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Resumen

Una amplia variedad de problemas complejos del mundo real son de naturaleza multi-
objetivo y su solución implica encontrar un conjunto de variables de decisión que
representen los mejores compromisos entre todos sus objetivos. Los Algoritmos Evo-
lutivos Multi-Objetivo (AEMOs) son técnicas poderosas de búsqueda, inspiradas
en ideas derivadas de procesos biológicos, que son adecuadas para encontrar solu-
ciones casi óptimas para este tipo de problemas. Usualmente, los AEMOs dirigen su
búsqueda por medio de una única heuŕıstica, que puede ser una regla, componente
o proceso. Un fenómeno común es que los AEMOs son exitosos en la resolución de
un tipo particular de problema. Sin embargo, al aplicarlos a nuevos problemas o
instancias ligeramente diferentes, los AEMOs pueden ver degradado su desempeño.
Por esta razón, una nueva tendencia es que los AEMOs seleccionen la heuŕıstica
más apropiada de un conjunto de heuŕısticas disponibles. Este paradigma se conoce
como hiper-heuŕıstica y se ha promovido con el objetivo de proporcionar metodoloǵıas
de búsqueda de aplicación general. Sin embargo, al usar hiper-heuŕısticas surge la
problemática de que éstas pueden requerir mucho tiempo de ejecución para ciertas
aplicaciones y por lo tanto surge la necesidad de utilizar paralelismo. En esta tesis,
proponemos diferentes hiper-heuŕısticas paralelas multi-objectivo, aśı como un marco
de software para su desarrollo. Los enfoques propuestos se comparan con respecto
a los AEMOs de última generación que adoptan varios problemas de referencia y
medidas de rendimiento que normalmente se utilizan en la literatura especializada.
Nuestros resultados experimentales indican que nuestras propuestas obtienen mejores
resultados en la mayoŕıa de los casos, siendo aplicables para una amplia gama de pro-
blemas complicados y también para problemas que tienen cuatro o más objetivos (es
decir, los denominados problemas de optimización con muchos objetivos).
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Abstract

A wide variety of complex real-world problems are multi-objective in nature, and
their solution involves finding a set of decision variables that represent the best po-
ssible trade-offs among all their objectives. Multi-Objective Evolutionary Algorithms
(MOEAs) are powerful search techniques, which are inspired by ideas derived from
biological science, being suitable for finding near-optimal solutions for such types of
problems. Usually, MOEAs rely on the guidance of a single heuristic, which can be
a rule, component or process. A common phenomenon is that MOEAs are success-
ful in solving a particular kind of problem. However, when applying them to new
problems or slightly modified instances, MOEAs may face difficulties in their perfor-
mance. For this reason, a new trend is to leave MOEAs the task of selecting the most
appropriate heuristic from a pool of available heuristics. This paradigm is known as
hyper-heuristic and has been promoted with the aim to provide generally applica-
ble search methodologies. Another issue is that using hyper-heuristics can be very
time-consuming for certain applications and therefore the need of parallelism. In this
thesis, we propose different parallel hyper-heuristics for multi-objective optimization,
and a software framework for their development. The proposed approaches are com-
pared with respect to state-of-the-art MOEAs adopting several benchmark problems
and performance measures normally used in the specialized literature. Our experi-
mental results indicate that our proposals obtain better results in most cases, being
applicable for a wide range of complicated problems, and also for problems having
four or more objectives (i.e., the so-called many-objective optimization problems).
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the-art Guerra-Gómez et al. [50] and MOMBI-III. . . . . . . . . . . . 130
7.13 Compromise solutions obtained by MOMBI-III. . . . . . . . . . . . . 130
7.14 Detailed information of the performance indicators for the RFC OTA.

The best results are presented in boldface. . . . . . . . . . . . . . . 131



LIST OF TABLES xix

7.15 Median and standard deviation of the performance indicators for the
RFC OTA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.16 Two-set coverage of the optimizers for the RFC OTA. . . . . . . . . . 132

8.1 Summary of the proposals of this work thesis . . . . . . . . . . . . . . 134



xx LIST OF TABLES



Chapter 1

Introduction

Most real-world problems are multi-objective in nature, requiring the simultaneous
optimization of several (often conflicting) objective functions, whose solution involves
finding a set of decision variables that represent the best possible trade-offs among
all their objectives. This set of decision variables is called Pareto optimal set, and
their image is named the Pareto optimal front. Multi-Objective Evolutionary Algo-
rithms (MOEAs), as well as other bio-inspired meta-heuristics, are powerful search
techniques that are suitable to solve multi-objective optimization problems. They can
find discrete approximations to the Pareto optimal set in a single run without requi-
ring particular assumptions, such as continuity or differentiability. In fact, MOEAs
perform random search strategies that operate under Darwin’s principle of natural
selection, where the fittest individuals must achieve: 1) convergence to the Pareto
optimal front and 2) uniform distribution along the objective space (better known
as diversity). In the last few decades, several MOEAs have been proposed, with the
vast majority relying on two concepts: Pareto dominance as their primary selection
mechanism, followed by a density estimator. The former favors non-inferior or non-
dominated solutions over dominated ones, whereas the latter induces a total order of
incomparable solutions, preserving diversity at the same time.

1.1 Motivation

One of the main concerns is that Pareto-based MOEAs face difficulties to reach the
Pareto optimal front when dealing with multi-objective optimization problems with
four or more objectives (also known as many-objective optimization problems) [75,
132, 93]. This is due to the fact that most or all solutions in the population quickly
become non-dominated with respect to the rest, and the best individuals are identified
only by the density estimator. Thus, in some cases, good locally non-dominated
solutions in terms of convergence might be discarded at the expense of keeping good
solutions in terms of diversity, in spite of the fact that they may be distant from the
Pareto optimal front [1]. To address this issue, a new trend is the incorporation of
performance indicators into the selection mechanism of a MOEA [7, 35, 155]. The

1
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hypervolume indicator [153] is, with no doubt, a natural choice, (see for example
[35, 155]) since it is the only unary indicator that is known to be Pareto compliant.
Also, it has been shown that maximizing the hypervolume is equivalent to reaching
the Pareto optimal set [36]. However, the main drawback of this sort of approach is its
computational cost, which increases exponentially with the number of objectives [13],
making it prohibitive for many-objective optimization problems. Moreover, another
issue is that MOEAs require a significant number of function evaluations. Thus,
their applicability may become unaffordable for certain applications that demand an
intensive use of CPU or memory.

The parallelization of MOEAs (pMOEAs) arises as an attractive option to address
these factors, where the basic idea is to divide somehow the MOEA into several tasks.
Each of these tasks is solved simultaneously on a different processing unit and, once
that all of them are completed, the results are combined to provide a solution to
the problem [3, p.2]. Moreover, processing units can be in the same machine, or
distributed in a collection of machines interconnected by a network [23]. The wide
acceptance of pMOEAs is mainly because not only they can produce substantial gains
in performance, buy they also may improve the accuracy of the results with respect
to their sequential counterparts. Moreover, when MOEAs combine different low-level
heuristics, the quality of solutions may be highly improved. In general, these methods
are known as hyper-heuristics, and can be seen as high-level methodologies, which
automatically produce an appropriate combination of single heuristics for solving
a broader set of problems. This thesis proposes new algorithms based on hyper-
heuristics and pMOEAs.

1.2 Objectives

The main goal of this thesis is to contribute to the development of parallel MOEAs,
through the proposal of new algorithms that combine the search skills of different
selection mechanisms. The specific objectives are the following:

• Proposal of new MOEAs that can solve a wide range of problems, including
many-objective instances, at an affordable computational time.

• Proposal of hyper-heuristics that have a good performance and are able to select
the most suitable heuristic according to the characteristics of the problem.

• Implementation of an open source framework for multi-objective optimization,
that allows the development of new pMOEAs, and is scalable with respect to
the number of processors.

• Statistical study of the proposed algorithms using different test problems, real
world applications, and performance indicators.
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1.3 Hypotheses

Our parallel hyper-heuristics will rely on the following hypotheses:

• Through the combination of different performance indicators, it is possible to
achieve convergence and diversity to the Pareto optimal front at the same time.

• From visualization tools for multivariate data, such as Parallel Coordinates,
it is possible to extract information that may guide the search towards more
promising regions of the Pareto optimal front.

• The computational cost of the hypervolume is negligible when the population
size is relatively small.

1.4 Contributions

Next, we describe the main contributions of this thesis.

• In collaboration with M.C. Miriam Pescador and a research group from the
Federico Santa Maŕıa Technical University in Chile, we performed a review of
scalarizing functions, which transform the original multi-objective optimization
problem into several single-objective problems with the aid of different target
directions. Moreover, we performed a novel experimental study for determi-
ning the behavior of such scalarizing functions in many-objective optimization
problems [107].

• This thesis proposes for the first time, a Hyper-Heuristic of scalarizing functions,
called Many-Objective Meta-heuristic Based on the R2 Indicator III (MOMBI-
III), for solving continuous multi-objective optimization problems (see Chap-
ter 3 in page 39). The pool of heuristics consists of seven scalarizing functions,
which are compatible with some form of Pareto dominance. The basic idea is
that MOMBI-III grants more presence to those scalarizing functions that help to
improve diversity, which is measured using the s-energy indicator. Experimen-
tal results showed that MOMBI-III significantly outperformed single heuristics
as well as other state-of-the-art algorithms on standard test problems. Further-
more, our proposal showed promise in solving inverted Pareto fronts, as well as
many-objective optimization problems.

• This work provides a counterexample showing that for a certain parameter
model (θ = 5), the scalarizing function Penalty Boundary Intersection (PBI),
may be incompatible with any form of the Pareto dominance relation (see Fi-
gure 3.3 in page 42). This is an important result because PBI has been widely
used within the search mechanism of optimizers based on decomposition, and
this finding may help us to understand its poor behavior in disconnected and
degenerated problems.
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• This thesis presents a novel algorithm, named Multi-objective Optimizer based
on Value Path (MOVAP), which incorporates a density estimator based on a
visualization technique called Parallel Coordinates (see Chapter 4 in page 61).
This technique has frequently been used for visualizing results in multi-objective
optimization, specifically in high-dimensional spaces. To the best of our know-
ledge, MOVAP is the first algorithm that incorporates automatic image ana-
lysis in its search mechanism in order to extract knowledge from the Parallel-
Coordinates plot. Experimental results indicate that MOVAP significantly out-
performs state-of-the-art algorithms in more than 35% of the test instances,
producing a much better diversity of solutions, and exploring more regions of
the search space in high dimensional spaces than the MOEAs with respect to
which it was compared. Moreover, this density estimator is extended to an
archiving technique for an island-based MOEA (see Chapter 5 in page 75).

• In Chapter 5 of page 75, this thesis proposes a parallel island version of the S-
Metric Selection Evolutionary Multi-Objective Algorithm (SMS-EMOA). This
approach was implemented under the advice of Dr. Enrique Alba from Málaga
University. Our proposal, called PArallel MICRo Optimizer based on the S
metric (S-PAMICRO), is a steady state genetic algorithm that ranks indivi-
duals according to Pareto dominance and uses the hypervolume as its density
estimator. In this proposal, we observed that regardless of the number of objec-
tives, CPU time was almost negligible when using small populations. Therefore,
S-PAMICRO splits the overall population into subpopulations (islands), con-
taining less than 12 individuals. Each island evolves independently a serial
SMS-EMOA with an external archive that is pruned using the density esti-
mator of MOVAP. We observed that S-PAMICRO could achieve much better
results than SMS-EMOA and HypE (another MOEA based on the hypervo-
lume), spending much less computational time.

• In Chapter 6 of page 89, this work introduces a free open-source software frame-
work, named EMO Project, intended to solve multi-objective optimization pro-
blems. This software consists of a set of useful command-line programs, which
are implemented in ANSI C, GNU Make,1 MPI2 and Gnuplot.3 MPI is used for
the parallelization of MOEAs and concurrent execution of commands over se-
veral processors, whereas Gnuplot is used for visualization purposes. Moreover,
EMO Project provides a set of predefined libraries for the developing of new
algorithms.

• In Appendix A of page 137, this thesis presents a corrected version of the incre-
mental hypervolume algorithm of the Walking Fish Group. This algorithm was

1https://www.gnu.org/software/make
2Support with two implementations: Open MPI (https://www.open-mpi.org) and MPICH

(https://www.mpich.org)
3http://www.gnuplot.info
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adopted in SMS-EMOA and S-PAMICRO to efficiently determine the solution
that contributes the least to the hypervolume of a non-dominated set.

1.5 Thesis Structure

Including this introduction, the thesis consists of eight chapters and three appendices.

Chapter 2 provides some basic concepts and definitions about multi-objective
optimization and evolutionary algorithms, which are required as a background for
the following chapters of this document. This chapter also reviews the related work.

Chapter 3 presents a novel hyper-heuristic of scalarizing functions. We first pro-
vide the motivation, discussing some limitations and the need for combining different
heuristics. Then, we introduce our proposal, which is an extension of a genetic algo-
rithm that ranks the population using the R2 indicator. After that, the computational
complexity is derived. Next, we present the experimental results using standard test
problems. We divide the experiments in single heuristics, state-of-the-art algorithms,
inverted test instances, and many-objective problems.

Chapter 4 is devoted to the description of a density estimator based on the Parallel-
Coordinates graph. We first provide the motivation, making some observations about
the knowledge that can be extracted from these graphs. Then, we present the algo-
rithm of the density estimator and couple it to a genetic algorithm. Its computational
complexity is also provided. Then, the experiments and discussion of the results are
presented, comparing our proposal with other popular MOEAs on standard test pro-
blems. The proposed density estimator can be considered as a hyper-heuristic of a
set of rules derived from empirical knowledge.

Chapter 5 introduces a parallel version of SMS-EMOA, which draws some ideas
from the island model. First, we provide the motivation, noticing that the calculation
of the hypervolume in many-objective problems is achievable when using relative small
populations. Then, we present our proposal, incorporating the density estimator of
the previous chapter. In the experimental results, we include an analysis of the effect
of the migration parameters using the hypervolume and IGD+ indicators. We also
perform tests with hypervolume-based MOEAs on artificial problems. A discussion
of the results is provided.

Chapter 6 focuses on the description of our software framework EMO Project4,
which supports parallelization of MOEAs over TCP/IP. We present its architecture,
command-line programs, and libraries. In addition, we illustrate how to implement
new problems and algorithms.

