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Abstract

In this dissertation, a study about constraint handling in evolutionary algorithms is pre-
sented. This research has led to five main contributions: (1) A study about exploring the
capabilities of using multiobjective concepts to handle constraints in global optimization
using four representative approaches. The aim of this study was to make unnecessary the
use of a penalty function to handle constraints in an evolutionary algorithm. Based on the
results obtained, (2) we proposed a novel and competitive approach to solve constrained
problems using an evolutionary algorithm (an evolution strategy in our case) which does not
require the use of a penalty function. Instead, it is based on handling the objective function
and the constraints of the problems separately. The approach also uses a simple diversity
mechanism based on allowing infeasible solutions close to the feasible region and with
a good value of the objective function to remain in the population. A simple feasibility-
based comparison mechanism is adopted to guide the process towards the feasible region
of the search space. Also, the initial stepsize of the evolution strategy is reduced in order
to perform a finer search and a combined (discrete/intermediate) panmictic recombination
technique improves its exploitation capabilities. We performed experiments in order to
know which of those mechanisms (diversity mechanism, fine mutation movements and a
combined recombination) was the main responsible for the good performance of the algo-
rithm. This approach was statistically compared against state-of-the-art algorithms using
well-known benchmark problems. Furthermore, (3) we performed some statistical analysis
that allows to understand better the behavior of the proposed approach. Such analysis was
based on the use of three performance measures related to how fast the feasible region is
reached, to evaluate how is the progress once inside the feasible region and to how useful
is a diversity mechanism to maintain or generate good infeasible solutions. We also per-
formed a study to analyze the sensitivity of our approach to its parameters by means of an
analysis of variance and we suggested values derived from such an analysis. In addition,
(4) we performed an empirical study which aims to identify the main features that make
a constrained problem difficult to solve by our proposed evolutionary algorithm. Finally,
based on previous theoretical studies found in the literature, (5) we mathematically proved
the global convergence of our proposed algorithm.
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Resumen

Este trabajo doctoral consiste en un estudio sobre el manejo de restricciones en algo-
ritmos evolutivos. La investigación versa sobre cinco contribuciones principales: (1) Un
estudio empı́rico para analizar las bondades de utilizar conceptos de optimización multi-
objetivo para manejar las restricciones en un problema de optimización gobal; para ello
se compararon cuatro técnicas representativas del estado del arte. El objetivo principal de
este estudio fue el evitar el uso de las funciones de penalización para resolver problemas
con restricciones. Con base en los resultados obtenidos, (2) se propuso una técnica nove-
dosa y competitiva para resolver problemas restringidos utilizando un algoritmo evolutivo
(una estrategia evolutiva en este caso), la cual no requiere del uso de una función de pe-
nalización, sino que maneja la función objetivo y las restricciones del problema de manera
separada. El algoritmo utiliza un mecanismo simple de diversidad que le permite a solu-
ciones no factibles cercanas a la zona factible y con un buen valor de la función objetivo
el permanecer en la población de la siguiente generación. Además, usa un mecanismo de
comparación de individuos basado en factibilidad para guiar al algoritmo hacia la zona
factible del espacio de búsqueda. La longitud de paso inicial del operador de mutación es
reducido con el objeto de permitir movimientos más finos en el espacio de búsqueda. Ası́
también, el operador de recombinación se diseñó combinando dos sencillos operadores en-
contrados en la literatura (recombinación discreta/intermedia) con el objeto de mejorar la
capacidad explotatoria del mismo. Se realizaron experimentos para averiguar cuál de estos
mecanismos (diversidad, movimientos finos de mutación y recombinación combinada) era
el principal responsable del buen desempeño de la técnica, la cual fue comparada con algo-
ritmos del estado del arte, usando un conjunto de problemas con restricciones usualmente
utilizado en la literatura. Por otro lado, (3) se llevaron a cabo estudios estadı́sticos que
permitieron entender con mayor detalle el comportamiento del algoritmo. Este análisis se
basó en el uso de tres medidas de desempeño relacionadas con la velocidad de llegada a la
zona factible, el evaluar el progreso de la búsqueda dentro de ella y analizar el desempeño
del mecanismo de diversidad al mantener o generar nuevas soluciones no factibles. Aunado
a ésto (4) se realizó un análisis de varianza para conocer la sensibilidad de la técnica a sus
parámetros y poder sugerir valores para ellos. Después, se realizó otro estudio empı́rico,
éste para saber las caracterı́sticas de un problema que lo hacen difı́cil de resolver usando la
técnica propuesta en este trabajo. Finalmente, con base en resultados teóricos encontrados
en la literatura, (5) se realizó la demostración formal de convergencia global del algoritmo
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Chapter 1

Introduction

Evolutionary Computation (EC) encompasses a set of algorithms called “evolutionary algo-
rithms”, that emulate evolutionary processes based on the “survival of the fittest” principle
of natural selection, which is applied to a population of solutions. EC is usually adopted
in problems where classical optimization techniques can not be applied, like in real-world
problems of great complexity and high dimensionality in which probably neither the ob-
jective function nor the constraints are differentiable.

Evolutionary Algorithms (EAs) have been widely used to solve optimization problems
[65, 4, 39, 52]. However, their good performance relies mainly on two factors: (1) their
stochastic nature and (2) how good is the transformation of the objective function of the
problem into a fitness function. This fitness function will lead the search to the desired
region of the search space. This transformation problem becomes harder to solve in the
presence of constraints. This is because the fitness function must give information not only
about the goodness of a solution, but also about its closeness to the feasible region of the
search space. The problem becomes more complicated in the presence of a considerable
number of linear and nonlinear inequality and equality constraints. It is important to keep
in mind that EAs are unconstrained search techniques which lack an explicit mechanism
to deal with constrained search spaces. This has motivated the development of a consider-
able number of approaches to allow the incorporation of constraints [133, 28]. Usually, to
incorporate a constraint handling technique to an EA involves adding extra parameters to
the algorithm. These new parameters are commonly defined by the user, which increases
the effort required to fine-tune the algorithm to be able to provide a reasonably good per-
formance.

The most common approach adopted with EAs to deal with constrained search spaces is
the use of penalty functions [158]. When using a penalty function, the amount of constraint
violation is used to punish or “penalize” an infeasible solution so that feasible solutions are
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favored by the selection process. Despite the popularity of penalty functions, they have
several drawbacks from which the main one is that they require a careful fine tuning of the
penalty factors that accurately estimates the degree of penalization to be applied so that we
can approach efficiently the feasible region [173, 28].

In this dissertation, we study and propose a constraint handling technique for EAs
which is not based on penalty functions and whose parameters do not require to be fine-
tuned (unlike the penalty factors traditionally used with EAs) by the user.

Contents Road-Map

In order to provide the reader with a general overview of the contents of this dissertation
we briefly describe the contents of each of its Chapters:

• Chapter 1. Introduction: This chapter.

• Chapter 2. Evolutionary Computation: A brief introduction to evolutionary com-
putation is provided. The main related concepts and paradigms are described.

• Chapter 3. Some Notions of Mathematical Programming: Basic concepts of
global constrained optimization as well as theoretical work regarding how to rec-
ognize global optimum solutions is detailed. Some mathematical programming ap-
proaches are briefly presented.

• Chapter 4. Constraint Handling in Evolutionary Algorithms: Constraint han-
dling techniques incorporated into the fitness function of an evolutionary algorithm
are described. State-of-the-art approaches are explained and discussed.

• Chapter 5. Use of Multiobjective Optimization Concepts to Handle Constraints:
Approaches which handle the objective function and constraints separately and also
use Pareto Optimality or population-based concepts are described and empirically
compared. The aim is to explore different approaches to handle the objective func-
tion and the constraints of a problem separately. Some conclusions which guide the
remainder of this work are provided.

• Chapter 6. A Simple Evolution Strategy to Solve Constrained Problems: We
present a novel approach to solve constrained problems, which uses an evolution
strategy as a search engine coupled with a diversity mechanism that maintains infea-
sible solutions close to the boundaries of the feasible region, a reduction of the initial
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stepsize of the mutation operator and a combined recombination operator. The ap-
proach handles the objective function and the constraints of the problem separately.
Thus, it does not require the use of a penalty function. Statistical results and a com-
parison against state-of-the-art approaches are presented and discussed. Moreover,
the mechanisms of the approach are tested separately in order to determine which
one (or what combination of them) is mandatory. We also show that the use of an
evolution strategy is more adequate than using a genetic algorithm when solving
constrained optimization problems.

• Chapter 7. Performance Measures: Statistical tests are performed to analyze how
fast our approach reaches the feasible region or even the global optimum solution.
Besides, three performance measures are used and statistically tested in order to an-
alyze the improvements achieved once the feasible region is found and how well the
diversity mechanism works once most of the solutions in the population are feasible.

• Chapter 8 What Makes a Constrained Optimization Problem Difficult to Solve
by The Proposed Approach: We empirically show what features of a problem de-
crease the performance of an evolutionary algorithm that provides good results when
tested on the well-known benchmark traditionally adopted in the specialized litera-
ture.

• Chapter 9 Global Convergence Properties of The Proposed Approach: We use
theoretical work found in the literature to prove that our algorithm (which is based
on an evolution strategy) converges to the global optimum of a constrained problem
assuming infinite time.

• Chapter 10 Final Remarks: We provide a summary of our findings, some conclu-
sions based on the results obtained and we present the future work.

• Appendix A: The complete descriptions of the test functions used are presented here.

• Appendix B: The set of graphics obtained by the statistical test performed using our
approach are shown here.

• Appendix C: The set of graphics obtained by the statistical test performed using the
three performance measures in our approach are shown here.
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Chapter 2

Evolutionary Computation

EC is based on the concept of Neo-Darwinism [59] which arises from the coupling of
Darwin’s Natural Selection [41], Weismann’s “Germoplasm theory” [91, 10] and Mendel’s
Laws of Inheritance [10]. Thus, Neo-Darwinism can be seen as the biological foundation
of EC (see Figure 2.1). Based on this idea, all life on Earth can be explained from the
following processes [58]:

1. Reproduction: A way to create new individuals from a current set of them.

2. Mutation: Small changes in the genetic codification of individuals which cause sig-
nificant changes in their features.

3. Competition: A mechanism to measure how fit is an individual to survive in an spe-
cific environment.

4. Selection: Leads to the maintainance or increase of populations fitness, where fitness
is defined as the ability to survive and reproduce in an specific environment.

2.1 Description of a Generic Evolutionary Algorithm

The combination of Genetics (representation and relation among individuals), and the nat-
ural selection process (fitness, surviving strategies) form the general model of an Evolu-
tionary Algorithm (EA).

Five main elements are required to model an evolutionary process in a computer [128]:

1. A suitable representation for the solutions of the problems to be solved (individuals).

5
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Evolutionary Computation 

Neo Darwinism

Origin 
of species Inheritance 

Darwin Mendel
Germoplasm
Weissman

Figure 2.1: Neo-Darwinism as the biological foundation of EC

2. A mechanism to generate an initial population of individuals.

3. A fitness function that plays the role of the environment and is on charge of evaluat-
ing an individual’s performance. From a practical point of view, it is impossible to
include all possible factors of an environment in the definition of a fitness function.
Regarding optimization problems, the fitness function represents an abstraction of
the environment, including just those variables involved in the optimization task.

4. Reproduction operators used to generate more individuals, (namely crossover and
mutation).

5. Values for the parameters of the algorithm (population size, crossover and mutation
rates, etc.)

In a general way, to solve a problem using an EA the following steps must be performed
[128]:

1. Generate a random initial population of n > 0 individuals which represent potential
solutions to the problem.

2. Select the fittest individuals based on their fitness function value.

3. Apply reproduction operators (crossover, mutation, etc.) to generate new individuals.

4. Loop until a stop condition is satisfied.
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2.2 EC Concepts

2.2.1 Fitness function

The fitness of an individual relates to the evaluation of the objective function and it is a
measure of goodness of an individual (solution to the problem) with respect to the other
individuals in the population. The solutions to a problem are n−dimensional parameter
vectors ~x ∈ IRn, and the objective function can be defined as:

f : IRn → IR (2.1)

In this way, the fitness function is in principle identical to f , i.e. given an individual
~a ∈ IRn, we have

fitness(~a) = f(~a) (2.2)

This similarity can change, for example, with the use of penalty functions for con-
strained optimization. This sort of approach will be discussed detail in Chapters 3 and
4.

2.2.2 Representation

From its biological foundations EC takes some terms: A chromosome is a data structure
representing an individual in the population. Usually it is an integer array, where each posi-
tion is known as a gene. Each gene normally codifies one value of the decision parameters
of the problem. Each location within a gene can get a value, which is known as an allele.

There are two levels of representation used in EC: (1) genotypic and (2) phenotypic.
The genotype is the encoding represented by the chromosome and genes. The phenotype is
the result of decoding the values of the chromosome into the values of the variables of the
problem to be solved. Each iteration of the process is known as a generation.

The set of individuals known as a population can be divided into subpopulations. In this
way, speciation can be modeled, because normally only individuals of the same subpopu-
lation can be recombined. If some individuals can be transferred to other subpopulations,
the migration operator is modeled.

The most used representations in EC are:

• Binary [85].

• Binary with gray codes [182].

• Integer [29, 31].



8 CHAPTER 2. EVOLUTIONARY COMPUTATION

• Real [58, 170].

• Trees [108].

• Variable-length binary lists [68].

• Hybrid [42].

2.2.3 Reproduction operators

Also known as genetic operators, their function is to modify the way in which genetic
information is transmitted from parents to offspring. There are three main categories:

1. Crossover: It uses parts of the parent chromosomes to generate a new individual. In
numerical optimization the most used are:

• One point [86].

• Two points [97].

• Uniform [1, 177].

There are some other variants depending of the representation [6].

2. Mutation: A new individual is formed by small modifications to the genetic informa-
tion of just one parent [128].

3. Reordering: Alters the order of genes of one individual [66].

There are two subprocesses related to the genetic operators [52]: (1) exploitation: based
on fine movements to sample promising zones of the search space of the problem. Then,
either local or even global optima can be found in these zones. Crossover is responsible
for creating several individuals in a promising zone to sample it wide enough as to find
the global optimum. (2) exploration: It refers to the search of these promising zones and
avoiding to get trapped in local optima. Mutation is responsible for performing large jumps
in the search space to explore it.
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2.2.4 Selection

The selection of individuals is the mechanism to guide the search towards good solutions
(either a local or global optimum). A taxonomy for selection techniques is as follows:

• Proportional selection [67]: Individuals are selected based on their fitness contribu-
tion to the total amount of fitness of the population. Some proposals are:

– Roulette wheel [97].

– Stochastic remainder:

∗ With replacement [20].

∗ Without replacement [22].

– Universal stochastic [9].

– Deterministic sampling [97].

• Tournament selection [180]: Direct comparisons of fitness among individuals. It can
be either binary (two individuals) or with more than two individuals. The fittest one
wins. There are two main types:

– Deterministic: The fittest always wins.

– Probabilistic: The fittest wins with a certain probability (i.e. in some cases, the
fittest solution will not be selected).

• Steady state selection [181]: It is used on nongenerational genetic algorithms. Useful
when individuals solve the problem in a collective way.

Tournament selection has a higher selection pressure than proportional selection. Selection
pressure refers to the probability for less fit solutions to survive. When the selection pres-
sure is high, less fit solutions have little or zero probability to survive. On the other hand,
when the selection pressure is moderate, they have chances to be selected for reproduction
or to be part of the population for the next generation. Among proportional selection tech-
niques, there are some of them where less fit solutions have more probabilities to survive.
For example, universal stochastic sampling assigns a higher probability of survival to less
fit solutions than, for example, roulette wheel.

It is very important to mention that one problem when using EAs to solve optimization
problems is to maintain an adequate diversity in the population. For the case of uncon-
strained optimization, diversity means to have solutions located in different zones of the
search space. In this way, the search space is sampled better and more promising zones can
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be explored in order to find the global optimum. For the case of constrained optimization,
diversity implies to have feasible solutions as well as infeasible solutions. The aim is to
sample the boundaries of the feasible region. The motivation in this case is that the most
difficult constrained optimization problems normally have their global optimum located
precisely on the boundary between the feasible and the infeasible regions. An additional
mechanism is usually added to encourage diversity. This is because EAs tend to converge
to a single point over time. Therefore, diversity mechanisms are required to maintain use-
ful solutions (different ones in case of unconstrained optimization and infeasible solutions
in case of constrained optimization) besides the best solutions found. In other words, an
EA must be capable to generate new solutions in unexplored regions of the search space
for the case of unconstrained optimization. On the other hand, for the case of constrained
optimization, solutions near the boundaries of the feasible region must be generated.

2.2.5 Adaptation

There are different forms to control the parameter values of an EA. Based on the classifica-
tion proposed by Hinterding et al. [82] and explained by Bäck [7], the existing approaches
are:

• No parameter control (Static): The parameters are given an initial value and they
remain the same during all the evolutionary process.

• Dynamic parameter control: Parameter settings are modified according to a deter-
ministic schedule prescribed by the developer of the EA (usually parameter values
vary depending of the number of the current generation).

• Adaptive parameter control (On-line adaptation): New values of parameters are ob-
tained by a feedback mechanism that monitors evolution and rewards or punishes
parameter settings according to whether they have caused an improvement or deteri-
oration in the expected behavior of the EA.

• Self-adaptive parameter control: Parameter values are codified and evolved by the
evolutionary algorithm by applying evolutionary operators to their codifications in a
similar way as to the solution representations. Besides its use to evolve problem’s
solutions, the EA is also used to determine if the changes of the parameters are ad-
vantageous concerning their impact on the expected behavior of the algorithm.
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2.3 Paradigms

From the general steps to solve a problem using an EA mentioned at the beginning of this
chapter, three different paradigms are known. In their original versions, they differ at the
level at which they simulate evolution, on their main and secondary genetic operators and
on the type of representation used. Note however, that in the current literature is more com-
mon to refer to “evolutionary algorithms” in a general sense, since their specific features
tend to be indistinguishable.

2.3.1 Evolutionary programming (EP)

Proposed by Fogel [61] in 1960 where he remarks the inheritance relationships and behav-
ior between parents and offspring. Adaptation is conceived in this paradigm as a type of
intelligence.

The EP model simulates evolution at the species level, therefore, there is no crossover
operator (in nature it is not possible to mate animals from different species, e.g. a lion
with a mouse). The selection technique is based on stochastic tournaments. The main and
only operator is mutation. Besides, EP operates at a phenotype level (i.e. it requires no
encoding). In the original proposal of EP, self-adaptation of the mutation parameters were
not considered.

The basic EP algorithm is presented in Figure 2.2:

Begin
Generate randomly an initial population of solutions.
Calculate the fitness of the initial population.
Repeat

Apply mutation to all the population to create offspring.
Evaluate each offspring.
Select (using stochastic tournaments) the individuals
of the next generation.

Until a stop condition is satisfied.
End

Figure 2.2: Pseudocode of EP algorithm.

Each individual participates in a predefined number of binary tournaments and the in-
dividuals with more wins will have a higher probability of being part of the population in
the next generation.
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The applications of EP cover (among others) the following generic tasks [59]:

• Forecasting.

• Games.

• Automatic control.

• Traveling salesperson problem.

• Routing.

• Design and training of neural networks.

• Pattern recognition.

There is some theoretical research regarding rates of convergence for specific instances
of EP [60].

2.3.2 Evolution strategy (ES)

The ES was developed in Germany in 1964 to solve complex hydrodynamical problems.
The researchers involved in this work were Ingo Rechenberg, Hans-Paul Schwefel and Paul
Bienert [170].

The ES simulates the evolution at an individual level, then, there is a crossover operator,
either sexual or panmictic (more than two parents), which, however, acts as a secondary
operator. As in EP, mutation is the main operator and it is used with random numbers
generated under a Gaussian distribution. The mutation values vary over time and are self-
adaptive. ES representation is at a phenotypic level (i.e. no encoding is required) and
unlike EP, the selection process is deterministic and extinctive (the worst individuals have
zero probabilities of survival).

There are several versions of ES’s. The first of them is the (1 + 1)-ES. This version has
only one solution which is mutated to create one child. If the child is better than the parent,
it will replace it. The first number between parentheses refers to the size of the parents
population (one in this case), the “+” sign refers to the type of selection (the other possible
selection is the “,” selection) and the last value refers to the number of offspring created
from the parents (also one in this case). There are other types of ES’s like the (µ + 1)-ES,
(1 + λ)-ES, (µ + λ)-ES and the (µ + λ)-ES. All of them will be explained in detail in
Chapter 6 because the ES is the paradigm used in this dissertation. ES’s have been applied
to solve problems like [169]:
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Begin
Generate randomly an initial population of solutions.
Calculate the fitness of the initial population.
Repeat

Apply crossover to create offspring.
Apply mutation operator to all offspring.
Evaluate each offspring.
Select the best individuals for the
next generation.

Until a stop condition is satisfied.
End

Figure 2.3: Pseudocode of ES algorithm.

• Routing of networks.

• Bio-Chemistry.

• Optics.

• Engineering design.

• Magnetism.

There is theoretical work regarding rates of convergence for the (1+1)-ES, the (1+λ)-
ES and the (µ+ λ)-ES [6].

2.3.3 Genetic algorithm (GA)

GA’s were originally called “Reproductive Plans” and were conceived by John H. Holland
[86] in the 1960’s. The main motivation for this approach was machine learning. Goldberg
[66] gives a definition of a GA:

Genetic Algorithms are search algorithms based on the mechanisms of natural
selection and natural genetics. They combine survival of the fittest among
string structures with a structured yet randomized information exchange to
form a search algorithm with some of the innovative flair of human search.

The GA works at genotypic level and the sexual crossover is its main operator because
GA’s emulate evolution at an individual level. Mutation is the secondary operator. The
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selection is probabilistic based on fitness. They are usually not self-adaptive. The basic
GA is presented in Figure 2.4 [23]:

Begin
Generate randomly an initial population of solutions.
Calculate the fitness of the initial population.
Repeat

Select a pair of parents to create two offspring using crossover.
Apply mutation to each child.
Evaluate the mutated offspring.
All the offspring will be in the new population.

Until a stop condition is satisfied.
End

Figure 2.4: Pseudocode of GA algorithm.

Some applications of GA’s are [66] :

• Optimization (numerical and combinatorial).

• Machine learning.

• Query optimization in databases.

• Pattern recognition.

• Grammar generation.

• Robot motion planning.

• Prediction.

One of the most important theoretical contribution in GA’s is the Schema Theorem [85].
This theorem gives an idea of the way in which GAs work. Besides, there is a convergence
proof for an elitist GA [160] .

2.3.4 Other approaches

There are other EA’s which are not included in the three main paradigms but those are
commonly used to solve optimization problems nowadays. They are Genetic Programming
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[108], Differential Evolution [148], Swarm Intelligence (which covers Particle Swarm Op-
timization [101], Ant Colony System [50] and Cultural Algorithms [157]) and Artificial
Immune Systems [47]. The details of these approaches are beyond the scope of this thesis.
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Chapter 3

Some Notions of Mathematical
Programming

The body of mathematical results and numerical methods for finding and identifying the
best candidate from a collection of alternatives without having to explicitly enumerate and
evaluate all possible alternatives is called Optimization [156]. In this chapter, we provide
some basic concepts of global constrained optimization. Also, we discuss theoretical work
regarding how to recognize if a solution is the feasible global optimum and, finally, we
present some mathematical programming approaches used to solve constrained optimiza-
tion problems.

3.1 Introduction

The set of techniques used to solve optimization problems is known as mathematical pro-
gramming techniques. Moreover, there are other approaches to solve these problems like
stochastic techniques and statistical methods. Stochastic methods are used to solve prob-
lems stated as a set of random variables with a known probability distribution. Statistical
methods are based on analyzing experimental data to elaborate empirical models to esti-
mate a representation of the real problem. Optimization techniques are used to solve a wide
set of problems like: optimal paths for spatial vehicles, spatial and airplane design prob-
lems, mechanical component design, turbine and heat exchanger design, electrical equip-
ment design, electric and hydraulic network design, schedule optimization, optimization of
chemical processes, etc. [149, 156].

17
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F

F
F

S

Figure 3.1: Search space S and its feasible region F

3.2 Statement of the Problem

We are interested in the general nonlinear programming (NLP) problem in which we want
to:

Find ~x which optimizes f(~x) (3.1)

subject to:
gi(~x) ≤ 0, i = 1, . . . ,m

hj(~x) = 0, j = 1, . . . , p

where ~x is the vector of solutions ~x = [x1, x2, . . . , xn]T , m is the number of inequality
constraints and p is the number of equality constraints (in both cases, constraints could
be linear or nonlinear). If we denote with F to the feasible region and with S to the
whole search space, then it should be clear that F ⊆ S (see Figure 3.1). For an inequality
constraint that satisfies gi(~x) = 0, we will say that is active at ~x; it is said to be inactive
if gi(~x) < 0. All equality constraints hj (regardless of the value of ~x used) are considered
active at all points of F .

In the following definitions we will assume minimization (without loss of generality).
~x∗ = [x∗1, x

∗
2, . . . , x

∗
n]T refers to the optimum point and its corresponding value of the

objective function f(~x∗) is called the optimum value. The pair ~x∗ and f(~x∗) is called
optimum solution.

Definition 1 (Monotonic function): A function f(~x) is monotonic (either increasing or
decreasing) if, for any two points ~x1 and ~x2 with ~x1 ≤ ~x2, it follows that f(~x1) ≤ f(~x2)
(monotonically increasing) or f(~x1) ≥ f(~x2) (monotonically decreasing). 2
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Definition 2 (Unimodal function): A function f(~x) is unimodal on the interval~a ≤ ~x ≤ ~b
if and only if it is monotonic on either side of the single optimal point ~x∗ in the interval. In
other words, if ~x∗ is the single minimum point of f(~x) in the range ~a ≤ ~x ≤ ~b, then f(~x) is
unimodal on the interval if and only if for any two points ~x1 ≤ ~x2:
~x∗ ≤ x1 ≤ x2 implies that f(~x∗) ≤ f(x1) ≤ f(x2) and
~x∗ ≥ x1 ≥ x2 implies that f(~x∗) ≤ f(x1) ≤ f(x2) 2

Based on the type of the objective function: unimodal or multimodal (more than one
local minimum in a give interval, see Figure 3.2) there are categories of optimum solutions.

Unimodal Function Multimodal Function

x

f(x)

x

f(x)

Figure 3.2: Unimodal and multimodal functions with one decision variable.

Definition 3 (Global minimum): A function f(~x) defined on a set S attains its global
minimum at a point ~x∗ ∈ S if and only if: f(~x∗) ≤ f(~x) for all ~x ∈ S 2

Definition 4 (Local Minimum): A function f(~x) defined on a set S has a local minimum
(relative minimum) at a point ~xl ∈ S if and only if: f(~xl) ≤ f(~x) for all ~x within a
distance ε from ~xl. That is, there exists an ε > 0 such that for all ~x satisfying |~x− ~xl| < ε,
f(~xl) ≤ f(~x). 2

Definition 5 (Convex function): A function f(~x) is called convex over IR if for any given
two vectors ~x1 ≤ ~x2 ∈ IR,
f(θ~x1 + (1− θ)~x2) ≤ θf( ~x1) + (1− θ)f(~x2)
where θ is a scalar in the range 0 ≤ θ ≤ 1. 2

A function is strictly convex is for ~x1 6= ~x2 the ≤ sign can be replaced by a <.
Moreover, if the reverse inequality holds, the function is concave. In this way, A func-

tion f(~x) is concave if −f(~x) is convex (see Figure 3.3).
Constraints in real world problems are known as design constraints and they can be

classified into the following categories:
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Convex function Nonconvex function

x

f(x)

x1 x’ x2 x

f(x)

x1 x’ x2

Figure 3.3: Convex and nonconvex functions.

• Functional constraints: They represent limitations in the performance of either a
system or object.

• Geometric constraints: They represent physical restraints like availability and trans-
portation matters.

In this work, we deal with the nonlinear optimization problem in its more general form.
Thus, inequality and equality constraints can be linear or nonlinear. In this way, for some
problems the feasible region may be convex or non-convex.

Here we define a convex set (see Figure 3.4):

Definition 6 (Convex set): A set of points is convex set in a n-dimensional space if, for
any pair of points ~x1 and ~x2 in the set, the line that joins them is also completely inside the
set. In this way, every point ~x, where:
~x = θ~x1 + (1− θ)~x2, 0 ≤ θ ≤ 1
is also in the set. 2

3.3 Kuhn-Tucker Conditions

Harold Kuhn and Albert Tucker developed the necessary and sufficient optimality con-
ditions for the general nonlinear programming problem, defined previously in Equation.
3.1. Here we rewrite this definition (Equation 3.2) because the Kuhn-Tucker conditions are
defined when inequality constraints are satisfied for positive values.

Find ~x which optimizes f(~x) (3.2)

subject to:
gj(~x) ≥ 0, i = 1, . . . , J
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Convex set Nonconvex set

x2

x1

x2

x1

x1

x2

x1

x2

Figure 3.4: Convex and nonconvex sets.

hk(~x) = 0, j = 1, . . . , K

~x = [x1, x2, . . . , xN ]

If inactive constraints can be identified at the optimum before solving the problem,
they can be deleted from the model and reduce the problem size. The main difficulty lies
in identifying the inactive constraints before the problem is solved.

Kuhn and Tucker developed the necessary and sufficient optimality conditions for the
NLP problem assuming that the functions f , gj , and hk, are differentiable. These optimality
conditions, commonly known as the Kuhn-Tucker conditions (KTC) consist of finding a
solution to a system of nonlinear equations. Therefore, they are also known as the Kuhn-
Tucker problem. Below we detail it:

Find vectors ~x(NX1), ~u(1XJ) and ~v(1XK) that satisfy:

∇f(~x)−
J∑

j=1

uj∇gj(x)−
K∑

k=1

vk∇hk(~x) = 0 (3.3)

gj(~x) ≥ 0, j = 1, 2, . . . , J ;
hk(~x) = 0 k = 1, 2, . . . , K;
ujgj(~x) = 0 j = 1, 2, . . . , J ;
uj ≥ 0 j = 1, 2, . . . , J ;

(3.4)

Now, we state the K-T Necessity and Sufficiency Theorems:
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Kuhn-Tucker Necessity Theorem [156]
Consider the NLP problem detailed in Equation 3.2. Let f , gj and hk be differentiable
functions and ~x∗ be a feasible solution to the NLP. Let I = {j|gj(x∗) = 0}. Furthermore,
∇gj(x∗) for j ∈ I and ∇hk(~x∗) for k = 1, . . . , K are linearly independent. If ~x∗ is an op-
timal solution to the NLP problem, then there exists a (~u∗, ~v∗), such that (~x∗, ~u∗, ~v∗) solves
the K-T problem given in Equations 3.3 and 3.4.

The proof of the theorem can be found in [11]. Constraint Qualification [156] are the
conditions that ∇gj(x∗) for j ∈ I and ∇hk(~x∗) for k = 1, . . . , K are linearly independent
at the optimum. A constraint qualification implies certain regularity conditions on the
feasible region that are frequently satisfied in practical problems. However, it is, in general,
quite hard to verify the constraint qualification because the global optimum must be known
a-priori.

For some NLP problems the constraint qualification is satisfied when [156]: (1) all the
inequality and equality constraints are linear, and (2) when all the inequality constraints
are concave functions and the equality constraints are linear and there exists at least one
feasible ~x that is strictly inside the feasible region of the inequality constraints. In other
words, there exists an ~x such that gj(~x) > 0 for j = 1, . . . , J and hk(~x) = 0 for k =
1, . . . , K. When a constraint qualification is not met at the optimum, there may not exist a
solution for the K-T problem.

The K-T necessity theorem helps to identify points that are not optimal. It means that,
given a feasible point that satisfies the constraint qualification, the K-T necessity theorem
can be used to prove that this point is not optimal if it does not satisfy the K-T conditions.
However, if this point does satisfy the K-T conditions (there is a solution for the K-T prob-
lem), we can not assure that this point is optimal for the NLP problem. The following
theorem gives conditions under which a K-T point (a point which satisfies the K-T neces-
sity theorem) automatically becomes an optimal solution to the NLP problem.

Kuhn-Tucker Sufficiency Theorem[156]
Given the NLP problem in Equation 3.2. Let the objective function f be convex, the in-
equality constraints gj(~x) be all concave functions for j = 1 . . . , J , and the equality con-
straints hk(~x) for k = 1, . . . , K be linear. If there exists a solution (~x∗, ~u∗, ~v∗) that satisfies
the K-T conditions given by Equations 3.3 and 3.4, then ~x∗ is an optimal solution to the
NLP problem.

A proof of the Kuhn-Tucker Sufficiency Theorem can be found in [118]. Note that,
when the sufficiency conditions of this theorem hold, finding a K-T point gives an optimal
solution to an NLP problem. In this way, the Sufficiency Theorem can be used to prove
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that a given solution is optimal for a NLP problem.
It is important to remark that for practical problems the constraint qualification will

generally hold. If the functions and constraints of the problem are differentiable, a K-T
point is a possible candidate for the optimum. Thus, many NLP methods try to converge
to a K-T point. Besides, when the conditions of the Sufficiency theorem hold, a K-T
point automatically becomes the global optimum. Unfortunately, the sufficiency conditions
are difficult to verify (we need the Hessian matrix of each function to verify if they are
positive or negative defined [149]), and often practical problems may not possess these
properties. In fact, the presence of one nonlinear equality constraint is enough to violate
the assumptions of the Sufficiency Theorem. Finally, the Sufficiency Theorem has been
generalized further to nonconvex inequality constraints, nonconvex objective functions and
nonlinear equality constraints. These use generalizations of convex functions such as quasi-
convex and pseudo-convex functions. More details can be found in [118].

McCormick [119] developed second-order necessary and sufficient optimality condi-
tions that apply to twice-differentiable functions:

Second-order Necessity Theorem[156]
Let f , g and h be twice-differentiable functions, and let ~x∗ be feasible. Let the active
constraints set at ~x∗ be I = {j|gj(~x∗) = 0}. Furthermore, assume that ∇gj(~x∗) for j ∈ I
and∇hk(~x∗) for k = 1, 2, . . . , K are linearly independent. Then, the necessary conditions
that ~x∗ be a local minimum to the NLP problem are that:

1. There exists (~u∗, ~v∗) such that (~x∗, ~u∗, ~v∗) is a K-T point.

2. For every vector y(1×N) satisfying:
∇gj(~x∗)y = 0 forj ∈ I
∇hk(~x∗)y = 0 for k = 1, 2, . . . , K

if follows that:
yTHL(~x∗, ~u∗, ~v∗)y ≥ 0

where

L(~x, ~u,~v) = f(~x)−∑J
j=1 ujgj(~x)−∑K

k=1 vkhk(~x)

and HL(~x∗, ~u∗, ~v∗) is the Hessian matrix of the second partial derivatives of L with
respect to x evaluated at (~x∗, ~u∗, ~v∗).

When a point satisfies the second-order necessary conditions given above, it becomes a
K-T point and a candidate for a local minimum. To verify if it is indeed a local minimum
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we need the second-order sufficient conditions. If the point does satisfy these sufficient
conditions, it is the global optimum.

Second-order Sufficiency Theorem[156]
Sufficient conditions that a point ~x∗ is a strict local minimum of a NLP problem, where f ,
gj , and hk are twice-differentiable functions are that:

1. There exists (~u∗, ~v∗) such that (~x∗, ~u∗, ~v∗) is a K-T point.

2. For every nonzero vector y(1×N) satisfying:
∇gj(~x∗)y = 0 j ∈ I1 = {j|gj(~x∗) = 0, ~u∗ > 0}
∇gj(~x∗)y ≥ 0 j ∈ I2 = {j|gj(~x∗) = 0, ~u∗ = 0}
∇hk(~x∗)y = 0 k = 1, 2, . . . , K
y 6= 0

it follows that

yTHL(~x∗, ~u∗, ~v∗)y > 0

where I1 ∪ I2 = I is the set of all active constraints at ~x∗.

As it can be noted, the Second-order Sufficiency Theorem only varies the following: The
first condition of point number two of the Second-order Necessity Theorem does not need
to be satisfied for all active constraints and the inequality yTHL(~x∗, ~u∗, ~v∗)y ≥ 0 in the
Necessity Theorem must be satisfied as an strict inequality in the Sufficiency Theorem
(yTHL(~x∗, ~u∗, ~v∗)y > 0).

It is important to note that the second-order Necessity and Sufficiency Theorems do not
require convexity of the functions nor linearity of the equality constraints. However, they
add additional restrictions (twice-differentiable functions).

There are also optimality criteria for nondifferentiable functions. They are known are
Saddlepoint Conditions. However, saddlepoints may not exist for all NLP problems. The
existence of saddlepoints is guaranteed only for NLP problems that satisfy the constraint
qualification (based on convexity and concavity of the function and constraints). Further-
more, to determine a saddlepoint is generally difficult.

After reviewing theoretical concepts about optimality conditions for constrained prob-
lems is clear to note that they are valid only when the problem to solve has some very rigid
features. Therefore, constrained optimization is an open problem, Several mathematical
programming techniques and also heuristic-based approaches have been proposed to solve
this type of problems.
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3.4 Methods

There are several mathematical-programming-based methods to solve the NLP problem.
They can be classified into two categories:

1. Transformation Methods.

2. Direct Methods.

3.4.1 Transformation methods

In this category, the original constrained problem is transformed into a sequence of uncon-
strained problems via the penalty function. The structure of the penalty function along with
the rules for updating the penalty parameters at the end of each unconstrained minimization
stage define the particular method. The penalty function is exact if only one unconstrained
minimization is required.

These methods assume that an initial solution ~x(0) of the problem is available. ~x(0) may
or may not be feasible. Transformation Methods generate a sequence of points in RN from
~x(0) to ~x(T ), where ~x(t) is the generic point and ~x(T ), the limit point, is the best estimated
of the global optimum produced by the algorithm. The points ~x(t), t = 1, 2, . . . , T , are
stationary points of an associated unconstrained function called a penalty function.

There are two types of penalty functions:

• Exterior: More commonly used in evolutionary algorithms (see Chapter 4 for de-
tails). In this case, the algorithm starts with infeasible solutions and the search will
be guided towards the feasible region of the search space. The penalty value will be
low at the beginning of the search and it will be increased over time (i.e. iterations).
The idea is to allow the search to move towards the feasible region and, once it is
reached, do not leave it.

• Interior: Also known as barrier penalties. In this case, the algorithm starts with a
feasible solution (which, for some problems, is not easy or computationally efficient
to get [173]) and moves inside the feasible region. In this case, the penalty factor
is low in zones far from the boundaries of the feasible region and it will be high in
zones close to the boundaries. This allows the search to move inside the feasible
region trying to locate the global optimum.

The general formula of a penalty function is the following:
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φ(~x) = f(~x)±
[ n∑

i=1

ri ·Gi +
p∑

j=1

cj · Lj
]

(3.5)

where φ(~x) is the expanded objective function to be optimized, Gi and Lj are functions of
the constraints of the problem g(~x) and h(~x), respectively, and ri y cj are positive constants
called “penalty factors” which determine the severity of the penalty.

