458545e+ 03 4.140161e+ 03 6.913458e+ 03 7.512507e+ 03 7.465690e+ 03 7.204375e+ 03 7.879252e+ 03 6.453111e+ 03 6.164764e+ 03 6.697752e+ 03
avg. 5.727189e+ 03 5.797702e+ 03 4.803194e+ 03 5.944315e+ 03 4.939073e+ 03 6.908978e+ 03 7.540150e+ 03 7.445514e+ 03 7.194991e+ 03 7.884235e+ 03 6.455636e+ 03 6.169278e+ 03 6.712606e+ 03
min. 4.280141e+ 03 4.236082e+ 03 3.187078e+ 03 2.913353e+ 03 3.851469e+ 03 6.676350e+ 03 7.216084e+ 03 7.129465e+ 03 6.835440e+ 03 7.726729e+ 03 5.861417e+ 03 5.815316e+ 03 6.204190e+ 03
max. 6.262670e+ 03 6.320721e+ 03 6.300747e+ 03 7.221621e+ 03 8.199542e+ 03 7.133778e+ 03 7.880198e+ 03 7.624332e+ 03 7.437330e+ 03 8.046273e+ 03 6.773108e+ 03 6.524031e+ 03 7.435088e+ 03
std. 2.449390e+ 02 3.727852e+ 02 9.231974e+ 02 1.176378e+ 03 1.562664e+ 03 9.322844e+ 01 1.755420e+ 02 1.092773e+ 02 1.183286e+ 02 6.125363e+ 01 1.511765e+ 02 1.740056e+ 02 2.639866e+ 02

6D

med. 5.858313e+ 04 6.039915e+ 04 5.454309e+ 04 7.531459e+ 04 5.643296e+ 04 8.312766e+ 04 9.948890e+ 04 9.717952e+ 04 9.246754e+ 04 1.010312e+ 05 7.520660e+ 04 6.849397e+ 04 7.792511e+ 04
avg. 5.817116e+ 04 6.166974e+ 04 5.180986e+ 04 6.812625e+ 04 6.254205e+ 04 8.292610e+ 04 9.931126e+ 04 9.656728e+ 04 9.227328e+ 04 1.010852e+ 05 7.592627e+ 04 6.996235e+ 04 7.728142e+ 04
min. 4.867960e+ 04 4.250618e+ 04 3.429049e+ 04 2.752715e+ 04 5.058179e+ 04 5.126471e+ 04 9.512043e+ 04 9.034999e+ 04 8.521438e+ 04 9.732801e+ 04 5.612416e+ 04 5.640955e+ 04 6.897675e+ 04
max. 6.716692e+ 04 7.688261e+ 04 6.910443e+ 04 9.004344e+ 04 1.060216e+ 05 8.970307e+ 04 1.031064e+ 05 1.013236e+ 05 9.557828e+ 04 1.042365e+ 05 8.989481e+ 04 8.492864e+ 04 8.486564e+ 04
std. 3.928474e+ 03 8.064318e+ 03 1.003475e+ 04 1.794691e+ 04 1.582459e+ 04 4.780684e+ 03 1.649863e+ 03 2.487816e+ 03 2.074095e+ 03 1.479435e+ 03 6.866258e+ 03 6.460904e+ 03 3.846485e+ 03

7D

med. 6.323621e+ 05 7.053351e+ 05 6.762812e+ 05 7.587291e+ 05 8.051304e+ 05 1.088514e+ 06 1.420512e+ 06 1.341180e+ 06 1.310690e+ 06 1.456702e+ 06 8.101270e+ 05 6.741161e+ 05 9.671365e+ 05
avg. 6.384818e+ 05 6.864183e+ 05 6.530240e+ 05 7.513025e+ 05 8.581351e+ 05 1.042663e+ 06 1.422545e+ 06 1.343000e+ 06 1.307359e+ 06 1.459950e+ 06 8.230703e+ 05 6.719463e+ 05 9.689602e+ 05
min. 5.036688e+ 05 4.004194e+ 05 4.890448e+ 05 1.407016e+ 05 6.589928e+ 05 5.394781e+ 05 1.325909e+ 06 1.221795e+ 06 1.163620e+ 06 1.400465e+ 06 6.317589e+ 05 5.261187e+ 05 6.581308e+ 05
max. 7.738779e+ 05 9.150218e+ 05 8.400844e+ 05 1.168134e+ 06 1.401082e+ 06 1.188216e+ 06 1.485754e+ 06 1.457133e+ 06 1.379770e+ 06 1.536552e+ 06 1.028823e+ 06 9.061386e+ 05 1.127031e+ 06
std. 5.519328e+ 04 9.500074e+ 04 9.549866e+ 04 2.979684e+ 05 1.606389e+ 05 1.477581e+ 05 3.013138e+ 04 5.260217e+ 04 4.275769e+ 04 3.284949e+ 04 6.389270e+ 04 7.610115e+ 04 7.280027e+ 04