Chapter 7 evidences the applicability of MOMBI-III in solving real-world pro-
blems. Since their problem definition involves constraints, first we describe the
adopted technique to handle them. Then, we validate our approach on three well-
known constrained problems. Finally, we investigate the performance of our hyper-
heuristic on three engineering design optimization problems having up to eight objec-

4 Available for download at the link http://computacion.cs.cinvestav.mx/˜rhernandez
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tives and thirty constraints. In all tests, we compare our approach with state-of-the-
art algorithms using the ONVG, hypervolume, IGD+ and two-set coverage indicators.

The conclusion of the thesis, as well as some possible paths for future research are
presented in Chapter 8.

Appendix A describes the incremental hypervolume algorithm of the Walking Fish
Group, which is used to determine the solution that contributes the least to the hy-
pervolume of a non-dominated set. We describe a bug in its original implementation,
and provide a solution to fix it keeping a low computational cost.

Appendix B presents the standard test problems used in the comparative studies.
Finally, Appendix C provides an example of a configuration file used in EMO

Project.

1.6 Publications

The following book chapter, conference, workshop papers and journals were produced
during the thesis preparation:

• Raquel Hernández Gómez, and Carlos A. Coello Coello. Improved Meta-heuristic
Based on the R2 Indicator for Many-Objective Optimization. In 2015 Ge-
netic and Evolutionary Computation Conference (GECCO 2015), pages 679-
686, Madrid, Spain, July 11-15 2015. ACM Press. ISBN 978-1-4503-3472-3.

(Derived from Chapter 3)

• Raquel Hernández Gómez, Carlos A. Coello Coello, and Enrique Alba Torres.
A Multi-Objective Evolutionary Algorithm based on Parallel Coordinates. In
2016 Genetic and Evolutionary Computation Conference (GECCO’2016), pages
565-572, Denver, Colorado, USA, 20-24 July 2016. ACM Press. ISBN 978-1-
4503-4206-3. (Best Paper Award Track EMO)

(Derived from Chapter 4)

• Raquel Hernández Gómez, and Carlos A. Coello Coello. Parallel SMS-EMOA
for Many-Objective Optimization Problems. In Proceedings of the 2016 on
Genetic and Evolutionary Computation Conference Companion, GECCO ’16
Companion, pages 1011–1014, New York, NY, USA, 2016. ACM. (Student
Workshop Best Paper)

(Derived from Chapter 5)

• Raquel Hernández Gómez, Carlos A. Coello Coello, and Enrique Alba. A Para-
llel Version of SMS-EMOA for Many-Objective Optimization Problems. In Julia
Handl, Emma Hart, Peter R. Lewis, Manuel López-Ibáñez, Gabriela Ochoa, and
Ben Paechter, editors, Parallel Problem Solving from Nature – PPSN XIV, 14th
International Conference, pages 568-577. Springer. Lecture Notes in Computer
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Science Vol. 9921, Edinburgh, UK, September 17-21 2016. ISBN 978-3-319-
45822-9.

(Derived from Chapter 5)

• Miriam Pescador-Rojas, Raquel Hernández Gómez, Elizabeth Montero, Nicolás
Rojas-Morales, Maŕıa-Cristina Riff, and Carlos A. Coello Coello. An Overview
of Weighted and Unconstrained Scalarizing Functions. In Heike Trautmann,
Günter Rudolph, Kathrin Klamroth, Oliver Schütze, Margaret Wiecek, Yaochu
Jin, and Christian Grimme, editors, Evolutionary Multi-Criterion Optimization:
9th International Conference, EMO 2017, Münster, Germany, March 19-22,
2017, Proceedings, pages 499–513. Springer International Publishing, Cham
2017.

(Derived from Chapter 3)

• Raquel Hernández Gómez, and Carlos A. Coello Coello. A Hyper-Heuristic of
Scalarizing Functions. In 2017 Genetic and Evolutionary Computation Confe-
rence (GECCO’2017), pages 577-584, Berlin, Germany, July 15-19, 2017. ACM
Press. ISBN 978-1-4503-4920-8.

(Derived from Chapter 3)

• Carlos A. Coello Coello, Luis Miguel Antonio, and Raquel Hernández Gómez.
Fundamentals and Practice of Evolutionary Optimization. John Wiley & Sons,
Inc., 2018 (submitted).

(Derived from Chapter 2)

• Raquel Hernández Gómez, Carlos A. Coello Coello, and Enrique Alba. A Pa-
rallel Island Model for Hypervolume-Based Many-Objective Optimization. In
Thomas Bartz-Beielsten, Bogdan Filipic, Peter Korosec, El-Ghazali Talbi, edi-
tors, High-Performance Simulation Based Optimization. Springer. Studies in
Computational Intelligence 2018 (accepted with minor changes).

(Derived from Chapter 5)

• Raquel Hernández Gómez, and Carlos A. Coello Coello. Considerations in the
Incremental Hypervolume Algorithm of the Walking Fish Group. Soft Com-
puting, Springer 2018 (revise and resubmit).

(Derived from Appendix A)

• Luis G. De La Fraga, Esteban Tlelo-Cuautle, Raquel Hernández Gómez, and
Carlos A. Coello Coello. Many-objective Optimization of an Analog Circuit.
Swarm and Evolutionary Computation (to be submitted).

(Derived from Chapter 7)
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• Raquel Hernández Gómez, and Carlos A. Coello Coello. A Survey of Parallel
Multi-Objective Evolutionary Algorithms. IEEE Transactions on Cybernetics
(to be submitted).

(Derived from Chapter 2)

• Elizabeth Montero, Nicolás Rojas Morales, Maŕıa Cristina Riff, Miriam Pescador
Rojas, Raquel Hernández Gómez, and Carlos A. Coello Coello. On the Effects
of Scalarizing Functions. IEEE Transactions on Cybernetics (to be submitted).
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Chapter 2

Background

This chapter provides some fundamental concepts and formal notation that are adop-
ted throughout this document. Section 2.1 covers definitions of multi-objective op-
timization, such as optimality notions, reference points, pursued goals, performance
indicators, and scalarizing functions. Section 2.2 includes an introduction to multi-
objective evolutionary algorithms, which includes their main components, their se-
lection strategies, the most representative algorithms, and their parallel models. We
also differentiate three terms whose meanings tend to be confused: heuristic, meta-
heuristic, and hyper-heuristic. Section 2.3 discusses the most relevant previous related
work. We close this chapter with a summary in Section 2.4.

2.1 Multi-Objective Optimization

Multi-objective optimization deals with solving mathematical problems involving the
simultaneous optimization of two or more competing objective functions, instead of
having only one. Consequently, there is no single solution, but several of them, which
represent the best possible trade-offs among the objectives. Thus, it is rarely the case
that there is a single point that simultaneously optimizes all the objectives.1

2.1.1 Problem definition

A Multi-Objective Optimization Problem (MOP) is defined as follows:

Minimize f(x) :=
(
f1(x), f2(x), . . . , fm(x)

)
(2.1)

subject to gi(x) ≥ 0 ∀i ∈ {1, 2, . . . , o}, (2.2)

hj(x) = 0 ∀j ∈ {1, 2, . . . , r}, (2.3)

xk ∈ [xlk, x
u
k ] ∀k ∈ {1, 2, . . . , n}. (2.4)

X ⊂ IRn is the decision space (or search space) and Z ⊂ IRm is the objective space.
Each decision vector x ∈ X is related to an objective vector f , where X is restricted

1 This would be possible only if there was no conflict among the objectives.
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Figure 2.1: Illustration of a minimization problem IR2 → IR2. On top, we show different
views of the surfaces. The variable space is on the bottom left where x1, x2 ∈ [−1, 1]. The
objective space is on the bottom right, defined by the functions f1(x1, x2) = |x1 + x2| and

f2(x1, x2) = −x1x2.

by inequality constraints (2.2), equality constraints (2.3), and bounds on the decision
variables (2.4). An example of a MOP is provided in Figure 2.1.

MOPs are classified and studied according to their features. For instance, con-
strained MOPs [101] include problems with inequality and equality constraints; large-
scale MOPs [19] have hundreds, even thousands of decision variables; whereas many-
objective optimization problems are those having four or more objectives. Figure 2.2
presents this classification. In this thesis, we mainly focus on continuous nonlinear
MOPs having up to 10 objectives with box constraints. Nevertheless in Chapter 7,
we tackle some real-world applications having equality and inequality constraints.

2.1.2 Optimality notion

In multi-objective optimization, it is not possible to compare directly two solutions
x,y ∈ X as in single-objective optimization. As an alternative, the Pareto dominance
relation must be applied:

A solution x is said to dominate a solution y, denoted by x ≺ y or f(x) ≺ f(y),
if and only if x is at least as good as y in all objectives (∀i ∈ {1, . . . , k} fi(x) ≤
fi(y)) and better in at least one objective (∃j ∈ {1, . . . , k}, fj(x) < fj(y)).
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Figure 2.2: Location of multi-objective optimization and its major subfields.

This binary relation induces a strict partial order 2 on X , where three scenarios
may occur, either x ≺ y, y ≺ x or neither of both, i.e., they are incomparable.
The collection of all incomparable solutions relative to a set A ⊆ X is known as the
Non-Dominated Set (NDS), given by:

NDS(A) := {a ∈ A : @a′ ∈ A, a′ ≺ a}. (2.5)

Therefore, the solution to a MOP consists of the optimal set of non-dominated
decision vectors in all X , which cannot be improved in any objective without worse-
ning at least one other objective. This set is known as the Pareto Optimal Set (POS),
and is formally defined as:

POS := {x∗ ∈ X : @x ∈ X ⊂ IRn,x ≺ x∗}, (2.6)

and its image is named the Pareto Optimal Front (POF):

POF := {f(x∗) ∈ Z ⊂ IRm : x∗ ∈ POS}. (2.7)

2 A strict partial order is a binary relation that is irreflexive (a 6≺ a), transitive (if a ≺ b and
b ≺ c then a ≺ c) and asymmetric (if a ≺ b then b 6≺ a).
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Figure 2.3: Examples of Pareto dominance relations. It holds that a � a, a � b, a � c,
a � d, a ≺ b, a ≺ c, and a ≺ d. Solutions that are inside the quadrants I and IV are

incomparable to each other.

Another commonly way to compare solutions is by using the weak Pareto domi-
nance relation:

A solution x is said to weakly dominate a solution y, denoted by x � y or
f(x) � f(y), if and only if x is at least as good as y in all objectives (∀i ∈
{1, . . . , k}. fi(x) ≤ fi(y)).

This relaxed form of Pareto dominance induces a partial order 3 on X , where the
following optimality notion is derived:

A vector of decision variables x∗ ∈ X is weakly Pareto optimal if there exists
no other vector x ∈ X such that fi(x) < fi(x

∗) for all i = 1, . . . ,m.

The set of all weakly Pareto optimal solutions in X constitutes the weakly Pareto
optimal set, which is the superset of the Pareto optimal set.

For our example in Figure 2.1, the POS is {(x1, x2)|x1 = x2} and the weakly POS
is (x1, x2)|x1 = x2, x1 = −x2. Moreover, Figure 2.3 shows the difference between the
two Pareto dominance relations.

2.1.3 Reference points

The Pareto optimal front of a MOP is bounded by two special points: the ideal and
nadir points. Next, we provide their definitions.

The ideal point z ∗ ∈ IRm minimizes all the objective functions, being its ith-
component z∗i := min

{
fi(x) | x ∈ X

}
∀i ∈ {1, . . . ,m}.

3 A partial order is a binary relation that is reflexive (a ≺ a), antisymmetric (if a ≺ b and b ≺ a
then a = b) and transitive (if a ≺ b and b ≺ c then a ≺ c) .
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The nadir point znad ∈ IRm is constructed using the worst values of the Pareto
optimal front. Its ith-component is defined as znadi := max

{
fi(x) | x ∈ POS

}
∀i ∈ {1, . . . ,m}.

In most multi-objective evolutionary algorithms (see Subsection 2.2), the appro-
ximation to the ideal point considers all individuals created so far. In contrast, the
nadir point is updated using only information of the current Pareto front.

Another important concept are the extreme points, which is the set of points
{e1, e2, . . . , em} living in IRm that yield the best value of one objective. Extreme
points are characterized by being enclosed by the nadir point.

These reference points appear in the bottom-right side of Figure 2.1 on page 10.

2.1.4 Pursued goals

Computing the whole Pareto optimal set of a given MOP in an enumerative manner
is not possible in most cases, since the cardinality of this set might be huge, or even
infinite. Even if its storage is achievable on a computer with limited resources, the
decision maker might be unable to check all the possible solutions that can be genera-
ted. For this reason, a discrete approximation that better represents the optimal set
is a much more practical choice. Such approximation must fulfill the following goals:

G1. Convergence to the Pareto optimal front,

G2. A uniform distribution of solutions along the Pareto front, and

G3. A good spread of solutions, such that all of the Pareto front is covered.

The last two points are closely related, and are known as diversity. These goals
are depicted in Figure 2.4.
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2.1.5 Performance indicators

A performance indicator evaluates the quality of an approximation to the Pareto
optimal front, regarding convergence or diversity, formally defined as follows [158]:

A k-ary performance indicator I is a function I : Zk → IR, which assigns each
vector (A1, A2, . . . , Ak) of k approximation sets a real value I(A1, . . . , Ak).

Of special interest are the unary performance indicators, i.e. when k = 1. Com-
parisons between approximation sets A,B ⊂ Z are possible using the weak Pareto
dominance relation, where A weakly dominates B if it occurs:

A � B ⇔ ∀b ∈ B, ∃a ∈ A : a � b. (2.8)

Using this binary relation, a unary performance indicator I is said to be weakly Pareto
compliant, if it fulfills:

∀A,B ⊂ Z : A � B ⇒ I(A) ≥ I(B), (2.9)

and is Pareto compliant, if it satisfies:

∀A,B ⊂ Z : (A � B ∧ A 6= B) ⇒ I(A) > I(B). (2.10)

Performance indicators have been used mainly to compare the effectiveness of
optimizers, and recently, an important trend is their incorporation into the search
engine of optimizers. In this section, we briefly review the most important perfor-
mance indicators reported in the specialized literature. Unless otherwise stated, let
A,B ⊂ Z be the approximations to be evaluated and R ⊂ Z be a reference set.