Any useful transformation technique should have the following characteristics [156]:

1. The subproblem solutions should approach a solution of the NLP, that is:

lim
t→T≤∞

~x(t) = x∗

2. The problem of minimizing φ(~x) should be similar in difficulty to minimizing the
original f(~x). That is, the method will be less than useful if the unconstrained sub-
problems are excessively difficult to solve, no matter how strong the theoretical basis
of convergence.

3. The definition of the penalty factors should be simple. That is, the overhead asso-
ciated with updating them should be small compared to the effort associated with
solving the unconstrained subproblems.

The main drawback of penalty functions is indeed the definition by the user of an ade-
quate value for the penalty factors because reaching the feasible region as well as sampling
it well enough as to reach the global optimum relies on these factors.

Penalty terms

There are different penalty forms that have been widely used and represent different proce-
dures for handling constraints in an unconstrained setting. Here are the most used:

1. Parabolic penalty:
Ω = R{h(~x)}2

Used for equality constraints. It equally discourages positive or negative violations
of h(~x). Besides, with increasing values of its penalty factor R, the stationary values
of φ(~x) will approach the global optimum ~x∗, since in the limit as R grows large
h(~xT ) = 0. Finally, Ω is continuous and has continuous derivatives (see Figure
3.5-a).
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2. Infinite barrier: It assigns an infinite penalty to all infeasible points and no penalty
to feasible ones. It is discontinuous along the boundary of the feasible region and,
rather obviously, ∇φ(~x) does not exist along the boundary. For its practical use, a
large positive value (1020) [95] can be used (see Figure 3.5-b).

3. Log penalty: It produces a positive penalty for all ~x such that 0 ≤ g(~x) ≤ 1 and
a negative penalty for all ~x such that g(~x) ≥ 1. In this way, interior points are
artificially favored over boundary points. The log penalty is an interior penalty and
in fact is not defined for ~x such that g(~x) ≤ 0 (see Figure 3.5-c).

4. Inverse penalty:

Ω = R

[
1

g(~x)

]

The inverse penalty is also a barrier penalty, where feasible points near the boundaries
are assigned quickly decreasing penalties as the interior region is penetrated. Infea-
sible solutions close to the boundaries are penalized higher than those solutions that
are far from the feasible region. Therefore, special safeguards must be implemented
in presence of infeasible solutions. φ(~x) and ∇φ(~x) do not exist along the boundary
of the feasible region. Beginning with an initial feasible point and R positive, R is
decreased toward zero in the limit (see Figure 3.5-d).

5. Bracket penalty:
Ω = R < g(~x) >2

where:

< α >=

{
α if α ≤ 0
0 if α > 0

It defines an exterior penalty function. Stationary points of φ(~x) may indeed be
infeasible. On the other hand, note that feasible and infeasible points are handled
equally well by the term, and in fact, no penalty is assigned to feasible points (either
interior or in the boundaries of the feasible region). φ(~x) exists everywhere and is
continuous. R is chosen positive and is increased after each unconstrained stage (see
Figure 3.5-e).

3.4.2 Direct methods

These methods operate on the constraints explicitly, that is, they directly take into account
the constraint in the course of the optimization iterations. They are useful when solving
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problems whose functions are discontinuous or nondifferentiable. Basically, there are two
families of methods (both heuristic-based):

1. Those that are essentially adaptations of the unconstrained direct-search methods
[156].

2. Those that rely upon the random selection of trial points.

Direct-search methods like Conjugate Directions have been modified to solve con-
strained optimization problems. In this case, modifications regarding how to choose advis-
able search directions based on the constraints have been proposed, most of them requiring
the use of constraints gradient information [55]. Other methods like the Pattern Search
have also been modified [81] to deal with constrained search spaces. In this case, the step-
size used in either pattern or explorative moves can be reduced when leading to infeasible
solutions. Besides, constraints gradient values are required.

One of the methods that have enjoyed wide use in engineering applications is the com-
plex method. Based on the simplex method by Nelder and Mead [136], and modified by
Box [21], the Complex method works by generating and maintaining a pattern of search
points and the use of projections of undesirable points through the centroid of the remaining
points as the means of finding new trial points. Box [21] proposed to take into account the
feasibility of solutions when generating a new set of search points. One of the main draw-
backs of the method is that it requires an initial feasible point. Furthermore, the complex
method requires the feasible region to be a convex set.

Random search methods are used mainly to find an initial feasible point to be used for
direct-search methods like the aforementioned Complex [21]. Random search methods are
usually coupled with heuristic hill-climbing methods [156]. These random-based methods
are useful to find the vicinity of the optimum, but they are quite inefficient if a closer
estimate of the solution is required. Furthermore, these approaches have problems when
dealing with problems with a high dimensionality.

Finally, there are methods based on the linearization of a nonlinear problem in order
to apply linear programming techniques [156], but they are beyond the discussion of this
work.
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Figure 3.5: Different penalty terms.
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Chapter 4

Constraint Handling in Evolutionary
Algorithms

EAs are unconstrained search techniques. Thus, incorporating constraints into the fitness
function of an EA is an open research area. There is a considerable amount of research
regarding mechanisms that allow EAs to deal with equality and inequality constraints; both
type of constraints can be linear or nonlinear. Constraint-handling approaches tend to in-
corporate information about infeasibility (or distance to the feasible region) into the fitness
function in order to guide the search. In this chapter, we present a classification and descrip-
tions of constraint-handling approaches used in EAs. In fact, three of the most competitive
techniques (stochastic ranking [162], ASCHEA [77] and the homomorphous maps [110])
are used to compare the results obtained by our proposed approach.

4.1 Why to Use a Heuristic

Despite the large number of optimization techniques developed in mathematical program-
ming [156, 150], several problems present characteristics that make them difficult to solve
for any of them. For example, problems with nondifferentiable objective functions (and
perhaps even nondifferentiable constraints), problems with disjoint feasible regions and
problems with objective functions not available in algebraic form will be, in general, dif-
ficult for any mathematical programming technique. In fact, as known from mathematical
programming, when dealing with the general nonlinear optimization problem, it is rel-
atively simple to state problems in which the Kuhn-Tucker conditions for optimality do
not hold and no mathematical programming technique can guarantee convergence to the
global optimum [81]. It is precisely in all of those problems in which the use of EAs results

31
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particularly useful and highly competitive, since EAs do not require that the objective func-
tion or the constraints of a problem are continuous nor differentiable. Additionally, being
population-based techniques, EAs are less prone to get trapped in local optima, even when
dealing with fairly large and complex search spaces.

Most constraint-handling approaches used with EAs tend to deal only with inequality
constraints. However, in those cases, equality constraints are transformed into inequality
constraints of the form:

|hj(~x)| − ε ≤ 0 (4.1)

where ε is the tolerance allowed (a very small value). In the remainder of this document,
some of the test functions adopted will have one or more equality constraints. Such equal-
ity constraints are transformed into inequality constraints using equation 4.1. Thus, it is
important to remark that for these functions, the results found may “improve” the global
optimum solution due to the numerical precision considered when defining the tolerance ε.

4.2 Penalty Function

The most common form of Gi and Lj is:

Gi = max[0, gi(~x)]β (4.2)

Lj = |hj(~x)|γ (4.3)

where β and γ are normally 1 or 2.
Several approaches have been proposed to avoid this dependency of the values of the

penalty factors. The most common are the following:

4.2.1 Death penalty

In this case, infeasible solutions are either rejected (and randomly generated again), or get a
zero fitness regardless of their amount of constraint violation [8, 169]. No more operations
are needed to determine closeness to the feasible region. It is recommended only for convex
search spaces and feasible regions of a considerable size with respect to the whole search
space. However, death penalty does not use any information about how close is a solution to
the feasible region. Its main drawback is for complex problems where the initial population
has no feasible solutions. Then, the evolutionary process will “stagnate” because all the
individuals will have the same fitness (i.e. zero). Death penalty only works with problems
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with inequality constraints due to the fact that there is an obvious difficulty of generating
solutions which satisfy equality constraints.

4.2.2 Static penalties

In this case, the penalty factors remain without change during all the evolutionary pro-
cess. There are several proposals: Kuri [112] calculates the fitness of an individual in the
following way:

fitness(~x) =

{
f(~x) if the solution is feasible
K −∑s

i=1(K
m

) otherwise
(4.4)

where s is the number of constraints satisfied, m is the total number of equality and in-
equality constraints K is a constant (1x109). When an individual is infeasible its fitness
is calculated depending of the number of violated constraints s. Then, all solutions that
violate the same number of constraints will have the same fitness value, regardless of their
different distances to the feasible region.

This approach has provided good results with different types of problems. However,
sometimes it requires the use of another algorithm to generate feasible solutions in the
initial population.

Homaifar et al. [87] proposed to use violation levels where the penalty factors are
assigned depending of the amount of violation for each constraint of the problem. The
expression is as follows:

fitness(~x) = f(~x) +
m∑

i=1

(
Rk,i × max [0, gi(~x)]2

)
(4.5)

where Rk,i are the penalty coefficients used, m is total the number of constraints (Homaifar
et al. [87] transformed equality constraints into inequality constraints), f(~x) is the unpe-
nalized objective function, and k = 1, 2, . . . , l, where l is the number of levels of violation
defined by the user. The idea is to define specific penalty factors for each constraint and for
each level of violation in order to penalize in more detail with a set of predefined rules.

This approach requires many parameters (m(2l + 1) parameters in total) to be defined
by the user which makes it difficult to apply in problems with many constraints.

Hoffmeister & Sprave have proposed to use the following penalty function [84]:

fitness(~x) = f(~x)±
√√√√

m∑

i=0

H[−gi(~x)]gi(~x)2 (4.6)

where H : R → {0, 1} is the Heavyside function:
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H(y) =

{
1 : y > 0
0 : y ≤ 0

(4.7)

This is equivalent to a partial penalty approach and was successfully used in some real-
world problems [168].

The problem with Hoffmeister & Sprave’s approach is that it is based on the assumption
that infeasible points will always be valuated worse than feasible ones, and that is not
always the case [127].

One of the most competitive approaches to handle constraints known to date uses a
static penalty function: the Stochastic Ranking (SR) technique proposed by Runarsson &
Yao [162]. The aim of the approach is to balance the influence of the objective function
and the penalty function when assigning fitness to a solution. SR does not require the
definition of a penalty factor. Instead, the selection process is based on a ranking process
and a user-defined parameter called Pf that sets the probability of using only the objective
function to compare two solutions when sorting them. Then, when the solutions are sorted
using a bubble-sort like algorithm, sometimes, depending of the Pf value, the comparison
between two adjacent solutions will be performed using only the objective function. The
remaining comparisons will be performed using only the penalty function that consists,
in this case, of the sum of constraint violation. The suggested range for the Pf value is
0.4 < Pf < 0.5. The results obtained using all the functions of the well-known benchmark
from Michalewicz and Schoenauer [133] are the best reported to date in the literature.
Runarsson & Yao used a (30, 200)-ES with 350, 000 evaluations of the fitness function.
One drawback of the approach is that the user needs to define the parameter Pf . The
sorting algorithm adopted by this approach is shown in Figure 4.1.

4.2.3 Dynamic penalties

The idea of a dynamic penalty approach is to use time (i.e. the current generation number)
to influence the computation of the penalty factor of an individual. During the first genera-
tions of the process, the penalty factor will be low. However, late in the process, the penalty
will become very severe because it is assumed that the feasible region has been reached.
Dynamic penalty functions share the same problems with the static penalty functions. If a
bad factor is chosen, the EA may converge to either non-optimal feasible solutions (if the
penalty is too high) or to infeasible solutions (if the penalty is too low)

Joines and Houck [96] use the generation number to adapt the value of the penalty
factor. At generation t and assuming minimization this dynamic function increases the
penalty through generations:
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Begin
For i=1 to N

For j=1 to P-1
u=random(0,1)
If (φ(Ij) = φ(Ij+1) = 0) or (u < Pf )

If (f(Ij) > f(Ij+1))
swap(Ij ,Ij+1)

Else
If (φ(Ij) > φ(Ij+1))

swap(Ij ,Ij+1)
End For
If (not swap performed)

break
End For

End

Figure 4.1: Stochastic Ranking sort algorithm [162]. I is an individual of the population.
φ(Ij) is the sum of constraint violation of individual Ij . f(Ij) is the objective function
value of individual Ij
.

fitness(~x) = f(~x) + (C × t)α × SV C(β, ~x) (4.8)

where C, α and β are constants defined by the user (the authors used C = 0.5, α = 1 or 2,
and β = 1 or 2), and SV C(β, ~x) is defined as [96]:

SV C(β, ~x) =
n∑

i=1

Dβ
i (~x) +

p∑

j=1

Dj(~x) (4.9)

and

Di(~x) =

{
0 gi(~x) ≤ 0
|gi(~x)| otherwise

1 ≤ i ≤ n (4.10)

Dj(~x) =

{
0 −ε ≤ hj(~x) ≤ ε
|hj(~x)| otherwise

1 ≤ j ≤ p (4.11)

One disadvantage of the approach is its sensitivity to the parameters C, α and β. How-
ever, for some problems it has provided good results [125].
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Another idea to adapt the penalty factor according to the generation number was pro-
posed by Kazarlis & Petridis [99] and is called Varying Fitness Function Technique or VFF.
Their proposed expression used to solve the cutting stock problem and the unit commitment
problem is:

fitness(~x) = f(~x) + V (g)×
(
A

m∑

i=1

(δi · wi · Φ(di(S))) +B

)
× δs (4.12)

where A is a “severity” factor, m is the total number of constraints, δi is 1 if the constraint
i is violated and 0 otherwise, wi is a weight factor for constraint i, di(S) is a measure of
the degree of violation of constraint i introduced by solution S, Φi(.) is a function of this
measure, B is a penalty threshold factor, δs is a binary factor (ds = 1 if S is infeasible and
is zero otherwise), and V (g) is an increasing function of g (the current generation) in the
range (0 . . . 1).

The dynamic part is the V (g) function which increases with respect to the generation
number. The authors suggest:

V (g) =
(
g

G

)2

(4.13)

where g is the current generation number and G is the total number of generations. The
VFF provided good results on the two problems used to test it. The main drawback of
the approach is that it requires several parameters that depend on the problem and whose
definition is not clear at all. VFF has also been used in a later approach by Kazarlis et
al. [100]. They proposed to use a micro genetic algorithm (a GA with an very small
population of about 5 individuals) inside a traditional GA in order to use it as a generalized
hillclimber. The idea was to employ the traditional GA to perform the global search and to
use the micro GA to perform local search. They tested it using engineering design problems
and the results were competitive, but the problem with the approach is the definition of the
parameters for each GA and also the parameters of the penalty function. Moreover, the
approach has not been tested with other type of problems, like the well-known benchmark
for evolutionary constrained optimization proposed by Michalewicz & Schoenauer [133].

Crossley and Williams [40] performed an experiment with several dynamic penalty
coefficients that depended on the generation number. Several types of increments were
tested like: constant, linear, quadratic, exponential, standard deviation of the population’s
fitness and variance of the population’s fitness. The authors reported that dynamic updates
were better than constant coefficients. They concluded that the best dynamic penalty is
really problem-dependent if the goal is to find a good result in the minimum number of
generations.
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4.2.4 Annealing penalties

Annealing Penalties is a particular case of dynamic penalty functions based on the idea of
simulated annealing [105]. Michalewicz and Attia [129], in their approach called GENO-
COP II, change the penalty factor once in many generations. The penalty is increased
over time (i.e. the temperature decreases over time) so that infeasible individuals are heav-
ily penalized in the last generations. They divide the constraints into four groups: linear
equalities, linear inequalities, nonlinear equalities and nonlinear inequalities. The expres-
sion used by them is:

fitness(~x) = f(~x) +
1

2τ

∑

i∈A
φ2
i (~x) (4.14)

where τ is the cooling schedule [105], and

φi(~x) =

{
max[0, gi(~x)] if 1 ≤ i ≤ n
|hi(~x)| if n+ 1 ≤ i ≤ m

(4.15)

Its main drawback is the sensitivity to the cooling schedule. Carlson [25] proposed a similar
approach based on the following expression:

fitness(~x) = A · f(~x) (4.16)

whereA depends on two parameters: M , which measures the amount by which a constraint
is violated (it takes a zero value when no constraint is violated), and T , which is a function
of the running time of the algorithm. T tends to zero as evolution progresses. Using the
basic principle of simulated annealing, Carlson et al. [25] defined A as:

A = e−M/T (4.17)

so that the initial penalty factor is small and it increases over time. This will discard infea-
sible solutions in the last generations.

As in Michalewicz’s approach [129], the critical issue in Carlson’s approach [25] is the
definition of the initial and final values of the temperatures.

4.2.5 Adaptive penalties

The aim of adaptive penalties is to use information of the evolutionary process itself (in-
stead of a pre-defined variation function as in the case of dynamic penalties) to update the
value of the penalty factors.

Bean and Hadj-Alouane [14, 71] developed a method that has a penalty function which
uses feedback from the search process. Each individual is evaluated using the formula:
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fitness(~x) = f(~x) + λ(t)




n∑

i=1

g2
i (~x) +

p∑

j=1

|hj(~x)|

 (4.18)

where λ(t) is updated at every generation t in the following way:

λ(t+ 1) =





(1/β1) · λ(t), if case #1
β2 · λ(t), if case #2
λ(t), otherwise,

(4.19)

where cases #1 and #2 denote situations where the best individual in the last k generations
was always (case #1) or was never (case #2) feasible, β1, β2 > 1, β1 > β2, and β1 6= β2.

The penalty component λ(t + 1) for the generation t + 1 is decreased if all the best
individuals in the last k generations were feasible or is increased if they were all infeasible.
If there are some feasible and infeasible individuals tied as best in the population, then the
penalty does not change. This suggests that the approach is able to explore the bound-
aries of the feasible region. Nonetheless, its main drawback is the definition of the extra
parameters β1, β2 and λ0.

There are several proposals based on adaptive penalty approaches that have been used to
solve combinatorial optimization problems like Smith and Tate’s approach [174] approach
where the magnitude of the penalty is dynamically modified according to the fitness of the
best solution found so far. Norman & Smith [138] further applied Coit & Smith’s approach
to facility layout problems. Yokota et al. [187] proposed a variant of Smith, Tate and
Coit’s approach in which they use a multiplicative form of the fitness function (instead of
an addition as in Smith et al. [174]). Gen and Cheng [63] introduced an approach based
on a more severe penalty for infeasible solutions. Eiben & van der Hauw [51] proposed an
adaptive penalty function that was successfully applied to the 3-coloring problem.

Rasheed [151] proposed one of the first adaptive penalties used for numerical optimiza-
tion, inspired on Smith & Tate’s approach [174], proposed to adjust the penalty factors so
that there is always an equilibrium between feasible and infeasible solutions in the popu-
lation in his Genetic Algorithm Design Optimization (GADO). The idea is to compare the
solution with the lowest sum of constraint violation and the solution with the best fitness
value. If they are the same, then the penalty factor is adequate, if not, it is increased. This
approach was successfully applied to several engineering optimization problems [151].

Hamda & Schoenauer [75] proposed the use of an adaptive penalty function which
adapts its value depending of a desired ratio of feasible solutions in the population. In this
case, the user must define an interval within which this ratio should oscillate. This work
was tested on a few test problems and it provided good results. The proposal by Hamda
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& Schoenauer [75] was the first step for the development of one of the most competi-
tive constraint-handling approaches known to date, which is called Adaptive Segregational
Constraint Handling Evolutionary Algorithm (ASCHEA). This approach was proposed by
Hamida & Schoenauer [76, 77]. ASCHEA is based on three components:

• An adaptive penalty function: The expression used is:

fitness(~x) =

{
f(~x) if the solution is feasible
f(~x)− penal(~x) otherwise

(4.20)

where

penal(~x) = α
q∑

j=1

g+
j (~x) + α

m∑

j=q+1

|hj(~x)| (4.21)

where g+
j (~x) is the positive part of gj(~x) and α is the penalty coefficient for all the

constraints of the problem. The penalty factor is adapted according to a desired ratio
of feasible solutions τtarget and the current ratio in the generation t, τt in the following
way:

if(τt > τtarget ) α(t+ 1) = α(t)/fact

otherwise α(t+ 1) = α(t) ∗ fact

where fact > 1 and τtarget are user-defined parameters and

α(0) =

∣∣∣∣∣

∑n
i=1 fi(~x)

∑n
i=1 Vi(~x)

∣∣∣∣∣ ∗ 1000 (4.22)

where Vi(~x) is the sum of constraint violation of individual i.

• Constraint-driven recombination (crossover): Combine an infeasible solution with
a feasible one and apply it when there is a low number of feasible solutions with
respect to τtarget . If τt > τtarget the recombination is performed in the traditional way.

• Segregational selection based on feasibility: The aim is to choose a defined ratio
(τselect ) of feasible solutions based on their fitness to be part of the population for
the next generation. The remaining individuals are selected in the traditional way
(proportional selection) based on their penalized fitness. τselect is another user-defined
parameter.

In ASCHEA’s new version [77], the authors propose to use a penalty factor for each
constraint of the problem. Each factor is adapted independently:
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penal(~x) =
q∑

j=1

αjg
+
j (~x) +

m∑

j=q+1

αj|hj(~x)| (4.23)

and the adaptation process is now as follows:

if(τt(j) > τtarget) αj(t+ 1) = αj(t)/fact

otherwise αj(t+ 1) = αj(t) ∗ fact

also, the authors used a niching mechanism to improve the performance of the algorithm
in multimodal functions. Finally, they added both, a dynamic and an adaptive scheme to
decrease the tolerance value used to handle equality constraints. All these three new mech-
anisms also add more user-defined parameters, which makes more difficult to tune them to
solve an specific problem. The approach uses a (100 + 300)-ES and requires 1, 500, 000
fitness function evaluations to provide good results in 11 functions of the aforementioned
benchmark for constrained evolutionary optimization [162].

One of the most recent constraint handling approaches is also based on an self-adaptive
penalty function and was proposed by Farmani and Wright [56]. They prevent the user
to define any extra parameter in their algorithm. The approach is implemented in three
stages: (1) The normalized sum of constraint violation called “infeasibility” is assigned to
each solution. (2) After that, the best and worst solutions in the population are identified.
The best solution is that feasible solution with the best value of the objective function. If
there are only infeasible solutions it will be the solution with the lowest sum of constraint
violation (calculated in stage 1). The worst solution is calculated based on the best solution.
The worst solution is usually that with the highest sum of of constraint violation and a lower
value of the objective function. Finally (3) a two-part penalty function is applied only to
infeasible solutions.

The two parts of the adaptive penalty function are:

• First part: Applies only if one or more infeasible solutions have a lower value of
the objective function than the best solution. The goal of this first part is to increase
the objective function value of the infeasible solutions such that the worst of the
infeasible solutions has an objective function value that is equal to that of the best
solution.

• Second part: It increases the objective function values such that the penalized objec-
tive function of the worst infeasible solution is equal to that of the worst objective
individual.
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The goal of this step manipulation of the penalty function is to let infeasible individuals
close to the feasible region to have a similar fitness to that assigned to feasible solutions.
It may help the search to sample the boundaries of the feasible region where the feasible
global optimum is usually located for the hardest optimization problems.

The approach uses a binary-coded GA with gray codes and similar features to those
used in the Homomorphous maps proposed by Koziel and Michalewicz [110]. In addition,
the approach is tested using 11 benchmark problems. The results are competitive but the
number of evaluations required to compete against other state-of-the-art approaches like
the Stochastic Ranking [162] or ASCHEA [77] is quite high (about 1,400,000 evaluations
of the objective function).

4.2.6 Co-evolutionary penalties

Coello [35] proposed to evolve the penalty factors in one subpopulation while evolving the
solutions to the original problem in another subpopulation. In fact, there are two nested
GAs, each one evolving one subpopulation. Therefore, the approach requires the definition
of parameters for each GA and the time required by both GAs increases when more eval-
uations are necessary. The approach considers the amount of constraint violation and also
the number of constraints violated. The expression is as follows:

fitness(X) = f(X)− (coef× w1 + viol× w2) (4.24)

The high computational time required and the definition of several parameters makes the
approach difficult to use in a wide set of problems.

4.2.7 Segregated genetic algorithm

Another way to have a balance between heavy and moderated penalty factors was proposed
by Le Riche et al. [159]. The idea is to have a population of solutions. Each of them is eval-
uated using the two different penalty factors. After that, solutions are ranked in two lists,
one based on a moderate penalization and the other one based on a highly penalized fitness.
The best solutions from both lists are selected for reproduction. The best solutions between
the parents and offspring will be in the population for the next generation. Linear ranking
was used to decrease the high selection pressure that could cause premature convergence.
This approach was used to solve a laminated design problem, providing excellent results
[159]. The obvious disadvantage of the approach is to define two different penalty factors
for any given problem because it has been only used to solve one specific problem.
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4.2.8 Fuzzy penalties

Proposed by Wu & Yu [184]. They use a set of fuzzy rules to update the value of the penalty
factor. The expression to assign fitness to a solution is:

fitnessi(~x) =

{
fi(~x) If the solution is feasible
fi(~x)− rf ·G(~x) otherwise

(4.25)

where G(~x) =
∑m
j=1 g

+
j (~x) +

∑k
i=1 |hi(~x)| and rf is defined by a membership function

which updates the penalty factor using information of the objective function values and
the amount of constraint violation. The technique was evaluated using some benchmark
functions and provided good results. However the approach was not compared against
other state-of-the-art algorithms.

4.3 Special Representations and Operators

When the traditional representation of solutions (e.g. binary) is not suitable, some re-
searchers have opted to propose alternative representations and associated operators suit-
able for the proposed representation. In most cases, special encodings are adopted to gen-
erate feasible solutions and ad-hoc operators are used to preserve their feasibility during
all the evolutionary process. The main application of this approach is in problems in which
it is extremely difficult to locate at least a single feasible solution, or in problems in which
traditional encodings do not perform well.

• Davis’ applications: Davis [46] proposes some examples of evolutionary algorithms
with different representation and operators used to solve real world problems, but
despite their success, they are hard to generalize for similar problems. For example,
Davidor [44] used a varying-length genetic algorithm to generate robot trajectories,
and defined a special crossover operator called analogous crossover. Other examples
are schedule optimization [178], synthesis of neural networks architecture [78], and
conformational analysis of DNA [117].

• Random keys: Proposed by James C. Bean [12, 13], and used to solve combinatorial
problems like: job shop scheduling, parallel machine tool scheduling, and facility
layout. Random Keys consists of a special representation which is used to elimi-
nate the need of special crossover and mutation operators in certain sequencing and
optimization problems. The effect is that all the permutations represented by real
numbers are feasible. Despite its advantages, some researchers have reported a poor
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performance of this encoding with respect to a traditional permutation representation
[144, 145].

• GENOCOP: The (GEnetic algorithm for Numerical Optimization for COnstrained
Problems) was developed by Michalewicz [128]. The first step of GENOCOP al-
gorithm is to eliminate equality constraints and a number of variables. With the
remaining inequality constraints forming a convex set, the EA starts its search with
a population that consists of several copies of a feasible point obtained by sampling
the feasible region or that was provided by the user The genetic operators are linear
combinations to ensure that their offspring will also be feasible (the approach was
proposed for convex search spaces). GENOCOP assumes a feasible starting point,
which is an important drawback because for some problems is very difficult to gen-
erate one. Also, its application is limited because GENOCOP only deals with linear
constraints.

• Constraint consistent GAs: Kowalczyk [107] proposed the use of constraint consis-
tency [111] to prune the search space by preventing variable instantiations that are
not consistent with the constraints of the problem. Kowalczyk used a special initial-
ization procedure to generate feasible solutions or at least partially feasible solutions
which are easier to find. He also used real numbers encoding with special opera-
tors to preserve feasibility. The approach has not been widely tested and its main
drawback is to generate the initial partially feasible population.

• Locating the boundary of the feasible region: Many optimization problems usually
have active constraints at the global optimum. Therefore, it is important to explore
the boundaries of the feasible region. The idea, called strategic oscillation, was pro-
posed by Glover [64]. Two components are required: (a) an initialization procedure
that can generate feasible points, and (b) genetic operators that explore the feasi-
ble region. Schoenauer and Michalewicz [166] have proposed special initialization
methods and special operators for two specific problems. The results provided are
better than those provided by other methods, but the disadvantage, again, is the diffi-
culty to generalize the special operators to other types of problems.

• Decoders: The emphasis of these approaches is to map chromosomes into feasible
solutions of the problem to solve. Decoders must satisfy some conditions:

– For each feasible solution s there must be a decoded solution d.

– Each decoded solution d must correspond to a feasible solution s.
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Figure 4.2: Projection of points between a convex feasible region and an n-dimensional
cube [−1, 1]n (two-dimensional case) where T is the procedure to encode and decode

– All feasible solutions should be represented by the same number of decodings
d.

– The transformation T is computationally fast.

– It has locality feature in the sense that small changes in the decoded solution
result in small changes in the solution itself [43].

The best known decoder approach was proposed by Koziel & Michalewicz [109,
110]. They perform a homomorphous mapping (HM) between an n-dimensional
cube and a feasible search space (either convex or non-convex). The main idea of this
approach is to transform the original problem into another (topologically equivalent)
function that is easier to optimize by the EA. HM handles two cases:

1. Convex feasible region: A mapping between a convex feasible region and an
n-dimensional hypercube [−1, 1]n is performed (see Figure 4.2). It is important
to note that an arbitrary point ~y0 ∈ [−1, 1]n defines a segment from ~0 to the
perimeter of the hypercube. Also, the feasible point ~x0 ∈ F (with respect to
some reference point ~r0) corresponding to ~y0 ∈ [−1, 1]n is ~xo = ~r0 + ~y0 · τ
where τ in its maximum value maps a point in the frontier of the feasible region
F .

The definition of the domain of the optimized function is affected by the loca-
tion of the reference point ~r0. The utopic location of ~r0 would be the geomet-
rical center of F . It is important because the EA does not optimize the orig-
inal function but optimizes a topologically equivalent function. This version
for convex feasible regions fulfills the properties of a good decoder (discussed
above).
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F

F
r 0

Figure 4.3: A segment intersecting more than one point of the boundaries of a nonconvex
and disjoint feasible region.

2. Nonconvex feasible region: It is a more complex process because any segmentL
originated in the reference point r0 ∈ F can intersect the boundaries of the fea-
sible region in more than one point. (See Figure 4.3). Then, the mapping pro-
cess T must be re-designed. First, an additional one-to-one mapping between
the [−1, 1]n hypercube and the search space S that is the Cartesian product of
all the domains of the variables of the problem. Then, it is necessary to obtain
segments between a reference point ~r0 and points ~si in the boundaries of the
feasible region (see Figure 4.4). After that, the segments obtained are merged
into one segment by another mapping process. A user-defined parameter v is
used in this part of the mapping.

HM uses a binary-coded GA with Gray codes, proportional selection without elitism
and traditional crossover and mutation operators. The results provided for 12 bench-
mark problems were very good. HM was considered the best algorithm for evolu-
tionary constrained optimization before the Stochastic Ranking [162] technique was
published. The main drawbacks of HM have to do with the fact that it is not an algo-
rithm easy to implement. Also, the number of fitness function evaluations required
by the approach is quite high (about 1,400,000). The version for convex feasible
regions fulfills the properties of a good decoder (discussed above). However the ver-
sion for nonconvex feasible solutions lacks the property of locality (last point of the
list of the conditions for decoders shown above). Moreover, the user must define
experimentally the v parameter for nonconvex feasible regions. Finally, HM requires
a binary search to find the intersection of a line with the boundary of the feasible
region (which is the core of the technique).

Kim and Husbands [102, 103] had an earlier proposal of a similar approach that used
Riemann mappings to transform the feasible region into a simple geometric form.
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Figure 4.4: A nonconvex feasible region where the feasible intervals are mapped in the
interval [0, 1]n (two-dimensional case).

They proposed two mappings: (1) Thurston packing circles and (2) a mesh genera-
tor. One of its main drawbacks are that the mapping process requires a considerable
computational effort. Also, it has been used only to solve problems with a low num-
ber of decision variables.

4.4 Repair Algorithms

Repair in the context of constraint handling means to make feasible an infeasible solution.
Such a repaired version can be used either for evaluation only, or it can also replace (with
some probability) the original individual in the population.This idea has been widely used
in combinatorial optimization, more than in numerical optimization. Some of the open
questions related to repair algorithms are, for example, if the repaired solution must be
inserted in the population or if it should be used for evaluating fitness [115, 116, 135].
Another question is how to design efficient and effective (and even generalizable) repair al-
gorithms. One application of repair algorithms for numerical optimization was proposed by
Michalewicz and his GENOCOP III [132]. The aim is to incorporate the original GENO-
COP system [128] (which handles only linear constraints) and also use two different pop-
ulations where results in one population influence evaluations of individuals in the other
population. Individuals in the first population are search points which satisfy linear con-
straints of the problem. These solutions are kept as feasible by using special operators.
Solutions in the second population are feasible reference points. Then, solutions from the
first population are repaired in order to be similar to those of the second population. The
main drawback of the approach is that the effort to repair an infeasible solution can be-
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come more costly than the entire algorithm. Also, repair methods are not usually easy to
generalize.

For combinatorial optimization, Liepins et al. [115, 116] have shown, through an em-
pirical study on a diverse set of constrained combinatorial optimization problems, that a
repair algorithm can provide better results than other approaches in both speed and perfor-
mance.

Other areas of application of repair algorithms is robotics. Xiao et al. [186] used a
repair algorithm to transform an infeasible path of a robot trying to move between two
points in the presence of obstacles, so that the path would become feasible. The difficult
part of this work was the design of the repair operators.

4.5 Separation of Constraints and Objectives

Unlike penalty functions which combine the value of the objective function and the con-
straints of a problem to assign fitness, these approaches handle constraints and objectives
separately.

The most representative are:

• Co-evolution: Proposed by Paredis [141] to solve constraint satisfaction problems.
His approach uses two populations: the first contains the constraints to be satisfied
and the second contains potential, and maybe infeasible, solutions to the problem
to be solved. Like in a predator-prey model, the selection pressure on members
of one population depends on the fitness of the members of the other population
[141]. A solution with a high fitness in the second population is a solution that
satisfies many constraints. On the other hand, an individual with a high fitness in the
population of constraints represents a constraint violated by many solutions in the
second population. Individuals of both populations have encounters. A history of its
encounters, and its fitness is computed according to the sum of the last n encounters.
The approach provided impressive results but it has not been extended to numerical
optimization.

• Superiority of feasible points: The idea is to assign always a higher fitness to feasible
solutions. Powell and Skolnick [146] proposed to map feasible solutions into the
interval (−∞, 1), and infeasible solutions into the interval (1, ∞). Individuals are
evaluated using [146]:

fitness(~x) =

{
f(~x) if feasible
1 + r

(∑n
i=1 gi(~x) +

∑p
j=1 hj(~x)

)
otherwise

(4.26)
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f(~x) is scaled into the interval (−∞,1), gi(~x) and hj(~x) are scaled into the interval
(1,∞), and r is a constant.

A similar approach was proposed by Deb [49]. The expression to assign fitness to an
individual is the following:

fitnessi(~x) =

{
fi(~x) If the solution is feasible
fworst +

∑n
j=1 gj(~x) otherwise

(4.27)

where fworst is the objective function value of the worst feasible solution in the cur-
rent population. If there is no any feasible solution, fworst is equal to 0.

The approach uses binary tournaments as a selection technique and it is based on the
following criteria:

– A feasible solution is always preferred over an infeasible one.

– Between 2 feasible solutions, that one with the best value of the objective func-
tion is preferred.

– Between 2 infeasible solutions, that one with the lowest amount of constraint
violation is preferred.

The main disadvantage of the approach is that it requires a niching mechanism to
maintain diversity. It is worth reminding that niching requires at least one user-
defined parameter. Besides, the approach uses high mutation rates in order to im-
prove its explorative abilities.

Oyman and Deb [140] used Deb’s approach [49], but with an evolution strategy as
a search engine. They compare their approach against a death penalty. Oyman and
Deb [140]’s approach outperformed the death penalty scheme. However, they tested
it using only three problems (two of them are from the well-known benchmark from
Michalewicz & Schoenauer [133]). Moreover, they only tested evolution strategies
without a self-adaptation mechanism.

Another approach that uses the same criteria defined by Deb was proposed by Lam-
pinen [113] for Differential Evolution (DE) [148]. Based on the direct comparison
between parents and offspring used in DE, Lampinen proposed to use the aforemen-
tioned criteria to define the solution (between parents and offspring) that will survive
for the next generation. The approach was tested with some benchmark functions
[162] and the results were very promising, but the experimentation part was per-
formed using different values for the parameters of the approach for each test func-
tion, which makes hard to compare this approach with respect to other state-of-the-art
techniques.
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• CONGA (COnstraint based Numeric Genetic Algorithm): Proposed by Hinterding
and Michalewicz [83]. The idea is to perform the search in two phases: (1) the
search concentrates on finding feasible individuals and the objective function value
is not used. As the amount of feasible individuals increases, the search focuses on
fine-tuning the best of them. The aim of the selection proposed by the authors is to
select the mate who best “complements” the parent previously selected. This mate
should satisfy the constraints than the first selected parent does not satisfy. Therefore,
the aim is that crossover will create new individuals who satisfy more constraints
than any of their parents. CONGA was tested only with five benchmark functions
and compared against GENOCOP II and III, but it requires further refinement and
validation because it has problems to maintain diversity.

• Behavioral memory: Schoenauer and Xanthakis [167] proposed to satisfy, sequen-
tially, the constraints of a problem. Death penalty is used because solutions that do
not satisfy at least one constraint are eliminated from the population (the algorithm
must generate new solutions that satisfy the number of constraints satisfied at the cor-
responding time of the process). Once a certain percentage of the population satisfies
the first constraint, an attempt to satisfy the second constraint (while still satisfying
the first) will be made. This method requires that there is a linear ordering of all con-
straints, and the order in which the constraints are processed influences the results
provided by the algorithm. Also, it requires a sharing scheme to keep diversity in the
population. Finally the approach has problems when the feasible region is quite large
[167].

• Multiobjective optimization concepts: This category is detailed in Chapter 5.

4.6 Hybrid Methods

Within this category, we consider methods that are coupled with another technique (another
heuristic or a mathematical programming approach) to deal with constrained spaces:

• Constrained optimization by random evolution: (CORE) is a hybrid approach pro-
posed by Belur [16] which combines a random evolution search combined with the
Nelder and Mead’s simplex method [136]. When a solution is infeasible, the follow-
ing constraint functional is minimized:

C(~x) =
∑

i∈C1

h2
i (~x)−

∑

j∈C2

gj(~x) (4.28)
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where

C1 = {i = 1, . . . , n/|hi(~x)| > εc} (4.29)

C2 = {j = 1, . . . , q/gj(~x) < 0} (4.30)

and εc is the tolerance allowed in the equality constraints hi(~x).

The approach has problems similar to those of repair-based algorithm.