8D

med. 1.013170e+ 07 1.135647e+ 07 1.057083e+ 07 1.242834e+ 07 1.542715e+ 07 1.785157e+ 07 2.436908e+ 07 2.265258e+ 07 2.169063e+ 07 2.502594e+ 07 1.351279e+ 07 1.093869e+ 07 1.426530e+ 07
avg. 1.026419e+ 07 1.088985e+ 07 1.026451e+ 07 1.101311e+ 07 1.671322e+ 07 1.747521e+ 07 2.428314e+ 07 2.282905e+ 07 2.145821e+ 07 2.506680e+ 07 1.357910e+ 07 1.096904e+ 07 1.418359e+ 07
min. 8.361535e+ 06 5.089832e+ 06 6.169576e+ 06 1.840888e+ 06 1.291891e+ 07 8.584098e+ 06 2.094311e+ 07 2.068587e+ 07 1.844275e+ 07 2.389601e+ 07 7.661959e+ 06 8.517427e+ 06 8.519897e+ 06
max. 1.211684e+ 07 1.455851e+ 07 1.374816e+ 07 1.875135e+ 07 2.668800e+ 07 1.941610e+ 07 2.542654e+ 07 2.517900e+ 07 2.287393e+ 07 2.615148e+ 07 1.779995e+ 07 1.391191e+ 07 1.623293e+ 07
std. 7.222541e+ 05 1.947084e+ 06 1.490817e+ 06 4.752779e+ 06 3.590589e+ 06 1.785026e+ 06 6.283132e+ 05 1.052510e+ 06 8.783492e+ 05 4.563667e+ 05 1.574957e+ 06 1.263360e+ 06 1.192018e+ 06

9D

med. 1.916078e+ 08 2.128270e+ 08 1.862439e+ 08 2.042259e+ 08 3.385112e+ 08 2.713920e+ 08 4.569334e+ 08 4.209202e+ 08 3.850236e+ 08 4.601000e+ 08 2.468089e+ 08 2.041964e+ 08 2.415614e+ 08
avg. 1.925167e+ 08 2.054503e+ 08 1.858569e+ 08 1.853978e+ 08 3.478025e+ 08 2.614818e+ 08 4.530753e+ 08 4.222975e+ 08 3.825263e+ 08 4.599595e+ 08 2.459670e+ 08 2.048265e+ 08 2.432177e+ 08
min. 1.649565e+ 08 1.123482e+ 08 1.418733e+ 08 2.883366e+ 07 2.974242e+ 08 1.530858e+ 08 3.944506e+ 08 3.647748e+ 08 3.271847e+ 08 4.353291e+ 08 1.150329e+ 08 1.427793e+ 08 1.897724e+ 08
max. 2.204062e+ 08 2.643534e+ 08 2.361205e+ 08 3.188717e+ 08 4.694565e+ 08 3.218445e+ 08 4.825099e+ 08 4.863847e+ 08 4.142138e+ 08 4.820497e+ 08 2.987134e+ 08 2.879048e+ 08 2.932679e+ 08
std. 1.179596e+ 07 2.919996e+ 07 2.300492e+ 07 8.127499e+ 07 3.859259e+ 07 4.158010e+ 07 1.698714e+ 07 2.262651e+ 07 1.879681e+ 07 9.849063e+ 06 2.730898e+ 07 3.179065e+ 07 2.130520e+ 07