Hypervolume

The only unary performance indicator that is known to be Pareto compliant is the
hypervolume [153], also known as the S metric. This indicator determines the size of
the portion of objective space that is dominated by the solutions of a set A, collectively
and bounded by a reference point z ∈ IRm:

HV (A; z) = Λ

⋃
a∈A

{x | a ≺ x ≺ z}

 , (2.11)

where Λ denotes the Lebesgue measure and z should be dominated by all elements
on A. Higher values of this indicator are preferred. The hypervolume indicator con-
siders all the pursued goals, being the order of importance G1, G3 and G2. Therefore,
it has some bias for favoring non-linear Pareto fronts with clusters near the middle
point (knee region). A nice mathematical property of the hypervolume is that its
maximization is equivalent to reaching the Pareto optimal set [36]. This has been
experimentally validated [81, 35]. For these reasons, the hypervolume is one of the
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most preferred performance indicators for comparing multi-objective optimizers. Ne-
vertheless, the main drawback of using the hypervolume is its high computational
cost, which grows exponentially with the number of objectives [144]. The shaded
area in Figure 2.4 (page 13) corresponds to the hypervolume indicator using the
reference point z = (1.1, 1.1).

R2 Indicator

Given a set U of utility functions, which have an associated set of weight vectors W ,
the unary version of the R2 indicator [14] is given by:

R2(A;U) = − 1

|U |
∑
u∈U

max
a∈A
{u(a; w)}, (2.12)

This indicator simultaneously evaluates all the desired aspects of a Pareto front appro-
ximation, where lower values are preferred. Moreover, the computational cost of the
R2 indicator is much lower than that of the the hypervolume, being weakly Pareto
compliant. Regarding the choice of the utility functions u, there are several possi-
bilities (see Table 2.5 on page 19), such as: WS, CHE, ASF, PBI, etc. The main
drawbacks of this indicator are that the weight vectors should be supplied by the
user, and since we are adding values of different utility functions, the set A should be
normalized.

Generational Distance

The Generational Distance (GD) [117], indicates how “far” the approximation set
A is from the discretized Pareto optimal front R. In other words, it measures the
average distance from each a ∈ A to its closest reference point r ∈ R, and is given
by:

GD(A;R) =

 1

|A|
∑
a∈A

d(a, R)p

1/p

. (2.13)

where p ∈ IR (usually set to p = 2) and d is the Euclidean distance from a ∈ A to its
nearest member of R:

d(a, R) = min
r∈R

√√√√ m∑
i=1

(ai − ri)2. (2.14)

A result of GD(A,R) = 0 indicates that A = R; any other value indicates a
deviation. This performance indicator assesses convergence. However, it is not Pareto
compliant.

Inverted Generational Distance

The Inverted Generational Distance (IGD) [20] indicates how “far” the discretized
Pareto optimal front R is from the approximation set A, i.e., it is the average distance
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from each reference point to its nearest solution in A. The formal definition of IGD
is the following:

IGD(A;R) =

 1

|R|
∑
r∈R

d̃(r, A)p

1/p

, (2.15)

where p ∈ IR (usually set to p = 2) and d̃ is the Euclidean distance from r ∈ R to its
nearest member of A:

d̃(r, A) = min
a∈A

√√√√ m∑
i=1

(ri − ai)2. (2.16)

Similarly to the GD indicator, the interpretation of the IGD values is as follows:
when IGD(A,R) = 0, then A = R; any other value IGD(A,R) > 0 represents
a deviation. This performance indicator measures both, convergence and diversity.
Unfortunately, it is not Pareto compliant.

∆p Indicator

∆p [117] can be seen as an “averaged Hausdorff distance” between the approximation
set and the discretized Pareto optimal front, defined as:

∆p(A;R) = max(GD(A,R), IGD(A,R)) (2.17)

where GD is the generational distance (2.13) and IGD is the inverted generational dis-
tance (2.15). ∆p simultaneously evaluates proximity to the Pareto optimal front and
spread of solutions along it. Although ∆p is not Pareto compliant, its computation
has a much lower computational cost than that of the hypervolume.

IGD+

The modified Inverted Generational Distance (IGD+) [70] is an improved version
of IGD (p = 1), now being weakly Pareto compliant (note that the inequality in
expression (2.9) on page 14 should be reversed). Its definition is given by:

IGD+(A;R) =
1

|R|
∑
r∈R

d+(r, A). (2.18)

The underlying idea of this performance indicator is that the distance d+ considers
the Pareto dominance relation:

d+(r, A) = min
a∈A

√√√√ m∑
i=1

(
max {ai − ri, 0}

)2
. (2.19)

This indicator is to be minimized, having an optimum value of zero. IGD+ may
achieve all the pursued goals, without having a specific order of importance, since its
value depends on the distribution of the reference set. Another remarkable aspect of
IGD+ is its low computational cost, which allows to assess high-dimensional Pareto
front approximations.
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s-energy

The s-energy indicator [55] is given by:

Es(A) :=
∑
i 6=j

∥∥ai − aj
∥∥−s , (2.20)

where A =
{
a1, . . . , a|A|

}
, and s > 0 is a fixed parameter. This performance indicator

has been used to discretize high-dimensional manifolds since its minimization leads to
a uniform distribution of the points in A, if s ≥ m−1 [55, 41]. Therefore, s-energy has
been used to assess diversity of approximation sets, though it is not Pareto compliant.

Two Set Coverage

Zitzler et al. [154] proposed a binary performance indicator that compares two sets
A,B ⊆ A in terms of their relative coverage:

C(A,B) :=
| {b ∈ B;∃a ∈ A : a ≺ b ∨ a = b} |

|B|
. (2.21)

This Pareto compliant performance indicator is defined as the mapping of the
order pair (A,B) to the interval [0, 1]. If all points in A dominate or are equal to
all points in B, then by definition C = 1. C = 0 implies the opposite. In general,
C(A,B) and C(B,A) both have to be considered due to set intersections not being
empty.

Overall Non-dominated Vector Generation

The Overall Non-dominated Vector Generation (ONVG) measures the total number
of non-dominated solutions found during an optimizer’s execution. This Pareto non-
compliant indicator is given by:

ONV G(A) := |NDS(A)|. (2.22)

Tables 2.1 and 2.2 provide some examples of performance indicator values correspon-
ding to the sets shown in Figure 2.4 (page 13). The reference point for the hypervo-
lume was set to (1.1, 1.1). For the R2 indicator, the ASF function was chosen, and
the weight vectors were generated by the Simplex-Lattice Design method [115] with
H = 10 (see page 23). In the case of GD, IGD and ∆p, the parameter p was set to 2,
and the reference set, also for IGD+, was the leftmost approximation of Figure 2.4.

Table 2.1: Two set coverage of the approximation sets shown in Figure 2.4 (page 13). The
best results are in boldface.

Set A B C D
A - 1.00 0.20 0.00
B 0.00 - 0.00 0.00
C 0.00 0.80 - 0.00
D 0.00 0.80 0.00 -
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Table 2.2: Performance indicators of the approximation sets shown in Figure 2.4
(page 13). The best results are in boldface.

Set Hypervolume R2 GD IGD ∆p IGD+ s-energy ONVG
A 0.3848 1.2534 0.0000 0.0000 0.0000 0.0000 223.5093 10
B 0.2823 1.3212 0.0671 0.0671 0.0671 0.0655 215.2461 10
C 0.3890 1.2499 0.0492 0.0682 0.0682 0.0159 256.0155 10
D 0.3653 22316.5414 0.0653 0.0770 0.0770 0.0437 269.3581 10

2.1.6 Scalarizing functions

A scalarizing function, also known as utility function or aggregation function, trans-
forms the original MOP (2.1), defined on page 9, into a single-objective problem
using a predefined target direction or weight vector w ∈ IRm. Such transformation is
performed as follows:

minimize u(f ′(x); w) (2.23)

subject to x ∈ X , (2.24)

where f ′(x) := f(x) − z and z ∈ IRm is a reference point (usually the ideal point
is adopted). Each component of w must satisfy wi > 0, and although there is no
particular reason beyond achieving uniformity among solutions, we also assume that∑

iwi = 1 [114].
A scalarizing function u is Pareto compliant, if it satisfies:

∀x,y ∈ X : x ≺ y ⇒ u(f ′(x); w) < u(f ′(y); w), (2.25)

and weakly Pareto-compliant if it holds:

∀x,y ∈ X : x � y ⇒ u(f ′(x); w) ≤ u(f ′(y); w). (2.26)

Otherwise, a scalarizing function is non-Pareto compliant.
Let p ∈ IN+, α ∈ IR+ and θ ∈ IR be the model parameters. The dot product

is symbolized as •, the absolute value of a real number is denoted by |·|, and the
magnitude of a vector is represented by ‖·‖. In Figure 2.5, we present the contour lines
of some aggregation functions, whereas their corresponding definition and features are
shown in Table 2.3. They differ in that they minimize some sort of a distance metric
to the reference point, others combine two distance metrics, and a minority of them
also consider the deviation to the weight vector. In all cases, their computational
complexity is O(m). Several of these scalarizing functions can generate (weakly)
Pareto optimal solutions.
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Table 2.3: Some scalarizing functions and their features. Pareto front shapes are
abbreviated to x (convex), c (concave) or l (linear). ≺ (�) denotes compatibility with

(weak) Pareto optimality. || means that the optimal objective vector y∗ is nearly parallel
to the weight vector w.

Acronym Full Name Minimize u(y; w) := Support
Model

Parameter

WS
weighted ∑

iwiyi
x

-
sum ≺

exponential ∑
i (e

pwi − 1) ep yi
x, c, l

p = 100EWC weighted ≺
criteria

WPO
weighted ∑

i
(yi)

p

wi

x, c, l

p = 3
power

≺
||

WN
weighted (∑

i
|yi|p
wi

) 1
p

x, c, l
p = 0.5

norm
≺
||

CHE
chebyshev

maxi
{
wi|yi|

} x, c, l
-

function �
achievement

max
{
yi
wi

} x, c, l

-ASF scalarizing �
function ||

AASF

augmented

max
{
yi
wi

}
+ α

∑
i
yi
wi α = 1e−4

achievement x,c,l

scalarizing ≺ ||
function

PBI

d1 + θd2,

θ = 5

penalty
where d1 :=

∣∣∣y • w
‖w‖

∣∣∣ x, c, l

boundary

intersection

and d2 :=
∥∥∥y − d1 w

‖w‖

∥∥∥ ||

2.2 Multi-Objective Evolutionary Algorithms

Throughout the years, Multi-Objective Evolutionary Algorithms (MOEAs) have su-
ccessfully shown their effectiveness in solving MOPs [124, 22, 80, 27, 21]. This is
mainly because these methods can find discrete approximations to the Pareto opti-
mal set in one single run without requiring particular assumptions, such as continuity
or differentiability. Instead, MOEAs perform random search strategies that mimic
Darwin’s principle of natural selection, where the fittest individuals must achieve the
pursued goals of Subsection 2.1.4 (page 13). The main elements of a MOEA are:
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1. The evolutionary operators, parent selection (π), variation (ν), and survival
selection (σ).

2. A population of individuals (or solutions) at generation t, P µ
t =

{
a1, a2, . . . , aµ

}
,

where ai ∈ X represents an individual.

3. The iterative rule Pt+1 = σ
{
Pt ∪ ν[π(Pt)]

}
.

A few MOEAs may also handle a secondary population, better known as an ex-
ternal archive, which keeps the non-dominated solutions found so far. At the end,
the external archive, or in its absence, the final population, contains the approxima-
tion set.

Moreover, some MOEAs score the population by assigning a fitness number to
each individual, measuring its performance regarding convergence, diversity, or a
combination of the two. Those individuals with a better fitness have a high probability
of being selected, either for reproduction or to constitute the next generation.

In the remainder of this section, we turn our attention to the evolutionary opera-
tors (Subsection 2.2.1) and how the fitness is assigned (Subsection 2.2.2). Interested
readers may consult [22] for more details.

2.2.1 Operators

The parent selection π : X µ → (Q ⊆ X µ) decides which individuals will contribute to
the creation of new ones. The common strategies are random sampling and tourna-
ments where the fittest member from an arbitrary candidate subset becomes a parent.

The variation operator ν : (Q ⊆ X µ) → X λ produces λ new individuals from a
subset of µ parents. It is worth noticing that a wide range of variation operators has
been proposed for different encoding representations of the decision vector. Exam-
ples of variation operators for binary encoding are: single-point crossover, two-point
crossover, and binary mutation; whereas for real encoding the most common choices
are: simulated binary crossover (SBX) and polynomial-based mutation [28].

Finally, the survival selection determines the parent population of the next ge-
neration. There are two schemes: σ(µ,λ) : X λ → X µ in which the best µ (µ ≤ λ)
offspring replace parents, and σ(µ+λ) : (X µ ∪X λ)→ X µ in which the best individuals
from the union of parents and offspring are chosen. The most simple is the steady-
state selection, which refers to σ(µ+1). In general, the scheme σ(µ+λ) is preferred to
incorporate elitism, a milestone in MOEAs, since it guarantees convergence to the
Pareto optimal front [112]. An additional option to introduce elitism is by using an
external archive.

2.2.2 Selection strategies

MOEAs adopt mainly three strategies to select solutions: Pareto dominance, aggre-
gation, and performance indicators. Pareto based MOEAs favor individuals that are
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Figure 2.6: Common diversity mechanisms in multi-objective optimization. In all cases,
solution c is the candidate for removal.

less dominated by other members in the population. For example, in Pareto ran-
king [38], a solution is scored according to the number of solutions that dominate it.
Whereas in the non-dominated sorting algorithm [31], the population is classified into
fronts; each one includes solutions that are non-dominated by inferior fronts. In other
approaches, the fitness of an individual considers both dominating and dominated so-
lutions [157, 156]. However, when it is not possible to discern among solutions using
Pareto dominance, a secondary selection criterion is applied oriented to improve diver-
sity, such as fitness sharing, clustering, grids, crowding distance, or reference points.
The application of these methods is usually in objective space. Next, we describe
each of them (see Figure 2.6 for examples).

Sharing methods [43] degrade an individual’s fitness by dividing it by a niche
count, which estimates how crowded is the individual’s neighborhood. The niche or
neighborhood is represented by a hypersphere of radius σshare surrounding the current
position of such individual. Diversity population depends on the proper setting of this
parameter. In clustering methods [146], the overall population is grouped into sub-
sets, called clusters within which the individuals are closer in terms of their Euclidean
distance. The µ representative solutions (or cluster centers) constitute the next gene-
ration. The most popular algorithms are average linkage [157] and k-nearest-neighbor
(kNN) [156] as they do not require extra parameters. In grid methods [79], objective
space is partitioned into ld hypercubes, where l is the number of subdivisions of the
space and d is the dimension. The number of solutions in a hypercube is then used as
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Figure 2.7: Examples of the Simplex-Lattice Design method.

an approximate form of niche count. Another approach is the crowding distance [31],
given by the average distance in each dimension of the two nearest neighbors that
surround a solution. Whereas in the reference-point methods, a set of well-dispersed
points is required. In this case, the population is associated with the lines passing
through the origin and these points. Those solutions having the closest perpendicular
distance to segregated lines are retained.