• Fuzzy logic: T. Van Le [114] proposed to replace constraints of the form gi(~x) ≤ bi
by a set of fuzzy constraints C1, . . . , Cm, i = 1, . . . ,m defined as:

µCi(~x) = µσ(bi,εi)(gi(~x)), i = 1, . . . ,m (4.31)

where εi is a positive real number that represents the tolerable violation of the con-
straints, and:

µσ(a,s)(~x) =





1 if x ≤ a,

e
−p(x−as )

2

−e−p
1−e−p if a < x ≤ a+ s

0 if x > a+ s

(4.32)

The aim of these changes is to allow a broad constraint violation.

The fitness function is then redefined as:

fitness(~x) = f(~x)×min(µC1 (~x), . . . , µCm(~x)) (4.33)

This approach requires the definition by the user of two parameters. Additionally, it
has not been tested widely [114].

• Ant system: AS was originally proposed to solve combinatorial optimization prob-
lems [50]. The main algorithm is a multi-agent system where low level interactions
between single agents (i.e. artificial ants) result in a complex behavior of the whole
ant colony. There have been also some attempts to use AS for numerical optimiza-
tion. Bilchev and Parmee [19] proposed to represent a finite number of directions
whose origin is a common base point called the nest. Since the idea is to cover even-
tually all the continuous search space, these vectors evolve over time according to
the fitness values of the ants. To eliminate infeasible solutions Bilchev and Parmee
[18, 19] proposed to use the concept of “unacceptable” food source for the ants. In
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this way, some food sources that were acceptable before, will vanish, as constraints
are tightened. This works analogously to a dynamic penalty function that eliminates
directions to infeasible regions of the search space. Bilchev and Parmee obtained
very good results [19] with their approach. However, several parameters must be
tuned before using it. Moreover, an additional procedure has to be used to locate the
nest and it is necessary to provide a model for the exhaustion of the food source to
avoid that the ants pass through the same path more than once.

• Simulated annealing hybrid: Wah & Chen [179] proposed a hybrid of Simulated
Annealing (SA) and a GA. The first part of the search is guided by SA. After that,
the best solution is refined using a GA. To deal with constraints, Wah & Chen use
Lagrangian Multipliers. Also, they calculate the optimal number of generations re-
quired by the algorithm. The results are good compared with respect to a dynamic
penalty function and strategic oscillation. However, the main drawback of the ap-
proach is its high computational cost derived from the use of two heuristics.

• Lagrangian multipliers Adeli and Cheng [2] proposed a penalty function method
hybridized with the primal-dual method [147]. It is based on sequential minimization
of the Lagrangian method, and uses a fitness function of the form:

fitness = f(~x) +
1

2

m∑

j=1

γj
{

[gj(~x) + µj]
+
}2

(4.34)

where γi > 0, µi is a parameter associated with the ith constraint, and m is the total
number of constraints. Also:

[gj(~x) + µj]
+ = max[0, gj(~x) + µj] (4.35)

µj must be defined in terms of the previously registered maximum violation of its
associated constraint and scale it using a parameter β, which is a user-defined param-
eter. γj is increased using the parameter β. In this way, the penalty factor increases
over generations. The approach was tested on engineering design problems provid-
ing good results. However, despite the fact that no penalty factors must be defined,
the approach requires other parameters.

Another combination of Lagrangian multipliers with an EA was proposed by Kim
and Myung [104, 134]. The approach guarantees the generation of feasible solutions
during the search process. The fist phase of the algorithm consists on optimizing:
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fitness(~x) = f(~x) +
C

2




n∑

i=1

(max[0, gi])
2(~x) +

p∑

j=1

|hj(~x)|2

 (4.36)

where C is a constant. The first phase finishes when constraint violations have been
decreased as much as the user wants. The second phase uses Lagrange multipliers to
adjust the penalty function according to the feedback information received from the
environment during the evolutionary process, in a way akin to the proposal of Adeli
and Cheng [2]. The main disadvantage of the approach is the definition by the user
of extra parameters required by the approach.

Smith [175] used a combination of a penalty function with an augmented Lagrangian
multiplier. The expression to assign fitness in the presence of equality constraints is
the following:

LA(x, λ, %, hi) = f(~x) + λhi(~x) +
%

2
h2
i (~x) (4.37)

and for inequality constraints the formula is:

LA(x, µ, %, hi) = f(~x) + µgi(~x) +
%

2
g2
i (~x) (4.38)

where % is the penalization factor defined by the user and λ and µ are the Lagrangian
multipliers. A small % is chosen and the unconstrained problem is solved. The value
of % is incremented using the best solution obtained. Then, the new problem is solved.
The approach has been used to solve problems with a moderate dimensionality (about
10 decision variables). However, like in a traditional penalty approach, the % value is
critical.

Finally, Barbosa proposed the use of a co-evolutionary GA coupled with an aug-
mented Lagrangian function to solve constrained problems written as min-max prob-
lems. The idea is to use two populations, each one with an independent GA (Awhich
minimizes and B that maximizes) to solve:

minxmaxλi∈IRm+
φ(~x) + 0.5

m∑

i=1

ri[(gi(~x) + θi)
2 + ϑ] (4.39)

where λr = riϑi and the penalization is incremented by using rki = r0
i × Zk where

t > 1 and r0
i > 0 i = 1 . . . ,m are user-defined parameters. IRm

+ is the subset of
vectors in IRm with nonnegative components.
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The approach was tested with 4 benchmark problems. However, there is no discus-
sion about the computational cost of it.

• Immune system: Hajela and Lee [72, 73] extended the Artificial Immune System to
solve constrained optimization problems. The idea is to adapt infeasible solutions
to the current feasible individuals using a bit matching process. The performance of
the approach depends on the selection of antibodies (infeasible individuals) that are
exposed to the antigens during the simulation. Another technique, called expression
strategies was proposed by Hajela and Yoo [74]. In this case, feasible and infeasible
individuals are combined using uniform crossover [177] in such a way that their
chromosomic material is exchanged. The drawbacks of these approaches is that it is
not clear if the genotype of an infeasible individual is more similar to the genotype
of a feasible individual (it is important to remind that these approaches are based on
bit to bit matching process). Coello & Cruz [36] used a negative selection model
of an artificial immune system to solve constrained problems. They also proposed
a parallel version of their algorithm [30] and the results obtained improved with
respect to the serial version of the algorithm. The approach was tested using some
benchmark problems. The main drawback is the definition by the user of some extra
parameters.

• Cultural algorithms: Chung and Reynolds [27] proposed to use a hybrid of evolu-
tionary programming and GENOCOP [131] in which they incorporated an interval
constraint-network [45, 90] to represent the constraints of the problem at hand. Jin
and Reynolds [94] proposed an n-dimensional regional-based schema, called belief-
cell, as an explicit mechanism that supports the acquisition, storage and integration
of knowledge about non-linear constraints in a cultural algorithm. This belief-cell
can be used to guide the search of an EA (evolutionary programming in this case)
by pruning the instances of infeasible individuals and promoting the exploration of
promising regions of the search space. The key aspect of this work is precisely how
to represent and save the knowledge about the problem constraints in the belief space
of the cultural algorithm. A similar approach based on Evolutionary Programming
coupled with the use of spatial data structures to improve the memory administra-
tion of the belief space was proposed by Coello and Landa [38]. They tested their
approach with several benchmark problems and the results were very good.

The main drawback of these types of techniques is the memory usage required for
managing the belief maps mainly in problems with a high dimensionality.
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Chapter 5

Use of Multiobjective Optimization
Concepts to Handle Constraints

Among the several approaches that have been proposed as alternatives to the use of penalty
functions, there is a group of techniques in which the constraints of a problem are handled
as objective functions (i.e. a single-objective constrained problem is restated as an uncon-
strained multiobjective problem). This chapter is devoted to these techniques. The aim of
this chapter is to explore the capabilities of using multiobjective optimization concepts to
solve global optimization problems and to avoid the use of a penalty function, whose main
idea is to combine the objective function and the constraints of a problem into a single
value.

5.1 Basic Concepts

In this Section we will define some basic concepts from multiobjective optimization.

Definition 7 (General multiobjective optimization problem): Find the vector ~x∗ =
[x∗1, x

∗
2, . . . , x

∗
n]T which will satisfy the m inequality constraints:

gi(~x) ≤ 0 i = 1, 2, . . . ,m (5.1)

the p equality constraints

hi(~x) = 0 i = 1, 2, . . . , p (5.2)

and will optimize the vector function

55



56
CHAPTER 5. USE OF MULTIOBJECTIVE OPTIMIZATION CONCEPTS TO HANDLE

CONSTRAINTS

~f(~x) = [f1(~x), f2(~x), . . . , fk(~x)]T (5.3)

where ~x = [x1, x2, . . . , xn]T is the vector of decision variables. 2

Having several objective functions, the notion of “optimum” changes, because in mul-
tiobjective optimization problems, the aim is to find good compromises (or “trade-offs”)
rather than a single solution as in global optimization. The notion of “optimum” that is
most commonly adopted is that originally proposed by Francis Ysidro Edgeworth in 1881
and later generalized by Vilfredo Pareto (in 1896) [142]. This notion is normally referred
to as “Pareto optimality” and is defined next.

Definition 8 (Pareto optimality:): A point ~x∗ ∈ F (F is the feasible region) is Pareto
optimal if for every ~x ∈ F and I = {1, 2, . . . , k} either (assuming minimization),

∀i∈I(fi(~x∗) ≤ fi(~x)) (5.4)

and, there is at least one i ∈ I such that

fi(~x
∗) < fi(~x) (5.5)

2

In words, this definition says that ~x∗ is Pareto optimal if there exists no feasible vector
~x which would decrease some criterion without causing a simultaneous increase in at least
one other criterion. The phrase “Pareto optimal” is considered to mean with respect to the
entire decision variable space, unless otherwise specified.

Other important definitions associated with Pareto optimality are the following:

Definition 9 (Pareto dominance): A vector ~u = (u1, . . . , uk) is said to dominate
~v = (v1, . . . , vk) (denoted by ~u � ~v) if and only if u is partially less than v, i.e. ∀i ∈
{1, . . . , k}, ui ≤ vi ∧ ∃i ∈ {1, . . . , k} : ui < vi. 2

Definition 10 (Pareto optimal set): For a given multiobjective optimization problem,
~f(x), the Pareto optimal set (P∗) is defined as:

P∗ := {x ∈ F | ¬∃ x′ ∈ F ~f(x′) � ~f(x)}. (5.6)

2
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5.2 Multiobjective Optimization Concepts to Handle Con-
straints

The main idea of adopting multiobjective concepts to handle constraints is to redefine the
single-objective optimization of f(~x) as a multiobjective optimization problem in which
we will have m + 1 objectives, where m is the total number of constraints (obviously, the
additional objective is the original objective function of the problem). Then, we can apply
any multiobjective optimization technique [39] to the new vector

v̄ = (f(~x), f1(~x), . . . , fm(~x)) (5.7)

where
f1(~x), . . . , fm(~x) (5.8)

are the original constraints of the problem. An ideal solution ~x would thus have fi(~x)=0
for 1 ≤ i ≤ m and f(~x) ≤ f(~y) for all feasible ~y (assuming minimization).

Three are the mechanisms taken from evolutionary multiobjective optimization that are
the most frequently incorporated into constraint-handling techniques:

1. Use of Pareto dominance as a selection criterion.

2. Use of Pareto ranking [66] to assign fitness in such a way that nondominated indi-
viduals (i.e. feasible individuals in this case) are assigned a higher fitness value.

3. Split the population in subpopulations that are evaluated either with respect to the ob-
jective function or with respect to a single constraint of the problem. This is the selec-
tion mechanism adopted in the Vector Evaluated Genetic Algorithm (VEGA) [164].
In the remainder of the document we will refer to this mechanism as a “population-
based” approach.

To solve single-objective optimization problems it is necessary to maintain a balance
between feasible and infeasible solutions in order to sample the feasible region of the search
space widely enough as to reach the global optimum solution.

In multiobjective optimization the goal is to find a set of trade-off solutions which are
considered good in all the objectives to be optimized. In contrast, in global optimization
we want to reach only the global optimum. Therefore, some changes must be done to those
approaches to adapt them to reach only one solution: the global optimum. These new crite-
ria are the following: Feasible solutions must be considered better than infeasible solutions
and closeness to the feasible region should be used as a selection criteria. Furthermore, a
mechanism to maintain diversity should be incorporated to avoid premature convergence.
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5.3 A Review of Techniques

We will now provide a description of some of the most representative approaches that have
been designed to apply the concepts discussed before.

COMOGA

Surry & Radcliffe [176] used a combination of the Vector Evaluated Genetic Algorithm
(VEGA) [164] and Pareto Ranking to handle constraints in an approach called COMOGA
(Constrained Optimization by Multi-Objective Genetic Algorithms).

In this technique, individuals are ranked depending of their sum of constraint viola-
tion (number of individuals dominated by a solution). However, the selection process is
based not only on ranks, but also on the fitness of each solution. COMOGA uses a non-
generational GA and extra parameters defined by the user (e.g. a parameter called ε is used
to define the change rate of Pcost). One of these parameters is Pcost, that sets the rate of
selection based on fitness. The remaining 1− Pcost individuals are selected based on rank-
ing values. Pcost is defined by the user at the beginning of the process and it is adapted
during the evolutionary process using as a basis the percentage of feasible individuals that
one wishes to have in the population.

COMOGA was applied to a gas network design problem and it was compared against
a penalty function approach. Although COMOGA showed a slight improvement in the
results with respect to a penalty function, its main advantage is that it does not require a
fine tuning of penalty factors or any other additional parameter. The main drawback of
COMOGA is that it requires several extra parameters, although its authors argue that the
technique is not particularly sensitive to their values [176].

The algorithm of COMOGA [176] is presented in Figure 5.1.

VEGA

Coello [34] used a population-based approach similar to VEGA [164] to handle constraints
in single-objective optimization problems. At each generation, the population was split
into m + 1 subpopulations of equal fixed size, where m is the number of constraints of
the problem. The additional subpopulation handles the objective function of the problem
and the individuals contained within it are selected based on the unconstrained objective
function value. The m remaining subpopulations take one constraint of the problem each
as their fitness function. The aim is that each of the subpopulations tries to reach the
feasible region corresponding to one individual constraint. By combining these different



5.3. A REVIEW OF TECHNIQUES 59

Begin
Create M random solutions for the initial population.
Compute constraint violation for all solutions.
While stopping criterion is not satisfied Do

Rank solutions based on constraint violation (nondominance checking).
Evaluate the fitness of solutions.
Select two parents using the Pcost ratio based on
fitness and the remaining 1− Pcost based on constraint ranking.
Apply genetic operators to generate one offspring snew
If the new solution is better than the worst solution of the
population sw Then

sw = snew
Endif
Adjust Pcost: Decreasing it favors feasible solutions; Increasing it
favors lower cost solutions (high fitness)

End While
End

Figure 5.1: Pseudocode of COMOGA [176]

subpopulations, the approach will reach the feasible region of the problem considering all
of its constraints.

The algorithm of this approach is shown in Figure 5.2.
The fitness assignment scheme of the approach is the following:

if gj(x) < 0.0 then fitness = gj(x)
else if v 6= 0 then fitness = −v
else fitness = f(x)

where gj(x) refers to the jth constraint of the problem, v is the number of violated con-
straints (v ≤ m) and f(x) is the value of the objective function of the individual.

As can be seen above, each subpopulation tries to satisfy one single constraint. If the
encoded solution does not violate the constraint of its corresponding subpopulation, then
the fitness of an individual will be determined by the total number of constraints violated.
Finally, if the solution is feasible, then the feasible criterion is to optimize the objective
function. Therefore, any feasible individuals will be merged with the subpopulation on
charge of optimizing the original (unconstrained) objective function.
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Begin
Create M random solutions for the initial population.
Split the population into m+ 1 sub-populations
Evaluate all M individuals
Assign a fitness value to all M individuals depending of their
corresponding subpopulation.
While stopping criterion is not satisfied Do

Insert the best individual of the current
population into the next population
While the next population is not full Do

Select 2 parents p1 and p2 based on tournament selection
with n candidates from all the M
individuals of the main population
Apply crossover to p1 and p2 to generate 2 offspring c1 and c2

Apply mutation to offspring c1 and c2

Insert c1 and c2 into the next population
End While
Split the population into m+ 1 subpopulations
Evaluate all M new individuals
Assign a fitness value to all M individuals depending of their
corresponding subpopulation.

End While
End

Figure 5.2: Pseudocode of Coello’s version of VEGA for constraint-handling [34]

The genetic operators are applied to the entire population and every individual in a given
subpopulation is allowed to mate with any other in any subpopulation (including its own, of
course). In this way, individuals who satisfy constraints are combined with individuals with
a good fitness value. At the end, it is expected to have a population of feasible individuals
with high fitness values.

This approach was tested with some engineering problems [34] in which it produced
competitive results. It has also been successfully used to solve combinational circuit design
problems [37]. The main drawback of this approach is that the number of subpopulations
required increases linearly with the number of constraints of the problem. This has some
obvious scalability problems. Furthermore, it is not clear how to determine appropriate
sizes for each of the subpopulations used.
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MOGA

Coello [33] proposed the use of Pareto dominance selection to handle constraints in EAs.
This is an application of Fonseca and Fleming’s Pareto ranking process [62] (called Multi-
Objective Genetic Algorithm, or MOGA) to constraint-handling. In this approach, feasible
individuals are always ranked higher than infeasible ones. Based on this rank, a fitness
value is assigned to each individual. This technique also includes a self-adaptation mecha-
nism that avoids the usual empirical fine-tuning of the main genetic operators.

Coello’s approach uses a real-coded GA with universal stochastic sampling selection
(to reduce the selection pressure caused by the Pareto ranking process).

The algorithm of this approach is presented in Figure 5.3.

Begin
Create M random solutions for the initial population.
Evaluate the M individuals in the population.
Compute the rank for each of the M individuals in the population.
Assign a fitness value to all M individuals depending on rank
While stopping criterion is not satisfied Do

Insert the best individual of the current
population into the next population
While the next population is not full Do

Select 2 parents p1 and p2

using Stochastic Universal Sampling
Apply crossover to p1 and p2 to generate 2 offspring c1 and c2

Apply mutation to offspring c1 and c2

Insert c1 and c2 into the next population
End While
Evaluate the M new individuals in the population
Compute the rank for each one of the M
individuals in the population.
Assign a fitness value to all M individuals depending on rank

End While
End

Figure 5.3: Pseudocode of Coello’s version of MOGA to handle constraints [33]

To compute the rank of an individual ~xi, this approach uses the following procedure:

• Evaluate:
rank(~xi) = count(~xi) + 1 (5.9)
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where count(~xi) is computed according to the following rules:

1. Compare ~xi against every other individual in the population. Assuming pair-
wise comparisons, we call ~xj (j = 1, . . . , pop size and j 6= i) the other indi-
vidual against which, xi is being compared at any given time.

2. Initialize count(~xi)(for i = 1, . . . , pop size) to zero.

3. If both ~xi and ~xj are feasible, then both are given a rank of zero and count(~xi)
remains without changes.

4. If ~xi is infeasible and ~xj is feasible, then count(~xi) is incremented by one.

5. If both ~xi and ~xj are infeasible, but ~xi violates more constraints than ~xj , then
count(~xi) is incremented by one.

6. If both ~xi and ~xj are infeasible, and both violate the same number of constraints,
but ~xi has a total amount of constraint violation larger than the constraint vio-
lation of ~xj , then count(~xi) is incremented by one.

If any constraint gk(~x) (k = 1, . . . ,m, where m is the total amount of con-
straints) is considered satisfied if gi(~x) ≤ 0, then, the total amount of constraint
violation for an individual ~xi (denoted as coef(~xi)) is given by:

coef(~xi) =
p∑

k=1

gk(~xi) for all gk(~xi) > 0 (5.10)

To compute fitness, the following rules are adopted:

1. If ~xi is feasible, then rank(~xi) = fitness(~xi), else

2. rank(~xi) = 1

rank(~xi)

Then, individuals are selected based on rank(~xi) (stochastic universal sampling is used).
Note that the values produced by fitness(~xi) must be normalized to ensure that the rank
of feasible individuals is always higher than the rank of infeasible ones.

This approach has been used to solve some engineering design problems [33] in which
it produced very good results. Furthermore, the approach showed great robustness and
a relatively low number of fitness function evaluations with respect to traditional penalty
functions. Additionally, it does not require any extra parameters. Its main drawback is
the computational cost (O(M 2), where M is the population size) derived from the Pareto
ranking process.
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Figure 5.4: Diagram that illustrates the role of Sr in the selection process of Coello and
Mezura’s algorithm.

NPGA

Coello and Mezura [32] implemented a version of the Niched-Pareto Genetic Algorithm
(NPGA) [88, 89] to handle constraints in single-objective optimization problems. The
NPGA is a multiobjective optimization approach in which individuals are selected through
tournaments based on Pareto dominance. However, unlike the original NPGA, Coello and
Mezura’s approach does not require niches (or fitness sharing [48]) to maintain diversity
in the population. The NPGA is a more efficient technique than traditional multiobjective
optimization algorithms, since it does not compare every individual in the population with
respect to each other (as in traditional Pareto ranking), but uses only a sample of the pop-
ulation to estimate Pareto dominance. This is the main advantage of this approach with
respect to Coello’s proposal based on MOGA [33].

Note however that Coello and Mezura’s approach requires an additional parameter
called Sr that controls the diversity of the population. Sr indicates the percentage of par-
ents selected by four comparison criteria described below. The remaining 1 − Sr parents
will be selected by a pure probabilistic approach. Thus, this mechanism is responsible for
keeping infeasible individuals in the population (i.e. the source of diversity that keeps the
algorithm from converging to a local optimum too early in the evolutionary process).

A graphical illustration of the role of the parameter Sr is shown in Figure 5.4.
Tournaments in this approach are decided using as a basis four comparison criteria:

1. If both individuals are feasible, the individual with the higher fitness wins.

2. If one is feasible and the other is infeasible, the feasible individual wins.

3. If both are infeasible: Nondominance checking is applied (tournament selection as
in the NPGA [89]).



64
CHAPTER 5. USE OF MULTIOBJECTIVE OPTIMIZATION CONCEPTS TO HANDLE

CONSTRAINTS

4. If both are nondominated or dominated, the individual with the lowest amount of
constraint violation wins.

The pseudocode of the algorithm of this approach is shown in Figure 5.5.

Begin
Create M random solutions for the initial population.
Evaluate the M individuals in the population.
While stopping criterion is not satisfied Do

Insert the best individual of the current
population into the next population
While the next population is not full Do

Select 2 parents p1 and p2 based on Sr value
Apply crossover to p1 and p2 to generate 2 offspring c1 and c2

Apply mutation to offspring c1 and c2

Insert c1 and c2 into the next population
End While
Evaluate the M new individuals in the population

End While
End

Figure 5.5: Pseudocode of Coello & Mezura’s constraint handling approach based on the
NPGA [32]

This approach has been tested with several benchmark problems and was compared
against several types of penalty functions [120]. Obtained results indicated that the ap-
proach was robust, efficient and effective. However, it was also found that the approach
had scalability problems (its performance degrades as the number of decision variables
increases).

Other approaches based on multiobjective concepts are the use of VEGA [164] by
Parmee & Purchase [143]. Camponogara & Talukdar [24] proposed to combine a bi-
objective problem definition with a linear search algorithm. An approach similar to a min-
max formulation used in multiobjective optimization [26] combined with tournament se-
lection was proposed by Jiménez and Verdegay [93]. Ray et al. [153] proposed the use of a
Pareto ranking approach that operates on three spaces: objective space, constraint space and
the combination of these two. Jiménez et al. [92] proposed an algorithm that uses Pareto
dominance inside a preselection scheme to solve several types of optimization problems
(multiobjective, constraint satisfaction, global optimization, and goal programming prob-
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lems). Ray [152] explored an extension of his previous work on constraint-handling [153]
in which the emphasis was robustness.

5.4 A Comparative Study

Four techniques were selected to perform a small comparative study that aims to illustrate
some practical issues of constraint-handling techniques [79]. The techniques selected were
the following: COMOGA [176], the use of VEGA proposed by Coello [34], the NPGA to
handle constraints [32] and the approach that uses MOGA [33]. In order to simplify our
notation, the last three techniques previously indicated will be called HCVEGA, HCNPGA
and HCMOGA, respectively.

5.4.1 Experimental design

To evaluate the performance of the selected techniques, we decided to use the well-known
benchmark proposed in [133] plus four engineering design problems used in [33]. The
expressions of each test function are provided in Appendix A.

To get an estimate of how difficult is to generate feasible solutions for these problems,
a ρ metric (as suggested by Michalewicz and Schoenauer [133]) was computed using the
following expression:

ρ = |F |/|S| (5.11)

where |F | is the number of feasible solutions and |S| is the total number of solutions ran-
domly generated. In this work, S = 1, 000, 000 random solutions.
The different values of ρ and the main features for each of the functions chosen are shown
in Table 5.1. It is important to note that the set of selected problems provides different
levels of difficult to generate feasible solutions. Thus, this benchmark contains problems
like g05, g07 and g13 whose feasible solutions are very difficult to generate, as well as
problems like g02 and vessel where feasible solutions are relatively easy to find.

In our comparative study, we used a binary-gray-coded GA with two-point crossover
and uniform mutation. Equality constraints were transformed into inequalities using a tol-
erance value of 0.001 (see Section 3.2). The number of fitness function evaluations is the
same for all the approaches under study (80, 000). The parameters adopted for each of the
methods were the following:
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Problem n Type of function ρ LI NI LE NE
g01 13 quadratic 0.0003% 9 0 0 0
g02 20 nonlinear 99.9973% 2 0 0 0
g03 10 nonlinear 0.0026% 0 0 0 1
g04 5 quadratic 27.0079% 4 2 0 0
g05 4 nonlinear 0.0000% 2 0 0 3
g06 2 nonlinear 0.0057% 0 2 0 0
g07 10 quadratic 0.0000% 3 5 0 0
g08 2 nonlinear 0.8581% 0 2 0 0
g09 7 nonlinear 0.5199% 0 4 0 0
g10 8 linear 0.0020% 6 0 0 0
g11 2 quadratic 0.0973% 0 0 0 1
g12 3 quadratic 4.7697% 0 93 0 0
g13 5 nonlinear 0.0000% 0 0 1 2

beam 4 quadratic 2.6859% 6 1 0 0
vessel 4 quadratic 39.6762% 3 1 0 0
spring 3 quadratic 0.7537% 1 3 0 0
truss 10 nonlinear 46.8070% 0 22 0 0

Table 5.1: Values of ρ for the 17 test problems chosen. n is the number of decision vari-
ables, LI is the number of linear inequality constraints , NI the number of nonlinear in-
equality constraints, LE is the number of linear equality constraints and NE is the number
of nonlinear equality constraints.
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• COMOGA:

– Population size = 200

– Crossover rate = 1.0

– Mutation rate = 0.05

– Desired proportion of feasible solutions = 10 %

– ε = 0.01

• HCVEGA:

– Population size = 200

– Number of generations = 400

– Crossover rate = 0.6

– Mutation rate = 0.05

– Tournament size= 5

• HCNPGA:

– Population size = 200

– Number of generations = 400

– Crossover rate = 0.6

– Mutation rate = 0.05

– Size of sample of the population = 10

– Selection ratio = 0.8

• HCMOGA:

– Population size = 200

– Number of generations = 400

– Crossover rate = 0.6

– Mutation rate = 0.05

A total of 100 runs per technique per problem were performed. Statistical results are
presented in Tables 5.2, 5.3, 5.4 and 5.5. The symbol “*” and the number in parenthesis
“(n )”mean that only in n runs the approach was able to reach the feasible region, 0.0 ≤
Fp ≤ 1.0 is the average percentage of feasible solutions found during a single run (with
respect to the entire population).
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COMOGA
P Optimal Best Median Mean St. Dev. Worst Fp

g01 −15.000 −5.000 0.000 −0.673 1.35E+0 0.000 0.001
g02 0.803619 0.027258 0.021285 0.020641 3.60E-3 0.008432 0.999
g03 1.000 0.126 0.000 −1399999.995 3.47E+6 − 0.0002
g04 −30665.539 −30533.057 −30328.199 −30329.563 74.79E+0 −30141.033 0.002
g05 5126.498 − − − − − −
g06 −6961.814 −6808.696 −5408.743 −5255.105 9.94E+2 −1341.318 0.002

g07*(8) 24.306 485.579 1987.981 1567.294 9.24E+2 3149.046 0.0003
g08*(99) 0.095825 0.095782 0.094613 0.094343 1.34E-3 0.089900 0.003

g09 680.63 733.001 979.748 983.626 1.15E+2 1314.536 0.011
g10*(71) 7049.25 10865.434 18994.847 18924.576 38.51E+2 26625.984 0

g11 0.75 0.75 0.75 0.75 0 0.75 0.0002
g12 1.000 −0.999 −0.999 −0.999 0 −0.993 0.070
g13 0.053950 − − − − − −

beam 1.728226 1.835381 2.039148 2.030360 9.48E-2 2.328703 0.0006
vessel 6059.946341 6369.428223 7889.838867 7795.411538 7.01E+2 9147.520508 0.004
spring 0.012681 0.012929 0.014263 0.014362 8.64E-4 0.017113 0.021
truss 5152.636136 6283.198730 6675.126709 6660.455649 1.26E+2 6968.627441 0.007

Table 5.2: Experimental results using COMOGA with the 17 test problems. The “-” symbol
means that no feasible solutions were found during the experiments. A result in boldface
indicates that the global optimum (or best known solution) was reached.

HCVEGA
P Optimal Best Median Mean St. Dev. Worst Fp

g01 −15.000 −11.221 −9.702 −9.716 4.94E-1 −8.387 0.146
g02 0.803619 −0.000037 −0.000270 −0.000315 1.78E-4 −0.000983 0.999
g03 1.000 −0.000 −0.000 0.000 0 −0.000 0.002
g04 −30665.539 −30647.246 −30628.588 −30628.469 7.88E+0 −30607.240 0.408
g05 5126.498 − − − − − −
g06 −6961.814 −6942.747 −6758.277 −6762.048 1.01E+2 −6516.471 0.043
g07 24.306 28.492 34.528 34.558 2.93E+0 41.786 0.154
g08 0.095825 0.095825 0.095825 0.095825 0 0.095825 0.393
g09 680.63 693.642 736.191 739.306 25.17E+0 806.855 0.046

g10*(63) 7049.25 9842.453 17708.880 17605.588 3.88E+3 27627.635 0.00005
g11 0.75 0.75 0.81 0.80 2.58E-2 0.85 0.011
g12 1.000 1.000 1.000 1.000 0 1.000 0.517
g13 0.053950 − − − − − −

beam 1.728226 1.726772 1.735865 1.736439 5.93E-3 1.769726 0.346
vessel 6059.946341 6064.723633 6238.489746 6259.963745 1.70E+2 6820.944824 0.425
spring 0.012681 0.012688 0.012789 0.012886 2.09E-4 0.013784 0.25
truss 5152.636136 5327.418457 5453.446045 5455.871895 56.74E+0 5569.240723 0.676

Table 5.3: Experimental results using HCVEGA to handle constraints with the 17 test
problems. The “-” symbol means that no feasible solutions were found during the experi-
ments. A result in boldface indicates that the global optimum (or best known solution) was
reached.
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HCNPGA
P Optimal Best Median Mean St. Dev. Worst Fp

g01*(52) −15.000 −10.565 −6.461 −6.496 2.18E+0 −1.276 0.000
g02 0.803619 0.785141 0.731922 0.724332 3.42E-2 0.528319 0.914
g03 1.000 0.975 0.866 0.861 5.4E-2 0.715 0.002
g04 −30665.539 −30661.033 −30635.347 −30630.883 20.47E+0 −30544.324 0.345
g05 5126.498 − − − − − −
g06 −6961.814 −6941.307 −6748.525 −6644.539 3.36E+2 −5164.000 0.018
g07 24.306 26.986 30.882 31.249 2.32E+0 38.459 0.049
g08 0.095825 0.095825 0.095825 0.095825 0 0.095825 0.425
g09 680.63 680.951 682.121 682.335 8.36E-1 684.816 0.24

g10*(29) 7049.25 8183.303 12691.962 13716.704 48.04E+2 23585.121 0.0004
g11 0.75 0.75 0.75 0.75 1.2E-2 0.83 0.026
g12 1.000 1.000 1.000 1.000 0 1.000 0.446
g13 0.053950 − − − − − −

beam 1.728226 1.727014 1.751112 1.766413 4.38E-2 1.978103 0.262
vessel 6059.946341 6059.926270 6127.618408 6172.527373 123.9E+0 6845.770508 0.331
spring 0.012681 0.012683 0.012736 0.012752 6.2E-5 0.013132 0.105
truss 5152.636136 5179.740723 5256.108154 5259.013174 37.66E+0 5362.890625 0.504

Table 5.4: Experimental results using HCNPGA to handle constraints with the 17 test
problems. The “-” symbol means that no feasible solutions were found during the experi-
ments. A result in boldface indicates that the global optimum (or best known solution) was
reached.

HCMOGA
Problem Optimal Best Median Mean St. Dev. Worst Fp

g01 −15.000 −13.968 −12.900 −12.753 8.16E-1 −9.329 0.014
g02 0.803619 −0.425258 −0.512270 −0.515214 4.03E-2 −0.618569 0.999
g03 1.000 −0.036 −0.219 −0.247 1.43E-1 −0.601 0.010
g04 −30665.539 −30649.959 −30570.755 −30568.918 53.53E+0 −30414.773 0.345
g05 5126.498 8879.123 8879.977 8879.945 1.0E-1 8879.999 0.000
g06 −6961.814 −6939.440 −6699.262 −6678.926 15.6E+1 −6258.591 0.017
g07 24.306 29.573 40.376 45.589 15.17E+0 114.547 0.013
g08 0.095825 0.095825 0.095825 0.095825 0 0.095825 0.074
g09 680.63 681.708 689.956 692.966 10.96E+0 734.002 0.049
g10 7049.25 7578.336 9026.873 9504.359 15.06E+2 16473.984 0.011
g11 0.75 0.75 0.75 0.75 0 0.75 0.017
g12 1.000 1.000 1.000 1.000 0 1.000 0.090
g13 0.053950 − − − − − −

beam 1.728226 1.729384 1.791587 1.825219 7.98E-2 2.126669 0.064
vessel 6059.946341 6066.969727 6561.483154 6629.064048 3.85E+2 7547.403320 0.453
spring 0.012681 0.012680 0.012815 0.012960 3.63E-4 0.014754 0.047
truss 5152.636136 5336.618652 5745.238281 5748.839526 2.10E+2 6474.041992 0.604

Table 5.5: Experimental results using HCMOGA to handle constraints with the 17 test
problems. The “-” symbol means that no feasible solutions were found during the experi-
ments. A result in boldface indicates that the global optimum (or best known solution) was
reached.
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5.4.2 Discussion of results

We will present next a discussion of the results obtained from the experimental design
previously proposed. We will discuss three aspects: Quality, of the results achieved, con-
sistency and capability of each approach to maintain diversity.

Quality of the results

HCNPGA gave the best results in 9 problems and in six of them it reached the global
optimum. HCMOGA is superior in 7 of them and it reached the global optimum in 4.
HCVEGA got better results only in 4 problems and it found the global optimum in 3. CO-
MOGA was clearly surpassed because it did not give the best results in any given problem.

Consistency

The statistics indicate that HCNPGA and HCVEGA presented the lowest standard devia-
tion and the best median and average solutions in the same number of problems (7). The
second best approach was HCMOGA which produced the best results in 4 problems. CO-
MOGA was the best in only 2 functions. Despite the fact that there was a tie between
HCNPGA and HCVEGA, the last one showed premature convergence in most of the test
problems.

Diversity

An utopical behavior for an ideal constraint handling technique is defined in our case as
keeping at all times half of the population with feasible solutions and the other half with
infeasible ones. However, in practice such a balance may be very difficult to achieve.
Therefore, we provide a relative comparison among the approaches under study. The most
balanced approach based on the number of feasible and infeasible solutions in the popu-
lation during all the evolutionary process was HCVEGA. HCNPGA ranked second in this
category. HCMOGA had results very close to those of HCNPGA. This suggests that a
population-based approach should help to maintain diversity. Pareto dominance as a se-
lection criteria is helpful too, based on the results obtained by HCNPGA. However, Pareto
Ranking seems to give a less balanced population, probably because of its higher selection
pressure.

The overall poor performance provided for all four approaches suggests that maintain-
ing infeasible solutions is not the only goal in order to obtain better results. Perhaps, the
utopical number of 50% of infeasible solutions is not as useful as we first thought. This
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Category Problem
Very difficult g05, g13

Difficult g01, g02, g03, g10
Average g04, g06, g07, g09, vessel, truss

Easy g08, g11, g12, beam, spring

Table 5.6: Classification of test functions based on the experimental phase.

discussion led us to believe that it is necessary to know what type of infeasible solutions
are useful. This idea is further developed in Chapter 6.

Difficulty of the test problems adopted

Based on the results obtained, we classified the seventeen functions adopted in three cate-
gories: Very difficult, difficult, average and easy. The corresponding classification is pre-
sented in Table 5.6.

Remarks

Some issues can be stated based on the previous study:

• None of the four multiobjective-based techniques to handle constraints compared
in this study work too well with large feasible regions. This means that these ap-
proaches have problems to move towards the global optimum once the feasible region
is reached (e.g. g02 where the feasible region covers 99% of the search space).

• When the problem to be solved has more than one nonlinear equality (e.g. g05 and
g13) it turns out to be very difficult to solve it using any of the approaches considered
in this study.

• The performance of all the techniques compared, degrades in the presence of high
dimensionality (e.g. g01 with 13 decision variables, g02 with 20 decision variables,
g03 with 10 decision variables and g10 with 8 decision variables).

• The four compared techniques are efficient in problems with small feasible regions
(joint, disjoint, non convex) formed by a significant number of inequality constraints
(both linear and nonlinear).
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• For problems with a low dimensionality (2 or 3 decision variables) and with either
equality or inequality constraints (linear or nonlinear), the four compared approaches
find very good results (g08, g11, and g12).

• HCVEGA prematurely converges to local optima in most of the problems.

• HCMOGA was the only one to find feasible solutions in one very difficult and one
difficult function (g5 and g13). However the solutions found are far from the global
optimum.

• The results suggest that splitting the population into subpopulations promotes a better
diversity balance, but also presented premature convergence.

• Pareto dominance as a selection criterion has proved to give better results (in terms
of optimality) than Pareto Ranking or a population-based approach. However, Pareto
dominance cannot reach the global optima in problems with either high dimension-
ality, large feasible regions or several nonlinear equality constraints.

• The overall results of the COMOGA’s steady-state GA suggests that this approach is
not a good option to solve nonlinear global optimization problems. This is mainly
due to its high selection pressure which tends to produce premature convergence.