10D

med. 3.977346e+ 09 4.046560e+ 09 3.858338e+ 09 2.880690e+ 09 8.336035e+ 09 4.033182e+ 09 9.161036e+ 09 8.284437e+ 09 7.403559e+ 09 9.200227e+ 09 5.274879e+ 09 4.305756e+ 09 4.079922e+ 09
avg. 3.975575e+ 09 3.856809e+ 09 3.786417e+ 09 2.920718e+ 09 8.250245e+ 09 4.016097e+ 09 9.173132e+ 09 8.392398e+ 09 7.423016e+ 09 9.184543e+ 09 5.290645e+ 09 4.182478e+ 09 4.101724e+ 09
min. 3.256858e+ 09 1.908503e+ 09 2.798560e+ 09 8.316655e+ 08 7.338042e+ 09 3.039281e+ 09 8.093180e+ 09 7.590508e+ 09 6.573627e+ 09 8.658749e+ 09 2.061043e+ 09 2.755909e+ 09 1.803577e+ 09
max. 4.674208e+ 09 5.271410e+ 09 4.510414e+ 09 6.008565e+ 09 9.096199e+ 09 5.906258e+ 09 1.000591e+ 10 9.724578e+ 09 8.173462e+ 09 9.693040e+ 09 6.922321e+ 09 6.210660e+ 09 5.261407e+ 09
std. 2.687454e+ 08 8.365429e+ 08 4.180281e+ 08 1.394625e+ 09 4.985583e+ 08 5.731782e+ 08 3.322876e+ 08 5.050724e+ 08 3.812067e+ 08 2.052846e+ 08 6.758185e+ 08 7.653200e+ 08 4.588281e+ 08

C
IN

V
E

S
T

A
V

-IP
N

C
om

p
u
ter

S
cien

ce
D

ep
artm

en
t



Bibliography

[1] Joshua Knowles and David Corne. Quantifying the Effects of Objective Space
Dimension in Evolutionary Multiobjective Optimization. In Shigeru Obayashi,
Kalyanmoy Deb, Carlo Poloni, Tomoyuki Hiroyasu, and Tadahiko Murata, edi-
tors, Evolutionary Multi-Criterion Optimization, 4th International Conference,
EMO 2007, pages 757–771, Matshushima, Japan, March 2007. Springer. Lecture
Notes in Computer Science Vol. 4403.

[2] Hisao Ishibuchi, Noritaka Tsukamoto, and Yusuke Nojima. Evolutionary many-
objective optimization: A short review. In 2008 Congress on Evolutionary Com-
putation (CEC’2008), pages 2424–2431, Hong Kong, June 2008. IEEE Service
Center.

[3] Nicola Beume, Boris Naujoks, and Michael Emmerich. SMS-EMOA: Multi-
objective selection based on dominated hypervolume. European Journal of
Operational Research, 181(3):1653–1669, 16 September 2007.

[4] Eckart Zitzler. Evolutionary Algorithms for Multiobjective Optimization: Me-
thods and Applications. PhD thesis, Swiss Federal Institute of Technology
(ETH), Zurich, Switzerland, November 1999.

[5] Dimo Brockhoff, Tobias Friedrich, and Frank Neumann. Analyzing Hypervo-
lume Indicator Based Algorithms. In Günter Rudolph, Thomas Jansen, Simon
Lucas, Carlo Poloni, and Nicola Beume, editors, Parallel Problem Solving from
Nature–PPSN X, pages 651–660. Springer. Lecture Notes in Computer Science
Vol. 5199, Dortmund, Germany, September 2008.

[6] M. Fleischer. The Measure of Pareto Optima. Applications to Multi-objective
Metaheuristics. In Carlos M. Fonseca, Peter J. Fleming, Eckart Zitzler, Kalyan-
moy Deb, and Lothar Thiele, editors, Evolutionary Multi-Criterion Optimiza-
tion. Second International Conference, EMO 2003, pages 519–533, Faro, Por-
tugal, April 2003. Springer. Lecture Notes in Computer Science. Volume 2632.

[7] Michael Emmerich, Nicola Beume, and Boris Naujoks. An EMO Algorithm
Using the Hypervolume Measure as Selection Criterion. In Carlos A. Coello
Coello, Arturo Hernández Aguirre, and Eckart Zitzler, editors, Evolutionary
Multi-Criterion Optimization. Third International Conference, EMO 2005,

169



170 Appendix 6

pages 62–76, Guanajuato, México, March 2005. Springer. Lecture Notes in
Computer Science Vol. 3410.

[8] Karl Bringmann and Tobias Friedrich. Don’t be Greedy when Calculating
Hypervolume Contributions. In FOGA ’09: Proceedings of the tenth ACM
SIGEVO workshop on Foundations of genetic algorithms, pages 103–112, Or-
lando, Florida, USA, January 2009. ACM.
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