In contrast, aggregation-based MOEAs [149] decompose a MOP into several single-
objective subproblems through a scalarizing function (see Section 2.1.6 on page 18).
Subproblems are associated with different weight vectors, which should be well dis-
tributed in (0, 1]m.

It is worth mentioning that, in algorithms based on reference points or weight vec-
tors, the m-tuple is usually generated by the Simplex-Lattice Design method [115]. In
this case, each component takes a value from {10−2, 1/H, 2/H, . . . , H/H} where H ∈
IN. The quantity of m-tuples is represented by the combinatorial number CH+m−1

m−1 .
This set is equally spaced over a simplex as shown in Figure 2.7.

Indicator-based MOEAs favor solutions that highly contribute to a performance
indicator (see Section 2.1.5 on page 14). Because of their compatibility with a relaxed
form of Pareto dominance, the most relevant are the unary indicators: hypervolume,
IGD+ and R2, along with the binary ε indicator [158]. The fitness or individual’s
contribution to a unary indicator is defined as: ∆I(a,A) := I(A) − I(A \ {a}),
where I is one of the above mentioned indicators. Appendix A is dedicated to the
computation of the hypervolume contribution.

Finally, Tables 2.4 and 2.5 summarize the features of the most representative
MOEAs developed over the years, describing the adopted strategies for each evolu-
tionary operator.
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2Table 2.4: Features of the most representative MOEAs.

Year
Optimizer/

Full Name Parent Selection (π) Variation (ν) Survival Selection (σ) Observations
Reference

1993

Multi-Objective Two-point Non-elitist (µ, µ). Parameter σshare is
MOGA Genetic Similar individuals crossover Fitness based on Pareto estimated by solving a

[38] Algorithm are recombined and binary ranking and niching in polynomial equation
mutation objective space

1993

Niched Pareto Pareto domination tournaments, Single-point Additional parameters: σshare
NPGA Genetic candidates are compared to a crossover and Non-elitist and sample size. The latter is

[62] Algorithm sample and ties are solved binary approach: (µ, µ) critical to the selection pressure
by niching in objective space mutation and premature convergence

1994
NSGA Nondominated Stochastic remainder selection. Computational complexity
[119] Sorting Genetic Dummy fitness based on non- Binary Non-elitist of O(|P |3m).

Algorithm dominated fronts and sharing operators approach: (µ, µ) Performance sensitive
in decision variable space to σshare parameter

1998
SPEA Strength Pareto Tournaments (including exter- Single-point Elitist scheme External archive pruned to a
[157] Evolutionary nal solutions). Fitness based crossover and with selection limit size using a clustering

Algorithm on Pareto dominance binary mutation (µ, µ) method (average linkage)

1999

Not applicable, except for Elitist (1 + 1), compa- External archive truncated to a
Pareto the variant (µ+ λ), Random risons are made using fixed size by an adaptive grid,

PAES Archived whith µ > 1 or λ > 1. mutation Pareto dominance and which recursively splits the
[79] Evolution In this case, selection (similar to a a degree of crowding, objective space in O(2lm)

Strategy is performed via hill-climber) which is estimated from subdivisions, where l is a
tournaments an external archive user defined parameter

2000

Nondominated Tournaments based on a pre- Simulated binary Elitist scheme Computational complexity of
NSGA-II Sorting Genetic ference relation (≺n), which crossover (SBX) (µ+ µ), based O(|P |2m). Constraint han-

[31] Algorithm II considers non-dominated fronts and Polynomial- on ≺n dling by modifying Pareto
and crowding distance based mutation dominance

2001
SPEA2 Strength Pareto Tournaments. Fitness based Depending on the Elitist scheme (µ+ λ), Boundary points are preserved.
[156] Evolutionary on Pareto dominance and den- problem, same as truncation considers distan- Computational complexity of

Algorithm 2 sity information (kNN method) SPEA or NSGA-II ces among individuals O(|P |2(log |P |+m))
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Table 2.5: Features of the most representative MOEAs (cont’d).

Year
Optimizer/

Full Name Parent Selection (π) Variation (ν) Survival Selection (σ) Observations
Reference

2004

Binary tournaments. Fitness is Elitist scheme (µ+ µ), Framework of binary indicators,
IBEA Indicator-Based given by an exponential func- Depending on the which iteratively removes compliant with Pareto dominance.
[155] Evolutionary tion, which calculates the per- problem, same as the worst individual, Required scaling factor κ > 0,

Algorithm formance indicator of each SPEA or NSGA-II updating fitness values dependent on the problem and
distinct pair of individuals the indicator used

2005

S-metric Simulated Elitist (µ+ 1). The Expensive computational
SMS-EMOA Selection binary crossover solution with the worst complexity of O(|P |m−1).

[35, 9] Evolutionary Random sampling (SBX) and hypervolume contribution Hypervolume is maximized
Multi-Objective Polynomial- of the last non-dominated through generations

Optimization based mutation front is removed

2007

Multi-Objective Sampling from Elitist scheme µ(1 + λ). Invariant against rotation, sca-
Covariance In the scheme λ(≥ 1) a multi-variate Population is ranked ling and translation of the search

MO-CMA- Matrix every individual in normal distribution according to the non- space. Parameter adaptation of
ES [67] Adaptation the population is with the parent as dominated fronts and the mutation distribution per

Evolution mutated the mean vector the contributing hyper- individual. Computationally
Strategy and an adaptive volume (or crowding expensive for problems with

covariance matrix distance) many variables or objectives

2007

Multi-Objective Random sampling from the Only one offspring Elitist scheme (µ+ µ). A Framework of scalarizing func-
MOEA/D Evolutionary neighborhood Ti of each is created. Same as child i replaces solutions tions with a complexity of

[149] Algorithm i-th individual, associated SPEA2, including from Ti if its correspon- O(|P ||T |m). Required set of
based on with a scalar optimization differential ding scalarizing function weight vectors and neighbor-

Decomposition problem evolution is equivalent or better hood size (|T | � |P |)

2011

Hypervolume Binary tournaments Depending on the Elitist scheme (µ+ µ). If m ≤ 3 the exact hypervolume
HypE Estimation using the hypervolume problem, SBX Solutions with the worst is calculated; otherwise, it is esti-

[7] Algorithm for contributions of the and Polynomial- hypervolume contributions mated using Monte Carlo simula-
Multi-Objective population based mutation of the last non-dominated tion, where a large number of

Optimization front are discarded sampling points is required

2014

Binary tournaments Elitist (µ+ µ), crowding Computational complexity
NSGA-III Nondominated for constrained MOPs; SBX and Polyno- distance is replaced by a of O(|P |2m).

[29] Sorting Genetic otherwise, mial based niching strategy, which Algorithm designed for
Algorithm III random sampling mutation requires a set of well solving MOPs with up to

takes place spread reference points 15 objectives
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2.2.3 Parallelization

At each generation of a MOEA, the computational cost depends on two factors: 1) the
computational complexity of evaluating the MOP, and 2) the scalability of the input
parameters, such as the number of decision variables, objectives and population size.
In the first case, MOEAs require a large number of function evaluations to approach
Pareto optimal fronts. However, a vast majority of MOPs cannot be expressed in
algebraic form. Thus, their evaluation is conducted by time-consuming simulators.
Even though some approaches have been proposed to reduce the execution time by
exploiting knowledge acquired during the search [113, 78], the quality of the final
solutions often worsens. Examples of the second case, include applications that deal
with high dimensional spaces, such as large-scale MOPs or many-objective problems.
These types of MOPs make MOEAs to slow down considerably [5, 97, 57]. Some
other applications need large population sizes for improving accuracy [42] or covering
more regions of the search space [2]. Though most MOEAs run in polynomial time
with respect to their population size, the storage limit may also becomes an issue.

The parallelization of MOEAs (pMOEAs) arises as an attractive option to address
these factors, where the basic idea is to divide somehow the MOEA into several tasks.
Each task is solved simultaneously on a different processor and, once all of them have
been completed, the results are combined to provide a solution to the MOP [3, p.2].
Processors can be in the same machine, or distributed in a collection of machines
interconnected by a network [23]. The wide acceptance of pMOEAs is mainly because
they can produce substantial gains in performance, and in some cases, they can also
improve the accuracy of the results with respect to their sequential counterparts.

In spite of the fact that the iterative rule of MOEAs is a purely sequential pro-
cess, at least two parallelization strategies can be applied [95]: 1) parallelization of the
computations, in which the operations commonly applied to each individual are per-
formed in parallel, and 2) parallelization of the population, in which the population
is split into different parts, each one evolving in semi-isolation. Both strategies are
considered in the four major parallel models4 of MOEAs, which are the master-slave,
island, diffusion and hybrid models. In the following, we describe each of them. This
thesis focuses on the paradigms master-slave (Chapter 7) and island (Chapter 5),
which were implemented in EMO Project (Chapter 6). For more information, rea-
ders are referred to the works of Coello et al. [22, p.443], Luna and Alba [95], Van
Veldhuizen et al. [128], and Talbi et al. [123].

Master-Slave Model

The master-slave model (Figure 2.8a) parallelizes the operations of a MOEA that do
not require information about all individuals at the same time. Therefore, the popu-
lation (P ) is managed by a central or master processor, which applies the parent (π)

4 A parallel model is an abstraction of a computer system architecture that defines the logic in
which MOEAs are executed in parallel. Therefore, the implementation of a parallel model is not
tied to any parallel architecture.
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Figure 2.8: Parallel models for MOEAs: a) master-slave, b) island using a star topology,
c) diffusion, and examples of hybrid models: d) island/master-slave, e) island/island, f)

island/diffusion.

and survival (σ) selections. On the other hand, slave processors simultaneously apply
the variation operations (ν) and the evaluation of the objective functions (f).

There are two variants of this model. One is the synchronous master-slave, where
the central processor waits to receive the results of all the population before pro-
ceeding into the next generation. In this case, the search behavior is conceptually
identical to a serial MOEA, with its execution time being the only difference. The
other variant, suitable for heterogeneous architectures, is the asynchronous master-
slave, where the central processor does not stop to wait for any slow slave and thus,
the search space exploration is different from a serial MOEA.

In general, the master-slave model is recommended for large-scale MOPs or time-
consuming objective functions.

Island Model

The island model (Figure 2.8b) is inspired by the natural phenomenon of populations
evolving in relative isolation, such as it might happen within some archipelago. In
this case, the overall population is divided into a number of independent subpopu-
lations (Pi) that live in islands (processors) and evolve through the execution of a
serial MOEA. Islands are connected in a physical or logical topology, such as a line,
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tree, torus, mesh or ring. Occasionally, neighboring islands interact with each other,
exchanging some individuals. This operation is known as migration (η), and its goal
is to introduce diversity into subpopulations, avoiding to get stuck in local optima.
However, the new operation introduces extra parameters: the number of solutions
to migrate, how often migration occurs, the migration policy that determines which
individuals migrate and which are replaced in the destination island. These parame-
ters along with the topology are important factors in the performance of an island
pMOEA because they determine how fast (or how slow) a good solution spreads to
other subpopulations.

The migration operation can be implemented using synchronous or asynchronous
communication [96]. In the synchronous case, each island evolves a serial MOEA,
selects emigrants, sends copies of them to destination islands, and waits to receive
immigrants from source islands. In the asynchronous case, the last step is different;
the island does not wait, and if immigrants are available, they are incorporated into
its subpopulation, but otherwise, it computes the next generation using the latest
immigrants received from the neighborhood.

Regarding the migration and replacement schemes, there are many of them avai-
lable in the literature [22, p. 494]. Due to predictable communication costs and easy
implementation, in this thesis, we focus on those that migrate a constant number of
individuals (nmig) at each event, such as:

Random Migration/Replacement (R): This scheme selects nmig random solu-
tions for migration or replacement.
Elitist Random Migration (ER): Migrate nmig random individuals from the non-
dominated set. If there are not enough members, the rest is selected at random from
the remainder of the population.
Elitist Ranking Migration (EK): Migrate nmig random individuals from the
non-dominated set. If there are not enough members, the rest is selected from the
successively ranked Pareto fronts.
Elitist Random Replacement (ER): nmig random solutions, which are domi-
nated by the immigrants, are replaced in the population. If the number of solutions
is smaller than nmig, random immigrants are discarded. This method does not
guarantee that the worst solutions will be replaced but ensures the retention of the
non-dominated set.
Elitist Ranking Replacement (EK): Rank all Pareto fronts and replace indivi-
duals from the worst ranked front(s) with the immigrants. Solutions may be randomly
selected from some front(s) if the number of individuals to be replaced does not match
the number of individuals represented by the front being replaced.
Elitist Replacement (E): Combine immigrants with the current population, rank
all Pareto fronts and remove individuals from the worst ranked front(s). This method
replaces the solutions of the worst front of the current population with the best immi-
grants. When there is a tie between these two sets, individuals are randomly replaced.

The behavior of island pMOEAs differs from their sequential counterpart, allow-
ing the formation of niches, which can improve the search. Algorithms based on this
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model can considerably reduce the execution time, and its use is recommended for
clusters of computers with limited communication among them. They are also suit-
able for problems with large search spaces where a large population size is required.

Diffusion Model

In the diffusion model (Figure 2.8c), the population is dispersed among several subpo-
pulations (Pi) living on different processors and having one or few individuals. Unlike
the island model, there is no migration per se. However, subpopulations are inter-
connected in a neighborhood structure, where the variation operators (ν) are applied
only within these overlapping neighborhoods. The neighborhood geometry could be
a square, a rectangle, a cube, or any other shape depending upon the number of di-
mensions associated with the diffusion algorithm’s topological design. Each geometry
reflects some associated number and arrangement of neighbors within a multidimen-
sional grid. As fittest individuals arise in different areas of the local topology, the aim
is that they spread or diffuse slowly throughout the entire population. The diffusion
model distinguishes itself for requiring high data-rate communications being suitable
for massively parallel architectures, such as Graphics Processing Units (GPUs).