5.4.3 Final conclusions of this study

Although not conclusive, this study seems to indicate that Pareto dominance, Pareto ranking
and population-based mechanisms can solve constrained optimization problems. However
they present limitations related with high dimensionality, equality constraints and large fea-
sible regions. Thus, the overall results suggest that the use of multiobjective concepts to
solve constrained problems with only one objective function is not adequate. The main
reason is that, multiobjective optimization by definition aims to find good trade-off solu-
tions, and such compromise solutions are not necessarily good when the search aims to find
only the global optimum of a single-objective optimization problem. After this study was
finalized, other authors came to similar conclusions in their research. Runarsson and Yao
[163] concluded that the use of Pareto Ranking causes the search to spend most of the time
searching in the infeasible region; therefore, the approach is unable to find feasible solu-
tions (or finds feasible solutions with a poor value of the objective function). Hernandez
et al. [80] proposed an approach named IS-PAES which is based on a multiobjective al-
gorithm called Pareto Archive Evolution Strategy (PAES) originally proposed by Knowles
and Corne [106]. IS-PAES uses an external memory to store the best set of solutions



5.4. A COMPARATIVE STUDY 73

found. Furthermore, IS-PAES requires a shrinking mechanism to reduce the search space.
The multiobjective concept is used in this case as a secondary criterion (Pareto dominance
is used only to decide whether or not a new solution is inserted in the external memory).
The authors acknowledge that the most important mechanisms of IS-PAES are its shrinking
procedure and the information provided by the external memory which is used to decide
the shrinking of the search space. Furthermore, despite its good performance as a global
optimizer, IS-PAES is an approach far from simple to implement.

As a final conclusion from this comparative study, we decided to keep the idea of han-
dling the objective function and the constraints of the problem separately in order to avoid
the use of a penalty function. However, we also decided to avoid the use of any multi-
objective optimization concept in the selection mechanism of an evolutionary algorithm.
Instead, we will put our emphasis on improving the sampling capabilities of the search
engine used (this implies a change of evolutionary algorithm, as will be seen next), and
in finding a constraint handling mechanism as simple as possible. All these objectives are
further developed in Chapter 6.
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Chapter 6

A Simple Evolution Strategy to Solve
Constrained Problems

After deciding to handle the objective function and constraints separately and to avoid the
use of multiobjective concepts, in this chapter we present a constraint handling technique
coupled with a novel diversity mechanism based on maintaining good infeasible solutions.
The approach is based on an evolution strategy (ES). We empirically show that the ES
is able to sample the constrained search space in a more convenient way than a genetic
algorithm under the same constraint handling and diversity mechanism.

Statistics presented here are based on samples of 30 independent runs. We show the
best result (the closest approximation to the global optimum or best known solution), the
mean, median, worst (the poorest approximation to the global optimum or best known solu-
tion) and standard deviations from these 30 runs. The discussion of results relates to finding
which result is quantitatively better among those provided by the different approaches com-
pared. In this work, a “better” result given by an approach means a closer approximation
to the global optimum or best known solution than that provided by another compared
method. A “similar” result provided by an algorithm means that an approximation to the
optimum is very similar in its value (it only has a small difference of percentage error) to
the corresponding approximation given by another technique, and this small difference is
not enough to consider it a better solution. A “worst” result obtained by an algorithm indi-
cates a poorer approximation to the global optimum or best known solution of a problem
than the provided by another approach.

We discuss the obtained results based on quality and robustness. Quality refers to close-
ness of the best solution found with respect to the global optimum or best known solution
(i.e. an approach which finds the global optimum in at least one run has a higher quality
than an algorithm which only reaches a good approximation but not exactly the global op-
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timum in its best result). An algorithm is considered robust when its mean and median
values are close approximations to the global optimum or best known solution. Such be-
havior should also be accompanied by a low standard deviation. A robust algorithm is one
that consistently reaches very good approximations of the global optimum or best known
solution (or reaches the global optimum in every single run).

6.1 The Evolution Strategy

ES were proposed by Bienert, Rechenberg and Schwefel who used them to solve hydrody-
namical problems [154, 171]. The first ES version was the (1 + 1)-ES which uses just one
individual that is mutated using a normally distributed random number with mean zero and
an identical stepsize for each decision variable. The best solution between the parent and
the offspring is chosen and the other one is eliminated. Rechenberg derived a convergence
rate theory and proposed a rule for changing the stepsize of mutations in a (1 + 1)-ES. This
is the so-called “1/5-success rule” [155].

The first multimembered ES was the (µ + 1)-ES, which was designed by Rechenberg
and is described in detail in [8]. In this approach, µ parent solutions recombine to generate
one offspring. This solution is also mutated and, if it is better, it will replace the worst
parent solution. Note however that the (µ+1)-ES has not been too popular in the literature.
However, it provided the transition to the state-of-the-art multimembered ES.

The (µ + λ)-ES and the (µ, λ)-ES were proposed by Schwefel [169]. In the first one,
the best µ individuals out of the union of the µ original parents and their λ offspring will
survive for the next generation. On the other hand, in the (µ, λ)-ES the best µ will be
selected only from the λ offspring.

The (µ+ λ)-ES uses an implicit elitist mechanism and solutions can survive more than
one generation. Meanwhile, in the (µ, λ)-ES solutions only survive one generation (this
is the type of selection traditionally adopted in genetic algorithms [66]). Instead of the
“1/5-success rule”, each individual includes a stepsize value for each decision variable.
Moreover, for each combination of two stepsize values, a rotation angle is included. These
angles are used to perform a correlated mutation. This mutation allows each individual to
look for a search direction. The stepsize values and the angles of each individual are called
strategy parameters. They are also recombined and mutated. A (µ + λ)-ES or (µ, λ)-ES
individual can be seen as follows: a(i)(~x, ~σ, ~θ), where i is the number of individual in the
population, ~x ∈ IRn is a vector of n decision variables, ~σ is a vector of n stepsize values and
~θ is a vector of n(n−1)/2 rotation angles where θi ∈ [−π, π] . One of the main differences
between a genetic algorithm and en evolution strategy relies on the way in which a solution
is represented (see Figure 6.1).
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decision variables

encoded decision variables
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Figure 6.1: Representation of individuals of a genetic algorithm and an evolution strategy.
Note that we do not use correlated mutation (we do not include rotation angles θ).

Recombination can be sexual (two parents) or panmictic (more than two parents). It is
worth reminding that recombination can be applied to the decision variables of the prob-
lem as well as to the strategy parameters. There are two main types of recombination: (1)
Discrete and (2) Intermediate. Both can be either sexual or panmictic. Also, Schwefel
[170] proposed to generalize intermediate recombination by allowing arbitrary weight fac-
tors from the interval [0, 1] to be used anew for each component of the chromosome. For a
complete description of the recombination operator we provide the following list, compli-
mented with Figure 6.2 which presents a 2-dimensional schema for different recombination
mechanisms [6]:

offspringi =





Operation Type of Recombination
P1i or P2i discrete
P1i or PJi panmictic discrete
P1i + ((P2i − P1i)/2) intermediate
P1i + ((PJi − P1i)/2) panmictic intermediate
P1i + χ((P2i − P1i)/2) generalized intermediate
P1i + χi((PJi − P1i)/2) panmictic generalized intermediate

where P1 and P2 are the parents for the sexual recombination, PJ means a different
parent for each gene (variable of the problem) in the chromosome. χi is the weight factor
created anew for each decision variable and used in the generalized recombination.

Based on Figure 6.2 where P1 and P2 are the parents, only the corners of the rectangle
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Figure 6.2: 2-dimensional scheme for different recombination mechanisms

(indicated by (1) in the figure) can be reached by discrete recombination. Intermediate
recombination yields the center of the rectangle’s diagonal lines (indicated by (2) in the
figure). Generalized intermediate recombination allows for a result located anywhere on
the diagonal line (indicated by (3) in the figure) connecting P1 and P2. Finally, panmictic
generalized intermediate recombination allows for the creation of an arbitrary point located
somewhere within the rectangle (indicated by (4) in the figure).

The mutation operator works on the decision variables and also on the strategy param-
eters. The mutation is calculated in the following way:

σ′i = σi · exp(τ ′ ·N(0, 1) + τ ·Ni(0, 1)) (6.1)

θ′j = θj + β ·Nj(0, 1) (6.2)

~x′ = ~x+ ~N(~0, C(~σ′, ~θ′)) (6.3)

where τ and τ ′ are interpreted as “learning rates” and are defined by Schwefel [6] as:

τ = (
√

2
√
n)−1 and τ ′ = (

√
2n)−1 and β ≈ 0.0873. Ni(x, y) is a function that returns a

real normal-distributed random number with mean x and standard deviation y. The index
i indicates that this random number is generated anew for each decision variable (gene of
the chromosome).

C(~σ′, ~θ′) is the covariance matrix represented by the set of n stepsizes and the n(n −
1)/2 rotation angles. The mutation on Equation 6.3 is implemented as follows: To calcu-
late this ~N(~0, C(~σ′, ~θ′)), which represents the vector of stepsizes but now updated using
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correlated mutation (we call this vector ~σ′′) we perform the following: For each angle θ′k,
we calculate its corresponding two stepsize values in its corresponding axes σ ′i and σ′j and
we calculate the following: σ

′′
i = σ′i · cos θk − σ′j · sin θk and σ

′′
j = σ′i · sin θk + σ′j · cos θk

[170]. In this way, the ~σ′′ values are now mutated in a correlated way and can be used to
mutate the ~x vector of decision variables.

Some authors use correlated mutation, but it implies an extra computational effort to
process the value of each angle and also to rotate the individual. Moreover, some extra
memory space is needed to store all the different angles per individual (the angles are
formed by the combination of all the axis based on the number of decision variables of the
problem). If non-correlated mutation is preferred, the computational cost and the storage
space for each individual get lower.

If a non-correlated mutation is used, the mutation expressions are:

σ′i = σi · exp(τ ′ ·N(0, 1) + τ ·Ni(0, 1)) (6.4)

x′i = xi + σ′i ·Ni(0, 1) (6.5)

The detailed ES algorithm is shown in Figure 6.3.

6.2 Motivation

Evolution Strategies (ES) have been widely used to solve global optimization problems [172,
70, 69]. ES have been found not only efficient in solving a wide variety of optimization
problems, but also have a strong theoretical background, [170, 6, 17] mainly focused in
two aspects: global convergence and convergence velocity. The first one concentrates of
proving that the algorithm is capable of finding the global optimum, and the last one refers
to the speed of the algorithm to approach a local optimum. We decided to use an approach
in which the objective function and the constraints are handled separately but instead of
adopting a multiobjective approach, we will use comparisons based on feasibility rules
and simple diversity mechanisms. The main aim is to propose a competitive evolutionary
approach to solve constrained problems.

The hypothesis that originated this work is the following: (1) The self-adaptation mech-
anism of an ES helps to sample the search space well enough as to reach the feasible region
reasonably fast and (2) the addition of simple feasibility rules to an ES should be enough to
guide the search in such a way that the global optimum can be approached efficiently. Also,
self-adaptation or some form of online-adaptation must be used to adapt extra parameters if
they can not be fixed. Also, the approach must solve in a competitive way all the functions
of the well known benchmark used in the literature [162].
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Begin
t=0
Create µ random solutions for the initial population.
Evaluate all µ individuals
Assign a fitness value to all µ individuals
For t=1 to MAX GENERATIONS Do

Produce λ offspring by recombination of the µ parents
Mutate each child
Evaluate all λ offspring
Assign a fitness value to all λ individuals
If Selection = “+” Then

Select the best µ individuals from the µ+ λ individuals
Else

Select the best µ individuals from the λ individuals
End If

End For
End

Figure 6.3: Detailed ES algorithm

6.3 The First Version: a (µ + 1)-ES

Motivated by the fact that some of the most recent and competitive approaches to incor-
porate constraints into an EA use an ES (see for example [162, 77]), we conducted an
experimental study in which we evaluated five types of ES [122]:

1. A variation of a (µ+ 1)-ES.

2. A (µ+ λ)-ES with correlated mutation.

3. A (µ+ λ)-ES without correlated mutation.

4. A (µ, λ)-ES with correlated mutation.

5. A (µ, λ)-ES without correlated mutation.

We decided to add just a comparison mechanism based on three simple criteria to the
ES to deal with constrained search spaces. The three simple selection criteria used are the
following:
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1. Between 2 feasible solutions, the one with the highest fitness value wins (assuming
a maximization problem/task).

2. If one solution is feasible and the other one is infeasible, the feasible solution wins.

3. If both solutions are infeasible, the one with the lowest sum of constraint violation is
preferred.

For our comparative study, we set a total of 350, 000 fitness function evaluations. We
performed 30 runs for each problem and for each type of ES. Equality constraints were
transformed into inequalities using a tolerance value of 0.0001. For the (µ + 1)-ES, the
initial values are: σ = 4.0, C = 0.99, µ = 5, and the maximum number of generations
was set to 350, 000. For the (µ + λ)-ES and (µ, λ)-ES, we adopted panmictic discrete
recombination both for the strategy parameters and for the decision variables. The learning
rates values were calculated as indicated in [6]. The initial values for the stepsize were 3.0
for all the decision variables. The initial values for the remaining ES are: µ = 100, λ =
300, and maximum number of generations = 1166. This unusual number of generations
was chosen in order to adjust the total number of objective function evaluations to 350, 000.
Based on the classification of problems proposed in Section 5.4.2, we decided to perform
this experiment using just the first 13 test problems. The results for the (µ + 1)-ES are
shown in Table 6.1, results for the (µ + λ)-ES with correlated mutation are listed in Table
6.2, results for the (µ + λ)-ES without correlated mutation appear in Table 6.3, results for
the (µ, λ)-ES with correlated mutation are in Table 6.4 and finally, results for the (µ, λ)-ES
without correlated mutation are shown in Table 6.5.

Based on the results obtained, the most competitive ES was the (µ + 1)-ES in which
there is just one current individual. Then, µ mutations from this only solution are created,
producing µ new individuals. However, these new individuals are not evaluated. Their only
role is to be combined into one offspring, using panmictic discrete recombination, but not
fixing one parent. Instead, for each decision variable we allow all individuals to be selected
to inherit their value (they can be chosen more than once). This new offspring is evaluated
and it will compete against the current individual. The best solution (between the current
solution and the new offspring) is selected as the new current solution. This approach is
based on the two mechanisms previously indicated.

The details of the (µ+ 1)-ES algorithm are shown in Figure 6.4.
However, the (µ+1)-ES approach has a tendency to get trapped either in local optimum

solutions or in the infeasible region [122]. This is due to the high selection pressure gener-
ated by the comparison mechanism, which gives infeasible solutions a zero probability of
remaining for the next generation, regardless of their closeness to the feasible region.
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(µ+ 1)-ES
Problem Optimal Best Mean Median Worst St. Dev.

g01 −15.000 −15.000 −14.847 −14.998 −12.999 4.1E-1
g02 0.803619 0.793083 0.698932 0.708804 0.576079 6.2E-2
g03 1.000 1.000 1.000 1.000 1.000 1.4E-5
g04 −30665.539 −30665.539 −30665.442 −30665.539 −30663.496 3.9E-1
g05 5126.498 − − − − −
g06 −6961.814 −6961.814 −6961.814 −6961.814 −6961.814 0
g07 24.306 24.368 24.703 24.731 25.517 2.4E-1
g08 0.095825 0.095825 0.095825 0.095825 0.095825 0
g09 680.63 680.632 680.674 680.659 680.915 5.2E-2
g10 7049.25 − − − − −
g11 0.75 0.75 0.78 0.77 0.88 3.73E-2
g12 1.000 1.000 1.000 1.000 1.000 0
g13 0.053950 − − − − −

Table 6.1: Statistical results obtained with the (µ + 1)-ES [122] in the 13 test functions.
“-” means no feasible solutions were found. A result in boldface indicates that the global
optimum (or best known solution) was reached.

Correlated (µ+ λ)-ES
Problem Optimal Best Mean Median Worst St. Dev.

g01 −15.000 −14.999 −14.998 −14.999 −14.973 4.62E-3
g02 0.803619 0.803594 0.796618 0.792588 0.785246 5.86E-3
g03 1.000 0.472 0.202 0.185 0.086 1.00E-1
g04 −30665.539 −30665.529 −30665.520 −30665.520 −30665.508 5.17E-3
g05 5126.498 − − − − −
g06 −6961.814 −6961.761 −6960.628 −6960.972 −6957.259 1.15E+0
g07 24.306 24.330 24.422 24.413 24.563 6.52E-2
g08 0.095825 0.095825 0.095825 0.095825 0.095825 0
g09 680.63 680.633 680.638 680.638 680.645 2.70E-3
g10 7049.25 7294.707 10857.808 9929.193 20743.082 3335.12E+0
g11 0.75 0.75 0.752 0.75 0.81 1.13E-2
g12 1.000 1.000 1.000 1.000 1.000 0
g13 0.053950 0.999998 1.000 1.000 1.000 0

Table 6.2: Results obtained with the correlated (µ + λ)-ES in the 13 test problems. “-
” means no feasible solutions were found. A result in boldface indicates that the global
optimum (or best known solution) was reached.
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Non-correlated (µ+ λ)-ES
Problem Optimal Best Mean Median Worst St. Dev.

g01 −15.000 −14.986 −14.974 −14.974 −14.954 7.79E-3
g02 0.803619 0.803607 0.800743 0.803503 0.792375 4.64E-3
g03 1.000 0.474 0.238 0.243 0.027 1.14E-1
g04 −30665.539 −30664.838 −30651.001 −30653.475 −30619.619 13.16E+0
g05 5126.498 − − − − −
g06 −6961.814 −6961.814 −6938.453 −6961.811 −6567.754 83.16E+0
g07 24.306 24.329 24.391 24.393 24.478 4.67E-2
g08 0.095825 0.095825 0.095823 0.095825 0.095771 1.0E-5
g09 680.63 680.631 680.640 680.636 680.666 1.04E-2
g10 7049.25 7075.010 7802.033 7531.349 10083.972 762.99E+0
g11 0.75 0.751 0.88 0.90 0.99 8.53E-2
g12 1.000 1.000 1.000 1.000 0.999 1.0E-6
g13 0.053950 − − − − −

Table 6.3: Results obtained with the non-correlated (µ + λ)-ES in the 13 test problems.
“-” means no feasible solutions were found. A result in boldface indicates that the global
optimum (or best known solution) was reached.

Correlated (µ, λ)-ES
Problem Optimal Best Mean Median Worst St. Dev.

g01 −15.000 −14.931 −14.915 −14.915 −14.889 9.78E-4
g02 0.803619 0.797201 0.777913 0.784871 0.748130 1.25E-2
g03 1.000 0.445 0.108 0.041 *0.000 1.40E-1
g04 −30665.539 −30664.217 −30662.855 −30662.591 −30661.170 7.72E-1
g05 5126.498 − − − − −
g06 −6961.814 −6802.235 −6538.026 −6541.951 −6277.651 127.24E+0
g07 24.306 24.651 24.887 24.915 25.238 1.42E-1
g08 0.095825 0.095825 0.095822 0.095823 0.095811 4.0E-6
g09 680.63 680.775 681.139 681.136 681.498 1.43E-1
g10 7049.25 12146.522 17457.792 18413.144 29076.020 4163.69E+0
g11 0.75 0.88 0.95 0.96 0.99 2.80E-2
g12 1.000 1.000 1.000 1.000 1.000 0
g13 0.053950 − − − − −

Table 6.4: Results obtained with the correlated (µ, λ)-ES in the 13 test problems. “-” means
no feasible solutions were found. A result in boldface indicates that the global optimum
(or best known solution) was reached.
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t=0

Create "u" mutations of x(0)

Create 1 child c(t) combining
the "u" mutations

x(0)=best(x(0),c(t))

Use the "1/5" rule to 

adapt the sigma value 

t=t+1

t=TMAX Final Solution x(0)
yesno

Create random solution x(0)

Figure 6.4: Diagram of our version of the (µ+ 1)-ES algorithm

6.4 The Second Version: a (1 + λ)-ES with a Diversity
Mechanism

In order to improve the quality and robustness of the results, a diversity mechanism was
added to our (1 + λ)-ES as reported in [124]. In this case, a (1 + λ)-ES was adopted and
the diversity mechanism consisted on allowing solutions with a good value of the objective
function to remain as a new starting point for the search at each generation, regardless of
feasibility. Additionally, we introduced a self-adaptive parameter called Selection Ratio
(Sr), which refers to the percentage of selections that will be performed in a deterministic
way (as used in the (µ + 1)-ES [122], where the child replaces the current solution based
on the comparison mechanism previously stated). In the remaining 1−Sr selections, there
were two choices: (1) either the parent (out of the λ) with the best value of the objective
function would replace the current solution (regardless of its feasibility) or (2) the best
parent (based on the comparison mechanism) would replace the current solution (see Figure
6.6). Both options are given a 50% probability each. See Figure 6.5.

The Sr parameter is adapted online using the fitness value of the current solution during
an interval of time (number of generations). The “mean deviation” (Md) of the current
solution over a certain number of generations is calculated in order to know how much it
has changed. All the fitness values are normalized in order to obtain a value between 0 and
1. The expression used to adapt the Sr value is the following:
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Non-correlated (µ, λ)-ES
Problem Optimal Best Mean Median Worst St. Dev.

g01 −15.000 −14.995 −14.971 −14.975 −14.931 1.56E-2
g02 0.803619 0.792393 0.779795 0.784977 0.753796 1.20E-2
g03 1.000 0.465 0.165 0.155 0.007 1.34E-1
g04 −30665.539 −30432.131 −30309.273 −30297.313 −30204.131 52.56E+0
g05 5126.498 − − − − −
g06 −6961.814 −6916.590 −6711.116 −6789.254 −6068.743 206.01E+0
g07 24.306 24.484 24.929 25.016 25.485 2.71E-1
g08 0.095825 0.095825 0.095825 0.095825 0.095821 1.0E-6
g09 680.63 680.809 681.351 681.324 682.871 4.85E-1
g10 7049.25 8024.88 11721.52 11677.32 16982.54 2319.20E+0
g11 0.75 − − − − −
g12 1.000 1.000 1.000 1.000 1.000 0
g13 0.053950 − − − − −

Table 6.5: Results obtained with the non-correlated (µ, λ)-ES in the 13 test problems. “-
” means no feasible solutions were found. A result in boldface indicates that the global
optimum (or best known solution) was reached.

Sr(t) =





Sr(t− interval)/1.001 if Md < 0.1
Sr(t− interval) ∗ 1.001 if Md > 0.2
Sr(t− interval) if 0.1 ≤Md ≤ 0.2

(6.6)

where interval is defined as a percentage of the maximum number of generations. For
example if the interval is defined as 0.05 and the number of generations is 100, the update
process will take place at every 5 generations. As it can be seen, Sr will be decreased if
the current solution has not significantly changed during the given interval (i.e. Md < 0.1)
allowing a candidate solution (which may be infeasible) with a good fitness value to replace
the current solution. This is meant to increase diversity. On the other hand, Sr will increase
if the solution has been significantly different (i.e. Md > 0.2) during the interval, thus
favoring deterministic selection to impel convergence. Sr will keep its current value if the
variation of the current solution in the interval has been moderated (i.e. 0.1 ≤Md ≤ 0.2).

In order to always keep the best solution found during the process, a super elitist mech-
anism was included. This super elitist mechanism is required because the diversity mech-
anism adopted causes that the new current solution is not necessarily feasible. The imple-
mentation of this super elitist mechanism does not add any significant extra computational
or storage cost to the algorithm.

To deal with equality constraints, a parameterless dynamic mechanism similar to that
used in ASCHEA [77] was adopted. The tolerance value ε is decreased with respect to the
current generation using the following expression:
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With 50 % of probability

Sr

Child vs current solution

Best Candidate Solution

solution

replaces the current

using selection criteria
Best f(x) Candidate Solution

replaces the current solution

using selection criteria

Figure 6.5: Diagram of diversity mechanism implemented in the the (1 +λ)-ES algorithm.

εj(t+ 1) = εj(t)/1.000001 (6.7)

The value 1.000001 was obtained empirically in order to allow an adequate decrease of
the tolerance for equality constraints.

The details of the (1 + λ)-ES algorithm are shown in Figure 6.7.
The parameters used in the experiments are the following (30 runs were performed for

each problem): the total number of fitness function evaluations was set to 330,000. Equality
constraints were transformed into inequalities using an initial tolerance value of 0.001. The
initial values for the (1+λ)-ES parameters were: σ = 4.0, C = 0.99, λ = 3, and maximum
number of generations = 275, 000. The interval of the Sr updates was almost negligible
(0.9). This means that the update will take place until generation 247, 500. We anticipated
that our approach would not be too sensitive to the Sr parameter and our experiments
confirmed this hypothesis. The statistical results are presented in Table 6.6. For problems
g03, g04, g08 and g11 the results seem to improve the corresponding optimum. This is due
to the fact that either we use a small tolerance for equality constraints (g03 and g11), or we
round off the results (g04 and g08). The results improved in quality and robustness with
respect to the previous version of the algorithm, but for one test problem (g05) no feasible
solutions could be found and for other functions the statistical results indicated a lack of
robustness.

In Table 6.7 the (1 + λ)-ES [124] is compared against the variation of a (µ + 1)-ES
[122].

The (1+λ)-ES was able to converge to the global optimum in 7 of the test 13 functions
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x2

x1

Current Solution

Child

Explored Region

Candidate Solution

Figure 6.6: Diagram that illustrates the explored region of the search space in the (1 + λ)-
ES version. In the variation of a (µ + 1)-ES only the points in white (child and current
solution) can be selected.

(1 + λ)-ES
Problem Optimal Best Mean Median Worst St. Dev.

g01 −15.000 −15.000 −15.000 −15.000 −15.000 0
g02 0.803619 0.803569 0.769612 0.782466 0.702322 2.75E-2
g03 1.000 1.004 1.003 1.003 1.002 4.23E-4
g04 −30665.539 −30665.539 −30665.539 −30665.539 −30665.539 0
g05 5126.498 − − − − −
g06 −6961.814 −6961.814 −6961.814 −6961.814 −6961.814 0
g07 24.306 24.314 24.419 24.419 24.561 7.12E-2
g08 0.095825 0.095825 0.095784 0.095825 0.095473 1.04E-4
g09 680.63 680.669 680.810 680.798 681.200 1.23E-1
g10 7049.25 7057.04 10771.42 10935.45 16375.27 2524.08E+0
g11 0.75 0.75 0.75 0.75 0.751 3.16E-4
g12 1.000 1.000 1.000 1.000 1.000 0
g13 0.053950 0.053964 0.264135 0.438692 0.544346 2.06E-1

Table 6.6: Statistical results obtained with the (1 + λ)-ES [124] in the 13 test functions.
“-” means no feasible solutions were found. A result in boldface indicates that the global
optimum (or best known solution) was reached.
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Create random solution x(0)

Create 1 child c(t) combining

flip(Sr)
no yes

x(0)=best(x(0),c(t))flip(0.5)

based on 3 criteriabased on f(x)

x(S)=best(x(S),x(0))

t mod n = 0 1/5 rule to adapt sigma

t mod interval = 0 Adapt Sr
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the "lambda" Cand_Sols

x(0)=best Cand_Sol x(0)=best Cand_Sol

Figure 6.7: Diagram of the (1 + λ)-ES algorithm. The shaded boxes indicate the steps
added to the first version of the algorithm

used (g01, g03, g04, g06, g08, g11 and g12), and it was able to converge very close to the
optimum in g02, g07, g09, g10 and g13.

With respect to the (µ + 1)-ES (Table 6.7), the (1 + λ)-ES improved the robustness of
the results in problems g01, g02, g04, g07 and g11. Also, the quality of the results was
improved in problems g10 and g13.

Measuring the computational cost, the number of fitness function evaluations (FFE) is
as follows: The (1 + λ)-ES performed 330, 000 FFE and the (µ+ 1)-ES required 350, 000.

The results were improved with respect to the (µ + 1)-ES, but for one test problems
(g05) no feasible solutions could be found and for other functions the statistical results
indicated lack of robustness.

The (1 + λ)-ES was also used to solve some engineering design problems [125] mak-
ing emphasis on the low computational cost of the approach, measured by the number of
objective function evaluations performed. The number of evaluations of the objective func-
tion was fixed to 36, 000. The results compared against penalty functions approaches are
presented in Tables: 6.8 for the Pressure Vessel Design, in Table 6.9 for the Welded Beam
design, in Table 6.10 for the Tension/Compression Spring design and, finally, in Table 6.11
for the Speed Reducer Design Problem.

Those results evidence the lack of consistency of the penalty-function-based approaches
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Best Result Mean Result Worst Result
P Optimal (1 + λ)-ES (µ+ 1)-ES (1 + λ)-ES (µ+ 1)-ES (1 + λ)-ES (µ+ 1)-ES

g01 −15.000 −15.000 −15.000 −15.000 −14.847 −15.000 −12.999
g02 0.803619 0.803569 0.793083 0.769612 0.698932 0.702322 0.576079
g03 1.000 1.004 1.000 1.003 1.000 1.002 1.000
g04 −30665.539 −30665.539 −30665.539 −30665.539 −30665.539 −30665.539 −30663.496
g05 5215.498 − − − − − −
g06 −6961.814 −6961.814 −6961.814 −6961.814 −6961.814 −6961.814 −6961.814
g07 24.306 24.314 24.368 24.419 24.703 24.561 25.517
g08 0.095825 0.095825 0.095825 0.095784 0.095825 0.095473 0.095825
g09 680.63 680.669 680.632 680.810 680.674 681.200 680.915
g10 7049.25 7057.04 − 10771.42 − 16375.27 −
g11 0.75 0.75 0.75 0.75 0.79 0.751 0.88
g12 1.000 1.000 1.000 1.000 1.000 1.000 1.000
g13 0.053950 0.053964 − 0.264135 − 0.544346 −

Table 6.7: Comparison of results between the (1 + λ)-ES [124] and the (µ + 1)-ES [122].
“-” means no feasible solutions were found. A result in boldface indicates a better results
(or best known or optimal solution found) for the corresponding approach.

Pressure Vessel Statistical Comparison
Design Death Penalty Static Dynamic Adaptive (1 + λ)-ES

Best 6129.827637 52.177204∗ 6104.700195 88.063927∗ 6059.714355
Mean 7191.641992 53.757520∗ 6670.045085 3335.592351 6355.343115

Median 7239.383545 52.870346∗ 6688.087646 604.228973∗ 6392.557129
Worst 8876.304688 67.266701∗ 7788.871094 11983.214844 6846.628418

St. Dev 636.043280 2.897835 397.492272 4172.602199 256.043795

Table 6.8: Comparison of results obtained with the (1+λ)-ES [125] for the pressure vessel
design problem. “*” means infeasible. A value in boldface indicates a better result for the
corresponding approach.

Welded Beam Statistical Comparison
Design Death Penalty Static Dynamic Adaptive (1 + λ)-ES

Best 1.748899 1.742388 1.752588 1.657890∗ 1.748594
Mean 2.032251 1.910210 2.067771 2.108092 1.870860

Median 1.998613 1.876692 1.982786 2.016899 1.852371
Worst 2.973882 2.252468 2.855598 3.351592∗ 2.232832

St. Dev 0.263312 0.135383 0.277771 0.361124 0.106377

Table 6.9: Comparison of results obtained with the (1 + λ)-ES [125] for the welded beam
design problem. “*” means infeasible. A value in boldface indicates a better result for the
corresponding approach.
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Ten./Comp. Spring Statistical Comparison
Design Death Penalty Static Dynamic Adaptive (1 + λ)-ES

Best 0.012732 0.012729 0.012689 0.012729 0.012688
Mean 0.014527 0.013774 0.013681 0.013675 0.013014

Median 0.014141 0.013621 0.013436 0.013606 0.012756
Worst 0.017723 0.016407 0.016597 0.015933 0.017037

St. Dev 0.001457 0.001045 0.000934 0.000720 0.000801

Table 6.10: Comparison of results obtained with the (1 + λ)-ES [125] for the ten-
sion/compression spring design problem. A value in boldface indicates a better result
for the corresponding approach.

Speed Reducer Statistical Comparison
Design Death Penalty Static Dynamic Adaptive (1 + λ)-ES

Best 1399.237427∗ 1671.386475∗ 1265.959229∗ 1679.101318∗ 3025.005127
Mean 1399.237427∗ 267997861.844320 20032.261825 12174.159896 3088.777816

Median 524036.802128∗ 3661.611328∗ 3179.876343∗ 3272.115234 3078.591797
Worst 2913.118042∗ 8024214016.0∗ 243416.062500∗ 244393.671875∗ 3226.248291

St. Dev 15600199.00 1440295898.14 59873.421388 43472.043832 47.361890

Table 6.11: Comparison of results obtained with the (1+λ)-ES [125] for the speed reducer
design problem. “*” means infeasible. A value in boldface indicates a better result for the
corresponding approach.
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Best Result Mean Result Worst Result
Problem (1 + λ)-ES SB (1 + λ)-ES SB (1 + λ)-ES SB

Press.Vessel 6059.728027 6171.00 6295.362964 6335.05 6887.999023 6453.65
Welded Beam 1.742510 2.4426 1.876213 2.5215 2.023696 2.6315

Speed Red. 3038.684082 3008.08 3088.530505 3012.12 3199.294922 3028.28

Table 6.12: Comparison of results between the (1 + λ)-ES [125] and the Socio Behavioral
approach (SB) [3]. A value in boldface indicates a better result for the corresponding
approach.

(based on the difficult to define their required parameters) [125]. On the other hand, the
(1+λ)-ES obtained the lowest standard deviations so far. Also, the quality of results of our
approach, generally speaking, was also better. Finally, the (1+λ)-ES was compared against
one state-of-the-art engineering design algorithm, called the “Socio-Behavioral approach”
[3] showing a very competitive approach. The Socio-Behavioral approach uses a particle-
swarm like algorithm [101] to solve engineering design problems. The idea is to simulate
the behavior of a civilization formed by societies, where each society has a leader which
guides the remaining individuals in the society to promising areas of the search space. Also,
there is a society of leaders which is guided by the best solution of all the civilization. See
Table 6.12 for a comparison of results.

6.5 The Final Version: a (µ + λ)-ES with an Improved
Diversity Mechanism

The two previous versions of the algorithm [122, 124] are based on a single-membered ES
and they both lack of explorative power to sample large search spaces. Thus, we decided to
re-evaluate the use of a (µ+ λ)-ES to overcome this limitation, but in this case, improving
the diversity mechanism implemented in the second version of our approach [123] and
eliminating the use of the self-adaptive Sr parameter. The new version of the algorithm,
called “Simple Multimembered Evolution Strategy (SMES)” is based on the same concepts
of its predecessors as discussed before.

The detailed features of our algorithm are the following:

• Diversity mechanism: With an idea similar to that used in the (1 +λ)-ES version, we
allow infeasible solutions to remain in the population. However, unlike this previous
approach, where the best parent based only on the objective function (regardless of
its feasibility) can survive, in this new approach we allow the infeasible individual
with the best value of the objective function and with the lowest amount of constraint
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violation to survive for the next generation. This solution (called by us the best infea-
sible solution) can be chosen either from the parents or the offspring population, with
50% probability. The process of allowing that solution to survive for the next gener-
ation happens 3 times every 100 during the same generation. However, it is a desired
behavior because a few copies of that solution will allow its recombination with sev-
eral solutions in the population, especially with feasible ones. Recombining feasible
solutions with infeasible solutions in promising areas (based on the good value of the
objective function) and close to the boundary of the feasible region will allow the ES
to reach global optimum solutions located precisely on the boundary of the feasible
region of the search space (which are normally the most difficult solutions to reach).
Following the idea of allowing just a few infeasible solutions (one in the case of the
(1 + λ)-ES approach), we allow the best infeasible solution to be copied into the
population for the next generation just 3 times for every 100 attempts. This works in
the following way: When the deterministic replacement is used to form the popula-
tion for the next generation in an ES, the best individuals from the union of parents
and offspring are selected based on the comparison mechanism previously indicated
(in a deterministic way). The process will pick feasible solutions with a better value
of the objective function first, followed by infeasible solutions with a lower value
of constraint violation. However, 3 times from every 100 picks, the best infeasible
solution (from either the parents or the offspring population with 50% probability
each) is copied in the population for the next generation. The pseudocode is listed in
Figure 6.8.

Based on the empirical evidence observed in the previous version of the approach
[124] where we used a population of 3 offspring, we decided to use a small number
of copies of the best infeasible solutions for the next generation of our approach. For
values larger than 3, the quality and robustness of our approach tend to decrease. It
is worth remarking that in the case where no infeasible solutions are found in the
population, a random solution is copied to the population for the next generation.
Therefore, it is possible, at any given generation, to have an entirely feasible parents
population. However, the mechanism will allow, when the offspring are generated,
to have infeasible individuals again.

• Combined recombination: We use panmictic recombination, but with a combination
of the discrete and intermediate recombination operators. Each gene in the chro-
mosome can be processed with any of these two recombination operators with 50%
probability. This operator is applied to both, strategy parameters (sigma values) and
decision variables of the problem. The pseudocode is shown in Figure 6.9. Note that
we use intermediate recombination by just computing the average between the values
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function population for next generation()
For i=1 to µ Do

If flip(0.97)
Select the best individual based on the comparison mechanism
from the union of the parents and offspring population,
add it to the population for the next generation and delete
it from this union.

Else
If flip(0.5)

Select the best infeasible individual from the parents
population and add it to the population for the next
generation.

Else
Select the best infeasible individual from the offspring
population and add it to the population for the next
generation.

End If
End If

End For
End

Figure 6.8: Pseudocode of the generation of the population for the next generation with the
diversity mechanism incorporated. flip(P ) is a function that returns TRUE with probability
P .

of the variable of each parent (as originally proposed by Schwefel [170]).

• Reduction of the initial stepsize of the ES: The previous versions of our algorithm are
based on a variation of a (µ+ 1)-ES [122] and a (1 +λ)-ES [124]. These approaches
do not use a population of solutions and employ the most simple scheme of an ES
where only one sigma value is used for all the decision variables. We observed
that when that sigma value was close to zero, the previous approaches were capable
of reaching the global optimum, or at least improve the value of the final solution.
Therefore, in our new approach based on a multimembered ES, we decided to favor
finer movements in the search space. We experimented with just a percentage of
the quantity obtained by the formula proposed by Schwefel [170]. We initialize the
sigma values (we use one for each decision variable) for each individual in the initial
population with only a 40% of the value obtained by the following formula (where n
is the number of decision variables):
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function combined recombination()
Select mate 1 from the parents population
For i=1 to NUMBER OF VARIABLES Do

Select mate 2 from the parents population
If flip(0.5)

If flip(0.5)
childi = mate 1i

Else
childi = mate 2i

End If
Else

childi = mate 1i + ((mate 2i −mate 1i/2, 0)
End If

End For
End

Figure 6.9: Pseudocode of the panmictic combined (discrete-intermediate) recombination
operator used by our approach. flip(P ) is a function that returns TRUE with probability P .

σi(0) = 0.4×
(

∆xi√
n

)
(6.8)

where ∆xi is approximated with the expression (suggested in [162]), ∆xi ≈ xui −xli,
where xui − xli are the upper and lower bounds of the decision variable i.

Summarizing, our approach works over a simple multimembered evolution strategy:
(µ + λ)-ES. The only modifications introduced are the reduction of the initial stepsize of
the sigma values, the panmictic combined (discrete-intermediate) recombination and the
changes to the original deterministic replacement of the ES (made by sorting the solutions
with respect to the comparison mechanism based on feasibility discussed at the beginning
of this section), allowing the best infeasible solution, from either the parents or the offspring
population, to remain in the next generation. The details of our approach are presented in
Figure 6.10.

A graphical example of the expected behavior of the approach can be found in Figure
6.11. We used a 2-dimensional test problem g08, which is a problem easy to solve by the
approach; it requires about 5400 evaluations of the objective function (18 generations) to
reach the global optimum, but it helps to visualize how our approach works. The definition
of this problem can be found in Appendix A.
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Statistical Results of the Simple Multimembered Evolution Strategy (SMES)
Problem Optimal Best Mean Median Worst St. Dev.

g01 −15.000 −15.000 −15.000 −15.000 −15.000 0
g02 0.803619 0.803601 0.785238 0.792549 0.751322 1.67E-2
g03 1.000 1.000 1.000 1.000 1.000 2.09E-4
g04 −30665.539 −30665.539 −30665.539 −30665.539 −30665.539 0
g05 5126.498 5126.599 5174.492 5160.198 5304.167 50.06E+0
g06 −6961.814 −6961.814 −6961.284 −6961.814 −6952.482 1.85E+0
g07 24.306 24.327 24.475 24.426 24.843 1.32E-1
g08 0.095825 0.095825 0.095825 0.095825 0.095825 0
g09 680.63 680.632 680.643 680.642 680.719 1.55E-2
g10 7049.25 7051.903 7253.047 7253.603 7638.366 136.02E+0
g11 0.75 0.75 0.75 0.75 0.75 1.52E-4
g12 1.000 1.000 1.000 1.000 1.000 0
g13 0.053950 0.053986 0.166385 0.061873 0.468294 1.77E-1

Table 6.13: Statistical results obtained by our SMES for the 13 test functions over 30
independent runs. A result in boldface indicates that the global optimum (or best known
solution) was reached.

As it can be observed, in Generation 1 there are a few feasible as well as several in-
feasible solutions. The behavior of the approach can be observed in generation 3, where
there are more feasible solutions than those in generation 1 and also there are infeasible
solutions surrounding the feasible region. In this way, helped by the combined crossover
and the finer mutation movements the feasible region is sampled well-enough as to find
promising areas (three areas in the example). This is shown in generation 6, where there is
still an infeasible solution in the population. It is worth noticing that this infeasible solution
is close to the area where the global optimum is located; this can be seen in generation 10
where the infeasible solution has disappeared but the approach has found the vicinity of
the constrained global optimum. Our algorithm has converged to the constrained global
optimum in generation 18.

Unlike Deb’s [49] technique, our approach does not use niches in order to maintain
diversity in the population. This is because inside the replacement process used to produce
the population for the next generation, we incorporate a mechanism that allows slightly
infeasible solutions with a good objective function value to be considered better than fea-
sible ones. This ES-like replacement makes also a difference with respect to Powell and
Skolnick’s approach [146], which uses proportional selection (with linear ranking) on a
GA-based approach.
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6.5.1 Experiments and results

To evaluate the performance of the proposed approach we used the first 13 test functions
adopted in section 5.4 (which are the most difficult based on the results of our comparison
study of Chapter 5). Their expressions are provided in Appendix A at the end of this
document.

We performed 30 independent runs for each test function. The learning rates values
were calculated using the formulas proposed by Schwefel [170] (where n is the number of
decision variables of the problem):

τ =
(√

2
√
n
)−1

τ ′ =
(√

2n
)−1

(6.9)

The initial values for the stepsize were calculated using equation (6.8).
In the experiments the following parameters were used:

• µ = 100.

• λ = 300.

• Number of generations = 800.

• Number of objective function evaluations = 240, 000.

The combined recombination operator was used both for the decision variables of the
problem and for the strategy parameters (sigma values). Note that we do not use correlated
mutation [121].

To deal with equality constraints, a dynamic mechanism originally proposed in AS-
CHEA [77] and used in [124] is adopted. The tolerance value ε is decreased with respect
to the current generation using the following expression:

εj(t+ 1) = εj(t)/1.00195 (6.10)

The initial ε0 was set to 0.001. Note that the use of the value 1.00195 in equation (6.10)
causes the allowable tolerance for the equality constraints to go from 0.001 (initial value)
to 0.0004 (final value) given the number of iterations adopted by our approach (if more
iterations are performed, this value will tend to zero).

For problem g13, ε0 was set to a much larger value (3.0), because in this case it is
very difficult to generate feasible solutions during the initial generations of our approach.
Thus, by using a large tolerance value, more individuals will be able to satisfy the equality
constraints and will serve as reference solutions that the algorithm will improve over time.
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Given that this larger value is adopted, we also changed the constant decreasing value.
So, instead of using 1.00195, we adopt, in this case, a value of 1.0145. Such a value
causes the allowable equality constraint violation to go from 3.0 (initial value) to 0.00003
(final value) given the number of iterations adopted by our approach. Note that the final
allowable tolerance is smaller in this case, despite the initial larger value. As a matter of
fact, we recommend to use this second setup for the tolerance of the equality constraints in
problems in which no feasible solutions can be found by our algorithm when using a small
initial ε0.

Additionally, for problems g03 and g13 the initial stepsize required a more dramatic
decrease. They were defined as 0.01 (just a 5% instead of the 40% used for the other test
functions) for g03 and 0.05 (2.5%) for g13. Those two test functions seem to provide better
results with very smooth movements. It is important to note that those two problems share
the following features: moderately high dimensionality (five or more decision variables),
nonlinear objective function, one or more equality constraints, and moderate size of the
search space (based on the range of the decision variables). Those common features suggest
that for these types of problems, finer movements provide a better sampling of the search
space using an evolution strategy.

The statistical results of our SMES are summarized in Table 6.13.
We compare our approach against the results found in the literature for three state-of-

the-art approaches: the Homomorphous Maps (HM) [110], Stochastic Ranking (SR) [162]
and the Adaptive Segregational Constraint Handling Evolutionary Algorithm (ASCHEA)
[77]. The best results obtained by each approach are shown in Table 6.14. The mean values
provided are compared in Table 6.15 and the worst results are presented in Table 6.16.
The results provided by these approaches were taken from the original references for each
method.

6.5.2 Discussion of results

As described in Table 6.13, our approach was able to find the global optimum in seven test
functions (g01, g03, g04, g06, g08, g11 and g12) and it found solutions very close to the
global optimum in the remaining six (g02, g05, g07, g09, g10, g13).

When compared with respect to the three state-of-the-art techniques previously indi-
cated, we found the following (see Tables 6.14, 6.15 and 6.16):

Compared with the homomorphous maps (HM)

Our approach found a “better” best solution in ten problems (g01, g02, g03, g04, g05, g06,
g07, g09, g10 and g12) and a “similar” best result in other two (g08 and g11). Also, our
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Comparison of the best solution obtained.
P Optimal HM SR ASCHEA SMES GA Recomb. Recomb.&

Step.Reduc.
g01 −15.000 −14.7886 −15.000 −15.0 −15.000 −14.440 −15.000 −15.000
g02 0.803619 0.79953 0.803515 0.785 0.803601 0.796231 0.803589 0.803592
g03 1.000 0.9997 1.000 1.0 1.000 0.990 0.800 1.000
g04 −30665.539 −30664.5 −30665.539 −30665.5 −30665.539 −30626.053 −30665.445 −30665.422
g05 5126.498 − 5126.497 5126.5 5126.599 − 5133.935 5126.988
g06 −6961.814 −6952.1 −6961.814 −6961.81 −6961.814 −6952.472 −6961.814 −6961.814
g07 24.306 24.620 24.307 24.3323 24.327 31.097 24.360 24.343
g08 0.095825 0.0958250 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825
g09 680.63 680.91 680.630 680.630 680.632 685.994 680.632 680.631
g10 7049.25 7147.9 7054.316 7061.13 7051.903 9079.770 7231.497 7062.754
g11 0.75 0.75 0.750 0.75 0.75 0.75 0.75 0.75
g12 1.000 0.999999857 1.000000 NA 1.000 1.000 1.000 1.000
g13 0.053950 NA 0.053957 NA 0.053986 0.134057 0.171855 0.058037

Table 6.14: Comparison of the best solutions found by our SMES against the Homomor-
phous Maps (HM), Stochastic Ranking (SR), ASCHEA, our GA version and two other
versions of our SMES: one that uses only recombination and another one that uses both
recombination and stepsize reduction. A result in boldface indicates either a better result
by the corresponding approach or that the global optimum (or best known solution) was
reached. “-” means that no feasible solutions were found. NA = Not available.

Comparison of the mean solution obtained.
Problem Optimal HM SR ASCHEA SMES GA Recomb. Recomb.&

Step.Reduc.
g01 −15.000 −14.7082 −15.000 −14.84 −15.000 −14.236 −15.000 −15.000
g02 0.803619 0.79671 0.781975 0.59 0.785238 0.788588 0.802376 0.798786
g03 1.000 0.9989 1.000 0.99989 1.000 0.976 0.529 1.000
g04 −30665.539 −30655.3 −30665.539 −30665.5 −30665.539 −30590.455 −30665.445 −30661.106
g05 5126.498 − 5128.881 5141.65 5174.492 − 5133.935 5158.739
g06 −6961.814 −6342.6 −6875.940 −6961.81 −6961.284 −6872.204 −6961.814 −6961.814
g07 24.306 24.826 24.374 24.66 24.475 34.980 24.472 24.474
g08 0.095825 0.0891568 0.095825 0.095825 0.095825 0.095799 0.095825 0.095825
g09 680.63 681.16 680.656 680.641 680.643 692.064 680.637 680.637
g10 7049.25 8163.6 7559.192 7193.11 7253.047 10003.225 7355.564 7193.887
g11 0.75 0.75 0.750 0.75 0.75 0.75 0.752 0.752
g12 1.000 0.999134613 1.000000 NA 1.000 1.000 1.000 1.000
g13 0.053950 NA 0.057006 NA 0.166385 − 0.787648 0.247404

Table 6.15: Comparison of the mean solutions found by our SMES against the Homomor-
phous Maps (HM), Stochastic Ranking (SR), ASCHEA, our GA version and two other
versions of our SMES: one that uses only recombination and another one that uses both
recombination and stepsize reduction. A result in boldface indicates either a better result
by the corresponding approach or that the global optimum (or best known solution) was
reached. “-” means that no feasible solutions were found. NA = Not available.
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Comparison of the worst solution obtained.
Problem Optimal HM SR ASCHEA SMES GA Recomb. Recomb.&

Step.Reduc.
g01 −15.000 −14.6154 −15.000 NA −15.000 −14.015 −15.000 −15.000
g02 0.803619 0.79119 0.726288 NA 0.751322 0.779140 0.787626 0.785255
g03 1.000 0.9978 1.000 NA 1.000 0.956 0.294 0.999
g04 −30665.539 −30645.9 −30665.539 NA −30665.539 −30567.105 −30649.424 −30647.484
g05 5126.498 − 5142.472 NA 5304.167 − 5246.968 5201.935
g06 −6961.814 −5473.9 −6350.262 NA −6952.482 −6784.255 −5218.657 −6961.814
g07 24.306 25.069 24.642 NA 24.843 38.686 24.658 24.789
g08 0.095825 0.0291438 0.095825 NA 0.095825 0.095723 0.095825 0.095825
g09 680.63 683.18 680.763 NA 680.719 698.297 680.649 680.664
g10 7049.25 9659.3 8835.655 NA 7638.366 11003.533 7548.530 7368.333
g11 0.75 0.75 0.750 NA 0.75 0.752 0.785 0.767
g12 1.000 0.991950498 1.000000 NA 1.000 0.999 1.000 1.000
g13 0.053950 NA 0.216915 NA 0.468294 − − 0.466266

Table 6.16: Comparison of the worst solutions found by our SMES against the Homomor-
phous Maps (HM), Stochastic Ranking (SR), ASCHEA, our GA version and two other
versions of our SMES: one that uses only recombination and another one that uses both
recombination and stepsize reduction. A result in boldface indicates either a better result
by the corresponding approach or that the global optimum (or best known solution) was
reached. “-” means that no feasible solutions were found. NA = Not available.

technique reached “better” mean and worst results in ten problems (g01, g03, g04, g05,
g06, g07, g08, g09, g10 and g12). A “similar” mean and worst result was found in problem
g11. The Homomorphous maps found a “better” mean and worst result in function g02.
No comparisons were made with function g13 because such results were not available for
HM.

Compared with stochastic ranking (SR)

With respect to SR, our approach was able to find a “better” best result in functions g02
and g10. In addition, it found a “similar” best solution in seven problems (g01, g03, g04,
g06, g08, g11 and g12). Slightly “better” best results were found by SR in the remaining
functions (g05, g07, g09 and g13). Our approach found “better” mean and worst results
in four test functions (g02, g06, g09 and g10). It also provided “similar” mean and worst
results in six functions (g01, g03, g04, g08, g11 and g12). Finally, SR found again “better”
mean and worst results in function g05, g07 and g13.

Compared with the adaptive segregational constraint handling evolutionary algo-
rithm (ASCHEA)

Compared against ASCHEA, our algorithm found “better” best solutions in three problems
(g02, g07 and g10) and it found “similar” best results in six functions (g01, g03, g04,
g06, g08, g11). ASCHEA found slightly “better” best results in function g05 and g09.
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Additionally, our approach found “better” mean results in four problems (g01, g02, g03 and
g07) and it found “similar” mean results in three functions (g04, g08 and g11). ASCHEA
surpassed our mean results in four functions (g05, g06, g09 and g10). We did not compare
the worst results because they were not available for ASCHEA. Also, We did not perform
comparisons with respect to ASCHEA using functions g12 and g13 for the same reason.

As we can see, our approach showed a very competitive performance with respect to
these three state-of-the-art approaches.

Confidence intervals

In order to predict the average performance of our approach we performed an statistical
test to calculate the confidence intervals for the mean statistic. First of all, we discarded
from the test those test functions where our approach reached the global optimum in all 30
runs (g01, g03, g04, g06, g08, g11 and g12). Thus, we plotted the histogram and density
line for the remaining test problems (g02, g05, g07, g09, g10 and g13). They are presented
in Figure B-1 and B-2. These graphics suggest that none of the distributions are close to
be normal. To verify it, we performed a one-sample Kolmogorov-Smirnov test for each
sample for each function. In all cases the results proved that the distributions were not
close to a normal one. After that, we performed a bootstrapping test. The bootstrapping
distribution and also the normal quantile obtained are shown in Figures B-3, B-4 and B-5.
As it can be seen, these bootstrapping distributions were close to a normal. For function
g13 we calculated the bootstrap bias-corrected accelerated (BCa) to obtain more accurate
results (because the bootstrapping distribution was skewed). Also, the quantile graph for
g13 presented some differences due to the small interval for the obtained solutions (a value
close to 0.01). The summary of results with the confidence intervals for the mean statistic,
with 95% confidence is presented in Table 6.17.

The confidence intervals for the mean suggest that the SMES either reaches the global
optimum or provides a very good approximation to it. The test problems that presented
more difficult to the SMES were g02, g05, g10 and g13; g05 and g13 have 3 nonlinear
equality constraints each and g10 has the widest search space based on the bounds defined
by each decision variable. For problem g02, which presents many problems to optimiza-
tion algorithms to consistently reach the vicinity of the best known solution, the mean
confidence interval obtained by the SMES is considered competitive. Besides, For prob-
lem g10, whose size of the search space is the widest, the obtained confidence interval is
also considered competitive. On the other hand, for problems g05 and g13, which contain
nonlinear equality constraints, the results obtained were not very competitive. This issue is
discussed in-depth in Chapter 8.

Based on confidence intervals, we can allow the SMES to stop when the mean confi-
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Problem Optimum Confidence Interval
for the Mean statistic

g01 −15.000 [−15.000,−15.000]
g02 0.803619 [0.766579, 0.783869]
g03 1.000 [1.000,1.000]
g03 −30665.539 [−30665.539,−30665.539]
g05 5126.498 [5158.953, 5200.400]
g06 −6961.814 [−6961.814,−6961.814]
g07 24.306 [24.462, 24.578]
g08 0.095825 [0.095825,0.095825]
g09 680.63 [680.639, 680.649]
g10 7049.25 [7236.243, 7325.380]
g11 0.75 [0.75,0.75]
g12 1.000 [1.000,1.000]
g13 0.053950 [0.111559, 0.244255]

Table 6.17: Confidence intervals for the sampled mean of the SMES. These intervals were
generated using a bootstrapping process. A result in boldface means that the optimum was
reached in the 30 independent runs.

dence interval seems to have no significative change in a period of time (a certain number
of generations). In this case, the number of evaluations can be limited for the ability of
the approach to find new solutions. Nonetheless, in this work we centered our effort in
comparing it against other approaches where the number of fitness function evaluations is
fixed a-priori. Anyway, this stop option can be considered when the SMES is used to solve
real world engineering design problems.

Advantages of the approach

Our approach can deal with moderately constrained problems (g04), highly constrained
problems, problems with low (g06, g08), moderated (g09) and high (g01, g02, g03, g07)
dimensionality, with different types of combined constraints (linear, nonlinear, equality and
inequality) and with very large (g02), very small (g05 and g13) or even disjoint (g12) fea-
sible regions. Also, the algorithm is able to deal with large search spaces (based on the
intervals of the decision variables) and with a very small feasible region (g10). Further-
more, the approach can find the global optimum in problems where such optimum lies on
the boundaries of the feasible region (g01, g02, g04, g06, g07, g09). This behavior suggests
that the mechanism of maintaining the best infeasible solution helps the search to sample
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the boundaries between the feasible and infeasible regions.

6.5.3 Finding the strength of the approach

Once we corroborated the effectiveness of our approach, it became particularly relevant to
identify the key component (or combination of them) that was mainly responsible for the
good performance of our algorithm. For that sake, we designed two experiments.

The aim of the first experiment was to to know which of the three modifications to the
(µ+λ)-ES was crucial, or if only the combined effect of all three made the algorithm work.

The goal of the second experiment was to reinforce our hypothesis regarding the effec-
tiveness of the self-adaptation mechanism of an ES to sample constrained search spaces.

The experiments consisted on the following:

• Cross-validation of our ES’ mechanisms: We tested our SMES using each of its
mechanisms separately and combining them in pairs, in order to recognize which of
them was mandatory. It is important to note that removing the diversity mechanism
implies disallowing the best infeasible solution to remain in the population for the
next generation of the algorithm. The comparison mechanism based on feasibility
remains in all cases in order to guide the search to the feasible region of the search
space.

• ES against GA: Our second experiment consisted on implementing a real-coded GA
with the same combined recombination and the same diversity mechanism used in
our SMES. Here, we wanted to see if the use of a GA instead of an ES would make
any significant difference in terms of performance.

We will discuss next the results obtained in each of these two experiments.

Cross-validation of our ES’ mechanisms

We tested six different versions of our SMES:

• Only combined recombination.

• Only diversity mechanism.

• Only stepsize reduction.

• Combined recombination & diversity mechanism.
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Best solutions obtained by our SMES with its three mechanisms analyzed separately
Problem Optimal Only Combined Recombination Only Diversity Mech. Only Stepsize Reduction

g01 −15.000 −15.000 −15.000 −15.000
g02 0.803619 0.803589 0.763226 0.744524
g03 1.000 0.800 0.995 0.482
g04 −30665.539 −30665.445 −30663.625 −30664.609
g05 5126.498 5133.935 5127.187 5126.938
g06 −6961.814 −6961.814 −6961.814 −6961.814
g07 24.306 24.360 24.576 24.429
g08 0.095825 0.095825 0.095825 0.095825
g09 680.63 680.632 680.654 680.654
g10 7049.25 7231.497 7078.823 7059.549
g11 0.75 0.75 0.75 0.75
g12 1.000 1.000 1.000 1.000
g13 0.053950 0.171855 0.025667∗ 0.013617∗

Table 6.18: Best solutions found by our SMES with its three mechanisms analyzed sep-
arately. “*” means infeasible. A result in boldface indicates either a better result by the
corresponding approach or that the global optimum (or best known solution) was found.

• Combined recombination & stepsize reduction.

• Stepsize reduction & diversity mechanism.

The parameters used in these six versions are exactly the same used in the experiments
described in Section 6.5.1. Thus, the number of evaluations of the objective function is also
the same (240, 000).

The best results obtained for the three first versions (with only one feature) are pre-
sented in Table 6.18. Mean results are shown in Table 6.19 and worst results are shown in
Table 6.20. The best, mean and worst results obtained for the last three versions (combina-
tion of two features) are shown in Tables 6.21, 6.22 and 6.23.

From the results shown in Tables 6.18, 6.19 and 6.20, it is clear that the version with
only the combined recombination provided the “better” best results as well as the “better”
mean and worst results for most of the functions. The version with only the diversity
mechanism obtained “better” best, mean and worst results only for function g03 and was
unable to reach the feasible region in g13. The version with only the stepsize reduction
obtained “better” best results for functions g05 and g10; and it also obtained a “better”
worst result for function g06. However, this version was also unable to reach the feasible
region in g13.

With respect to the comparison among versions which use two (out of three) combined
mechanisms, the results indicate that the combination of the recombination with the step-
size reduction provided the best and more robust results (see Tables 6.21, 6.22 and 6.23).
This version obtained “better” best results for problems g02, g03, g07, g09, and g10. Also,



104 CHAPTER 6. A SIMPLE EVOLUTION STRATEGY TO SOLVE CONSTRAINED PROBLEMS

Mean solutions obtained by our SMES with its three mechanisms analyzed separately
Problem Optimal Only Combined Recombination Only Diversity Mech. Only Stepsize Reduction

g01 −15.000 −15.000 −14.055 −14.493
g02 0.803619 0.802376 0.674 0.627237
g03 1.000 0.529 0.692 0.212
g04 −30665.539 −30665.445 −30630.231 −30633.003
g05 5126.498 5133.935 5373.424 5271.296
g06 −6961.814 −6961.814 −6950.373 −6961.439
g07 24.306 24.472 26.883 26.694
g08 0.095825 0.095825 0.095825 0.095825
g09 680.63 680.637 681.098 681.299
g10 7049.25 7355.564 7783.965 7527.588
g11 0.75 0.752 0.755 0.752
g12 1.000 1.000 1.000 1.000
g13 0.053950 0.787648 0.052238∗ 0.201332∗

Table 6.19: Mean solutions found by our SMES with its three mechanisms analyzed sep-
arately. “*” means infeasible. A result in boldface indicates either a better result by the
corresponding approach or that the global optimum (or best known solution) was found.

Worst solutions obtained by our SMES with its three mechanisms analyzed separately
Problem Optimal Only Combined Recombination Only Diversity Mech. Only Stepsize Reduction

g01 −15.000 −15.000 −10.875 −12.585
g02 0.803619 0.787626 0.586408 0.499773
g03 1.000 0.294 0.441 0.021
g04 −30665.539 −30649.424 −30447.381 −30582.023
g05 5126.498 5246.968 6018.426 6090.623
g06 −6961.814 −5218.657 −6618.615 −6952.750
g07 24.306 24.658 38.710 31.982
g08 0.095825 0.095825 0.095825 0.095825
g09 680.63 680.649 681.752 683.611
g10 7049.25 7548.530 9089.470 8585.027
g11 0.75 0.785 0.824 0.767
g12 1.000 1.000 0.999 1.000
g13 0.053950 1.0004∗ 0.06212 1.965371∗

Table 6.20: Worst solutions found by our SMES with its three mechanisms analyzed sep-
arately. “*” means infeasible. A result in boldface indicates either a better result by the
corresponding approach or that the global optimum (or best known solution) was found.
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Best solutions obtained by our SMES with two of its mechanisms combined.
Problem Optimal Combined Recombination & Combined Recombination & Stepsize Reduction &

Diversity Mechanism Stepsize Reduction Diversity Mechanism
g01 −15.000 −15.000 −15.000 −15.000
g02 0.803619 0.803549 0.803592 0.741027
g03 1.000 0.998 1.000 0.725
g04 −30665.539 −30665.539 −30665.422 −30665.318
g05 5126.498 5105.347∗ 5126.988 5126.534
g06 −6961.814 −6961.814 −6961.814 −6961.814
g07 24.306 24.353 24.343 24.478
g08 0.095825 0.095825 0.095825 0.095825
g09 680.63 680.633 680.631 680.671
g10 7049.25 7092.887 7062.754 7095.610
g11 0.75 0.75 0.75 0.75
g12 1.000 1.000 1.000 1.000
g13 0.053950 0.055491 0.058037 0.033529∗

Table 6.21: Best solutions found by our SMES with all possible combinations of two of
its (three) mechanisms. “*” means infeasible. A result in boldface indicates either a better
result by the corresponding approach or that the global optimum (or best known solution)
was found.

Mean solutions obtained by our SMES with two of its mechanisms combined.
Problem Optimal Combined Recombination & Combined Recombination & Stepsize Reduction &

Diversity Mechanism Stepsize Reduction Diversity Mechanism
g01 −15.000 −15.000 −15.000 −14.125
g02 0.803619 0.775841 0.798786 0.609223
g03 1.000 0.808 1.000 0.315
g04 −30665.539 −30665.539 −30661.106 −30637.253
g05 5126.498 5249.087∗ 5158.739 5303.175
g06 −6961.814 −6900.247 −6961.814 −6961.814
g07 24.306 24.559 24.474 26.327
g08 0.095825 0.095825 0.095825 0.095825
g09 680.63 680.643 680.637 681.040
g10 7049.25 7605.077 7193.887 7823.012
g11 0.75 0.754 0.752 0.757
g12 1.000 1.000 1.000 1.000
g13 0.053950 0.372581 0.247404 0.108290∗

Table 6.22: Mean solutions found by our SMES with all possible combinations of two of
its (three) mechanisms. A result in boldface indicates either a better result by the corre-
sponding approach or that the global optimum (or best known solution) was found.
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Worst solutions obtained by our SMES with two of its mechanisms combined.
Problem Optimal Combined Recombination & Combined Recombination & Stepsize Reduction &

Diversity Mechanism Stepsize Reduction Diversity Mechanism
g01 −15.000 −15.000 −15.000 −11.694
g02 0.803619 0.647445 0.785255 0.446562
g03 1.000 0.243 0.999 0.088
g04 −30665.539 −30665.539 −30647.484 −30523.984
g05 5126.498 ∗5877.772 5201.935 6005.305
g06 −6961.814 −6173.165 −6961.814 −6961.808
g07 24.306 25.136 24.789 30.682
g08 0.095825 0.095825 0.095825 0.095825
g09 680.63 680.664 680.664 681.724
g10 7049.25 13883.840 7368.333 9099.229
g11 0.75 0.854 0.767 0.909
g12 1.000 1.000 1.000 1.000
g13 0.053950 1.229679∗ 0.466266 0.469699∗

Table 6.23: Worst solutions found by our SMES with all possible combinations of two of
its (three) mechanisms. A result in boldface indicates either a better result by the corre-
sponding approach or that the global optimum (or best known solution) was found.

it found “similar” best results for problems g01, g03, g06, g08, g11 and g12. The com-
bined recombination coupled with the stepsize reduction obtained “better” mean results for
problems g02, g03, g05, g07, g09, g10, g11 and g13; and it obtained “similar” mean results
for problems g01, g06, g08 and g12. Finally, this version provided “better” worst results
for problems g02, g03, g05, g06, g07, g10, g11 and g13, and “similar” worst results for
problems g01, g08 and g12.

Based on the results obtained, we decided to compare the results provided by the two
most competitive versions of our SMES (the version with only the combined recombination
and the version with the combined recombination coupled with the stepsize reduction).
The comparison of results is shown in the last three columns from Tables 6.14, 6.15, and
6.16. The results indicated that the version with both the recombination and the stepsize
reduction provided “better” best results in seven problems (g02, g03, g05, g07, g09, g10
and g13) and “similar” best results in other five (g01, g06, g08, g11 and g12). This version
with two mechanisms reached “better” mean results in three problems (g03, g10 and g13),
and “similar” mean results in six functions (g01, g06, g08, g09, g11 and g12). Finally, this
version provided “better” worst results in six problems (g03, g05, g06, g10, g11 and g13),
and it provided “similar” worst results in three more (g01, g08 and g12). All these results
suggest that the stepsize reduction, which provides finer mutation movements in the search
space, help the combined recombination to sample the feasible region as to find competitive
results.
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The main question that arose at this point was: what is the role of the diversity mech-
anism in the success of our approach? In order to answer this question, we compared the
results of the version with combined recombination and stepsize reduction against the ver-
sion with the three mechanisms. The results can be seen in columns 9 and 6, respectively
from Tables 6.14, 6.15, and 6.16 The complete version provided “better” best results in six
functions (g02, g04, g05, g07, g10 and g13), and “similar” best results in other six (g01,
g03, g06, g08, g11 and 12). Moreover, the complete version provided “better” mean results
for three problems (g04, g11 and g13), and “similar” mean results in other four (g01, g03,
g08 and g12). Finally the complete version obtained “better” worst results in three prob-
lems (g03, g04 and g11), and it reached “similar” worst solutions for other three (g01, g08
and g12).

Thus, our approach provides results of a better quality when using the diversity mech-
anism. However, the price paid for this higher quality of results is a slight decrease in
robustness. Also, the overall results (providing competitive results in all 13 test functions)
are better when the diversity mechanism is incorporated into our SMES. It is also worth
reminding that the goal of the diversity mechanism is to allow the search to generate so-
lutions in the boundaries of the feasible region (which is something critical when dealing
with constraints that are active in the global optimum). Hence, the use of such diversity
mechanism seems a logical choice for dealing with active constraints.

To conclude, the combined recombination seems to be the dominant mechanism, which
is assisted by the fine mutation movements provided by the reduction of the initial stepsize.
Finally, the diversity mechanism helps to sample solutions located on the boundaries be-
tween the feasible and infeasible regions.

ES against GA

For the comparison of performance between a genetic algorithm and an evolution strategy,
we used a real-coded GA with non-uniform mutation [128]. Such a GA used the same
comparison mechanism (with the diversity mechanism) adopted by our SMES. It is impor-
tant to note that we tested different mutation operators for real-coded GAs and non-uniform
mutation provided the best results. Furthermore, we intended that the GA used the same
features of the ES (except for the self-adaptive mutation which we hypothesized was the
main strength of our ES-based approach). Finally, the same dynamic mechanism to handle
the tolerance for equality constraints was employed.

The parameters used by our real-coded GA were the following:

• Population size: 200

• Maximum number of generations: 1200
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• Crossover rate: 0.8

• Mutation rate: 0.6

• Number of objective function evaluations: 240, 000 (the same performed by our
SMES).

We performed 30 runs for each test problem. The results obtained by the GA are pre-
sented in Tables 6.14, 6.15 and 6.16 in column 7 and they are compared against those
provided by the SMES in column 6. As can be seen, both the quality and robustness of the
results provided by the GA are significantly poorer than those obtained with the evolution
strategy in all the test functions adopted. The exceptions are g08, g11 and g12, in which
the GA was able to find competitive results. These results highlight the strong influence
(positive in this case) of using a more adequate search engine, in our case an ES over a GA.
Therefore, the results seem to confirm our initial hypothesis about the usefulness of an ES
to sample constrained search spaces in a more appropriate way.

6.6 Some Remarks

Besides still being a very simple approach, it is worth reminding that the parameters of the
algorithm do not require a fine-tuning like penalty factors. In contrast, the Homomorphous
Maps require an additional parameter (called v) which has to be found empirically [110].
Stochastic ranking requires the definition of a parameter called Pf , whose value has an
important impact on the performance of the approach [162]. ASCHEA also requires the
definition of several extra parameters, and in its latest version, it uses niching, which is a
process that also has at least one additional parameter [77].

The computational cost measured in terms of the number of fitness function evaluations
(FFE) performed by any approach is lower for the (µ+ λ)-ES with respect to the others to
which it was compared. This is an additional (and important) advantage, mainly if we wish
to use this approach for solving real-world problems. The (µ + λ)-ES performed 240, 000
FFE, the (µ + 1)-ES required 350, 000 FFE, the(1 + λ)-ES 330, 000 FFE, the Stochastic
Ranking performed 350, 000 FFE, the Homomorphous Maps performed 1, 400, 000 FFE,
and ASCHEA required 1, 500, 000 FFE.
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Figure 6.10: Algorithm of our (µ + λ)-ES (SMES). The thick boxes indicate the three
modifications made to the original ES
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Figure 6.11: Graphs showing the population behavior using our proposed (µ+λ)-ES. “3”
points are feasible solutions, “+” points are infeasible ones. The dashed line represents
constraint g1(x) of the problem and the dotted line represents constraint g2(x).



Chapter 7

Performance Measures

After comparing the statistical results of SMES against state-of-the-art approaches, we
decided to investigate four issues:

1. To analyze the effect of the diversity mechanism in order to maintain infeasible so-
lutions close to the feasible region during the evolutionary process.

2. To analyze how fast the global optimum is reached in those functions where this
solution is found.

3. To find out if SMES shows sensitivity to either any of its parameter or a combination
of them. The aim would be to be able to recommend adequate values for these
parameters.

4. To define or use performance measures in order to compare the behavior of SMES
against the most competitive constraint-handling approach found in the literature.

The four sections of this chapter provide answers to these questions by using statistical
tools like the analysis of variance, the Kolmogorov-Smirnov test and bootstrapping.

7.1 Maintaining Good Infeasible Solutions

One of the three mechanisms of SMES is the diversity mechanism, whose goal is to main-
tain a few infeasible solutions close to the feasible region to help the algorithm to sample its
boundaries and locate the global optimum (let us keep in mind that in many complex con-
strained problems, the global optimum is located on the boundary between the feasible and
infeasible regions). To study this issue, we monitored the percentage of feasible solutions

111
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in the population of our SMES at every 200 generations (the total number of generations
was fixed to 800). The results are presented in Figure 7.1(a). As it can be seen, for all
the test problems our approach reaches the feasible region by generation 200. For problem
g05, more than 20% of the population is feasible by generation 200 and for the remaining
functions almost all the population is feasible by then. Based on the results found, we were
interested in answering two questions:

1. What is the behavior before generation 200. In other words, how fast does the pop-
ulation become almost feasible (where “almost feasible” refers to have a population
in which at least 50% of the individuals are feasible)?

2. How well is the diversity maintained at late stages of the evolutionary process?

(a) Feasible Solutions: Generation 0 to 800 (b) Feasible Solutions: Generation 0 to 200
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Figure 7.1: Percentage of feasible solutions (a) at every 200 generations (from 0 to 800), (b)
at every 20 generations (from 0 to 200), (c) a detailed oscillation of feasible and infeasible
solutions (from 0 to 800) and (d) a detailed oscillation of feasible and infeasible solutions
(from 0 to 200)
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SMES after 20 generations.
Problem Optimal Best Mean Median Worst St. Dev.

g01 −15.000 −7.291 −5.686 −5.685 −3.820 9.05E-1
g02 0.803619 0.442641 0.372686 0.370697 0.317450 2.65E-2
g03 1.000 0.949 0.785 0.827 0.526 1.13E-1
g04 −30665.539 −30563.615 −30473.319 −30462.027 −30401.756 40.26E+0
g05 5126.498 ∗5067.897 5211.511 5199.974 ∗5643.923 103.26E+0
g06 −6961.814 −6890.164 −6235.589 −6188.203 −5552.386 371.89E+0
g07 24.306 62.136 135.969 121.868 682.452 107.72E+0
g08 0.095825 0.095825 0.095825 0.095825 0.095817 2.0E-6
g09 680.63 686.592 704.351 704.377 719.151 8.91E+0
g10 7049.25 12777.324 17407.559 17284.081 25774.398 2368.59E+0
g11 0.75 0.750 0.783 0.764 ∗0.897 4.07E-2
g12 1.000 0.999 0.999 0.999 0.999 7.0E-5
g13 0.053950 ∗0.001348 ∗0.009035 ∗0.004388 ∗0.026345 8.45E-3

Table 7.1: Statistical results of our approach after 20 generations. (“*” means infeasible). A
value in boldface indicates that the global optimum (or best known solution) was reached.

The results obtained for those two questions are shown in Figure 7.1(b) and 7.1(d)
for question 1 and in Figure 7.1(c) for question 2. Figure 7.1(b) shows that the feasible
region is reached at generation 20 in most cases. This means that (except for g05 and
g13) the approach only requires 6, 100 FFE to find feasible solutions. In Table 7.1, we
show the statistical results obtained at this stage of the search. Note that although the
results are still far from the optimum, with the exception of problems g05 and g13, most
of the solutions are feasible. In Figure 7.1(d) we observe in a close-up of Figure 7.1(b)
that the algorithm has the capability of maintaining some infeasible solutions despite the
almost-feasible population (which, indeed, is the main motivation of using the diversity
mechanism adopted). In addition, we show the statistical results obtained at generation
200 in Table 7.2. A substantial improvement of the quality and robustness of the results is
shown at generation 200 where only 20, 000 FFE have been performed. Indeed, the results
are close to the optimum in most of the problems (for problems g08 and g12 the algorithm
has reached the global optimum). This means that the approach is about to converge in
most cases. This highlights the importance of the diversity mechanism in order to avoid
that the algorithm gets trapped in local optima and it can reach a better solution (even the
global optimum).

On the other hand, Figure 7.1(c) shows a zooming of Figure 7.1(a), where it is possible
to see again in detail the smooth oscillation on the percentage of feasible solutions during
the evolutionary process after generation 200. This behavior suggests that the diversity
mechanism still works well, maintaining near-feasible solutions with a good value of the
objective function in the population (between 1 and 3 infeasible solutions are enough based
on the previous results of the (1+λ)-ES approach [124], which is able to avoid local optima
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SMES after 200 generations.
Problem Optimal Best Mean Median Worst St. Dev.

g01 −15.000 −14.999 −14.960 −14.999 −13.828 2.10E-1
g02 0.803619 0.801158 0.777458 0.787125 0.678203 2.43E-2
g03 1.000 1.000 0.999 0.999 0.987 3.74E-3
g04 −30665.539 −30665.539 −30665.531 −30665.536 −30665.473 1.35E-2
g05 5126.498 5126.988 5179.163 5162.323 5379.227 63.5E+0
g06 −6961.814 −6961.808 −6959.910 −6961.624 −6938.690 4.39E+0
g07 24.306 24.473 24.734 24.711 25.401 2.15E-1
g08 0.095825 0.095825 0.095825 0.095825 0.095825 0
g09 680.63 680.643 680.680 680.680 680.736 2.43E-2
g10 7049.25 7076.725 7330.398 7319.405 7816.830 153.72E+0
g11 0.75 0.75 0.75 0.75 0.76 3.07E-3
g12 1.000 1.000 1.000 1.000 1.000 0
g13 0.053950 ∗0.041436 0.145069 ∗0.045766 0.387152 1.53E-1

Table 7.2: Statistical results of our approach after 200 generations. (“*” means infeasi-
ble). A value in boldface indicates that the global optimum (or best known solution) was
reached.

with only a few copies of the best infeasible solution).
The final results (on generation 800) provided in Table 6.13, compared with those on

generation 200 (Table 7.2), suggest that our diversity mechanism does its job of avoiding
premature convergence and, when coupled with the combination of discrete/intermediate
recombination and the self-adaptation mechanism of the ES leads the evolutionary search
towards the global optimum of a problem.