Hybrid Model

Hybrid models (Figure 2.8d-f) combine different paradigms to parallelize MOEAs. In
most approaches, the fusion follows a two-level hierarchy, where at the upper level is
the island model, and at the lower level is either the master-slave, diffusion or even
the same island model.

2.2.4 Heuristics and its derivatives

The word heuristic derives from Greek “heuriskein,” and means to find or discover.
It can be a rule, a choice, a component, or a process. According to Merriam-Webster
dictionary5, heuristics involve or serve as an aid to learning, discovery, or problem-
solving by experimental and especially trial-and-error methods. Heuristics have been
one of the crucial elements in Artificial Intelligence to solve complex, uncertain and
ambiguous problems, where there is no guarantee to find a correct solution. Heuristics
can be seen as rules of thumb or empirical knowledge that help to guide an algorithm
to find acceptable solutions in a reasonable time, narrowing the search space consi-
derably [4]. Examples of heuristics are local search techniques, selection operators,
variation operators, meta-heuristics, and Rechenberg’s 1/5th rule for adapting the
step size in a Gaussian mutation [111]. In the following, we define two derived con-
cepts from the word heuristic: meta- and hyper-heuristic.

The Greek etymology meta means “after” or “beyond,” and it is an abstraction
behind another concept used to complete the latter. A meta-heuristic is an iterative

5www.merriam-webster.com/dictionary/heuristic (accessed November 21, 2017)
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process, which guides a subordinate heuristic using ideas derived from artificial intelli-
gence, biological, mathematical, and physical sciences to find efficiently near-optimal
solutions [105]. Meta-heuristics can be considered as approximate methods that work
as general frameworks to attack hard optimization problems, where classical heuristics
have failed [105]. Examples of meta-heuristics are evolutionary algorithms (genetic
algorithms, genetic programming, evolution strategies, differential evolution), particle
swarm optimization, simulated annealing, and tabu search [105, 122, 40].

On the other hand, the Greek prefix hyper means “over” or “above,” and it de-
notes something above the standard. A hyper-heuristic is a search method or learning
mechanism for selecting or generating heuristics to solve computational search pro-
blems [15]. Hyper-heuristics are high-level approaches that operate on a search space
of heuristics or heuristic pool instead of the search space of the problem at hand.
Hyper-heuristics have been promoted with the aim to provide generally applicable
search methodologies. A common phenomenon is that simple heuristics are success-
ful in solving a particular kind of problem. However, when applying them to new
problems or slightly modified instances, heuristics may face difficulties in their per-
formance. Moreover, to identify which heuristic works efficiently in a given problem
is an arduous task, sometimes prohibitive for computationally expensive applications.

As shown in Figure 2.9, Burke et al. [16] proposed a taxonomy of hyper-heuristics
considering two dimensions: 1) the nature of the heuristics’ search space, and 2) the
different sources of feedback information. Regarding the nature of the search space,
there are two options: a) heuristic selection, which are methodologies for choosing
existing heuristics, and b) heuristic generation, which are methodologies for gene-
rating new heuristics from the components of existing ones. Regarding the source
of feedback information obtained during the search process, there are three options:
c) no-learning, in which there is no learning mechanism and the heuristic selection
is based on either a random or an exhaustive process. d) offline learning, in which
knowledge is gathered in the form of rules from a set of training instances, that will
hopefully generalize to solve unseen instances, and e) online learning, in which the
learning takes place while the algorithm is solving an instance of a problem.

2.3 Related Work

In this section, we examine the most relevant previous related work. The use of col-
laborative approaches working as hyper-heuristics can be found across Operational
Research, Computer Science and Artificial Intelligence. Although the ideas behind
hyper-heuristics can be traced back to early 1960s in single-objective optimization,
little attention has been paid in the field of multi-objective optimization. Early
approaches date back to 2005, where hyper-heuristics have been used to solve com-
binatorial applications, such as space allocation and timetabling [17], decision-tree
induction algorithms [8], bin packing and cutting stock problems [44], integration and
test order problems [51, 52, 98], spanning trees [84], and job shop scheduling [129]. In
integer programming, hyper-heuristics have been applied to solve the knapsack pro-
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Figure 2.9: A simplified classification of hyper-heuristic approaches.

blem [85], as well as software module clustering [87, 86]. In this branch, a theoretical
work presented by Qian et al. [108] supported the effectiveness of hyper-heuristics,
proving that they can speed up the optimization via running time analysis. Regar-
ding continuous optimization, there are a few works relying on Pareto dominance,
which prevents their use in many-objective optimization. Besides, a large number
of efforts combine strategies using a pool of variation operators. However, currently,
there is no single work handling hyper-heuristics within the parent or survival se-
lection mechanism of a MOEA. In the following, we review in detail multi-objective
hyper-heuristics for continuous search spaces.

A Multi-ALgorithm Genetically Adaptive Method (AMALGAM), pro-
posed by Vrugt et al. [134], is an online selection hyper-heuristic that operates as
NSGA-II. However, the offspring are also created using the variation operators of
other stochastic methods, such as Differential Evolution [121], Particle Swarm Opti-
mization [77] and Adaptive Metropolis Search [54]. Even though all these methods
participate during the optimization process, those that exhibit the highest reproduc-
tive success are favored. Consequently, the number of individuals to be created by a
method i ∈ {1, . . . , k} at the next generation is calculated as:

N i
t+1 = max

Nmin,

N

(
P i
t+1

N i
t

)
∑k

j=1

P j
t+1

Nj
t

 , (2.27)

where Nmin is the minimum number of individuals, N is the population size, and P i
t+1

is the number of surviving individuals produced by a method i at generation t+ 1.
Another distinction in this approach is the initialization of the population, which

is performed using Latin hypercubes sampling. AMALGAM has been used for the
calibration of hydrologic models [109, 145, 152, 135, 151] and weather prediction
models [133]. The experimental results in [134, 145] shown that AMALGAM signifi-
cantly improved NSGA-II, requiring much lower function evaluations to approach the
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Pareto optimal front. In [135], Vrugt et al. presented a parallel version of AMAL-
GAM, where the synchronous master-slave model was implemented on a distributed
computer network of 10 nodes using standard MPI toolbox in Octave.6 Each node
was equipped with a dual-core Intel Xeon 3.4-GHz processor with 4GB of memory.
The algorithmic part of AMALGAM, including the generation of the offspring using
different meta-heuristics, and the collection of all results is controlled by the mas-
ter; whereas the evaluation of the costly objective functions is distributed across
the slaves. This parallel version drastically reduced time, achieving an almost linear
speedup. Later, Zhang et al. [151] extended this work to a computing software, called
Python-based Parallel Soil and Water Assessment Tool (PP-SWAT). This software
employs Python 2.6, mpi4py and OpenMPI to parallelize AMALGAM. The software
was tested on a cluster of 290 nodes. Each node was equipped with an Intel Xeon
5560 (quad-core) or 5660 (hex-core) microprocessor running at 2.8 GHz and having 48
GB of memory. The test results in [151] showed that PP-SWAT can achieve speedups
of 45-109 depending on the complexity of the watershed model. The major drawback
of AMALGAM is that the involvement of multiple methods leads to the definition of
several parameters.

The Multi-Strategy Ensemble Dynamic Multi-Objective Evolutionary
Algorithm (MS-MOEA), proposed by Wang and Li [141], is an offline selection
hyper-heuristic that adopts the fundamental principle of AMALGAM of combining
different variation operators. This approach works as ε-MOEA [30] with an external
archive that is pruned to a limit size using the hypervolume indicator. The heuristics
for generating new individuals are two re-initialization techniques, which are based
on random sampling and Gaussian distribution with mean around previous optimal
solutions; the genetic operators SBX and polynomial based mutation; the Differen-
tial Evolution strategies DE/rand/1 and DE/current to best/1; as well as Gaussian
mutation. MS-MOEA was designed to solve dynamic multi-objective optimization
problems, i.e., problems in which the Pareto optimal set or the Pareto optimal front
change in time. The heuristic selection is performed by a set of rules derived from
knowledge. If there is an environmental change, then one re-initialization technique
is applied under certain probability. Genetic operators are used in early stages of
evolution. Once convergence has been achieved, Differential Evolution is employed to
improve diversity. Here, each strategy creates an offspring. After a fixed number of
solutions were created, Gaussian mutation is launched for escaping from local optima.
It is worth noticing that convergence is detected when the external archive has been
full during a certain number of generations. Experimental results in [141] demon-
strated that MS-MOEA accelerated convergence speed on bi-objective test problems.
This behavior is attributed to the combination of multiple variation operators and a
hypervolume-based archive.

The Markov Chain Hyper-Heuristic (MCHH), proposed by McClymont et
al. [99], is a selection heuristic with online learning working as a (µ + λ)-Evolution
Strategy with an unlimited external archive. The pool of heuristics is composed of

6https://www.gnu.org/software/octave
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three variation operators: mutation, replication, transposition, and clone. All of them
operate on the decision variables of a given solution. The heuristic selection uses a
Markov chain, which can be seen as a directed graph where every vertex is connected
to each other vertex and to itself. A vertex represents a state (heuristic), and the
weight of an edge out represent the probability of moving from the current state to
the destination state. All edges out of a state must sum one. The Markov chain
stochastically selects the next heuristic biased by these probabilities. The selected
heuristic is employed during ε generations. Then, its performance is measured by
counting the number of parents that were dominated by each offspring produced by
such heuristic. This performance is used to update the corresponding probability in
the Markov chain using reinforcement learning. In this case, if the resulting score is
greater than some threshold γ, the weight is increased by α. Otherwise, the weight
is degraded by β. Next, the sum of outflow edges is normalized. In [99], MCHH was
compared with single heuristics, a random hyper-heuristic, and a hyper-heuristic from
the literature [17] using the DTLZ test problems with three objectives. Experimental
results showed that MCHH was helpful in identifying good sequences of heuristics
and discarding the worthless ones, such as clone, which was intentionally introduced.
Some disadvantages of this approach are that there is no mechanism to encourage
diversity, and the proper setting of the learning parameters (γ, α, β, ε).

The Metaheuristics-based Extensible Tool for Cooperative Optimiza-
tion (METCO) [89] is based on the island model and the cooperation of a set of
MOEAs, which grants more computational resources to those algorithms that show
a more promising behavior. A coordinator node is in charge of maintaining the
global solution and selecting the configurations that are executed on the islands. A
configuration consists of a MOEA plus the variation operators and the set of pa-
rameters which define them (population size, mutation and crossover rates, etc.).
These parameters are defined by the user. The global solution set is obtained by
merging local results achieved by each of the islands and its size is limited using the
crowding distance operator. Besides the global stopping criterion, a local stopping
criterion is defined for the execution of the MOEAs on the islands. When the local
stopping criterion is reached, the configuration is scored using a performance indi-
cator. Then, the coordinator applies the hyper-heuristic, selecting the configuration
that will continue executing on the idle island. If the configuration has changed,
the subpopulation is replaced by a random subset of the currently global solution.
As scoring strategies, the contribution metric [89] and the hypervolume [88, 91] have
been incorporated into the scheme, being the latter more suitable when the number of
configurations increases. The scheme was tested on the ZDT and WFG test problems
for instances with two objectives [88], using SPEA, SPEA2, NSGA-II, IBEA and
four variation operators. In total, sixteen configurations were considered for four is-
lands using an all-to-all topology, asynchronous communication and elitist migration.
The proposal was among the best pMOEAs when compared with an algorithm that
randomly changes the configuration on islands and the homogeneous islands of each
of the sixteen configurations. In another study [118], different meta-heuristics were

CINVESTAV-IPN Computer Science Department



34 Chapter 2

contemplated: NSGA-II, Evolution Strategies and Differential Evolution versions of
NSGA-II, SPEA2, MOPSO, MOCell and IBEA. Authors reported promising results,
being IBEA the most used configuration, while MOPSO and MOCell had the worst
performance. Furthermore, the scheme has been extended to a framework [90, 92],
which is implemented in C++ and MPI. In order to obtain an almost linear speedup,
this scheme is suggested for problems with costly objective function evaluations [90].
One disadvantage of this approach is that is not scalable for problems with more than
three objectives.

The MOEA/D Hyper-Heuristic (MOEA/D-HH), proposed by Gonçalves
et al. [47], is an online selection hyper-heuristic that is coupled to a MOEA/D va-
riant [150]. In this approach, an adaptive choice function is used to determine the
Differential Evolution (DE) strategy that should be applied to generate individuals
at each iteration. Its authors proposed the following choice function to compute the
score of a given heuristic h:

CF (h) = αφ
(
f1(h) + f2(g, h)

)
+ δf3(h), (2.28)

where g is the current heuristic, f1 and f2 are the mean rewards of applying h alone
and g followed by h, respectively. The reward is calculated as the difference between
the Chebyshev scalarizing function value of the parent and the child. f3 corresponds
to the time elapsed since h was last selected. α is a scale factor, which is problem
dependent and needs to be calibrated a priori. φ and δ are parameters that control
the intensification and diversification of the selection of the best heuristics, respec-
tively. Here, δ is set to 1 − φ and MOEA/D-HH automatically updates φ through
generations. The heuristic with a higher CF value is chosen to create offspring, which
is later perturbed by polynomial mutation. The pool of heuristics consists of five DE
strategies: 1) DE/rand/1/bin of slow convergence speed and good exploration ca-
pability, suitable for solving multi-modal problems; 2) DE/current-to-rand/1/bin for
enabling the algorithm to solve rotated problems more effectively; 3) DE/nonlinear,
which includes a non-linear part of the DE mutation operator; 4) DE/rand/2/bin and
5) DE/current-to-rand/2/bin, which may provide better perturbations than the two
first strategies. In [47], MOEA/D-HH was tested on ten unconstrained instances of
the CEC’09 benchmark, improving the performance of MOEA/D when using a single
heuristic. In [46], the authors proposed a slight modification, where the values of
f1 and f2 in (2.28) only considered accumulated normalized rewards of recent subset
heuristics. In [45], this later version was applied to solve an environmental/economic
dispatch problem.