It is important to remark that the process of finding the global optimum takes almost
3/4 of the evolutionary search and only 1/4 (or less) is necessary to find the feasible region
of the search space. This behavior is analyzed in detail later in this Chapter. The point
we want to make here is that our approach is fast at reaching the feasible region while
managing to avoid local attractors (thanks to its diversity mechanism) as to converge to the
global optimum or its close vicinity.

7.2 Reaching the Global Optimum

In Table 7.3 we show in how many runs the global optimum was reached for the test func-
tions where such a thing was possible. In addition, we show the lowest and the average
generation at which the optimum was found. The results obtained suggest that for those
problems where the global optimum is reached, the algorithm is able to find it using no
more than 250 generations (about 75, 000 evaluations of the objective function), except for
function g01 where the number of generations is 671.
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Problem Runs that find the optimum Lowest generation Average

g01 30 634 671

g03 30 41 184

g04 30 113 129

g06 15 47 249

g08 30 11 18

g11 30 28 88

g12 30 63 77

Table 7.3: Number of runs (out of 30) where the optimum is found. We also show the best
and average generation number at which the optimum is found.

The results on Table 7.3 suggest that our approach is able to find the global optimum
relatively fast for different types of problems. Coupled with its speed to find feasible region,
SMES has the feature of providing reasonably good results with a low computational cost
(measured by the number of fitness function evaluations).

7.3 Analysis of Variance

An Analysis of Variance (ANOVA) was performed to determine the sensitivity of our final
approach to its parameters using a subset of the test functions indicated in Appendix A.
The justification of using just a subset of the set of functions adopted in this dissertation is
presented after the details of the experimental design shown below.

• The parameters (factors) analyzed were µ, λ, Gmax, the reduction of the stepsize and
Sr (the stepsize reduction and Sr remained fixed in the original SMES).

• The levels for each parameter were defined as follows:

– µ: 50, 150

– λ: 200, 400.

– Gmax: 600, 1000.

– Stepsize-reduction: 0.1, 0.4, 0.9.

– Sr: 0.2, 0.5, 0.97.

• 72 different combinations of initial parameters were obtained.
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• 30 independent runs per combination per test function were performed.

• 28080 total independent runs were performed.

A previous ANOVA with just two levels of each parameter was performed in order to detect
which parameters showed sensitivity. Therefore, the first three parameters have only two
levels. Also, from this previous ANOVA and the statistical results, some test functions were
eliminated owing to the fact that they also showed no variation in the results provided by
SMES. The functions used in ANOVA were: g02, g05, g07, g10 and g13. The hypotheses
used in this experiment were the following:

Null Hypothesis: There is no a significative difference among the averages of the ob-
tained results and if there are differences, they are due to random effects.

Alternative Hypothesis: There is a combination of factors where the averages are dif-
ferent and they are not due to random effects.

The results obtained proved the Null Hypothesis for most of the combination of the
parameters. Nonetheless, for some of them the Alternative Hypothesis was proved. These
cases are shown in Figure 7.2 for function g02, in Figure 7.3 for function g05, in Figure 7.4
for function g07, in Figure 7.5 for function g10 and finally in Figure 7.6 for function g13.
In those graphics, we show the error obtained in each independent run (i.e. the absolute
value of the difference between the global optimum solution, or best known solution, and
the best solution obtained in such run). Therefore, a small value of the error means a better
result provided by the approach.

From the results that proved the Alternative Hypothesis, the following can be stated:

• For function g02: Better results are obtained with λ = 400, Stepsize− reduction =
0.9 and Sr = 0.97

• For function g05: Better results are obtained with Stepsize − reduction = 0.1 and
Sr = 0.97.

• For function g07: Better results are obtained with Sr = 0.97.

• For function g10: Better results are obtained with λ = 400,Gmax = 1000, Stepsize−
reduction = 0.1− 0.4 and Sr = 0.97.

• For function g13: Better results are obtained with λ = 400.
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The results mentioned above confirm the empirical selection of parameters used in the
experiments with SMES. However, it is important to notice that allowing the generation
of more offspring at each generation (λ = 400) helps the approach to improve the results.
Besides, SMES seems to be insensitive to the number of parents (µ) at each generation.
Another important aspect is that when the Gmax value is increased, the quality of results
improves for function g10, where the search space is one of the largest (due to the intervals
of the decision variables). For the Stepsize− reduction value, the ANOVA also provided
some interesting results: For function g02, its advisable value is 0.9, which means that
SMES requires a large initial stepsize to move inside a very large feasible region (about
99% of the whole search space). On the other hand, for problem g10, whose feasible region
is very small with respect to the whole search space, the adequate value for Stepsize −
reduction is either 0.1 or 0.4. This is due to the fact that when the feasible region is
reached, the approach requires fine movements in order to sample it in a better way as to
approximate the global optimum. Finally, we confirmed that Sr = 0.97 is an adequate
value for all these functions. This highlights the idea that only a few infeasible solutions
close to the boundary between the feasible and infeasible region are necessary to maintain
diversity and to sample this region in a proper way. As a final conclusion of the performed
ANOVA, we suggest the following parameters for the SMES:

• µ = 50

• λ = 300 (400 to improve the quality of the results, at the expense of more evaluations
of the fitness function).

• Gmax = 800 (1000 to improve the quality of the results, at the expense of more
evaluations of the fitness function).

• Stepsize−reduction = 0.1 for small feasible regions (0.9 for large feasible regions)
both with respect to the whole search space.

• Sr = 0.97

7.4 Three Measures of Performance

Despite the extensive amount of research made in the area of constraint-handling mecha-
nisms for evolutionary algorithms, there are very few measures of performance proposed to
compare the performance of different approaches. In this section, we use three measures:
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1. The first one was used by Lampinen [113] to measure how many evaluations are
required to find the first feasible solution; we call it EVALS.

2. The second one was proposed by Bäck [6] to measure the progress ratio for uncon-
strained optimization. We adapt it to measure the progress ratio just inside the feasi-
ble region, because we have detected that for constraint handling algorithms solving
constrained problems, is quite hard to improve solutions once inside the feasible re-
gion. The original expression taken from [6] is the following:

P = ln

√√√√ fmin(0)

fmin(T )
(7.1)

where fmin(i) refers to the best objective function value occurring at generation i. T
is the final generation of the process. However, we are interested in measuring the
progress once the feasible region is reached. Therefore the modified expression that
we use is the following:

P =

∣∣∣∣∣∣
ln

√√√√fmin(Gff )

fmin(T )

∣∣∣∣∣∣
(7.2)

where fmin(Gff ) refers to the objective function value of the first feasible solution
found and fmin(T ) refers to the objective function value of the best feasible solution
found in the last generation.

3. The third measure counts the number of evaluations required by an algorithm to have
its population with only feasible solutions. We call it ALL-FEASIBLE. This measure
estimates the computational effort needed by the algorithm to have all its solutions
inside the feasible region.

Using EVALS and PROGRESS-RATIO we can know how fast the approach reaches
the feasible region (EVALS) and we can measure how much is the approach capable of
improving the first feasible solution produced (PROGRESS-RATIO) i.e. how well is the
feasible region being sampled. Finally, ALL-FEASIBLE helps us to validate the usefulness
of the diversity mechanism, whose aim is to maintain infeasible solutions during all the
evolutionary process.

The main difference between EVALS and ALL-FEASIBLE is that EVALS estimates
the number of evaluations required by an algorithm to find the first feasible solution and
ALL-FEASIBLE counts the number of evaluations required by an approach to have its
population with only feasible solutions
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Technique SMES SR

ES Type (100 + 300)-ES (30, 200)-ES
Generations 800 1200

Total Evaluations 240000 240000

Pf – 0.45

Sweeps for ranking – 200

Sr 0.97 –
Initial Stepsize 40% –

Table 7.4: Summary of parameters for the SMES and the Stochastic Ranking (SR) used in
the experiments for the 3 performance measures. “–” means “not applicable”.

It is important to remark that both, the EVALS and ALL-FEASIBLE performance mea-
sures return an integer value. If a technique obtains a lower value than other one, it means
that the first one finds the feasible region faster than the second one. On the other hand,
the PROGRESS-RATIO performance measure returns a real value. If an approach gets a
higher value for this performance measure, it means an improvement inside the feasible
region.

7.4.1 Experiments

In order to perform a fair comparison using our SMES, we chose the most competitive ap-
proach out of the three that we are comparing, the Stochastic Ranking (SR) [162] and we
implemented it. We maintained the same set of parameters for the SMES used in the com-
parison included in the previous chapter. The parameters adopted for Stochastic Ranking
were chosen according to the authors’ recommendations found in [162]. The total number
of evaluations of the objective function was fixed to 240000 for both approaches. Also,
because of the fact that the SMES uses a dynamic adjustment for the allowable tolerance of
the equality constraints and SR does not, we decided for the SMES to consider a feasible
solution only when the same value for tolerance used by SR (ε = 0.0001) was reached. 30
independent runs were performed for each approach for each test function for each perfor-
mance measure. In Table 7.4 there is a summary of the parameters adopted.

EVALS performance measure

The summary of results for the EVALS performance measure obtained by each approach
for each test problem is presented in Table 7.5.
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Statistics EVALS measure.
Min Mean Median Max Std. Dev.

SMES SR SMES SR SMES SR SMES SR SMES SR
g01 1315 3585 2455 9146 2523 9139 3444 15352 572.69 2857.41
g02 1 1 1 1 1 1 1 41 0.00 0.00
g03 868 1823 2745 6674 2341 6622 7554 14026 1697.76 3253.81
g04 1 1 4 4 2 3 17 9 3.58 2.01
g05 51139 24727 124120 27843 84697 28038 240100 31694 69209.56 1674.18
g06 674 262 1552 1181 1547 1245 2395 1711 494.92 371.18
g07 1211 2087 2024 3093 2064 3150 2772 4049 446.85 480.56
g08 1 3 91 110 76 78 292 428 73.79 104.72
g09 3 6 132 122 120 85 359 375 90.67 109.14
g10 1155 7864 4630 77222 4547 27012 6907 240000 1341.02 92708.03
g11 30 503 4290 26463 2799 2847 16204 240000 4311.14 72406.28
g12 2 1 21 26 15 23 92 91 22.52 24.26
g13 209429 16578 212579 18949 212686 18619 214125 21616 967.17 1439.51

Table 7.5: Statistics obtained for the EVALS performance measure in 30 independent runs.
A number in boldface indicates the best result found.

From these results we can comment the following: For functions g02 and g04 both
approaches find feasible solutions from the first population randomly generated.

For problem g12 both algorithms exhibit a very similar behavior, although the SMES
has better mean, median and standard deviation values and the SR has better min and max
values. For problem g09 there is an inverse behavior, the SMES has better min and max
values and the SR has better mean and median values.

The SMES consistently provided better results for six functions g01, g03, g07, g08,
g10 and g11. The SR obtained better results for three problems g05, g06 and g13. It is
important to remark that the SMES obtained generally smaller standard deviation values
than the SR, which means more consistent results by the SMES.

The overall discussion of the results suggests that the SMES finds the feasible region
faster than the SR, except in problems where there is more than one nonlinear equality
constraint (g05 and g13); the exception is g06, which is a problem where the SR does not
provide robust results [162]. On the other hand, both approaches reach the feasible region
almost at the same time when the size of the feasible region is approximately more than
4% of the whole search space (g02, g04 and g12). The exception is problem g09 where
the feasible region is about 0.51% of the whole search space (which is a large value when
compared to other problems with a very small feasible region, of about 0.0003%).

PROGRESS-RATIO performance measure

After analyzing how fast the algorithms reach the feasible region, we now focus on the
capabilities of both algorithms to improve the first feasible solution that they find. For this
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sake, we used the progress ratio measure presented in Equation 7.2. The results obtained
for the SMES and the SR are detailed in Table 7.6:

Statistics PROGRESS-RATIO measure.
Min Mean Median Max Std. Dev.

SMES SR SMES SR SMES SR SMES SR SMES SR
g01 1.229 1.166 1.324 1.286 1.324 1.284 1.399 1.408 0.041 0.054
g02 0.251 0.244 0.262 0.260 0.264 0.260 0.276 0.281 0.008 0.009
g03 0.092 ( 13

30
)0.166 0.241 ( 13

30
)0.307 0.253 ( 13

30
)0.327 0.338 ( 13

30
)0.346 0.064 ( 13

30
)0.051

g04 3.553 3.588 4.081 4.182 4.123 4.194 4.394 4.387 0.212 0.180
g05 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
g06 3.225 ( 17

30
)3.749 4.045 ( 17

30
)4.124 4.129 ( 17

30
)4.125 4.320 ( 17

30
)4.283 0.266 ( 17

30
)0.159

g07 1.159 ( 29
30

)0.873 1.998 ( 29
30

)1.400 2.043 ( 29
30

)1.406 2.436 ( 29
30

)2.038 0.299 ( 29
30

)0.251
g08 0.014 0.015 0.045 0.042 0.046 0.045 0.087 0.079 0.012 0.011
g09 0.212 0.359 2.749 2.387 2.823 2.244 4.738 4.564 1.425 1.242
g10 0.325 ( 25

30
)0.004 0.497 ( 25

30
)0.133 0.514 ( 25

30
)0.079 0.625 ( 25

30
)0.459 0.073 ( 25

30
)0.139

g11 0.004 ( 27
30

)0.000 0.098 ( 27
30

)0.054 0.114 ( 27
30

)0.027 0.144 ( 27
30

)0.142 0.046 ( 27
30

)0.052
g12 0.032 0.013 0.092 0.093 0.089 0.094 0.147 0.161 0.033 0.041
g13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000

Table 7.6: Statistics obtained for the PROGRESS-RATIO performance measure in 30 in-
dependent runs. A number in boldface indicates the result found. For the SR, the fraction
indicates the number of independent runs (out of 30) where feasible solutions were found
in the population of the last generation. In the remaining runs, no feasible solutions were
found at the end of the process. Note that SMES obtained feasible solutions in every run
for each problem.

From these results, we observe very similar values of improvement by both approaches
in four problems (g05, g08, g12 and g13). It is important to assert that in functions g05
and g13 none of the algorithms was capable of improving the feasible solutions found.
Both problems have three nonlinear equality constraints. For problems g08 and g12 both
approaches could get a small improvement inside the feasible region. This is because
for these two functions feasible solutions are found very quickly and after that the global
optimum is found quickly, as well. This is because these two problems are “easy” to solve.

The SR presented some problems to maintain the feasible solutions previously found.
For example, in function g03 only in 13 runs out of 30, we were able to find feasible
solutions in the last generation. A similar behavior was found in problems g06 (feasible
solutions were found at the end of the process only in 17 runs ), g07 (29/30), g10 (25/30)
and g11 (27/30). Nevertheless, SR obtained consistently better results in problem g04.

The results show that SMES was able to get a better improvement inside the feasible
region in eight problems: g01, g02, g03, g06 g07, g09, g10 and g11. It is worth reminding
that SMES did not presented any problem to maintain good feasible solutions until the end
of a single run. Therefore we consider better the results provided by SMES in functions
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g03 and g06 (where the SR had problems to keep feasible solutions). In problems g01, g02,
g07, g09, g10 and g11 SMES was superior in all statistics except in the minimum ratio and
its standard deviation for problem g09. Also, it was surpassed in the standard deviation
value in problem g07.

Based on this discussion of results we can empirically suggest that the mechanism to
maintain diversity and the combined recombination operator allow the SMES to sample
the feasible region well enough as to maintain a considerable improvement inside the fea-
sible region. On the other hand, the stochastic selection mechanism of the SR and its “,”
selection prevent the SR from keeping good feasible solutions during the process and, in
consequence, affect its progress inside the feasible region.

ALL-FEASIBLE performance measure

Finally, we used the ALL-FEASIBLE performance measure in order to know the compu-
tational cost, measured by the number of objective function evaluations, required by each
approach to get a complete feasible population. This measure is also useful to estimate the
effectiveness of the diversity mechanisms of each approach: The SMES maintains a few
(3% of the whole population) infeasible solutions with a good value of the objective func-
tion close to the boundaries of the feasible region and the SR allows a certain percentage
(45% of the whole population) of solutions with a good value of the objective function,
regardless of their feasibility. It is well known that both algorithms provide competitive
results, but now we want to estimate how fast the approaches have all their individuals
feasible; this can give us an idea of the time (after all the population is feasible) at which
the diversity mechanism operates in order to generate infeasible solutions to sample the
boundaries of the feasible region. The results are provided in Table 7.7.

The SMES required less evaluations to get a fully feasible population in eight functions
(g01, g04, g06, g07, g08, g09, g10 and g12). This is because the approach focuses on
finding the feasible region and after that, the diversity mechanism allows the approach to
return to its boundaries. This was empirically shown in Section 7.1.

The SR provided better results in three problems (g05, g11 and g13). It is interesting to
note that the mechanism to maintain solutions with a good value of the objective function
regardless of feasibility is suitable to solve these problems with a very small feasible region
and in presence of one up to three nonlinear equality constraints. This behavior may be
attributed to the fitness landscape of the function (very rugged) defined by the nonlinear
objective function in these three problems.

In function g02 both approaches got a fully feasible population in the first generation
because almost all the search space (99%) is feasible. For problem g03, none of the ap-
proaches could get a fully feasible population. This problem has one nonlinear inequality
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Statistics ALL-FEASIBLE measure.
Min Mean Median Max Std. Dev.

SMES SR SMES SR SMES SR SMES SR SMES SR
g01 4900 13230 6050 19050 5800 18430 9100 25630 822.84 2936.27
g02 100 30 110 30 100 30 400 30 54.77 0.00
g03 240000 240000 240000 240000 240000 240000 240000 240000 0.00 0.00
g04 400 830 540 3877 400 3630 700 7030 152.22 1864.87
g05 240000 30230 240000 40323 240000 38030 240000 58830 0.00 7627.13
g06 4900 4830 5850 108344 5800 11630 7600 240000 726.71 117130.5
g07 4300 5430 4950 8350 4900 7530 5800 33230 417.50 4817.67
g08 1600 1830 1950 2383 1900 2430 2800 3230 344.16 322.42
g09 1300 2430 1580 3717 1600 3530 2200 5230 248.30 663.71
g10 8500 19430 10440 65706 10150 33530 14800 240000 1500.48 72642.61
g11 240000 8830 240000 35940 240000 13130 240000 240000 0.00 69292.97
g12 1600 2430 2290 3023 2200 3030 3400 3830 480.19 308.43
g13 215500 22030 215530 29710 215500 27030 215800 57030 91.54 8347.55

Table 7.7: Statistics obtained for the ALL-FEASIBLE performance measure in 30 inde-
pendent runs. A number in boldface indicates the best result found.

constraint, 10 decision variables and a very small feasible region (only 0.0026% of the
search space is feasible).

It is important to note that for the SMES, the diversity mechanism works during almost
all the evolutionary process because the population becomes feasible very quickly. Besides,
the importance of the diversity mechanism was highlighted in the experiments performed
using the three mechanisms of the SMES (diversity mechanism, combined recombination
and stepsize reduction) separately in Section 6.5.3. Finally, it is evident that the size of
the parent population for the SMES was more than three times the corresponding parent
population of the SR. This seemed to be a disadvantage for the SMES. However, the ap-
proach was able to generate feasible solutions faster than the SR as to get a fully feasible
population. Nevertheless, this behavior seems to impact performance in functions like g05,
g11 and g13 where the SR outperformed the SMES.

7.4.2 Confidence intervals

After discussing the results obtained for a sample of 30 runs, we performed a statistical test
to estimate the confidence intervals for the mean statistics. We chose the mean because we
wanted to compare the average performance of both approaches with respect to the three
performance measures previously indicated.

First of all, we plotted the density graphs for each sample of 30 runs per each approach
per function per performance measure in order to graphically find out if the distributions
were close to a normal one. The density histograms are shown as follows: For the EVALS
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measure, we show in Figures C-1, C-2 and C-3 the results provided by the SMES and we
show in Figures C-4, C-5 and C-6 the results for the Stochastic Ranking. Test function g02
was omitted because both approaches found a feasible solution in the initial (randomly-
generated) population. For the PROGRESS-RATIO measure the results of the SMES are
presented in Figures C-7, C-8, C-9 and C-10 are shown in Figures C-11, C-12, C-13 and
C-14 for the Stochastic Ranking. Finally, for the All-FEASIBLE measure the results for
the SMES are provided in Figures C-15, C-16, C-17 and C-18, and are shown in Figures
C-19, C-20, C-21 and C-22 for the Stochastic Ranking. All these graphics can be found in
Appendix C.

From these graphics it is distinguishable that in all cases the distribution of data is
skewed and far from adjusting to a normal distribution. However, we decided to perform
a one-sample Kolmogorov-Smirnov test to validate it. The results from the Kolmogorov-
Smirnov test confirmed in all cases that the distributions were not normal. Therefore, we
decide to use a Bootstrapping test to obtain the confidence intervals. The advantage of using
bootstrapping is that it does not require any assumption about the distribution of the sample.
Based on 1000 resamples the distribution obtained for each sample and its corresponding
normal quantile (to confirm that the bootstrap distribution is nearly normal in shape) are
shown as follows: for the EVALS measure we show in Figures C-23, C-24, C-25, C-26, C-
27 and C-28 the results provided by the SMES and we show in Figures C-29, C-30, C-31,
C-32, C-33 and C-34 the results provided by the SR (reminding that the test function g02
is omitted). For the PROGRESS-RATIO the bootstrap distribution and the normal quantile
graphics for the results provided by the SMES are presented in Figures C-35, C-36, C-37,
C-38, C-39, C-40 and C-41 and we present in Figures C-42, C-43, C-44, C-45, C-46, C-47
and C-48 the results provided by the SR. Finally, for the ALL-FEASIBLE performance
measure, the bootstrapping results for the SMES are presented in Figures C-49, C-50, C-
51, C-52 and C-53, and in Figures C-54, C-55, C-56, C-57, C-58 and C-59 for the SR.
For the SMES, test functions g03, g05 and g11 were omitted because the approach could
not generate a fully feasible population in any single run. This is the same case for the
SR in function g03. Function g02 was also omitted in both cases because both approaches
generated a fully feasible population in the initial population.

For those skewed bootstrapping distribution we calculated the bootstrap bias-corrected
accelerated (BCa) in order to obtain more accurate results. The confidence intervals were
calculated with 95% confidence. Some quantile graphs presented an irregular shape. This
is due to the small interval for the obtained results. A summary of them for the three
performance measures is presented in Table 7.8 and it is discussed next.

First, we center the discussion on the EVALS confidence intervals. The estimated mean
for the EVALS performance measure obtained by the SMES was lower than the correspond-
ing mean provided by the SR in six problems (g01, g03, g07, g08, g10 and g11). The SR
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Evals Progress All-feasible
SMES SR SMES SR SMES SR

g01 [2249,2642] [8103, 10189] [1.308,1.338] [1.270, 1.31] [5804,6400] [18043, 20169]
g02 [1, 1] [1, 1] [0.259, 0.265] [0.260, 0.260] [100, 130] [30, 30]
g03 [2286,3458] [5630, 7899] [0.217, 0.265] 13

30
[0.280,0.340] [240000, 240000] [240000, 240000]

g04 [3, 5] [3, 4] [4.004, 4.158] [4.120,4.250] [480,590] [3225, 4528]
g05 [104203, 151126] [27272,28451] [0.000, 0.000] [0.000, 0.000] [240000, 240000] [37521,43125]
g06 [1384, 1735] [1038,1315] [3.948, 4.142] 17

30
[4.050,4.200] [5590,6100] [69251, 147501]

g07 [1874,2185] [2920, 3261] [1.891,2.094] 29
30

[1.300, 1.500] [4800,5100] [7383, 12182]
g08 [65,118] [80, 157] [0.040, 0.049] [0.040, 0.050] [1840,2070] [2262, 2504]
g09 [98, 165] [83, 162] [2.235,3.263] [1.96, 2.84] [1490,1670] [3476, 3958]
g10 [4144,5116] [49468, 113585] [0.470,0.524] 25

30
[0.080, 0.190] [9970,10990] [42366, 92455]

g11 [3062,6123] [10462, 65829] [0.081,0.116] 27
30

[0.035, 0.074] [240000, 240000] [20262,72970]
g12 [15, 31] [17, 35] [0.079, 0.104] [0.077, 0.107] [2120,2460] [2922, 3129]
g13 [212174, 212874] [18414,19484] [0.000, 0.000] [0.000, 0.000] [215500, 215560] [27583,34644]

Table 7.8: Confidence intervals for the mean statistics for the three measures (95% level of
confidence). A number in boldface means a better result. The fraction in the PROGRESS-
RATIO measure for the SR indicates the number of independent runs (out of 30) in which
feasible solutions were found in the population of the last generation. In the remaining
runs, no feasible solutions were found at the end of the process.

found a “better” mean in three problems (g05, g06 and g13). Also, both approaches pro-
vided a “similar” interval for problem g09. Test functions g02, g04 and g12 are discarded
for discussion because both approaches found a feasible solution in the initial population.

The estimated mean value for the PROGRESS-RATIO measure obtained by the SMES
was higher (better) than the corresponding value obtained by the SR in seven test functions
(g01, g03, g06, g07, g09, g10 and g11). The SR obtained better results in problem g04.
There were similar results by both approaches in the remaining problems (g02, g05, g08,
g12 and g13). Despite a better confidence interval for the progress inside the feasible region
by the SR in problems g03 and g06, this approach presented problems to maintain the
feasible solutions found up to the last generation of the evolutionary process. In contrast,
for problems g05 and g13 none of the approaches could improve the first feasible solution
found. This means that for these two problems, both approaches found a value close to the
optimum, but could not improve it. For problems g08 and g12, both approaches provided
similar estimated low mean values for their progress inside the feasible region. This is
because it is easy to reach the global optimum in these problems. On the other hand, for
problem g02, the progress is very low since most of the search space is feasible. This
suggests that both approaches have problems to improve good solutions previously found.
A high dimensionality (30 decision variables) combined with a nonlinear objective function
generates a very rugged and complicated feasible region for both approaches.
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Finally, we discuss the estimated mean for the ALL-FEASIBLE measure. In problem
g02, both approaches got a fully feasible population in the initial population. In contrast,
for problem g03 none of them could have a feasible population in any generation. The
estimated mean of evaluations to have a fully feasible population is lower by the SMES in
eight test problems (g01, g04, g06, g07, g08, g09, g10 and g12). In the remaining three
functions, the SR required less evaluations (on average) to have only feasible solutions
(g05, g11 and g13).

Based on the results of the estimated mean for the three performance measures, we can
conclude the following for these 13 test functions:

• SMES is able to generate a feasible solution faster than the SR except in problems
with more than one nonlinear equality constraint.

• SMES seems to have a better capability to improve the results once the feasible region
is reached.

• In presence of more than one nonlinear equality constraint both approaches are un-
able to improve significantly a feasible solution.

• For problems with a low dimensionality (between 2 and 3 decision variables) and
a quadratic objective function, the progress provided by both approaches inside the
feasible region is enough as to reach, reasonably fast, the global optimum.

• SMES provided a better improvement inside the feasible region for most of the func-
tions. This is due to its deterministic selection compared with the stochastic selection
used by the SR which causes a more emphasized oscillation between feasible and in-
feasible solutions.

• Due to its emphasis on reaching the feasible region, SMES requires less evaluations
to generate a fully feasible population. Therefore, its diversity mechanism is ef-
fective when active during most of the evolutionary process, since such mechanism
maintains a few recently-generated infeasible solutions close to the boundaries of the
feasible region.

• SR tends to have almost always a considerable number of infeasible solutions with
a good value of the objective function, regardless of how close they are from the
feasible region. In fact, this mechanism seems to be more adequate when solving
problems with nonlinear equality constraints where the SR outperforms SMES.

All these conclusions, based on a statistical test, give some insights about the behavior
of these two approaches and not only compare them based on their final results.
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λ λ, stepsize

Sr stepsize

stepsize, Sr

Figure 7.2: Error measured with different parameter values where the ANOVA found sig-
nificance of the results (alternative hypothesis) for test function g02.
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µ, λ, Sr λ, Sr

Sr

Figure 7.3: Error measured with different parameter values where the ANOVA found sig-
nificance of the results (alternative hypothesis) for test function g05.

Sr

Figure 7.4: Error measured with different parameter values where the ANOVA found sig-
nificance of the results (alternative hypothesis) for test function g07.
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λ Gmax

Gmax, Sr stepsize, Sr

Sr

Figure 7.5: Error measured with different parameter values where the ANOVA found sig-
nificance of the results (alternative hypothesis) for test function g10.
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λ

Figure 7.6: Error measured with different parameter values where the ANOVA found sig-
nificance of the results (alternative hypothesis) for test function g13.



Chapter 8

What Makes a Constrained
Optimization Problem Difficult to Solve
by The Proposed Approach?

This chapter proposes an approach to empirically find out what features of a problem
(which are not fully covered in the most used benchmark to test constraint handling tech-
niques in EAs) decrease the good performance of an evolutionary algorithm. Our study
starts by using the (µ + λ)-ES discussed in Chapter 6 which has been shown to provide
a very competitive performance on the aforementioned benchmark. We introduce 11 new
test functions that include characteristics that the current benchmark lacks, like nonlinear
equality constraints and a higher dimensionality. The algorithm is tested on them and the
results provided are analyzed and discussed.

8.1 Previous Work

The idea of having a set of constrained optimization problems with different characteristics
to test evolutionary algorithms was initially proposed by Michalewicz [129, 126]. This
work was summarized by Michalewicz & Schoenauer [133] to propose a set of constrained
test functions. That set consisted of eleven problems with features such as different types
of objective function (linear, quadratic, nonlinear), different types of constraints (linear,
nonlinear, equality or inequality) and different dimensionality. Koziel & Michalewicz [110]
added one function to the original benchmark. The main feature of this new function is its
disjoint feasible region. Runnarson & Yao added another function to the benchmark [162].
This function has three equality constraints (two of them are nonlinear) and the objective
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function is also nonlinear. Those two new functions [110, 162] addressed two features that
the original benchmark lacked (disjoint feasible regions and a combination of linear and
nonlinear equality constraints). The goal of this benchmark is to have a reliable mean to
test the quality and robustness of constraint handling techniques used with evolutionary
algorithms.

The idea of generating artificial constrained test functions has been almost explored.
Michalewicz [130] proposed a test case generator for constrained parameter optimization
techniques. This generator allows to generate test problems by varying several features
such as: dimensionality, multimodality, number of constraints, connectivity of the feasible
region, size of the feasible region with respect to the whole search space and ruggedness of
the objective function. This first version had some problems because the generated func-
tions were highly symmetric. Therefore, a new version called TCG-2 was later proposed
[165] to solve this drawback and to improve its features. Both versions of the TCG were
used to test a constraint-handling mechanism based on a static penalty function. They used
a steady-state EA as a search engine. The results obtained suggest that the sources of dif-
ficulty for the penalty function approach were a high dimensionality and multimodality of
the objective function. For the first TCG, having a disconnected feasible region also af-
fected the performance of the approach. For the TCG-2, the width of peaks of the objective
function also decreased the performance of the algorithm. The experiments also showed
that for both, TCG and TCG-2, the size of the feasible region with respect to the whole
search had no negative influence in the performance of the approach. In addition, for the
TCG, the number of constraints and the ruggedness of the objective function did not af-
fect the good quality of the results provided by the approach. Finally, for the TCG-2 the
complexity of the function and the number of active constraints caused little impact in the
performance of the approach.

8.2 Our Empirical Study

The main motivation of this work is to determine which characteristics of a global nonlin-
ear optimization constrained problem increase the difficulty to be solved by an EA. Such
knowledge can help researchers to develop more robust and more reliable EAs that can be
used in real-world problems. We hypothesized that the current benchmark lacks of two
main features: high dimensionality and a considerable (more than three) number of non-
linear equality constraints. As a second set of features we include the number of nonlinear
inequality constraints (more than ten at least), nonlinear objective functions and a disjoint
feasible region (only one function with this feature is included in the current benchmark).
See Table 5.1 in Chapter 5 to review the details of the current benchmark.
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Problem n Type of function ρ LI NI LE NE

g14 10 nonlinear 0.00% 0 0 3 0
g15 3 quadratic 0.00% 0 0 1 1
g16 5 nonlinear 0.0204% 4 34 0 0
g17 6 nonlinear 0.00% 0 0 0 4
g18 9 quadratic 0.00% 0 12 0 0
g19 15 nonlinear 33.4761% 0 5 0 0
g20 24 linear 0.00% 0 6 2 12
g21 7 linear 0.00% 0 1 0 5
g22 22 linear 0.00% 0 1 8 11
g23 9 linear 0.00% 0 2 3 1
g24 2 linear 79.6556% 0 2 0 0

Table 8.1: Values of ρ for the new 11 test problems. n is the number of decision variables,
LI is the number of linear inequality constraints, NI the number of nonlinear inequality con-
straints, LE is the number of linear equality constraints and NE is the number of nonlinear
equality constraints.

Unlike the test case generators previously discussed, we do not intend to provide the
user with the best possible EA to be used for a certain type of problem. Instead, we want to
detect features that keep an EA from reaching the feasible region or the global optimum, so
that we can gain a deeper understanding of the sort of features that make difficult a problem
for the approach proposed in this dissertation.

Our experimental design was the following: First, we selected test functions (either
artificial or from real world problems) that had at least one of the features mentioned be-
fore. We selected seven functions from Himmelblau’s book [81] (g14, g15, g16, g17, g18,
g19, g20), two are from heat exchanger network problems detailed in [53] and tested in
[54] (g21, g22). One more was proposed by Xia [185] (g23) and the last one was taken
from Floudas et al.’s Handbook [57] (g24). Selected problems with high dimensionality
are: g19, g20 and g22. Test functions with more than three nonlinear equality constraints
are: g17, g20, g21 and g22. For the secondary set of features, we chose problems g16 and
g18,which have more than ten nonlinear inequality constraints. Problems having a nonlin-
ear objective function are g14, g16, g17 and g19. Finally, a test function having a feasible
region consisting on two disconnected sub-regions is g24. For completeness, we also in-
cluded two functions that seemed to be easy to solve because they have only one nonlinear
equality constraint (g15) and a quadratic and linear objective function (g23), respectively.
The characteristics of each problem of our new proposed benchmark are summarized in
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j 1 2 3 4 5

ej −15 −27 −36 −18 −12

c1j 30 −20 −10 32 10

c2j −20 39 −6 −31 32

c3j −10 −6 10 −6 −10

c4j 32 −31 −6 39 −20

c5j −10 32 −10 −20 30

dj 4 8 10 6 2

a1j −16 2 0 1 0

a2j 0 −2 0 4 2

a3j −3.5 0 2 0 0

a4j 0 −2 0 −4 −1

a5j 0 −9 −2 1 −2.8

a6j 2 0 −4 0 0

a7j −1 −1 −1 −1 −1

a8j −1 −2 −3 −2 −1

a9j 1 2 3 4 5

a10j 1 1 1 1 1

Table 8.2: Data set for test problem g19

Table 8.1. We also calculated the “ρ” metric [133] for this set of new functions, in order to
get an estimate of the ratio between the feasible region an the whole search space.

The details of each functions are presented below:

• g14 [81]:

Minimize: f(~x) =
∑10
i=1 xi

(
ci − ln xi∑10

j=1
xj

)

subject to:
h1(~x) = x1 + 2x2 + +2x3 + x6 + x10 − 2 = 0
h2(~x) = x4 + 2x5 + x6 + x7 − 1 = 0
h3(~x) = x3 + x7 + x8 + 2x9 + x10 − 1 = 0

where the bounds are 0 ≤ xi ≤ 10 (i = 1, . . . , 10), and c1 = −6.089, c2 = −17.164,
c3 = −34.054, c4 = −5.914, c5 = −24.721, c6 = −14.986, c7 = −24.1, c8 =
−10.708, c9 = −26.662, c10 = −22.179,. The best known solution is at x∗ =
(0.0350, 0.1142, 0.8306, 0.0012, 0.4887, 0.0005, 0.0209, 0.0157, 0.0289, 0.0751) where
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f(x∗) = −47.751.

• g15 [81]:
Minimize: f(~x) = 1000− x2

1 − 2x2
2 − x2

3 − x1x2 − x1x3

subject to:
h1(~x) = x2

1 + x2
2 + +x2

3 − 25 = 0
h2(~x) = 8x1 + 14x2 + 7x3 − 56 = 0

where the bounds are 0 ≤ xi ≤ 10 (i = 1, . . . , 10). The best known solution is at
x∗ = (3.512,0.217,3.552) where f(x∗) = 961.715.

• g16 [81]:
Maximize: f(~x) = 0.0000005843y17 − 0.000117y14 − 0.1365− 0.00002358y13

− 0.0000011502y16 − 0.0321y12 − 0.004324y5 − 0.0001 c15

c16
− 37.48 y2

c12

subject to:
g1(~x) = y4 − 0.28

0.72
y5 ≥ 0

g2(~x) = 1.5x2 − x3 ≥ 0
g3(~x) = 21− 3496 y2

c12
≥ 0

g4(~x) = 62,212
c17
− 110.6− y1 ≥ 0

g5(~x) = y1 − 213.1 ≥ 0
g6(~x) = 405.23− y1 ≥ 0
g7(~x) = y2 − 17.505 ≥ 0
g8(~x) = 1053.6667− y2 ≥ 0
g9(~x) = y3 − 11.275 ≥ 0
g10(~x) = 35.03− y3 ≥ 0
g11(~x) = y4 − 214.228 ≥ 0
g12(~x) = 665.585− y4 ≥ 0
g13(~x) = y5 − 7.458 ≥ 0
g14(~x) = 584.463− y5 ≥ 0
g15(~x) = y6 − 0.961 ≥ 0
g16(~x) = 265.916− y6 ≥ 0
g17(~x) = y7 − 1.612 ≥ 0
g18(~x) = 7.046− y7 ≥ 0
g19(~x) = y8 − 0.146 ≥ 0
g20(~x) = 0.222− y8 ≥ 0
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g21(~x) = y9 − 107.99 ≥ 0
g22(~x) = 273.366− y9 ≥ 0
g23(~x) = y10 − 922.693 ≥ 0
g24(~x) = 1286.105− y10 ≥ 0
g25(~x) = y11 − 926.832 ≥ 0
g26(~x) = 1444.046− y11 ≥ 0
g27(~x) = y12 − 18.766 ≥ 0
g28(~x) = 537.141− y12 ≥ 0
g29(~x) = y13 − 1072.163 ≥ 0
g30(~x) = 3247.039− y13 ≥ 0
g31(~x) = y14 − 8961.448 ≥ 0
g32(~x) = 26844.086− y14 ≥ 0
g33(~x) = y15 − 0.063 ≥ 0
g34(~x) = 0.386− y15 ≥ 0
g35(~x) = y16 − 71084.33 ≥ 0
g36(~x) = 140000− y16 ≥ 0
g37(~x) = y17 − 2802713 ≥ 0
g38(~x) = 12146108− y17 ≥ 0

where:
y1 = x2 + x3 + 41.6
c1 = 0.024x4 − 4.62
y2 = 12.5

c1
+ 12

c2 = 0.0003535x2
1 + 0.5311x1 + 0.08705y2x1

c3 = 0.052x1 + 78 + 0.002377y2x1

y3 = c2
c3

y4 = 19y3

c4 = 0.04782(x1 − y3) + 0.1956(x1−y3)2

x2

c5 = 100x2

c6 = x1 − y3 − y4

c7 = 0.950− c4
c5

y5 = c6c7

y6 = x1 − y5 − y4 − y3

c8 = (y5 + y4)0.995
y7 = c8

y1

y8 = c8
3798
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c9 = y7 − 0.0663y7

y8
− 0.3153

y9 = 96.82
c9

+ 0.321y1

y10 = 1.29y5 + 1.258y4 + 2.29y3 + 1.71y6

y11 = 1.71x1 − 0.452y4 + 0.580y3

c10 = 12.3
752.3

c11 = (1.75y2)(0.995x1)
c12 = 0.995y10 + 1998
y12 = c10x1 + c11

c12

y13 = c12 − 1.75y2

y14 = 3623 + 64.4x2 + 58.4x3 + 146.312
y9+x5

c13 = 0.995y10 + 60.8x2 + 48x4 − 0.1121y14 − 5095
y15 = y13

c13

y16 = 148000− 331000y15 + 40y13 − 61y15y13

c14 = 2324y10 − 28740000y2

y17 = 14130000− 1328y10 − 531y11 + c14

c12

c15 = y13

y15
− y13

0.52

c16 = 1.104− 0.72y15

c17 = y9 + x5

and where the bounds are 704.4148 ≤ x1 ≤ 906.3855, 68.6 ≤ x2 ≤ 288.88,
0 ≤ x3 ≤ 134.75, 193 ≤ x4 ≤ 287.0966 and 25 ≤ x5 ≤ 84.1988. The best known
solution is at x∗ = (705.06, 68.6, 102.9, 282.341, 35.627) where f(x∗) = 1.905.

• g17 [81]:
Minimize: f(~x) = f(x1) + f(x2)

subject to:

f1(x1) =

{
30x1 0 ≤ x1 < 300
31x1 300 ≤ x1 < 400

f2(x2) =





28x2 0 ≤ x2 < 100
29x2 100 ≤ x2 < 200
30x2 200 ≤ x2 < 1000

h1(~x) = x1 = 300− x3x4

131.078
cos (1.48477− x6) +

0.90798x2
3

131.078
cos (1.47588)

h2(~x) = x2 = − x3x4

131.078
cos ((1.48477 + x6) +

0.90798x2
4

131.078
cos (1.47588)

h3(~x) = x5 = − x3x4

131.078
sin ((1.48477 + x6) +

0.90798x2
4

131.078
sin (1.47588)

h4(~x) = 200− x3x4

131.078
sin ((1.48477− x6) +

0.90798x2
3

131.078
sin (1.47588)
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where the bounds are 0 ≤ x1 ≤ 400, 0 ≤ x2 ≤ 1000, 340 ≤ x3 ≤ 420, 340 ≤
x4 ≤ 420, −1000 ≤ x5 ≤ 1000 and 0 ≤ x6 ≤ 0.5236. The best known solution is at
x∗ = (107.81, 196.32, 373.83, 420, 21.31, 0.153) where f(x∗) = 8927.5888.

• g18 [81]:
Maximize: f(~x) = 0.5(x1x4 − x2x3 + x3x9 − x5x9 + x5x8 − x6x7)

subject to:
g1(~x) = 1− x2

3 − x2
4 ≥ 0

g2(~x) = 1− x2
9 ≥ 0

g3(~x) = 1− x2
5 − x2

6 ≥ 0
g4(~x) = 1− x2

1 − (x2 − x9)2 ≥ 0
g5(~x) = 1− (x1 − x5)2 − (x2 − x6)2 ≥ 0
g6(~x) = 1− (x1 − x7)2 − (x2 − x8)2 ≥ 0
g7(~x) = 1− (x3 − x5)2 − (x4 − x6)2 ≥ 0
g8(~x) = 1− (x3 − x7)2 − (x4 − x8)2 ≥ 0
g9(~x) = 1− x2

7 − (x8 − x9)2 ≥ 0
g9(~x) = x1x4 − x2x3 ≥ 0
g10(~x) = x3x9 ≥ 0
g11(~x) = −x5x9 ≥ 0
g12(~x) = x5x8 − x6x7 ≥ 0

where the bounds are −10 ≤ xi ≤ 10 (i = 1, . . . , 8) and 0 ≤ x9 ≤ 20. The best
known solution is at x∗ = (0.9971,−0.0758, 0.5530, 0.8331, 0.9981,−0.0623,
0.5642, 0.8256, 0.0000024) where f(x∗) = 0.8660.

• g19 [81]:
Maximize: f(~x) =

∑10
i=1 bixi −

∑5
j=1

∑5
i=1 cijx(10+i)x(10+j) − 2

∑5
j=1 djx

3
(10+j)

subject to:
gj(~x) = 2

∑5
i=1 cijx(10+i) + 3djx

2
(10+j) + ej −

∑10
i=1 aijxi ≥ 0 j = 1, . . . , 5

where~b = [−40,−2,−.25,−4,−4,−1,−40,−60, 5, 1] and the remaining data is on
Table 8.2. The bounds are 0 ≤ xi ≤ 10 (i = 1, . . . , 15). The best known solution is at
x∗ = (0, 0, 5.1740, 0, 3.0611, 11.8395, 0, 0, 0.1039, 0, 0.3, 0.3335, 0.4, 0.4283, 0.2240)
where f(x∗) = −32.386.
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• g20 [81]:
Minimize: f(~x) =

∑24
i=1 aixi

subject to:
hi(~x) =

x(i+12)

b(i+12)

∑24

j+13

xj
bj

− cixi
40bi

∑12

j=1

xj
bj

= 0 i = 1, . . . , 12

h13(~x) =
∑24
i=1 xi − 1 = 0

h14(~x) =
∑12
i=1

xi
di

+ f
∑24
i=13

xi
bi
− 1.671 = 0

gi(~x) =
−(xi+x(i+12))∑24

j=1
xj+ei

≥ 0 i = 1, 2, 3

gi(~x) =
−(x(i+3)+x(i+15))∑24

j=1
xj+ei

≥ 0 i = 4, 5, 6

where f = (0.7302)(530)( 14.7
40

) and the data set is detailed on Table 8.3. The bounds
are 0 ≤ xi ≤ 10 (i = 1, . . . , 24). The best known solution is at x∗ = (9.53E −
7, 0, 4.21eE − 3, 1.039E − 4, 0, 0, 2.072E − 1, 5.979E − 1, 1.298E − 1, 3.35E −
2, 1.711E−2, 8.827E−3, 4.657E−10, 0, 0, 0, 0, 0, 2.868E−4, 1.193E−3, 8.332E−
5, 1.239E − 4, 2.07E − 5, 1.829E − 5) where f(x∗) = 0.09670.

• g21 [53]:
Minimize: f(~x) = x1

subject to:
g1(~x) = −x1 + 35x0.6

2 + 35x0.6
3 ≤ 0

h1(~x) = −300x3 + 7500x5 − 7500x6 − 25x4x5 + 25x4x6 + x3x4 = 0
h2(~x) = 100x2 + 155.365x4 + 2500x7 − x2x4 − 25x4x7 − 15536.5 = 0
h3(~x) = −x5 + ln (−x4 + 900) = 0
h4(~x) = −x6 + ln (x4 + 300) = 0
h5(~x) = −x7 + ln (−2x4 + 700) = 0

where the bounds are 0 ≤ x1 ≤ 1000, 0 ≤ x2, x3 ≤ 40, 100 ≤ x4 ≤ 300, 6.3 ≤
x5 ≤ 6.7, 5.9 ≤ x6 ≤ 6.4 and 4.5 ≤ x7 ≤ 6.25. The best known solution is at x∗ =
(193.7783493, 0, 17.3272116, 100.0156586, 6.684592154, 5.991503693, 6.214545462)
where f(x∗) = 193.7783493.

• g22 [53]:
Minimize: f(~x) = x1
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subject to:
g1(~x) = −x1 + x0.6

2 + x0.6
3 + x0.6

4 ≤ 0
h1(~x) = x5 − 100000x8 + 1× 107 = 0
h2(~x) = x6 + 100000x8 − 100000x9 = 0
h3(~x) = x7 + 100000x9 − 5× 107 = 0
h4(~x) = x5 + 100000x10 − 3.3× 107 = 0
h5(~x) = x6 + 100000x11 − 4.4× 107 = 0
h6(~x) = x7 + 100000x12 − 6.6× 107 = 0
h7(~x) = x5 − 120x2x13 = 0
h8(~x) = x6 − 80x3x14 = 0
h9(~x) = x7 − 40x4x15 = 0
h10(~x) = x8 − x11 + x16 = 0
h11(~x) = x9 − x12 + x17 = 0
h12(~x) = −x18 + ln (x10 − 100) = 0
h13(~x) = −x19 + ln (−x8 + 300) = 0
h14(~x) = −x20 + ln (x16) = 0
h15(~x) = −x21 + ln (−x9 + 400) = 0
h16(~x) = −x22 + ln (x17) = 0
h18(~x) = −x8 − x10 + x13x18 − x13x19 + 400 = 0
h19(~x) = x8 − x9 − x11 + x14x20 − x14x21 + 400 = 0
h20(~x) = x9 − x12 − 4.60517x15 + x15x22 + 100 = 0

where the bounds are 0 ≤ x1 ≤ 20000, 0 ≤ x2, x3, x4 ≤ 1 × 106, 0 ≤ x5, x6, x7 ≤
4 × 107, 100 ≤ x8 ≤ 299.99, 100 ≤ x9 ≤ 399.99, 100.01 ≤ x10 ≤ 300, 100 ≤
x11 ≤ 400, 100 ≤ x12 ≤ 600, 0 ≤ x13, x14, x15 ≤ 500, 0.01 ≤ x16 ≤ 300, 0.01 ≤
x17 ≤ 400, −4.7 ≤ x18, x19, x20, x21, x22 ≤ 6.25. The best known solution is at x∗ =
(12812.5, 722.1602494, 8628.371755, 2193.749851, 9951396.436, 18846563.16,
11202040.4, 199.5139644, 387.979596, 114.8336587, 27.30318607, 127.6585887,
52.020404, 160, 4.871266214, 4.610018769, 3.951636026, 2.486605539, 5.075173815)
where f(x∗) = 12812.5.

• g23 [185]:
Minimize: f(~x) = −9x5 − 15x8 + 6x1 + 16x2 + 10(x6 + x7)

subject to:
h1(~x) = x1 + x2 − x3 − x4 = 0
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h2(~x) = 0.03x1 + 0.01x2 − x9(x3 + x4) = 0
h3(~x) = x3 + x6 − x5 = 0
h4(~x) = x4 + x7 − x8 = 0
g1(~x) = x9x3 + 0.02x6 − 0.025x5 ≤ 0
g2(~x) = x9x4 + 0.02x7 − 0.015x8 ≤ 0

where the bounds are 0 ≤ x1, x2, x6 ≤ 300, 0 ≤ x3, x5, x7 ≤ 100, 0 ≤ x4, x8 ≤ 200
and 0.01 ≤ x9 ≤ 0.03. The best known solution has a objective function value of
f(x∗) = −400.0551

• g24 [57]:
Minimize: f(~x) = −x1 − x2

subject to:
g1(~x) = −2x4

1 + 8x3
1 − 8x2

1 + x2 ≤ 0
g2(~x) = −4x4

1 + 32x3
1 − 88x2

1 + 96x1 + x2 − 36 ≤ 0

where the bounds are 0 ≤ x1 ≤ 3 and 0 ≤ x2 ≤ 4. The feasible global minimum is
at x∗ = (2.3295, 3.17846) where f(x∗) = −5.50796.

Our next step was to solve the new set of 11 problems using our Simple Multimembered
Evolution Strategy (SMES) described in Chapter 6, adopting the exact same parameters
previously defined to solve the 13 test functions taken from [162].

Most of the previous work on constraint-handling techniques relates to the benchmark
proposed in [162]. However, we know (from the No Free Lunch Theorems for search
[183]) that using such a limited set of functions does not guarantee, in any way, that an
algorithm that performs well on them will necessarily be competitive in a different set
of problems. This motivated us to identify new test functions to validate our algorithm.
What we expected to find was functions in which our approach (which was found to be
highly competitive in the traditional benchmark from [162]) did not exhibit a good perfor-
mance. We expected to identify in such functions some features that could be associated
with sources of difficulty for the constraint-handling mechanism adopted in our approach.

We performed 30 independent runs for each test function. The learning rates values
were calculated using the formulas proposed by Schwefel [170] (where n is the number of

decision variables of the problem): τ = (
√

2
√
n)−1 and τ ′ = (

√
2n)−1. In the experimen-

tation process we used the same parameters reported in Chapter 6 which are the following:
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i ai bi ci di ei
1 0.0693 44.094 123.7 31.244 0.1

2 0.0577 58.12 31.7 36.12 0.3

3 0.05 58.12 45.7 34.784 0.4

4 0.2 137.4 14.7 92.7 0.3

5 0.26 120.9 84.7 82.7 0.6

6 0.55 170.9 27.7 91.6 0.3

7 0.06 62.501 49.7 56.708

8 0.1 84.94 7.1 82.7

9 0.12 133.425 2.1 80.8

10 0.18 82.507 17.7 64.517

11 0.1 46.07 0.85 49.4

12 0.9 60.097 0.64 49.1

13 0.0693 44.094

14 0.0577 58.12

15 0.05 58.12

16 0.2 137.4

17 0.26 120.9

18 0.55 170.9

19 0.06 62.501

20 0.1 84.94

21 0.12 133.425

22 0.18 82.507

23 0.1 46.07

24 0.09 60.097

Table 8.3: Data set for test problem g20
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Statistical Results of SMES for the new 11 Problems
Problem Optimal Best Mean Median Worst St. Dev.

g14 −47.656000 −47.534851 −47.367386 −47.385674 −47.053207 0.133386
g15 961.715000 961.698120 963.921753 964.058350 967.787354 1.791314
g16 1.905000 1.905155 1.905155 1.905155 1.905155 0.000000
g17 8927.588800 ∗8890.182617 ∗8954.136458 ∗8948.685547 ∗9163.676758 40.826101
g18 0.866000 0.866002 0.715698 0.673722 0.647570 0.081901
g19 −32.386000 −34.222656 −37.208255 −36.429800 −41.251328 2.102102
g20 0.096700 ∗0.211364 ∗0.251130 ∗0.252439 ∗0.304414 0.023365
g21 193.778349 ∗347.980927 ∗678.392445 ∗711.847260 ∗985.782166 158.493960
g22 12812.500000 ∗2340.616699 ∗9438.254972 ∗9968.156250 ∗17671.535156 4360.887012
g23 −400.0551 ∗ − 1470.152588 ∗ − 363.508270 ∗ − 333.251541 ∗177.252640 316.115639
g24 −5.507960 −5.508013 −5.508011 −5.508013 −5.507959 0.000010

Table 8.4: Statistical results for SMES (the (µ + λ)-ES from Chapter 6) with the 11 new
test functions. “*” means infeasible. A result in boldface indicates that the global optimum
(or best known solution) was reached.

(100 + 300)-ES, number of generations = 800, number of objective function evaluations =
240, 000. To deal with equality constraints, the dynamic mechanism described in Chapter
6 was adopted. The initial ε0 was set to 0.001.

8.3 Results and Discussion

The statistical results of our SMES for the new set of 11 functions are presented in Table
8.4.

We will now proceed to discuss the results obtained. SMES had no difficulties to solve
problem g16 despite its low value of ρ. g16 involves a considerable number of nonlinear
inequalities (34) combined with 4 linear inequality constraints and a nonlinear objective
function. The problem has a low dimensionality (5 decision variables). SMES also solved
quite well problems g14 and g18. In both problems the algorithm found the optimum
reported in Himmelblau’s book. Problem g14 has a nonlinear objective function and 3
linear equality constraints. Problem g18 has a quadratic objective function and 12 nonlin-
ear inequality constraints. Both problems have a value of ρ = 0% and a relatively high
dimensionality (10 and 9 decision variables, respectively).

A value close to the optimum and a low value of the standard deviation were found by
SMES for problem g19. The algorithm was less robust in this problem with a nonlinear
objective function and 5 nonlinear inequality constraints. It is interesting to note that,
despite its ρ value of 33.4761% (which means a large feasible region), a low number of
constraints (5) and no equality constraints, SMES could not find the best solution reported.
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Note however that this problem has 15 decision variables.
For problem g15, the best objective function value found by SMES is better than the

solution reported by Himmelblau, but it is slightly infeasible. Also, in about 35% of the
30 runs, SMES could not find feasible solutions. This problem has one linear and one
nonlinear equality constraints. The objective function is quadratic and the ρ value is 0% (it
is very hard to generate a feasible solution) . Note that this problem has only 3 decision
variables.

Problems g17, g20, g21 and g22 have one common aspect: they have more nonlinear
equality constraints than any other problem (4, 12, 5 and 11 linear equality constraints,
respectively). In those problems, SMES could not find feasible solutions in any single
run (we present the statistics of the 30 independent runs despite no feasible solutions were
found in any of them in order to show the behavior of SMES in those functions). The
dimensionality is different for each of these four problems (6, 24, 7 and 22, respectively).
For three problems, the objective function is linear (g20, g21 and g22). Only g17 has a
nonlinear objective function. All that suggests that the difficulty comes from the number
of nonlinear equality constraints. It is worth reminding that none of the 13 original test
functions has more than 3 nonlinear equality constraints. Furthermore, no problem with
equality constraints has more than 5 decision variables.

The obtained results suggest that the combination of an increasing dimensionality and
a high number of nonlinear equality constraints make a problem more difficult to solve
by SMES. In fact, just one feature is enough to give some problems like in function g19
which does not have equality constraints, but has 15 decision variables. Another example is
problem g17, which has a low dimensionality (6 decision variables) but 4 nonlinear equal-
ity constraints. The performance degrades the most when a problem combines nonlinear
equality constraints and a high dimensionality, as in problems g20 and g22.

It is important to mention that the sum of constraint violation of the final results for
problems g17, g20, g21 and g23 is not high. For problem g23 the best result was far from
the feasible region.

There are two test problems that only have one nonlinear equality constraint: g15 and
g23 which have a quadratic and linear objective function, respectively. The dimensionality
is different (3 and 9 decision variables). Both of them have a very small feasible region
compared with the whole search space. Furthermore, both have linear equality constraints
(1 for g15 and 3 for g23 which has 2 nonlinear inequality constraints). For g23, the di-
mensionality coupled with the combination of linear and nonlinear equality constraints and
nonlinear inequality constraints should influence SMES to keep it from reaching the feasi-
ble region. The results obtained with g15 seem to suggest that dimensionality also plays a
crucial role on the performance of the algorithm.

Finally, Problem g24 with a disjoint and a very large feasible region but with a low
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dimensionality of 2 represented no problem for SMES.
To summarize, the overall results suggest that the two main factors that affect the per-

formance of our EA are the dimensionality (like Michalewicz & Schmidt concluded for
the static penalty function approach [130, 165]) and the increasing number of nonlinear
equality constraints. The factors that do not seem to decrease the performance of our EA
are a high number of inequality constraints (even nonlinear), and, remarkably, the type of
objective function. For some problems, including a linear objective function, the prob-
lems resulted difficult to solve (even reaching the feasible region). Finally, disjoint feasible
regions with a considerable large size with respect to the search space and a low dimension-
ality do not seem to be difficult to reach for our EA. We need to test other functions with
disjoint feasible regions but with a higher dimensionality and with nonlinear constraints to
get more insights about this issue.

As a final discussion, we wanted to determine why the SMES failed to provide a com-
petitive performance, but in this case, regarding SMES’s own mechanisms. In the experi-
ments in the current Chapter, SMES presented the poorest results in presence of equality
constraints (mainly nonlinear). Also, in the experiments presented in Chapter 6, SMES re-
quired different initial values for the dynamic mechanism to deal with the small tolerance
for equality constraints. Furthermore, in Chapter 7, the Stochastic Ranking outperformed
SMES in problems with equality constraints. Based on those results, we argue that this
mechanism to dynamically decrease the tolerance for equality constraints must be improved
in order to avoid the user to define an initial tolerance value. Instead, SMES must define
an initial value and also the algorithm must be capable of self-adapting it. In this way, the
performance of SMES when dealing with equality constraints should be improved.

This small study is far from being conclusive, but it gives some insights about the
factors that keep our EA from finding good results when solving constrained optimization
problems. We hope that this information may help to develop more robust and general EAs.
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Chapter 9

Global Convergence Properties of The
Proposed Approach

The foundations of the theory of evolution strategies were laid by Rechenberg in [155].
Theory on evolution strategies has focused on two aspects [17]: (1) convergence velocity
and (2) convergence reliability. Convergence velocity refers to the speed of the algorithm
to approach a local optimum, and therefore it provides insight into the local behavior of
an evolution strategy. In contrast, convergence reliability concentrates of proving that the
algorithm is capable of finding the global optimum. The convergence velocity analysis
requires strong simplifications related to the form of the objective function to be optimized
(i.e. it requires convex functions). On the other hand, the analysis of global convergence
with probability one yields a result for t → ∞ (i.e. an asymptotical result as the running
time of the algorithm goes to infinity) independently of the form of the objective function.
The work in this Chapter focuses on the last approach.

Rudolph [161], proposed the conditions for an algorithm to converge to the global opti-
mum, assuming infinite time and finite population size. The aim of this work is to prove that
our SMES approach fits in Rudolph’s scheme [161] and, therefore, SMES can converge to
the feasible global optimum.

9.1 Basic Definitions

Definition 11 (Feasible global minimum): Let f(~x) ⊂ IR a function defined on a set
S ⊂ IRl and let F ⊂ S the feasible region of S. This function attains its feasible global
minimum at a point ~x∗ ∈ F if and only if: f ∗ = f(~x∗) ≤ f(~x) for all ~x ∈ F . 2

147
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Definition 12 (Indicator function):

1A(x) =

{
0 if x 6∈ A
1 if x ∈ A

2

Definition 13 (σ − algebra): A set A 6= Ø, whose elements are subsets of a set Ω, is
called a σ − algebra if:

(i) A ∈ A ⇒ Ac ∈ A, where Ac = Ω− A denotes the complement of set A, and

(ii)
⋃∞
n=1 An ∈ A for each sequence (An)n∈IN ⊂ A.

2

Definition 14 (Measurable space): The pair (Ω,A), whereA is a σ−algebra of subsets
of Ω, is called measurable space. A function ν that assigns a number ν(A) ∈ [0,∞]
to each subset A ∈ A, is called a measure on (Ω,A) if ν(Ø) = 0 and ν(∪∞n=1An) =∑∞
n=1 ν(An) for each sequence (Ai)i∈IN of pairwise disjoint sets ofA. The triplet (Ω,A, ν)

is called a measure space. 2

Definition 15 (Probability measure, event, sample space, probability of an event,
probability space, event with probability 1): Let (Ω,A) be a measurable space and
P be a measure on (Ω,A) with P(Ω) = 1. Then P is termed a probability measure, the
sets A ∈ A are called events, Ω is the sample space, the number P(A) with A ∈ A is
called the probability of an event A, and the triplet (Ω,A,P) is termed a probability
space. If P(A) = 1 for some event A, then the event is said to occur with probability 1. 2

Definition 16 (Measurable function): Let (Ω,A) and (Ω′,A′) be measurable spaces.
The functionX : Ω→ Ω′ is called a measurable function ifX−1(A′) ∈ A for allA′ ∈ A′.
2

Definition 17 (Random variable, probability distribution): Let (Ω,A,P) a probability
space and (Ω′,A′) be a measurable space. A measurable function X : Ω→ Ω′ is called a
random variable. The function PX : A′ → [0, 1] ⊂ IR with PX(A′) := P(X−1(A′)) for
all A′ ∈ A′ is called the probability distribution of X . 2

If a random variable only takes integer values, either from a finite or from an infinite
set of numerable values we say it is a random discrete variable. On the other hand, if the-
oretically, the variable can take all values within an interval in IR, we say that this random
variable is continuous. In this Chapter, we only refer to continuous random variables.
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Definition 18 (Markov chain): If S 6= Ø is a finite set and {Xt : t ∈ IN} is a sequence
of random variables with values in S with the feature that:

P{Xt+1 = j|Xt = i,Xt−1 = it−1, ..., X0 = i0} =
P{Xt+1 = j|Xt = i} =: pij

for all t ≥ 0 and for all i, j ∈ S , then, the sequence {Xt : t ∈ IN} is called a finite Markov
chain with state space S .

The number pij is called a transition probability from state i to state j in one step. If
we are supposing that these probabilities are independent of t ∈ IN, we state that the chain
is homogeneous. 2

Definition 19 (Markovian kernel): A Markovian kernel of a Markov chain {Xt : t ∈ IN}
with values in the set S, denoted as KX(x, y), is defined as KX(x, y) := pxy for all x, y ∈ S.
Let A ⊂ S, if the random variable X is discrete then: K(x,A) =

∑
y∈A K(x, y). If the

variable X is continuous , then: K(x,A) =
∫
y∈A K(x, dy). 2

Definition 20 (Level set and lower level set): Let f : IRl → IR. The sets La = {x ∈ IRl :
f(x) = a} and Ha = {x ∈ IRl : f(x) ≤ a} are termed the level set and the lower level set
of f at level a ∈ IR, respectively. The success set G(x) = Hf(x) of x ∈ IRl is equivalent to
the lower level set of f at level f(x). 2

Definition 21 (Convergence): Let X be a random variable and (Xn) a sequence of
random variables defined on a probability space (Ω,A,P). Then (Xn) is said

• to converge completely to X , denoted as Xn
c→ X , if for any ε > 0

lim
n→∞

n∑

i=1

P{|Xi −X| > ε} <∞;

• to converge almost surely to X , denoted as Xn
a.s.→ X , if

P
{

lim
n→∞ |Xn −X| = 0

}
= 1;

• to converge in probability to X , denoted as Xn
P→ X , if for any ε > 0

lim
n→∞P{|Xn −X| < ε} = 1.

2
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9.2 Global Convergence of SMES

The main processes of SMES, which are relevant for this study, are shown in Figure 9.1
(the details of the approach were given in Chapter 6).

Begin
Create M0 random solutions
t=0
While t < Tmax Do

Lt = combined recombination(Mt)
Lt = mutate(Lt)
Mt+1 = “+” selection from(Mt + Lt)
t=t+1

End While
End

Figure 9.1: Pseudocode of SMES. M is the population of µ parents, L is the population of
λ offspring and t is the iteration counter.

As can be noted, our SMES is really a typical evolution strategy. Its only meaningful
difference, with respect to a general evolution strategy, is the combination of two well-
known recombination operators (note that we use Gaussian mutation and the “+” replace-
ment operators usually adopted in an ES). This difference does not keep SMES from being
a standard ES. What we want to do is to demonstrate how our approach satisfies the the-
orem proposed by Rudolph [161], which proves that an EA with characteristics similar to
SMES is able to converge to the feasible global optimum of a given arbitrary constrained
objective function.

The following ideas were proposed by Rudolph [161].
The motivation to model an evolutionary algorithm using a Markov chain is because

of the fact that a new population (at time t) only depends of the state of the precedent
population (at time t− 1).

Evolutionary algorithms can be modeled as homogeneous Markov chains. Then, an
appropriate state space E and the probabilistic behavior of the evolutionary operators must
be expressed in terms of transition probabilities over E.

In this way, if I is the space representing admissible instances of a solution, we define
the state space E = Iµ, where µ is the number of individuals in the population. Besides, it



9.2. GLOBAL CONVERGENCE OF SMES 151

will be assumed that I = IRl, then E = (IRl)µ = IRl·µ.
Let b : E → IR∗, where IR∗ = IR

⋃{−∞,∞}, be the map that extracts the best objective
function value of a feasible individual within a population. For a population x with no
feasible solutions, it is assigned a value of b(x) =∞. ThenB(x) = {y ∈ E : b(y) ≤ b(x)}
denotes the set of populations (states) that are as good as (or better than) population x ∈ E.

Let Kcms denotes the product kernel describing the crossover, mutation and selection
operations of our SMES. The Markovian kernel of the entire SMES is:

Kcms(x,A) =
∫

A
Kcms(x, dy), A ⊂ E (9.1)

As E is a continuous space, we have to use the
∫

operator. However, we need to restrict the
Markovian kernel in Equation 9.1 for two reasons: (1) because we want to prove that our
SMES converges to the global optimum of a given problem, and (2) because of the limita-
tion of using an approach which runs on a computer. Therefore, we restrict the Markovian
kernel to the set Aε = {x ∈ E : b(x) ≤ f ∗ + ε} instead of the general set A ∈ E. Besides,
Aε ⊂ B(x) then x 6∈ Aε, Aε ∩B(x) = Aε.

First of all, we need to state that the EA is able to generate a solution in the vicinity
of the feasible global optimum with a positive probability. Furthermore, if at some gen-
eration, the corresponding population indeed contains this solution in the vicinity of the
feasible global optimum, it will remain in the population forever (elitism):

LEMMA 8.1
Let Aε = {x ∈ E : b(x) ≤ f ∗ + ε} with ε > 0. If Kcms(x,Aε) ≥ δ > 0 for all
x ∈ Acε = E \ Aε and Kcms(x,Aε) = 1 for x ∈ Aε then K(t)

cms(x,Aε) ≥ 1 − (1 − δ)t for
t ≥ 1.
Proof by induction:
Let t = 1. Then K(1)

cms(x,Aε) = Kcms(x,Aε) ≥ 1 − (1 − δ)1 = δ and the hypothesis
is true for t = 1. Now, assume that the hypothesis is true for t > 1. First, note that
K(t)
cms(x,Aε) = 1 for all t ≥ 1 if x ∈ Aε. This will be used to obtain (A). By choosing an

arbitrary x ∈ E one obtains:

K(t+1)
cms (x,Aε) =

∫

E
K(t)
cms(y,Aε)Kcms(x, dy)

=
∫

Aε
K(t)
cms(y,Aε)Kcms(x, dy) +

∫

Acε

K(t)
cms(y,Aε)Kcms(x, dy)

=
∫

Aε
Kcms(x, dy) +

∫

Acε

K(t)
cms(y,Aε)Kcms(x, dy) (A)

= Kcms(x,Aε) +
∫

Acε

K(t)
cms(y,Aε)Kcms(x, dy)
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≥ Kcms(x,Aε) + [1− (1− δ)t]
∫

Acε

Kcms(x, dy) (by hypothesis)

= Kcms(x,Aε) + [1− (1− δ)t]Kcms(x,A
c
ε)

= Kcms(x,Aε) + Kcms(x,A
c
ε)− (1− δ)tKcms(x,A

c
ε)

= 1− (1− δ)tKcms(x,A
c
ε)

= 1− (1− δ)t(1− Kcms(x,Aε))

≥ 1− (1− δ)t(1− δ) (by assumption)

= 1− (1− δ)t+1

Consequently, the hypothesis is true
Now, we can associate the behavior of an EA, modeled as a Markovian chain, with the

preconditions of Lemma 8.1 as follows:

THEOREM 8.1
A (µ + λ)-EA whose Markovian kernel satisfies the conditions Kcms(x,Aε) ≥ δ > 0 for
all x ∈ Acε = E \ Aε and Kcms(x,Aε) = 1 for all x ∈ Aε will converge completely to the
feasible global minimum of a real-valued function f regardless of the initial distribution.

Proof:
Let p(·) denote the arbitrary initial distribution of an EA. Then

P{Xt ∈ Aε} =
∫

E
K(t−1)
cms (x,Aε)p(dx)

≥ [1− (1− δ)t−1]
∫

E
p(dx) (by Lemma 8.1)

= 1− (1− δ)t−1

(9.2)

leading to

lim
t→∞

P{b(Xt)− f ∗ ≤ ε} = lim
t→∞

P{Xt ∈ Aε} ≥ lim
t→∞

1− (1− δ)t−1 = 1 (9.3)

and hence b(Xt)
P→ f ∗. Thus, under the precondition of Lemma 8.1 it is guaranteed that

a (µ + λ)-EA will converge almost surely to the global optimum ([161] p. 163). But the
mode of convergence can be shifted from almost surely to complete convergence, since

∞∑

t=0

P{b(xt)− f ∗ > ε} ≤ P{X0 6∈ Aε}+
∞∑

t=1

(1− δ)t ≤ 1 + (1/δ − 1) = 1/δ <∞ (9.4)
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it follows that b(Xt)
c→ f ∗.

Now, we will prove that our SMES satisfies the preconditions of Theorem 8.1. As it
was mentioned, the condition Kcms(x,Aε) ≥ δ > 0 for every x ∈ Ac

ε is sufficient be-
cause elitism is employed, and thus Kcms(x,Aε) = 1 for x ∈ Aε. Elitism is applied in the
selection process of SMES and its aim is to allow the best feasible solution found so far
to remain in the population for the next generation. If there are no feasible solutions, the
solution with the lowest sum of constraint violation will remain in the population.

THEOREM 8.2
LetX0 the initial population of some elitist EA and let Kc, Km and Ks, denote the stochastic
kernels of the crossover, mutation and selector operators, respectively. If the conditions:

(a) ∃δc > 0 : ∀x ∈ E : Kc(x,B(x)) ≥ δc

(b) ∃δm > 0 : ∀x ∈ B(X0) : Km(x,Aε) ≥ δm

(c) ∃δs > 0 : ∀x ∈ E : Ks(x,B(x)) ≥ δs

(9.5)

hold simultaneously, then for every ε > 0 there exists a δ > 0 such that Kcms(x,Aε) ≥ δ >
0 for every x ∈ B(X0).

Proof:
Since for an EA which adopts the selection operator “+” (with explicit elitism), it is

guaranteed that the sequence (Xt : t ≥ 0) of populations satisfies the relation b(Xt+1) ≤
b(Xt) for all t ≥ 0 and hence

B(Xt) ⊆ B(Xt−1) ⊆ . . . ⊆ B(X1) ⊆ B(X0) (9.6)

for t ≥ 0. Therefore, as soon as SMES is initialized, the set of possible populations that can
occur during the process is restricted to the set B(X0) ⊆ E. Consider the product kernel
of crossover and mutation: Let x ∈ B(X0) \ Aε 6= ∅. Then

Kcm(x,Aε) =
∫

E
Kc(x, dy)Km(y,Aε) (9.7)

≥
∫

B(x)
Kc(x, dy)Km(y,Aε)

≥
∫

B(x)
Kc(x, dy)δm by condition (b)

= Kc(x,B(x))δm

≥ δcδm > 0 by condition (a)

(9.8)
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Suppose that y ∈ Aε. Then B(y) ⊆ Aε and Ks(y,Aε) ≥ Ks(y,B(y)) ≥ δs. This fact
will be used to bound the product kernel of crossover, mutation and selection:

Kcms(x,Aε) =
∫

E
Kcm(x, dy)Ks(y,Aε) (9.9)

≥
∫

Aε
Kcm(x, dy)Ks(y,Aε)

≥
∫

Aε
Kcm(x, dy)δs by condition (c)

= Kcm(x,Aε)δs

≥ δcδmδs =: δ > 0

(9.10)

using the bound 9.8 in the last step.
In the following, we will prove the three conditions specifically for our SMES in order

to prove its global convergence.

• Condition (a): It is fulfilled by the recombination mechanism used by SMES. The
combined recombination chooses with replacement (one parent can be chosen more
than one time) l + 1 parents from the available µ with probability 1/µ. Let xb be
one of the best individuals in some population x ∈ E. The probability to choose
a parent xb exactly (l + 1) times is 1/µ(l+1) > 0 and, regardless of the recombi-
nation operator used (discrete or intermediate), parent xb may remain in the popu-
lation with probability 1 − (1 − (1/µ(l+1)))λ > 0. The λ exponent is due to the
fact that the recombination process is performed λ times to generate λ offspring. If
this event occurs, then the offspring population x̂ (say) contains xb and the relation
b(x̂) ≤ f(xb) = b(x) is valid which implies x̂ ∈ B(x). Consequently, one obtains
Kc(x,B(x)) ≥ 1− (1− (1/µ(l+1)))λ =: δc > 0 for every x ∈ E.

• Condition (b): Suppose that the lower level set Hb(X0) is bounded regardless of the
actual choice of the initial population X0 ∈ E and the mutation is realized by adding
a random vector z ∼ N(0, σ) where σ can vary in a fixed compact (i.e. closed and
bounded) subset of {σ ∈ IR : σ > 0}. Then, there exists an η > 0 such that
P{v + z ∈ Hf∗+ε} ≥ η > 0 for all v ∈ Hb(X0) \ Hf∗+ε ⊂ Rl ([161] p. 204). Let
x ∈ B(X0) be the population before mutation and xb be one of the best individuals.
Then, the probability that xb will enter the set Hf∗+ε by mutation, i.e. xb + z ∈ Hf∗+ε

is at least η > 0. But if xb enters Hf∗+ε then the population x will enter the set Aε at
least with the same probability. Thus, condition (b) is fulfilled with δm = η > 0.
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• Condition (c): As the “+” operator used by our SMES has explicit elitism, the ar-
gument is quite simple. One may set Ks(x,A) = 1A(x). In this case we obtain
Ks(x,B(x)) = 1B(x)(x) = 1 for all x ∈ E.

Thus, based on the previous mathematical analysis, we conclude that the SMES pro-
posed in this dissertation converges to the feasible global optimum, assuming infinite time
and finite population size.
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Chapter 10

Final Remarks

10.1 Summary

We have presented a study about constraint-handling in evolutionary algorithms. After
performing an empirical comparison of some approaches to handle constraints based on
multiobjective concepts, their limitations were identified. The results of this study sug-
gested the use of an approach based on a separation of objective function and constraints,
but avoiding the use of multiobjective concepts. Therefore, we decided to use a selection
process based on feasibility and a simple diversity mechanism that consists on maintaining
infeasible solutions close to the boundaries of the feasible region of the search space and
with a good value of the objective function.

The proposed approach uses an evolution strategy as its search engine. To improve the
exploration capabilities of the approach, we used a combination of two recombination op-
erators. Also, a reduction of the initial stepsize of the evolution strategy was used in order
to favor fine movements on the search space. The approach was tested on 13 well known
test functions and compared against three state-of-the-art algorithms providing competitive
results with a low computational cost (measured by the number of fitness function evalua-
tions). Also, our approach did not require the definition of extra parameters to be fine-tuned
by the user (the parameters adopted can remain fixed). Based on several tests, we found
that the recombination operator is the most important mechanism that helps the proposed
approach to obtain high quality results consistently.

It was empirically shown that an evolution strategy provides better results than a genetic
algorithm, even when both have used the same constraint handling and diversity mecha-
nism.

Besides its good performance, the approach showed to be fast at reaching the feasible

157



158 CHAPTER 10. FINAL REMARKS

region of the search space. Furthermore, for problems where the global optimum was
reached, the approach required only about 25% of the total number of generations (200 out
of a total of 800 generations). In addition, three performance measures were used to analyze
the behavior of our algorithm compared with respect to the most competitive approach
found in the literature: stochastic ranking [162]. From those results we concluded that our
approach is able to reach the feasible region faster than stochastic ranking and we found that
the progress inside the feasible region is also higher for our approach. Besides, we found
that, despite generating a feasible population of solutions early in the evolutionary process,
the diversity mechanism of the proposed approach is able to generate useful infeasible
solutions as to reach the global optimum solution. Finally, we performed an analysis of
variance in order to suggest values for the parameters of the approach and to detect any
possible sensitivity of our algorithm to its parameters. The analysis did not identify a
significant sensitivity of the approach to any of its parameters.