Another work aimed for solving many-objective optimization problems is the
Multi-Objective Sequence-based Selection Hyper-Heuristic (MOSSHH),
which was proposed by Walker and Keedwell [137]. This online selection hyper-
heuristic is based on a hidden Markov model to determine the mutation strategy to
be applied for generating a single child from the current parent. Thus, this approach
works as a (1 + 1)-Evolution Strategy complemented with an external archive, which
keeps all the non-dominated solutions discovered so far. The pool of seven mutation

CINVESTAV-IPN Computer Science Department



Background 35

heuristics consists primarily of 1) adding noise to the current solution using three
different continuous probability distributions, and 2) replacing the parent (or only
a variable) with another one, whether randomly created or taken from the archive.
At each iteration, the child replaces the parent if the former dominates the second.
However, in another work [138], this comparison rule was changed by strategies based
on the hypervolume indicator7, the favor relation8 and the average rank9. Moreover,
the hidden Markov model is updated if the child is added to the archive and if it
was better than the parent. In [138], the three strategies were independently applied
to solve the DTLZ test problems having up to 6 objectives. The best results were
obtained using either the hypervolume or the favor relation. Although its compu-
tational cost is low (even when using the hypervolume in high dimensionality), this
hyper-heuristic is reported to face difficulties in problems with disconnected Pareto
optimal regions in the search space (like DTLZ6). In [138], authors indicated that
this might be due to the lack of crossover. Other disadvantages are that solutions are
not uniformly distributed and the external archive may grow too much.

Table 2.6 summarizes the main features of the above mentioned hyper-heuristics.
On the other hand, the idea of using the simultaneous collaboration of different sca-
larizing functions within MOEAs dates back to 2003, when there were a few attempts
to combine, at most, two scalarizing functions.

Hughes [66] scored the population using the CHE and the vector angle distance
scaling (also introduced in that work) for solving continuous MOPs with two and three
objectives. Although this method, called Multiple Single Objective Pareto Sampling
(MSOPS), can deal with any Pareto front geometry, it may generate dominated solu-
tions in disconnected regions, since the second scalarizing function is not compatible
with any form of Pareto optimality.

Ishibuchi et al. [72] modified MOEA/D for automatically choosing between CHE
and WS. The former was applied only for concave parts of the Pareto front, where
local concavity was detected as long as an individual was identical to a certain num-
ber of neighbors. However, when frequent changes occurred, this approach did not
perform well in combinatorial MOPs having up to 6 objectives. The reason was proba-
bly that both scalarizing functions drove individuals to entirely different regions when
considering the same weight vector [72]. Shortly afterwards, this issue was further
analyzed in [73], exploring two alternatives. In one approach an individual optimized
a previously assigned scalarizing function, whereas in the second strategy the popu-
lation increased linearly at the rate of |P | individuals per scalarizing function. Each
different subpopulation focused on a particular scalarizing function.

7 A solution x ∈ X is better than a solution y ∈ X , iff
∏m
i zi − fi(x) >

∏m
i zi − fi(y), where

z ∈ IRm is a reference point.
8 A solution x ∈ X favors a solution y ∈ X (x ≺f y), iff |{i : fi(x) < fi(y), 1 ≤ i ≤ m}| > |{j :

fj(x) > fj(y), 1 ≤ j ≤ m}| .
9 A solution x ∈ X is better than a solution y ∈ X , iff

∑m
i ri(x) <

∑m
i ri(y), where ri ∈ IN is

the rank of the solution according to the ith objective. The ranking process considers the external
archive.
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Table 2.6: Summary of multi-objective hyper-heuristics

Heuristic Heuristic Suport Diversity External Extra
Year Name Class Scope Pool selection Parallel to many- mechanism archive parameters Meta-heuristic

objective

2007
AMALGAM

[134]

heuristic
selection,

online
learning

variation
operators

from
different

optimizers

NSGA-II,
Particle Swarm
Optimization,

Differential
Evolution,

and Adaptive
Metropolis Search

highest
reproductive

success

sync.
master
slave

[135, 151]

no
crowding
distance

no

Nmin

+ the
heuristic

parameters

NSGA-II

2008
METCO

[89]

heuristic
selection,

online
learning

search
mechanism
of diffferent

MOEAs

SPEA, SPEA2,
NSGA-II, IBEA,
MOPSO, MOCell
with 4 variation

operators

hypervolume
or

contribution
metric

async.
island
model

no
crowding
distance

no

yes, given
by the

heuristic
pool

NSGA-II

2010
MS-MOEA

[141]

heuristic
selection,

offline
learning

variation
operators

from
different

optimizers

NSGA-II,
Differential
Evolution,

and Gaussian
Mutation

rules
derived from
knowledge

no no
ε and

hypervolume
indicators

yes

3 new
+ the

heuristic
parameters

ε-MOEA

2011
MCHH

[99]

heuristic
selection,

online
learning

variation
operator

mutation,
replication,

transposition,
and clone

Markov chain
with a

reinforcement
learning

no no no
yes,

unbounded
4 (µ+ λ)-ES

2015
MOEA/D-HH

[47]

heuristic
selection,

online
learning

variation
operator

5 differential
evolution
strategies

adaptive
choice

function
no yes

weight
vectors

no 1
MOEA/D

variant with
CHE function

2016
MOSSHH

[137]

heuristic
selection,

online
learning

variation
operator

7 mutation
strategies

hidden
Markov
model

no yes no
yes,

unbounded
no (1 + 1)-ES
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2.4 Summary

This chapter introduced the basic concepts of multi-objective optimization, which is
widely used in several disciplines. We started by defining a MOP, the concept of op-
timality, and the Pareto dominance relations: strict and weak. We defined essential
reference solutions in objective space: the ideal, nadir, and extreme points. Moreover,
we denote the pursued goals in multi-objective optimization, which are convergence
to the Pareto optimal front, and good diversity in objective space. Then, we defined
performance indicator and a scalarizing function. In both cases, we provided exam-
ples. We summarized the features of the most representative MOEAs. Additionally,
we presented the paradigms to parallelize MOEAs: master-slave, island, diffusion,
and hybrid models. We clarified the difference among heuristic, meta-heuristic, and
hyper-heuristic. Finally, we gave a general overview of related work, providing details
of their implementation and main issues.
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Chapter 3

Hyper-heuristic of Scalarizing
Functions

Scalarizing functions have been successfully used by MOEAs for the fitness assign-
ment process. In the literature, we can find algorithms that incorporate one or two
fixed scalarizing functions, such as MOGLS [71] and MSOPS [66], respectively. Other
approaches operate as frameworks, where the decision makers must select the scalari-
zing function that best suits their needs, such as MOEA/D [149]. The popularity of
scalarizing functions has to do with their low computational cost, their capability to
generate (weakly) Pareto optimal solutions, and their effectiveness in solving many-
objective optimization problems. Moreover, some scalarizing functions can capture
the whole Pareto optimal front by varying either the weight vectors [34] or their para-
meter models, which control the curvature of their contour lines [100]. Nevertheless,
recent studies indicate that the search behavior of MOEAs strongly depends on the
choice of the scalarizing function [72, 73, 69]. In this chapter, we present a novel no-
learning selection hyper-heuristic for continuous search spaces, which combines the
strengths and compensates the weaknesses of different scalarizing functions. These
heuristics have been proposed within the evolutionary multi-objective optimization
and mathematical programming communities. Furthermore, the selection of heuris-
tics is conducted through the s-energy indicator [55] (see page 17), which measures
the even distribution of a set of points in k-dimensional manifolds.

3.1 Motivation

Despite the evident advantages of MOEAs relying on scalarizing functions, three cru-
cial issues should be considered for a problem at hand: 1) the setting of the weight
vectors, 2) the choice of an appropriate scalarizing function, and, if required, 3) the
setting of the model parameters. About the first issue, it has been observed that a
uniform distribution of the weight vectors in [0, 1]m does not necessarily imply that
approximation sets will exhibit good diversity [25]. For this reason, several efforts
have focused on the adaptation of the weights (see for example [34, 41]). Regarding
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the second issue, some studies have exhaustively researched only the scalarizing func-
tions WS, CHE, and PBI (see Table 2.3 on page 20), which present some limitations.
For example, WS can only capture convex Pareto fronts [100], CHE loses diversity for
more than two objectives [149], and, although PBI can find evenly distributed solu-
tions from three objectives onwards [149, 29], its behavior depends on the parameter
θ [148]. Moreover, recent experiments have shown that, for a given MOP, the search
behavior of MOEAs strongly depends on the choice of these scalarizing functions
[72, 73, 69]. Finally, concerning the third issue, certain scalarizing functions require
the specification of some model parameters, which may be sensitive to the Pareto front
shape. Thus, some attempts have emerged to adjust them dynamically [140, 148].

In this chapter, we focus on the second issue (the choice of an appropriate scalari-
zing function) and propose a hyper-heuristic [15], which combines the strengths and
compensates the weaknesses of seven scalarizing functions. Our aims are to provide
an algorithm that is more generally applicable than current implementations and also
to release the decision maker from the difficult task of selecting an appropriate sca-
larizing function. The proposed hyper-heuristic can be seen as a search method for
selecting low-level heuristics (i.e., scalarizing functions) to solve continuous MOPs.

3.2 Proposed Approach

Our proposal relies on an elitist genetic algorithm, which ranks the population by
means of the R2 indicator. The original version was presented in 2013 under the
name of Many-Objective Meta-heuristic Based on the R2 Indicator (MOMBI) [58]. In
Section 3.2.1, we describe, in order of importance, the main limitations of the original
MOMBI, and propose an improved version, named MOMBI-II. Later, in Section 3.2.2
we introduce an extension that works as a hyper-heuristic, called MOMBI-III.

3.2.1 MOMBI framework

MOMBI does not require Pareto dominance. Instead, it uses for its selection mecha-
nism the R2 indicator, which requires a set of utility functions, each one mapping
an objective vector into a scalar value using a weight vector. The original MOMBI
used CHE as a utility function, and for generating the weight vectors, the Simplex-
Lattice Design method was adopted (see page 23). However, in some test instances
for many-objective optimization, MOMBI experimented loss of diversity.

On the other hand, we observed that ASF is very similar to CHE with respect to
their mathematical expression (see Table 2.3 on page 20). The main difference is that
in CHE the weight component is being multiplied, whereas in ASF is being divided.
Their contour lines are shown in Figure 3.1. It is interesting to observe that for CHE
the contour lines are incongruent with respect to the weight vector. As a result the
optimal point (represented as a black dot) is far away from the intersection between
the weight vector and the Pareto optimal front.
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Figure 3.1: Contour lines of the CHE (left) and ASF (right) for the weight w = (0.7, 0.3).
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Figure 3.2: Average hypervolume for MOEA/D using three different scalarizing functions
from 2 to 8 objectives on the DTLZ3 test problem.

When using the Simplex-Lattice Design method, the distribution of the vectors is
equally spaced over a simplex, producing more points at the boundary than at the
center. Therefore, this could explain the distinctive distribution generated by MOEAs
based on CHE, such as MOEA/D [149] or MOMBI, where solutions are biased from
the center of the Pareto front to a few boundary points, since this scalarizing function
optimizes the opposite weight vectors.

In the following, we examine the scalability of CHE, ASF and PBI applied to the
well-known MOEA/D on the DTLZ3 test problem. We performed 30 independent
runs of each instance from 2 to 8 objectives, adopting the same parameter settings
used in [58]. To assess performance, we employed the hypervolume indicator. In
Figure 3.2, we present our experimental results. Here, for two and three objectives
all the scalarizing functions gave very similar results. However, as the number of
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a ≺ b
AASF(a; w) < AASF(b; w)

0.8 < 1.2
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Figure 3.3: Illustration of a Pareto compliant scalarizing function (AASF), and a
non-Pareto compliant one (PBI), considering the solutions a(0.138, 0.45), b(0.36, 0.52),

and the weight vector w(0.35, 0.65).

objectives increases, the performance of PBI and CHE degrades. In contrast, the
ASF metric obtained the maximum hypervolume for many-objective problems.

For this reason, in MOMBI-II we integrate ASF instead of CHE. Moreover, the
reference points used during normalization are cleverly updated using statistical infor-
mation about the population’s proximity to the true Pareto optimal front, involving
three additional parameters.

3.2.2 Extension to multiple scalarizing functions

The proposed no-learning selection hyper-heuristic is an extension of MOMBI-II (now
named MOMBI-III), which allows the inclusion of more than one scalarizing function.
The core idea is that each individual in the population minimizes a distinct scalarizing
function, having its own weight vector. Thus, it can be considered as a method that
encourages convergence through the optimization of the scalarizing function, while
diversity is accomplished by two strategies: the weights and the heuristic selection.

The pool of heuristics consists of seven scalarizing functions H = {WS, EWC,
WPO, WN, CHE, ASF, AASF}. Their mathematical expressions, features and model
parameters appear in Table 2.3 (page 20), whereas their corresponding contour lines
are shown in Figure 2.5 (page 19). The model parameters were established accor-
ding to the values recommended in the literature. We selected this set of scalarizing
function due to their compatibility with some form of Pareto dominance, a require-
ment that PBI does not meet. For a graphical counterexample see Figure 3.3. We
also chose these scalarizing functions because their contour lines are very different,
endowing our algorithm with an increased capacity to handle different Pareto front
geometries. It is worth mentioning that in the original versions of WPO and WN, the
component wi is being multiplied by yi [107]. We did not adopt this form since the
search is driven to different regions of the objective space, as it occurred in [72, 59].
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Heuristic selection is achieved through the use of the s-energy indicator [55] (see
page 17), which has been employed only for comparing MOEAs. As suggested by
Giagkiozis et al. [41], s is set to m− 1 since the Pareto front is at most an (m− 1)-
manifold. In order to know the individual contribution to the s-energy indicator, we
define:

∆Es(a, A) :=
Es(A)− Es(A \ {a})

2
, (3.1)

fulfilling that Es(A) =
∑

i ∆Es(ai, A).
The main loop of MOMBI-III is presented in Algorithm 1. First, the population

is initialized uniformly at random. Thereafter, it is evaluated according to the MOP
definition. At each iteration, new individuals are created from parents selected uni-
formly at random (lines 4 and 5). These individuals are evaluated and added to the
overall population in lines 6 and 7. Next, the reference points are updated. Here, we
used the ideal point for zmin and the nadir point for zmax. The latter was calculated
in the following way. First, we look for those individuals that minimized WPO and
AASF, using as weights the unitary vectors parallel to the axes. The maximum values
of each of the objective components corresponding to these individuals constitute the
point zmax. We ensure that these individuals are different to each other and that
zmax encloses at least |P | members of the population. If these requirements are not
satisfied, we update zmax with the worst objective values of the whole population. In
line 9, the objective function values are normalized using the reference points. Here,
we adopt the notation q.y to refer to the objective vector of an individual q. In the
following steps, the population is ranked and reduced to the desired size.