Based on the fact that the approach performed well in the benchmark proposed in the
literature, we proposed the use of 11 new test functions in order to empirically detect the
features of a constrained problem that make it difficult to solve by our proposed approach.
The results suggest that a high dimensionality and a high number of nonlinear equality
constraints decrease the performance of the proposed technique.

Finally, we formally proved the global convergence of our algorithm.

10.2 Conclusions

Based on the overall results and observations we provide the following conclusions:

• Although in this work we empirically showed that the use of multiobjective concepts
to deal with global optimization problems with constraints is not adequate, the idea
seems to work well on problems where there are no equality constraints.

• The usefulness of competitive diversity mechanisms incorporated to constraint-han-
dling mechanisms was highlighted in this work.

• It was also remarked in this work that the selection of the search engine is very
important (an ES over a GA in our case), even more important than the design of the
constraint-handling mechanism, when solving constrained optimization problems.

• In order to provide a more in-depth comparison of evolutionary approaches when
solving constrained problems, it is very important to use performance measures. In
this way, more insights about the behavior of the approaches can be obtained.
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• The use of statistical tests from the sample of independent runs improves the quality
of the discussions of results and allows more in-depth conclusions.

• The use of an analysis of variance helps practitioners to have a more detailed knowl-
edge about the evolutionary algorithm used and its parameters. In this way, the cali-
bration of them can be statistically-based.

• Despite the ANOVA performed showed no sensitivity of SMES to its parameters,
an interesting relationship was found between the approximated size of the feasi-
ble region and the initial mutation stepsize. For large feasible regions large initial
stepsizes are adequate and for small feasible regions small initial stepsizes are more
convenient.

• SMES is an approach able to reach the feasible region reasonably fast, and also has
an effective diversity mechanism to maintain good infeasible solutions during the
evolutionary process. However, SMES presented problems when dealing with a con-
siderable high number of nonlinear equality constraints (five or more). In these kind
of problems, approaches like SR provided better results.

• The new benchmark proposed in Chapter 7 coupled with the original thirteen test
problems provides a more complete set of problems in order to promote the design
of more competitive EAs to deal with constrained search spaces.

• Theoretical work about EAs in constrained search spaces is almost unexplored. The
mathematical proof provided in this work was only an adaptation of a global con-
vergence found in the literature, which is based on the capabilities of the mutation
operator of sampling any point in the search space, the capability of the recombina-
tion operator of not destroying a solution in the neighborhood of the optimum and
the ability of the selection mechanism to keep always the best solutions found so far.
Constraints are not taken into account in an explicit way in our proof. Therefore,
more work in this area is required.

• The main contributions of this work to the area are:

– The idea that the selection of an adequate search engine will lead to a not nec-
essarily complex constraint-handling mechanism.

– The use of performance measures to analyze the progress inside the feasible
region and to analyze the usefulness of diversity mechanisms.

– The use of new test problems in order to identify sources of difficulty.
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10.3 Future Work

Part of our future work includes the following:

• To test the constraint handling mechanism, as well as the diversity mechanism over
other evolution-based heuristics like Particle Swarm Optimization [101] and Differ-
ential Evolution [148].

• To incorporate variations of the original ES mutation operator, like the derandomized
self-adaptation proposed by Ostermeier et al. [139] and by Hansen and Ostermeier
[137].

• Due to the relevance shown by the combined recombination operator, we are inter-
ested in testing other types of recombination operators like generalized panmictic
intermediate recombination.

• We want to apply the SMES to the solution of engineering optimization problems
solved with a previous version of the algorithm.



Appendix A: Test functions

1. g01:
Minimize: f(~x) = 5

∑4
i=1 xi − 5

∑4
i=1 x

2
i −

∑13
i=5 xi subject to:

g1(~x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0

g2(~x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0

g3(~x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0

g4(~x) = −8x1 + x10 ≤ 0

g5(~x) = −8x2 + x11 ≤ 0

g6(~x) = −8x3 + x12 ≤ 0

g7(~x) = −2x4 − x5 + x10 ≤ 0

g8(~x) = −2x6 − x7 + x11 ≤ 0

g9(~x) = −2x8 − x9 + x12 ≤ 0

where the bounds are 0 ≤ xi ≤ 1 (i = 1, . . . , 9), 0 ≤ xi ≤ 100 (i = 10, 11, 12) and
0 ≤ x13 ≤ 1. The global optimum is located at x∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1)
where f(x∗) = −15. Constraints g1, g2, g3, g4, g5 and g6 are active.

2. g02:

Maximize: f(~x) =

∣∣∣∣
∑n

i=1
cos4(xi)−2

∏n

i=1
cos2(xi)√∑n

i=1
ix2
i

∣∣∣∣
subject to:

g1(~x) = 0.75−
n∏

i=1

xi ≤ 0

g2(~x) =
n∑

i=1

xi − 7.5n ≤ 0

where n = 20 and 0 ≤ xi ≤ 10 (i = 1, . . . , n). The global maximum is unknown;
the best reported solution is [162]: f(x∗) = 0.803619. Constraint g1 is close to being
active (g1 = −10−8).
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3. g03:
Maximize: f(~x) = (

√
n)

n∏n
i=1 xi

subject to:

h(~x) =
∑n
i=1 x

2
i − 1 = 0

where n = 10 and 0 ≤ xi ≤ 1 (i = 1, . . . , n). The global maximum is located
at x∗i = 1/

√
n (i = 1, . . . , n) where f(x∗) = 1.

4. g04:
Minimize: f(~x) = 5.3578547x2

3 + 0.8356891x1x5 + 37.293239x1 − 40792.141
subject to:
g1(~x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5 − 92 ≤ 0
g2(~x) = −85.334407− 0.0056858x2x5 − 0.0006262x1x4 + 0.0022053x3x5 ≤ 0
g3(~x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x2

3 − 110 ≤ 0
g4(~x) = −80.51249− 0.0071317x2x5 − 0.0029955x1x2 − 0.0021813x2

3 + 90 ≤ 0
g5(~x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4 − 25 ≤ 0
g6(~x) = −9.300961− 0.0047026x3x5− 0.0012547x1x3 − 0.0019085x3x4 + 20 ≤ 0

where: 78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ xi ≤ 45 (i = 3, 4, 5). The global
optimum is located at x∗ = (78, 33, 29.995256025682, 45, 36.775812905788) where
f(x∗) = −30665.539. Constraints g1 and g6 are active.

5. g05

Minimize:f(~x) = 3x1 + 0.000001x3
1 + 2x2 + (0.000002/3)x3

2

subject to:
g1(~x) = −x4 + x3 − 0.55 ≤ 0
g2(~x) = −x3 + x4 − 0.55 ≤ 0
h3(~x) = 1000 sin(−x3 − 0.25) + 1000 sin(−x4 − 0.25) + 894.8− x1 = 0
h4(~x) = 1000 sin(x3 − 0.25) + 1000 sin(x3 − x4 − 0.25) + 894.8− x2 = 0
h5(~x) = 1000 sin(x4 − 0.25) + 1000 sin(x4 − x3 − 0.25) + 1294.8 = 0

where 0 ≤ x1 ≤ 1200, 0 ≤ x2 ≤ 1200, −0.55 ≤ x3 ≤ 0.55, and −0.55 ≤
x4 ≤ 0.55. The best known solution is x∗ = (679.9453, 1026.067, 0.1188764,
−0.3962336) where f(x∗) = 5126.4981.
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6. g06
Minimize: f(~x) = (x1 − 10)3 + (x2 − 20)3

subject to:
g1(~x) = −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0
g2(~x) = (x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0

where 13 ≤ x1 ≤ 100 and 0 ≤ x2 ≤ 100. The global optimum is located at
x∗ = (14.095, 0.84296) where f(x∗) = −6961.81388. Both constraints are active.

7. g07
Minimize: f(~x) = x2

1 +x2
2 +x1x2− 14x1− 16x2 + (x3− 10)2 + 4(x4− 5)2 + (x5−

3)2 + 2(x6 − 1)2 + 5x2
7 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45

subject to:
g1(~x) = −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0
g2(~x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0
g3(~x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0
g4(~x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2

3 − 7x4 − 120 ≤ 0
g5(~x) = 5x2

1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0
g6(~x) = x2

1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0
g7(~x) = 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2

5 − x6 − 30 ≤ 0
g8(~x) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0

where −10 ≤ xi ≤ 10 (i = 1, . . . , 10). The global optimum is located at x∗ =
(2.171996, 2.363683, 8.773926, 5.095984, 0.9906548, 1.430574, 1.321644, 9.828726,
8.280092, 8.375927) where f(x∗) = 24.3062091. Constraints g1, g2, g3, g4, g5 and
g6 are active.

8. g08
Maximize: f(~x) = sin3(2πx1) sin(2πx2)

x3
1(x1+x2)

subject to:
g1(~x) = x2

1 − x2 + 1 ≤ 0
g2(~x) = 1− x1 + (x2 − 4)2 ≤ 0

where 0 ≤ x1 ≤ 10 and 0 ≤ x2 ≤ 10. The global optimum is located at x∗ =
(1.2279713, 4.2453733) where f(x∗) = 0.095825.

9. g09
Minimize: f(~x) = (x1 − 10)2 + 5(x2 − 12)2 + x4

3 + 3(x4 − 11)2 + 10x6
5 + 7x2

6 +
x4

7 − 4x6x7 − 10x6 − 8x7
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subject to:

g1(~x) = −127 + 2x2
1 + 3x4

2 + x3 + 4x2
4 + 5x5 ≤ 0

g2(~x) = −282 + 7x1 + 3x2 + 10x2
3 + x4 − x5 ≤ 0

g3(~x) = −196 + 23x1 + x2
2 + 6x2

6 − 8x7 ≤ 0
g4(~x) = 4x2

1 + x2
2 − 3x1x2 + 2x2

3 + 5x6 − 11x7 ≤ 0

where −10 ≤ xi ≤ 10 (i = 1, . . . , 7). The global optimum is located at x∗ =
(2.330499, 1.951372,−0.4775414, 4.365726,−0.6244870, 1.038131, 1.594227) where
f(x∗) = 680.6300573. Two constraints are active (g1 and g4).

10. g10
Minimize: f(~x) = x1 + x2 + x3

subject to: g1(~x) = −1 + 0.0025(x4 + x6) ≤ 0
g2(~x) = −1 + 0.0025(x5 + x7 − x4) ≤ 0
g3(~x) = −1 + 0.01(x8 − x5) ≤ 0
g4(~x) = −x1x6 + 833.33252x4 + 100x1 − 83333.333 ≤ 0
g5(~x) = −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0
g6(~x) = −x3x8 + 1250000 + x3x5 − 2500x5 ≤ 0

where 100 ≤ x1 ≤ 10000, 1000 ≤ xi ≤ 10000, (i = 2, 3), 10 ≤ xi ≤ 1000, (i =
4, . . . , 8). The global optimum is located at x∗ = (579.19, 1360.13, 5109.92, 182.0174,
295.5985, 217.9799, 286.40, 395.5979), where f(x∗) = 7049.25. g1, g2 and g3 are
active.

11. g11
Minimize: f(~x) = x2

1 + (x2 − 1)2

subject to:
h(~x) = x2 − x2

1 = 0

where: −1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1. The global optimum is located at x∗ =
(±1/

√
2, 1/2) where f(x∗) = 0.75.

12. g12
Maximize: f(~x) = 100−(x1−5)2−(x2−5)2−(x3−5)2

100

subject to:
g1(~x) = (x1 − p)2 + (x2 − q)2 + (x3 − r)2 − 0.0625 ≤ 0

where 0 ≤ xi ≤ 10 (i = 1, 2, 3) and p, q, r = 1, 2, . . . , 9. The feasible region of
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Figure A-1: The welded beam used for problem 14 .

the search space consists of 93 disjointed spheres. A point (x1, x2, x3) is feasible
if and only if there exist p, q, r such the above inequality (12) holds. The global
optimum is located at x∗ = (5, 5, 5) where f(x∗) = 1.

13. g13

Minimize: f(~x) = ex1x2x3x4x5

subject to:

g1(~x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − 10 = 0

g2(~x) = x2x3 − 5x4x5 = 0
g3(~x) = x3

1 + x3
2 + 1 = 0

where −2.3 ≤ xi ≤ 2.3 (i = 1, 2) and −3.2 ≤ xi ≤ 3.2 (i = 3, 4, 5). The global op-
timum is located at x∗ = (−1.717143, 1.595709, 1.827247,−0.7636413,−0.763645)
where f(x∗) = 0.0539498.

14. Design of a Welded Beam

A welded beam is designed for minimum cost subject to constraints on shear stress
(τ ), bending stress in the beam (σ), buckling load on the bar (Pc), end deflection of
the beam (δ), and side constraints [150]. There are four design variables as shown in
Figure A-1 [150]: h (x1), l (x2), t (x3) and b (x4).

The problem can be stated as follows:

Minimize:

f(~x) = 1.10471x2
1x2 + 0.04811x3x4(14.0 + x2)
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Subject to:

g1(~x) = τ(~x)− τmax ≤ 0

g2(~x) = σ(~x)− σmax ≤ 0

g3(~x) = x1 − x4 ≤ 0

g4(~x) = 0.10471x2
1 + 0.04811x3x4(14.0 + x2)− 5.0 ≤ 0

g5(~x) = 0.125− x1 ≤ 0

g6(~x) = δ(~x)− δmax ≤ 0

g7(~x) = P − Pc(~x) ≤ 0

where

τ(~x) =

√
(τ ′)2 + 2τ ′τ ′′

x2

2R
+ (τ ′′)2

τ ′ =
P√

2x1x2

, τ ′′ =
MR

J
,M = P

(
L+

x2

2

)

R =

√
x2

2

4
+
(
x1 + x3

2

)2

J = 2

{√
2x1x2

[
x2

2

12
+
(
x1 + x3

2

)2
]}

σ(~x) =
6PL

x4x2
3

, δ(X) =
4PL3

Ex3
3x4

Pc(~x) =
4.013E

√
x2

3x
6
4

36

L2


1− x3

2L

√
E

4G




P = 6000 lb, L = 14 in, E = 30× 106 psi, G = 12× 106 psi

τmax = 13, 600 psi, σmax = 30, 000 psi, δmax = 0.25 in

where 0.1 ≤ x1 ≤ 2.0, 0.1 ≤ x2 ≤ 10.0, 0.1 ≤ x3 ≤ 10.0 y 0.1 ≤ x4 ≤ 2.0.

15. Design of a Pressure Vessel

A cylindrical vessel is capped at both ends by hemispherical heads as shown in Fig-
ure A-2. The objective is to minimize the total cost, including the cost of the material,
forming and welding. There are four design variables: Ts (thickness of the shell), Th
(thickness of the head), R (inner radius) and L (length of the cylindrical section of
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Figure A-2: Center and end section of the pressure vessel used for problem 15.

the vessel, not including the head). Ts and Th are integer multiples of 0.0625 inch,
which are the available thicknesses of rolled steel plates, and R and L are continu-
ous. Using the same notation given by Kannan and Kramer [98], the problem can be
stated as follows:

Minimize :

f(~x) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x2

1x4 + 19.84x2
1x3

Subject to :

g1(~x) = −x1 + 0.0193x3 ≤ 0

g2(~x) = −x2 + 0.00954x3 ≤ 0

g3(~x) = −πx2
3x4 −

4

3
πx3

3 + 1, 296, 000 ≤ 0

g4(~x) = x4 − 240 ≤ 0

where 1 ≤ x1 ≤ 99, 1 ≤ x2 ≤ 99, 10 ≤ x3 ≤ 200 y 10 ≤ x4 ≤ 200.

16. Minimization of the Weight of a Tension/Compression Spring

This problem was described by Arora [5] and Belegundu [15], and it consists of
minimizing the weight of a tension/compression spring (see Figure A-3) subject to
constraints on minimum deflection, shear stress, surge frequency, limits on outside
diameter and on design variables. The design variables are the mean coil diameter D
(x2), the wire diameter d (x1) and the number of active coils N (x3).
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P P

d

D

Figure A-3: Tension/compression spring used for problem 16.

Formally, the problem can be expressed as:

Minimize:
(N + 2)Dd2

Subject to:

g1(~x) = 1− D3N

71785d4
≤ 0

g2(~x) =
4D2 − dD

12566(Dd3 − d4)
+

1

5108d2
− 1 ≤ 0

g3(~x) = 1− 140.45d

D2N
≤ 0

g4(~x) =
D + d

1.5
− 1 ≤ 0

where 0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3 y 2 ≤ x3 ≤ 15.

17. Design of a 10-bar Plane Truss

Consider the 10-bar plane truss shown in Figure A-4 [15]. The problem is to find the
moment of inertia of each member of this truss, such that we minimize its weight,
subject to stress and displacement constraints. The weight of the truss is given by:

f(x) =
10∑

j=1

ρAj Lj
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Figure A-4: 10-bar plane truss used for problem 17.

where x is the candidate solution, Aj is the cross-sectional area of the jth member,
Lj is the length of the jth member, and ρ is the weight density of the material.

The assumed data are: modulus of elasticity, E = 1.0 × 104 ksi 68965.5 MPa),
ρ = 0.10 lb/in3 (2768.096 kg/m3), and a load of 100 kips (45351.47 Kg) in the neg-
ative y-direction is applied at nodes 2 and 4. The maximum allowable stress of each
member is called σa, and it is assumed to be ±25 ksi (172.41 MPa). The maximum
allowable displacement of each node (horizontal and vertical) is represented by ua,
and is assumed to be 2 inches (5.08 cm).

There are 10 stress constraints, and 12 displacement constraints. The moment of
inertia of each element can be different, thus the problem has 10 design variables.

18. Minimization of the Weight of a Speed Reducer

The weight of the speed reducer is to be minimized subject to constraints on bending
stress of the gear teeth, surfaces stress, transverse deflections of the shafts and stresses
in the shafts. The variables x1, x2, · · · , x7 are the face width, module of teeth, number
of teeth in the pinion, length of the first shaft between bearings, length of the second
shaft between bearings and the diameter of the first and second shafts. The third
variable is integer, the rest of them are continuous.

Minimize : f(~x) = 0.7854x1x
2
2(3.3333x2

3 + 14.9334x3 − 43.0934) − 1.508x1(x2
6 +

x2
7) + 7.4777(x3

6 + x3
7) + 0.7854(x4x

2
6 + x5x

2
7)

Subject to :
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g1(~x) = 27
x1x2

2x3
− 1 ≤ 0

g2(~x) = 397.5
x1x2

2x
2
3
− 1 ≤ 0

g3(~x) =
1.93x3

4

x2x3x4
6
− 1 ≤ 0

g4(~x) =
1.93x3

5

x2x3x4
7
− 1 ≤ 0

g5(~x) =

((
745x4
x2x3

)2

+16.9×106

)1/2

110.0x3
6

− 1 ≤ 0r

g6(~x) =

((
745x5
x2x3

)2

+157.5×106

)1/2

85.0x3
7

− 1 ≤ 0

g7(~x) = x2x3

40
− 1 ≤ 0

g8(~x) = 5x2

x1
− 1 ≤ 0

g9(~x) = x1

12x2
− 1 ≤ 0

g10(~x) = 1.5x6+1.9
x4

− 1 ≤ 0

g11(~x) = 1.1x7+1.9
x5

− 1 ≤ 0

where 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3, 7.8 ≤ x5 ≤
8.3, 2.9 ≤ x6 ≤ 3.9 and 5.0 ≤ x7 ≤ 5.5.

Problem 18 was only used to test one previous version of the SMES (the (1+λ)-ES detailed
in Section 6.4).



Appendix B: Graphics of statistical tests
of the SMES

All graphics in this appendix were generated using the software S-PLUS 6.2 Student Edi-
tion. A Continuous line in the histogram was drawn to visualize the histogram’s distribution
tendency.
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172 Graphs of statistical tests of the SMES

g02 g05

g07 g09

Figure B-1: Histogram and density line of the distribution of results obtained by the SMES
in 30 independent runs. The omitted functions reached the global optimum in all runs.
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g10 g13

Figure B-2: Histogram and density line of the distribution of results obtained by the SMES
in 30 independent runs. The omitted functions reached the global optimum in all runs.



174 Graphs of statistical tests of the SMES

g02 (density) g02 (quantile)

g05 (density) g05 (quantile)

Figure B-3: Histogram of the sample mean values of results obtained by the SMES, gener-
ated by a bootstrapping process. Also shown is the normal quantile graph.



Appendix B 175

g07 (density) g07 (quantile)

g09 (density) g09 (quantile)

Figure B-4: Histogram of the sample mean values of results obtained by the SMES, gener-
ated by a bootstrapping process. Also shown is the normal quantile graph.
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g10 (density) g10 (quantile)

g13 (density) g13 (quantile)

Figure B-5: Histogram of the sample mean values of results obtained by the SMES, gener-
ated by a bootstrapping process. Also shown is the normal quantile graph.



Appendix C: Graphics of statistical tests
for the three performance measures

All graphics in this appendix were generated using the software S-PLUS 6.2 Student Edi-
tion. A Continuous line in the histogram was drawn to visualize the histogram’s distribution
tendency.
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178 Graphs of statistical tests of performance measures

g01 g03

g04 g05

Figure C-1: Histogram and density line of the distribution of results for the EVALS per-
formance measure obtained by the SMES in 30 independent runs. In the omitted function
g02, a feasible solution is found in the first generation for all runs.



Appendix C 179

g06 g07

g08 g09

Figure C-2: Histogram and density line of the distribution of results for the EVALS per-
formance measure obtained by the SMES in 30 independent runs. In the omitted function
g02, a feasible solution is found in the first generation for all runs.



180 Graphs of statistical tests of performance measures

g10 g11

g12 g13

Figure C-3: Histogram and density line of the distribution of results for the EVALS per-
formance measure obtained by the SMES in 30 independent runs. In the omitted function
g02, a feasible solution is found in the first generation for all runs.
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g01 g03

g04 g05

Figure C-4: Histogram and density line of the distribution of results for the EVALS perfor-
mance measure obtained by the Stochastic Ranking in 30 independent runs. In the omitted
function g02, a feasible solution is found in the first generation for all runs.



182 Graphs of statistical tests of performance measures

g06 g07

g08 g09

Figure C-5: Histogram and density line of the distribution of results for the EVALS perfor-
mance measure obtained by the Stochastic Ranking in 30 independent runs. In the omitted
function g02, a feasible solution is found in the first generation for all runs.



Appendix C 183

g10 g11

g12 g13

Figure C-6: Histogram and density line of the distribution of results for the EVALS perfor-
mance measure obtained by the Stochastic Ranking in 30 independent runs. In the omitted
function g02, a feasible solution is found in the first generation for all runs.



184 Graphs of statistical tests of performance measures

g01 g02

g03 g04

Figure C-7: Histogram and density line of the distribution of results for the PROGRESS-
RATIO performance measure obtained by the SMES in 30 independent runs.
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g05 g06

g07 g08

Figure C-8: Histogram and density line of the distribution of results for the PROGRESS-
RATIO performance measure obtained by the SMES in 30 independent runs.



186 Graphs of statistical tests of performance measures

g09 g10

g11 g12

Figure C-9: Histogram and density line of the distribution of results for the PROGRESS
RATIO performance measure obtained by the SMES in 30 independent runs.
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g13

Figure C-10: Histogram and density line of the distribution of results for the PROGRESS
RATIO performance measure obtained by the SMES in 30 independent runs.



188 Graphs of statistical tests of performance measures

g01 g02

g03 g04

Figure C-11: Histogram and density line of the distribution of results for the PROGRESS-
RATIO performance measure obtained by the Stochastic Ranking in 30 independent runs.
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g05 g06

g07 g08

Figure C-12: Histogram and density line of the distribution of results for the PROGRESS-
RATIO performance measure obtained by the Stochastic Ranking in 30 independent runs.



190 Graphs of statistical tests of performance measures

g09 g10

g11 g12

Figure C-13: Histogram and density line of the distribution of results for the PROGRESS
RATIO performance measure obtained by the Stochastic Ranking in 30 independent runs.
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g13

Figure C-14: Histogram and density line of the distribution of results for the PROGRESS
RATIO performance measure obtained by the Stochastic Ranking in 30 independent runs.



192 Graphs of statistical tests of performance measures

g01 g02

g03 g04

Figure C-15: Histogram and density line of the distribution of results for the ALL-
FEASIBLE performance measure obtained by the SMES in 30 independent runs.
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g05 g06

g07 g08

Figure C-16: Histogram and density line of the distribution of results for the ALL-
FEASIBLE performance measure obtained by the SMES in 30 independent runs.



194 Graphs of statistical tests of performance measures

g09 g10

g11 g12

Figure C-17: Histogram and density line of the distribution of results for the ALL-
FEASIBLE performance measure obtained by the SMES in 30 independent runs.
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g13

Figure C-18: Histogram and density line of the distribution of results for the ALL-
FEASIBLE performance measure obtained by the SMES in 30 independent runs.



196 Graphs of statistical tests of performance measures

g01 g02

g03 g04

Figure C-19: Histogram and density line of the distribution of results for the ALL-
FEASIBLE performance measure obtained by the Stochastic Ranking in 30 independent
runs.
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g05 g06

g07 g08

Figure C-20: Histogram and density line of the distribution of results for the ALL-
FEASIBLE performance measure obtained by the Stochastic Ranking in 30 independent
runs.



198 Graphs of statistical tests of performance measures

g09 g10

g11 g12

Figure C-21: Histogram and density line of the distribution of results for the ALL-
FEASIBLE performance measure obtained by the Stochastic Ranking in 30 independent
runs.
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g13

Figure C-22: Histogram and density line of the distribution of results for the ALL-
FEASIBLE performance measure obtained by the Stochastic Ranking in 30 independent
runs.



200 Graphs of statistical tests of performance measures

g01 (density) g01 (quantile)

g03 (density) g03 (quantile)

Figure C-23: Histogram and density line of the bootstrapping distribution of results ob-
tained by the SMES for the EVALS performance measure. Also shown is the normal
quantile graph.
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g04 (density) g04 (quantile)

g05 (density) g05 (quantile)

Figure C-24: Histogram and density line of the bootstrapping distribution of results ob-
tained by the SMES for the EVALS performance measure. Also shown is the normal
quantile graph.



202 Graphs of statistical tests of performance measures

g06 (density) g06 (quantile)

g07 (density) g07 (quantile)

Figure C-25: Histogram and density line of the bootstrapping distribution of results ob-
tained by the SMES for the EVALS performance measure. Also shown is the normal
quantile graph.
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g08 (density) g08 (quantile)

g09 (density) g09 (quantile)

Figure C-26: Histogram and density line of the bootstrapping distribution of results ob-
tained by the SMES for the EVALS performance measure. Also shown is the normal
quantile graph.



204 Graphs of statistical tests of performance measures

g10 (density) g10 (quantile)

g11 (density) g11 (quantile)

Figure C-27: Histogram and density line of the bootstrapping distribution of results ob-
tained by the SMES for the EVALS performance measure. Also shown is the normal
quantile graph.
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g12 (density) g12 (quantile)

g13 (density) g13 (quantile)

Figure C-28: Histogram and density line of the bootstrapping distribution of results ob-
tained by the SMES for the EVALS performance measure. Also shown is the normal
quantile graph.



206 Graphs of statistical tests of performance measures

g01 (density) g01 (quantile)

g03 (density) g03 (quantile)

Figure C-29: Histogram and density line of the bootstrapping distribution of results ob-
tained by the Stochastic Ranking for the EVALS performance measure. Also shown is the
normal quantile graph.
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g04 (density) g04 (quantile)

g05 (density) g05 (quantile)

Figure C-30: Histogram and density line of the bootstrapping distribution of results ob-
tained by the Stochastic Ranking for the EVALS performance measure. Also shown is the
normal quantile graph.



208 Graphs of statistical tests of performance measures

g06 (density) g06 (quantile)

g07 (density) g07 (quantile)

Figure C-31: Histogram and density line of the bootstrapping distribution of results ob-
tained by the Stochastic Ranking for the EVALS performance measure. Also shown is the
normal quantile graph.
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g08 (density) g08 (quantile)

g09 (density) g09 (quantile)

Figure C-32: Histogram and density line of the bootstrapping distribution of results ob-
tained by the Stochastic Ranking for the EVALS performance measure. Also shown is the
normal quantile graph.



210 Graphs of statistical tests of performance measures

g10 (density) g10 (quantile)

g11 (density) g11 (quantile)

Figure C-33: Histogram and density line of the bootstrapping distribution of results ob-
tained by the Stochastic Ranking for the EVALS performance measure. Also shown is the
normal quantile graph.
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g12 (density) g12 (quantile)

g13 (density) g13 (quantile)

Figure C-34: Histogram and density line of the bootstrapping distribution of results ob-
tained by the Stochastic Ranking for the EVALS performance measure. Also shown is the
normal quantile graph.



212 Graphs of statistical tests of performance measures

g01 (density) g01 (quantile)

g02 (density) g02 (quantile)

Figure C-35: Histogram and density line of the bootstrapping distribution of results ob-
tained by the SMES for the PROGRESS-RATIO performance measure. Also shown is the
normal quantile graph.
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g03 (density) g03 (quantile)

g04 (density) g04 (quantile)

Figure C-36: Histogram and density line of the bootstrapping distribution of results ob-
tained by the SMES for the PROGRESS-RATIO performance measure. Also shown is the
normal quantile graph.



214 Graphs of statistical tests of performance measures

g05 (density) g05 (quantile)

g06 (density) g06 (quantile)

Figure C-37: Histogram and density line of the bootstrapping distribution of results ob-
tained by the SMES for the PROGRESS-RATIO performance measure. Also shown is the
normal quantile graph.
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g07 (density) g07 (quantile)

g08 (density) g08 (quantile)

Figure C-38: Histogram and density line of the bootstrapping distribution of results ob-
tained by the SMES for the PROGRESS-RATIO performance measure. Also shown is the
normal quantile graph.



216 Graphs of statistical tests of performance measures

g09 (density) g09 (quantile)

g10 (density) g10 (quantile)

Figure C-39: Histogram and density line of the bootstrapping distribution of results ob-
tained by the SMES for the PROGRESS-RATIO performance measure. Also shown is the
normal quantile graph.
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g11 (density) g11 (quantile)

g12 (density) g12 (quantile)

Figure C-40: Histogram and density line of the bootstrapping distribution of results ob-
tained by the SMES for the PROGRESS-RATIO performance measure. Also shown is the
normal quantile graph.



218 Graphs of statistical tests of performance measures

g13 (density) g13 (quantile)

Figure C-41: Histogram and density line of the bootstrapping distribution of results ob-
tained by the SMES for the PROGRESS-RATIO performance measure. Also shown is the
normal quantile graph.
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g01 (density) g01 (quantile)

g02 (density) g02 (quantile)

Figure C-42: Histogram and density line of the bootstrapping distribution of results ob-
tained by the Stochastic Ranking for the PROGRESS-RATIO performance measure. Also
shown is the normal quantile graph.



220 Graphs of statistical tests of performance measures

g03 (density) g03 (quantile)

g04 (density) g04 (quantile)

Figure C-43: Histogram and density line of the bootstrapping distribution of results ob-
tained by the Stochastic Ranking for the PROGRESS-RATIO performance measure. Also
shown is the normal quantile graph.
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g05 (density) g05 (quantile)

g06 (density) g06 (quantile)

Figure C-44: Histogram and density line of the bootstrapping distribution of results ob-
tained by the Stochastic Ranking for the PROGRESS-RATIO performance measure. Also
shown is the normal quantile graph.



222 Graphs of statistical tests of performance measures

g07 (density) g07 (quantile)

g08 (density) g08 (quantile)

Figure C-45: Histogram and density line of the bootstrapping distribution of results ob-
tained by the Stochastic Ranking for the PROGRESS-RATIO performance measure. Also
shown is the normal quantile graph.
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g09 (density) g09 (quantile)

g10 (density) g10 (quantile)

Figure C-46: Histogram and density line of the bootstrapping distribution of results ob-
tained by the Stochastic Ranking for the PROGRESS-RATIO performance measure. Also
shown is the normal quantile graph.
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g11 (density) g11 (quantile)

g12 (density) g12 (quantile)

Figure C-47: Histogram and density line of the bootstrapping distribution of results ob-
tained by the Stochastic Ranking for the PROGRESS-RATIO performance measure. Also
shown is the normal quantile graph.
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g13 (density) g13 (quantile)

Figure C-48: Histogram and density line of the bootstrapping distribution of results ob-
tained by the Stochastic Ranking for the PROGRESS-RATIO performance measure. Also
shown is the normal quantile graph.



226 Graphs of statistical tests of performance measures

g01 (density) g01 (quantile)

g04 (density) g04 (quantile)

Figure C-49: Histogram and density line of the bootstrapping distribution of results ob-
tained by the SMES for the ALL-FEASIBLE performance measure. Also shown is the
normal quantile graph.
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g06 (density) g06 (quantile)

g07 (density) g07 (quantile)

Figure C-50: Histogram and density line of the bootstrapping distribution of results ob-
tained by the SMES for the ALL-FEASIBLE performance measure. Also shown is the
normal quantile graph.



228 Graphs of statistical tests of performance measures

g08 (density) g08 (quantile)

g09 (density) g09 (quantile)

Figure C-51: Histogram and density line of the bootstrapping distribution of results ob-
tained by the SMES for the ALL-FEASIBLE performance measure. Also shown is the
normal quantile graph.
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g10 (density) g10 (quantile)

g12 (density) g12 (quantile)

Figure C-52: Histogram and density line of the bootstrapping distribution of results ob-
tained by the SMES for the ALL-FEASIBLE performance measure. Also shown is the
normal quantile graph.



230 Graphs of statistical tests of performance measures

g13 (density) g13 (quantile)

Figure C-53: Histogram and density line of the bootstrapping distribution of results ob-
tained by the SMES for the ALL-FEASIBLE performance measure. Also shown is the
normal quantile graph.
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g01 (density) g01 (quantile)

g04 (density) g04 (quantile)

Figure C-54: Histogram and density line of the bootstrapping distribution of results ob-
tained by the Stochastic Ranking for the ALL-FEASIBLE performance measure. Also
shown is the normal quantile graph.



232 Graphs of statistical tests of performance measures

g05 (density) g05 (quantile)

g06 (density) g06 (quantile)

Figure C-55: Histogram and density line of the bootstrapping distribution of results ob-
tained by the Stochastic Ranking for the ALL-FEASIBLE performance measure. Also
shown is the normal quantile graph.
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g07 (density) g07 (quantile)

g08 (density) g08 (quantile)

Figure C-56: Histogram and density line of the bootstrapping distribution of results ob-
tained by the Stochastic Ranking for the ALL-FEASIBLE performance measure. Also
shown is the normal quantile graph.
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Figure C-57: Histogram and density line of the bootstrapping distribution of results ob-
tained by the Stochastic Ranking for the ALL-FEASIBLE performance measure. Also
shown is the normal quantile graph.
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Figure C-58: Histogram and density line of the bootstrapping distribution of results ob-
tained by the Stochastic Ranking for the ALL-FEASIBLE performance measure. Also
shown is the normal quantile graph.
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g13 (density) g13 (quantile)

Figure C-59: Histogram and density line of the bootstrapping distribution of results ob-
tained by the Stochastic Ranking for the ALL-FEASIBLE performance measure. Also
shown is the normal quantile graph.
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Michalewicz, and Xin Yao, editors, Proceedings of the 1997 International Conference on
Evolutionary Computation, pages 407–411, Indianapolis, Indiana, 1997. IEEE.

[139] Andreas Ostermeier, Andreas Gawelczyk, and Nikolaus Hansen. A derandomized approach
to self-adaptation of evolution strategies. Evolutionary Computation, 2(4):369–380, 1995.

[140] Ahmet Irfan Oyman, Kalyanmoy Deb, and Hans-Georg Beyer. An alternative constraint
handling method for evolution strategies. In Proceedings of the Congress on Evolutionary
Computation 1999 (CEC’99), volume 1, pages 612–619, Piscataway, New Jersey, July 1999.
IEEE Service Center.

[141] J. Paredis. Co-evolutionary constraint satisfaction. In Proceedings of the 3rd Conference on
Parallel Problem Solving from Nature, pages 46–55, New York, 1994. Springer Verlag.

[142] Vilfredo Pareto. Cours D’Economie Politique, volume I and II. F. Rouge, Lausanne, 1896.



250 BIBLIOGRAPHY

[143] I. C. Parmee and G. Purchase. The development of a directed genetic search technique for
heavily constrained design spaces. In I. C. Parmee, editor, Adaptive Computing in Engineer-
ing Design and Control-’94, pages 97–102, Plymouth, UK, 1994. University of Plymouth.

[144] Rebecca Parsons, Stephanie Forrest, and Christian Burks. Genetic algorithms for DNA se-
quence assembly. In Proceedings of the 1st International Conference on Intelligent Systems
in Molecular Biology. AAAI Press, July 1993.

[145] Rebecca J. Parsons, Stephanie Forrest, and Christian Burks. Genetic algorithms, operators
and DNA fragment assembly. Machine Learning, 21(1–2):11–33, October/November 1995.

[146] David Powell and Michael M. Skolnick. Using genetic algorithms in engineering design
optimization with non-linear constraints. In Stephanie Forrest, editor, Proceedings of the
Fifth International Conference on Genetic Algorithms (ICGA-93), pages 424–431, San Ma-
teo, California, July 1993. University of Illinois at Urbana-Champaign, Morgan Kaufmann
Publishers.

[147] M.J.D. Powell. A method for nonlinear constraints in minimization problems. In R. Fletcher,
editor, Optimization. Academic Press, London, England, 1969.

[148] Kenneth V. Price. An introduction to differential evolution. In David Corne, Marco Dorigo,
and Fred Glover, editors, New Ideas in Optimization, pages 79–108. Mc Graw-Hill, UK,
1999.

[149] S. Rao. Game theory approach for multiobjective structural optimization. Computers and
Structures, 25(1):119–127, 1986.

[150] Singiresu S. Rao. Engineering Optimization. John Wiley and Sons, third edition, 1996.

[151] Khaled Rasheed. An adaptive penalty approach for constrained genetic-algorithm optimiza-
tion. In John R. Koza, Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb, Marco
Dorigo, David B. Fogel, Max H. Garzon, David E. Goldberg, Hitoshi Iba, and Rick L. Riolo,
editors, Proceedings of the Third Annual Genetic Programming Conference, pages 584–590,
San Francisco, California, 1998. Morgan Kaufmann Publishers.

[152] Tapabrata Ray. Constraint robust optimal design using a multiobjective evolutionary algo-
rithm. In Proceedings of the Congress on Evolutionary Computation 2002 (CEC’2002),
volume 1, pages 419–424, Piscataway, New Jersey, May 2002. IEEE Service Center.

[153] Tapabrata Ray, Tai Kang, and Seow Kian Chye. An evolutionary algorithm for constrained
optimization. In Darrell Whitley, David Goldberg, Erick Cantú-Paz, Lee Spector, Ian Parmee,
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