Algorithm 2 scores the population according to the the pool of heuristics H. In
line 1, the ranks are initialized and in lines 2 to 10 those individuals having the best
value for each scalarizing function and weight vector obtain the first rank.

In Algorithm 3, the population is first sorted and partitioned in layers using the
ranks. A layer contains individuals with the same rank. We notice that ties are broken
using Pareto dominance. With this relation we can avoid weakly Pareto solutions in
an effective manner. In lines 2 to 10, the individuals belonging to the worst ranks are
removed from the population, either by discarding an entire layer or one individual
at a time. In case that more than two individuals have the same rank, we remove
the one with the highest contribution to the s-energy indicator. It is important to
mention that for one set of high-fidelity objective-function evaluations, MOMBI-III
can derive seven pieces of information with very low computational effort albeit these
pieces may not be entirely independent.

3.3 Computational Complexity

The computational cost of MOMBI-II is polynomial on the population size and linear
on the objectives. With a careful implementation of the s-energy indicator, the
complexity of MOMBI-III is O(|P |2m+ |H||W ||P |(log |P |+m)). It is assumed that
|H| << |P | and |W | = |P |. Thus, the complexity is reduced to O(|P |2(log |P |+m)).
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Algorithm 1 Main loop of MOMBI-III

Input: MOP, stopping criterion, set of weight vectors W , set of heuristics H
Output: Final population P

1: Initialize population P at random
2: Evaluate MOP for each element p ∈ P
3: while the stopping criterion is not satisfied do
4: Select random parents from P
5: P ′ ← Generate offspring using variation operators
6: Evaluate MOP for each p′ ∈ P ′
7: Q← P

⋃
P ′

8: Update the reference points zmin and zmax

9: Normalize objective functions by setting
q.y← q.y−zmin

zmax−zmin , ∀q ∈ Q, where q.y ∈ IRm

10: R← R2 Ranking (Q,W,H)
11: P ← Reduce (Q,R, |P |)
12: return P

Algorithm 2 R2 Ranking

Input: Population set Q, set of weight vectors W , set of heuristics H
Output: Ranks R

1: R[q]←∞ ∀q ∈ Q
2: for all h ∈ H do
3: for all w ∈ W do
4: for all q ∈ Q do
5: q.µ← h(q.y; w)
6: Sort Q w.r.t. the field µ in increasing order
7: rank ← 1
8: for all q ∈ Q do
9: R[q]← min{R[q], rank}

10: rank ← rank + 1

3.4 Experimental Results

In this section, we investigate the effectiveness of our proposed hyper-heuristic, consi-
dering five instances of the ZDT test suite, seven instances of the DTLZ test problems,
and all nine problems of the WFG test suite. In addition, for the last two bench-
marks, we consider their inverted versions. All the mathematical definitions of these
test problems can be found in Appendix B (page 145). The experiments were di-
vided in three parts: comparison with single heuristic versions (Subsection 3.4.1),
contrast with some state-of-the-art MOEAs (Subsection 3.4.2), behavior on inverted
test problems (Subsection 3.4.3), and a case study for many-objectve optimization
(Subsection 3.4.4). The first two experiments consider 2 and 3 objectives for the ZDT
and DTLZ/WFG test problems, respectively; the third experiment contemplates 3 to
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Algorithm 3 Reduce

Input: Population set Q, rank set R, desired size n
Output: Reduced population Q

1: {L1, . . . , Lk} ← Sort the population in layers with respect to R
2: while |Q| > n do
3: if |Lk| ≤ |Q| − n then {Remove members of the kth layer}
4: r ← Lk
5: k ← k − 1
6: else
7: Compute the contribution to the s-energy indicator

E[q.y] ← ∆Em−1(q.y, Q) for all q ∈ {L1 ∪ . . . ∪ Lk}
8: r ← arg maxq∈Lk

E[q.y]
9: Lk ← Lk \ {r}

10: Q← Q \ {r}
11: return Q

5 objectives; whereas the last experiment covers 4 to 10 objectives. In the following,
we provide further details about these experiments.

The parameters for the WFG benchmark are provided in Table 3.1. For compari-
son purposes we selected the following algorithms: MOEA/D [149] (based on decom-
position), NSGA-III [29] (based on reference points) and MOMBI-II [59] (based on
the R2 indicator). All adopted the same parameter values of Table 3.1. We selected
these optimizers since they have been reported to perform well in a wide range of
problems. In addition, they share common features, such as the requirement of the
set of weight vectors, which were generated using the Simplex-Lattice Design method,
where we adopted a cardinality similar to the population size1.

In the case of MOEA/D, its scalarizing function was CHE for two objectives and
PBI with θ = 5 for the remaining objectives [149, 29]. The population of MOEA/D
was normalized during its evolution in the problems with different scale, such as the
WFG and DTLZ7 instances, as suggested by its authors in the original paper. For
MOMBI-II the scalarizing function was ASF, and its parameters were: record= 5,
tolerance threshold= 1×10−3 and 0.5 for the variance threshold. The parameter mo-
dels adopted for MOMBI-III and all its variants with single heuristics are established
in Table 2.3 (page 20).

The variation operators were Polynomial-based mutation and Simulated Binary
Crossover (SBX). For the mutation operator, its probability and distribution index
were set to 1/n and 20, respectively. For the crossover operator, these parameters
varied according to the number of objectives, for two objectives, they were set to 0.9
and 20, whereas for higher dimensionality, they were set to 1.0 and 30, respectively.
The stopping criterion consisted of reaching a maximum number of MOP evaluations.

1 For 5 and 6 objectives the set was pruned using a clustering technique, whereas for 8 and 9
objectives two layers were employed, discarding duplicated points.
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Table 3.1: Parameters adopted in our experiments

Objectives (m) 2 3 4 5 6 7 8 9 10
Population size 100 136 166 180 200 210 230 250 266
Objective function

40 60 70 80 80 90 100 100 110
evaluations (×103)

W
F

G

variables (n) 24 26 28 30 32 34 36 38 40
position-related

2 2 3 4 5 6 7 8 9
parameters

Weight-vector
99 15 8 6 5 4 3,4 3,4 2,3

partitions (H)
MOEA/D niche 20 27 33 36 40 42 46 50 53

Finally, for the performance assessment of the algorithms, we relied on the hy-
pervolume indicator [153], which measures convergence and spread at the same time.
However, this indicator favors non-linear Pareto fronts with clusters near the middle
point (knee region). To compensate this situation, we also adopted the (m − 1)-
energy indicator (see expression 2.20 on page 17), which rewards even distribu-
tions. The reference points for the hypervolume indicator were (4, 4, . . .) for DTLZ3,
(2, 2, . . . , 2, 8) for DTLZ7, (3, 5, 7, . . .) for WFG, (2, 2, . . .) for ZDT, DTLZ1,2, and
DTLZ4-6; whereas for the inverted problems were (0.1, 0.1, . . . ,−10) for DTLZ7,
(0.1, 0.1, . . .) for DTLZ1-6−1 and WFG−1. These points are slightly worse in all ob-
jectives than the nadir point.

In the following experiments, we always performed 30 independent runs for each
MOEA and test problem. We applied the Wilcoxon rank sum test (one-tailed) to the
mean of these indicators, in order to determine outperformance among the algorithms
at the confidence interval of 99%. Moreover, due to multiple comparisons, this value
was adjusted by the Bonferroni correction.

3.4.1 Single heuristics

Hyper-heuristics are meant to perform better than their constitutive heuristics in a
wide range of problems [15]. Thus, motivated by this requirement, MOMBI-III was
compared with the pool of heuristics contained within it. In this experiment, each sca-
larizing function was coupled independently to MOMBI-III. The results are presented
in Tables 3.2, 3.3, 3.4, 3.5, and 3.6. Regarding the hypervolume indicator, there is no
doubt that MOMBI-III showed a clear advantage over these single heuristics, except
for the problems ZDT1,6, DTLZ2,4, and WFG4,9, where our proposed method was
outperformed by EWC, AASF and WPO. In spite of this, our MOMBI-III achieved
the first and second places in 16 problems, out of 21. On the other hand, when eva-
luating with respect to the s-energy, our method outperformed the other variants in
20 cases. Only for ZDT2, WN ranked first, and in this case only the extreme points
were found. This suggests that MOMBI-III effectively minimized this indicator.
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Table 3.2: Median and standard deviation of the hypervolume and s-energy for single heuristics and MOMBI-III on the ZDT test
problems. The two best values are shown in gray scale, where a darker tone corresponds to the best value. The outperformance

relation among algorithms is presented, using a confidence level of 99% (for instance, WPO performs significantly better than WN
on ZDT4).

Indicator Problem WS (1) EWC (2) WPO (3) WN (4) CHE (5) ASF (6) AASF (7) MOMBI-III (8)

h
y
p

er
vo

lu
m

e

ZDT1
3.6539e+00 3.6620e+00 3.6333e+00 3.0000e+00 3.6614e+00 3.6614e+00 3.6614e+00 3.6616e+00

7.26e-4 8.08e-5 1.60e-2 1.78e-4 4.55e-5 4.55e-5 9.04e-5 7.40e-5

3,4 1,3,4,5,6,7,8 4 − 1,3,4 1,3,4 1,3,4 1,3,4,5,6,7

ZDT2
3.0000e+00 3.3286e+00 3.3276e+00 3.0000e+00 3.3281e+00 3.3281e+00 3.3281e+00 3.3283e+00

1.71e-7 1.02e-4 1.20e-3 4.02e-7 1.60e-4 1.60e-4 1.65e-4 1.51e-4

− 1,3,4,5,6,7,8 1,4 − 1,3,4 1,3,4 1,3,4 1,3,4,5,6,7

ZDT3
4.7070e+00 4.8148e+00 4.7813e+00 4.0361e+00 4.8140e+00 4.8140e+00 4.8141e+00 4.8152e+00

8.32e-2 5.20e-5 2.41e-1 2.52e-4 1.67e-4 1.67e-4 1.40e-4 4.91e-5

4 1,3,4,5,6,7 4 − 1,3,4 1,3,4 1,3,4 1,2,3,4,5,6,7

ZDT4
3.6521e+00 3.6590e+00 3.5424e+00 2.9967e+00 3.6584e+00 3.6584e+00 3.6580e+00 3.6573e+00

1.72e-3 1.26e-2 1.10e-1 2.40e-3 1.93e-3 1.93e-3 3.42e-3 2.47e-3

3,4 1,3,4 4 − 1,3,4 1,3,4 1,3,4 1,3,4

ZDT6
2.7741e+00 3.0348e+00 3.0347e+00 2.7728e+00 3.0312e+00 3.0312e+00 3.0309e+00 3.0316e+00

4.13e-4 1.25e-3 1.18e-3 1.14e-3 2.59e-3 2.59e-3 2.56e-3 2.20e-3

4 1,4,5,6,7,8 1,4,5,6,7,8 − 1,4 1,4 1,4 1,4

s-
en

er
g
y

ZDT1
1.366e+05 5.741e+04 1.275e+05 4.472e+07 6.486e+04 6.486e+04 6.486e+04 5.639e+04

3.34e+04 1.29e+02 4.58e+03 1.34e+08 1.03e+01 1.03e+01 5.02e+01 1.34e+02

− 1,3,5,6,7 − − 1,3 1,3 1,3 1,2,3,5,6,7

ZDT2
1.684e+08 5.702e+04 6.501e+04 1.414e+00 5.606e+04 5.606e+04 5.605e+04 5.609e+04

9.93e+08 1.13e+04 1.05e+02 3.24e+07 2.22e+02 2.22e+02 3.14e+03 1.10e+02

− 1,3 1 1 1,2,3 1,2,3 1,2,3 1,2,3

ZDT3
1.931e+06 6.505e+04 1.203e+06 5.737e+04 4.938e+04 4.938e+04 4.884e+04 4.404e+04

8.62e+05 1.04e+04 1.61e+05 1.08e+08 4.73e+03 4.73e+03 5.74e+03 2.80e+02

− 1,3 1 − 1,2,3 1,2,3 1,2,3 1,2,3,5,6,7

ZDT4
1.176e+05 5.764e+04 1.415e+05 8.762e+06 6.486e+04 6.486e+04 6.485e+04 5.629e+04

2.11e+04 2.25e+03 6.14e+04 3.16e+08 7.17e+02 7.17e+02 5.80e+02 2.69e+02

3,4 1,3,4,5,6,7 4 − 1,3,4 1,3,4 1,3,4 1,2,3,4,5,6,7

ZDT6
2.930e+09 7.231e+04 8.987e+04 9.295e+05 7.012e+04 7.012e+04 7.007e+04 6.936e+04

1.50e+16 9.64e+03 1.03e+04 9.01e+10 5.11e+02 5.11e+02 3.52e+03 6.07e+02

− 1,3,4 1 1 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4,5,6,7
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Table 3.3: Median and standard deviation of the hypervolume for single heuristics and MOMBI-III on the DTLZ test problems.

Problem WS (1) EWC (2) WPO (3) WN (4) CHE (5) ASF (6) AASF (7) MOMBI-III (8)

DTLZ1

7.8809e+00 7.9637e+00 7.8612e+00 7.8807e+00 7.9691e+00 7.9317e+00 7.9364e+00 7.9745e+00

1.42e-3 2.81e-4 7.14e-2 2.17e-4 2.21e-2 2.50e-2 2.32e-2 1.14e-4

4 1,3,4,6,7 − − 1,2,3,4,6,7 1,3,4 1,3,4 1,2,3,4,5,6,7

DTLZ2

7.0000e+00 7.3928e+00 7.4174e+00 7.0000e+00 7.3919e+00 7.4190e+00 7.4245e+00 7.4236e+00

3.43e-7 7.36e-4 1.37e-3 2.97e-7 4.29e-3 1.73e-3 3.68e-4 9.48e-4

− 1,4 1,2,4,5 − 1,4 1,2,3,4,5 1,2,3,4,5,6,8 1,2,3,4,5,6

DTLZ3

6.2978e+01 6.3350e+01 6.2969e+01 6.2979e+01 6.3384e+01 6.3385e+01 6.3400e+01 6.3415e+01

1.30e+0 1.44e-2 1.78e+0 2.30e-2 1.05e-1 2.47e-2 1.52e-2 1.36e-2

− 1,3,4 − − 1,2,3,4 1,2,3,4 1,2,3,4,5 1,2,3,4,5,6

DTLZ4

7.0000e+00 7.3931e+00 7.4186e+00 7.0000e+00 7.3983e+00 7.4234e+00 7.4252e+00 7.4247e+00

2.10e-1 3.01e-1 2.55e-1 3.28e-1 3.00e-1 3.49e-1 3.08e-1 1.84e-1

− 1,4 1,2,4,5 − 1,2,4 1,2,3,4,5 1,2,3,4,5,6,8 1,2,3,4,5,6

DTLZ5

5.6716e+00 5.8123e+00 6.0001e+00 5.6716e+00 5.9656e+00 6.0410e+00 6.0412e+00 6.1021e+00

9.91e-3 4.24e-2 2.11e-2 1.77e-2 3.00e-2 5.87e-3 1.03e-2 1.19e-3

− 1,4 1,2,4,5 − 1,2,4 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5,6,7

DTLZ6

5.4390e+00 5.7566e+00 5.7683e+00 5.3947e+00 5.7426e+00 5.8099e+00 5.8163e+00 5.8509e+00

9.07e-2 4.66e-2 8.14e-2 9.99e-2 7.22e-2 7.57e-2 8.00e-2 9.41e-2

− 1,4 1,4 − 1,4 1,4,5 1,4,5 1,2,4,5

DTLZ7

1.5994e+01 1.7252e+01 1.6218e+01 1.5868e+01 1.7230e+01 1.7475e+01 1.7482e+01 1.7545e+01

2.18e-3 1.08e-1 6.09e-2 3.30e-3 9.60e-2 2.81e-2 3.77e-2 1.02e-2

4 1,3,4 1,4 − 1,3,4 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5,6,7
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Table 3.4: Median and standard deviation of the s-energy indicator for single heuristics and MOMBI-III on the DTLZ test problems.

Problem WS (1) EWC (2) WPO (3) WN (4) CHE (5) ASF (6) AASF (7) MOMBI-III (8)

DTLZ1

1.103e+41 6.064e+06 3.319e+13 3.302e+44 1.526e+06 8.164e+05 8.153e+05 7.981e+05

4.69e+60 8.42e+10 2.92e+17 6.39e+61 4.75e+10 3.23e+14 1.11e+12 8.30e+03

− 1,4 1,4 − 1,2,3,4 1,3,4 1,2,3,4,5 1,2,3,4,5,6,7

DTLZ2

2.792e+23 1.212e+06 1.248e+05 9.271e+22 1.771e+07 1.238e+05 1.206e+05 1.182e+05

2.48e+35 2.57e+06 1.04e+02 5.04e+43 2.05e+11 2.83e+02 7.42e+02 6.26e+02

− 1,4 1,2,4,5 − 1,4 1,2,3,4,5 1,2,3,4,5,6 1,2,3,4,5,6,7

DTLZ3

1.526e+12 6.366e+05 1.873e+14 2.113e+13 3.949e+05 1.364e+05 1.429e+05 1.167e+05

5.09e+34 7.94e+08 3.76e+23 1.77e+33 6.15e+09 2.88e+04 7.87e+04 2.13e+03

− 1,3,4 − − 1,3,4 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5,6,7

DTLZ4

3.255e+23 1.077e+06 1.248e+05 4.021e+25 3.067e+05 1.222e+05 1.203e+05 1.176e+05

8.42e+35 2.91e+24 3.72e+15 3.53e+73 1.49e+16 3.07e+16 1.36e+13 1.66e+06

− 1,4 1,2,4,5 − 1,4 1,2,3,4,5 1,2,3,4,5,6 1,2,3,4,5,6,7

DTLZ5

5.059e+26 1.433e+20 1.037e+18 1.086e+27 5.090e+16 2.547e+18 6.107e+19 7.102e+06

3.88e+62 3.94e+23 1.14e+20 6.09e+57 8.80e+19 1.11e+22 1.58e+21 1.55e+14

− 1,4 1,2,4 − 1,2,4,7 1,2,4 1,4 1,2,3,4,5,6,7

DTLZ6

2.721e+39 3.706e+07 2.703e+07 3.910e+27 3.406e+06 3.433e+07 2.982e+09 8.296e+05

1.45e+44 1.80e+08 1.19e+09 4.31e+33 9.04e+14 1.52e+13 1.01e+22 1.09e+14

− 1,4 1,4 1 1,4,7 1,4 1,4 1,2,3,4,5,6,7

DTLZ7

2.209e+14 8.873e+05 7.196e+06 1.148e+16 6.833e+05 1.111e+06 1.257e+06 9.824e+04

3.57e+18 3.36e+08 1.02e+08 7.92e+17 1.45e+10 3.45e+06 3.84e+06 4.83e+03

− 1,3,4 1,4 − 1,3,4 1,3,4 1,3,4 1,2,3,4,5,6,7
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Table 3.5: Median and standard deviation of the hypervolume indicator for single heuristics and MOMBI-III on the WFG test
problems.

Problem WS (1) EWC (2) WPO (3) WN (4) CHE (5) ASF (6) AASF (7) MOMBI-III (8)

WFG1

5.4395e+01 4.8913e+01 4.4832e+01 4.5190e+01 5.2472e+01 5.2447e+01 5.2128e+01 5.4921e+01

1.32e+0 1.58e+0 1.80e+0 5.64e+0 1.63e+0 1.63e+0 1.75e+0 1.67e+0

2,3,4 3 − − 2,3,4 2,3,4 2,3,4 2,3,4

WFG2

9.9789e+01 1.0035e+02 9.7306e+01 7.1243e+01 9.9489e+01 1.0031e+02 1.0034e+02 1.0082e+02

3.57e-1 1.40e-1 1.64e-1 1.21e+0 2.85e-1 1.22e-1 1.36e-1 1.04e-1

3,4,5 1,3,4,5 4 − 3,4 1,3,4,5 1,3,4,5 1,2,3,4,5,6,7

WFG3

5.4610e+01 7.3941e+01 7.2792e+01 5.6352e+01 7.4927e+01 7.5219e+01 7.5138e+01 7.5220e+01

4.01e-1 5.60e-1 8.79e-2 3.26e-1 2.44e-1 1.92e-1 2.00e-1 1.54e-1

− 1,3,4 1,4 1 1,2,3,4 1,2,3,4,5 1,2,3,4 1,2,3,4,5

WFG4

5.6991e+01 7.5551e+01 7.6980e+01 5.6995e+01 7.5590e+01 7.6737e+01 7.6743e+01 7.6613e+01

1.34e-2 9.92e-2 9.20e-2 9.27e-3 1.70e-1 8.43e-2 7.67e-2 8.90e-2

− 1,4 1,2,4,5,6,7,8 − 1,4 1,2,4,5,8 1,2,4,5,8 1,2,4,5

WFG5

5.3487e+01 7.2536e+01 7.3541e+01 5.3487e+01 7.2351e+01 7.3688e+01 7.3728e+01 7.3823e+01

5.78e-6 9.41e-2 4.35e-2 4.34e-6 1.53e-1 4.58e-2 6.67e-2 5.24e-2

− 1,4,5 1,2,4,5 − 1,4 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5,6,7

WFG6

5.4326e+01 7.2957e+01 7.4509e+01 5.4374e+01 7.2872e+01 7.4153e+01 7.4305e+01 7.4245e+01

3.83e-1 2.84e-1 3.06e-1 3.99e-1 3.65e-1 3.93e-1 3.60e-1 2.87e-1

− 1,4 1,2,4,5 − 1,4 1,2,4,5 1,2,4,5 1,2,4,5

WFG7

5.7011e+01 7.5688e+01 7.6816e+01 5.7012e+01 7.5529e+01 7.6852e+01 7.6900e+01 7.7048e+01

4.57e-3 4.23e-1 5.35e-2 3.36e-3 2.59e-1 7.72e-2 6.40e-2 4.94e-2

− 1,4 1,2,4,5 − 1,4 1,2,4,5 1,2,3,4,5 1,2,3,4,5,6,7

WFG8

5.2754e+01 7.1874e+01 7.2693e+01 5.3782e+01 7.1874e+01 7.3041e+01 7.2915e+01 7.2842e+01

7.05e-1 3.21e-1 3.06e-1 6.93e-1 1.88e-1 1.80e-1 1.71e-1 2.28e-1

− 1,4 1,2,4,5 − 1,4 1,2,3,4,5 1,2,3,4,5 1,2,4,5

WFG9

5.4922e+01 7.3757e+01 7.6333e+01 5.5106e+01 7.3891e+01 7.5062e+01 7.5058e+01 7.5127e+01

1.76e+0 2.56e-1 1.34e+0 3.39e+0 1.28e+0 1.03e+0 1.12e+0 2.18e-1

− 1,4 1,2,4,5,6,7,8 − 1,4 1,2,4,5 1,2,4,5 1,2,4,5
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Table 3.6: Median and standard deviation of the s-energy indicator for single heuristics and MOMBI-III on the WFG test problems.

Problem WS (1) EWC (2) WPO (3) WN (4) CHE (5) ASF (6) AASF (7) MOMBI-III (8)

WFG1

1.451e+09 1.355e+05 1.582e+07 8.852e+09 1.945e+05 8.232e+04 7.936e+04 4.654e+04

1.35e+11 4.40e+06 8.35e+10 6.25e+16 3.17e+05 1.99e+05 1.58e+06 6.16e+03

− 1,3,4 1,4 − 1,3,4 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5,6,7

WFG2

4.249e+07 6.491e+04 2.765e+06 2.854e+11 1.191e+05 2.845e+04 2.934e+04 2.064e+04

8.85e+09 3.35e+05 1.25e+07 9.46e+12 1.24e+07 8.39e+05 8.69e+04 1.38e+03

4 1,3,4 1,4 − 1,3,4 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5,6,7

WFG3

3.107e+13 1.800e+06 2.885e+06 3.518e+13 1.830e+05 9.107e+05 7.468e+05 3.911e+04

2.45e+18 3.20e+09 5.79e+09 8.16e+15 5.31e+06 6.35e+06 8.65e+06 2.52e+03

− 1,4 1,4 − 1,2,3,4,6,7 1,3,4 1,3,4 1,2,3,4,5,6,7

WFG4

1.312e+10 1.500e+04 9.368e+03 4.125e+09 3.636e+05 9.360e+03 9.438e+03 8.353e+03

3.10e+11 7.94e+04 1.18e+02 2.20e+13 2.38e+06 9.61e+02 2.51e+03 1.14e+02

− 1,4,5 1,2,4,5 − 1,4 1,2,4,5 1,2,4,5 1,2,3,4,5,6,7

WFG5

9.993e+16 1.926e+04 9.202e+03 2.037e+16 9.692e+06 9.111e+03 9.047e+03 8.419e+03

2.50e+19 3.78e+04 3.00e+01 1.47e+21 4.80e+07 1.13e+03 1.32e+02 9.45e+01

− 1,4,5 1,2,4,5 − 1,4 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5,6,7

WFG6

2.161e+10 1.562e+04 9.186e+03 2.731e+10 2.838e+05 9.216e+03 9.245e+03 8.354e+03

1.29e+12 3.91e+05 6.60e+01 1.02e+13 3.40e+07 9.11e+02 9.29e+02 1.01e+02

− 4,5 2,4,5 − 4 2,4,5 2,4,5 2,3,4,5,6,7

WFG7

1.235e+11 2.383e+04 9.439e+03 3.176e+11 5.113e+05 9.324e+03 9.301e+03 8.415e+03

2.32e+12 1.06e+06 4.35e+01 8.53e+13 9.90e+06 6.27e+02 2.57e+02 1.17e+02

− 1,4,5 1,2,4,5 − 1,4 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5,6,7

WFG8

3.879e+09 1.928e+04 2.482e+06 9.632e+08 3.408e+05 3.435e+04 5.806e+04 8.314e+03

6.28e+12 1.54e+05 8.80e+06 1.51e+11 9.34e+05 2.19e+05 2.13e+05 1.23e+02

− 1,3,4,5 1,4 − 1,3,4 1,3,4,5 1,3,4,5 1,2,3,4,5,6,7

WFG9

6.356e+08 2.246e+04 9.663e+03 3.228e+09 1.047e+05 1.371e+04 1.196e+04 8.565e+03

5.32e+13 4.22e+04 2.72e+02 8.34e+12 1.43e+07 5.40e+04 6.04e+04 9.60e+01

− 1,4,5 1,2,4,5,6,7 − 1,4 1,4,5 1,2,4,5 1,2,3,4,5,6,7
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Figure 3.4: Pareto fronts produced by MOMBI-III.

In Figure 3.4, we show some approximations to the Pareto front produced by
MOMBI-III, corresponding to the median of the hypervolume indicator.

3.4.2 State-of-the-art algorithms

In this section, we compared MOMBI-III with respect to the well-known MOEA/D
and NSGA-III. Additionally, we considered MOMBI-II, since our proposed method
improves it. Experimental results are shown in Tables 3.7 and 3.8. In the case of
the hypervolume indicator, we can observe again an overwhelming outperformance
of our proposed method, whose scores were in the top places on 17 instances out
of 21. It was only outperformed by MOEA/D and NSGA-III on the concave pro-
blems ZDT6 and DTLZ2. MOMBI-III won over its predecessor MOMBI-II in 13
instances, providing solid evidence of its superiority. Concerning the s-energy indi-
cator, MOMBI-III performed better in 14 instances, being outperformed on ZDT2,
DTLZ1, and WFG4,6-8 by MOEA/D and NSGA-III. Lastly, our proposed approach
was better than MOMBI-II in almost all the test problems adopted.
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Table 3.7: Median and standard deviation of the hypervolume indicator for the compared
MOEAs and MOMBI-III.

Problem MOEA/D (1) NSGA-III (2) MOMBI-II (3) MOMBI-III (4)

ZDT1
3.660e+00 1.58e-3 3.661e+00 1.78e-4 3.661e+00 8.04e-5 3.662e+00 7.59e-5

− 1 1 1,2,3

ZDT2
3.326e+00 1.28e-3 3.328e+00 2.27e-4 3.328e+00 1.22e-4 3.328e+00 1.14e-4

− 1 1 1,2,3

ZDT3
4.811e+00 2.95e-3 4.813e+00 3.36e-4 4.814e+00 8.81e-5 4.815e+00 6.16e-2

− 1 1,2 1,2,3

ZDT4
3.649e+00 5.11e-3 3.658e+00 7.45e-3 3.658e+00 4.11e-3 3.659e+00 1.64e-3

− 1 1 1

ZDT6
3.036e+00 1.26e-3 3.024e+00 4.58e-3 3.031e+00 2.28e-3 3.030e+00 2.55e-3

2,3,4 − 2 2

DTLZ1
7.975e+00 1.63e-4 7.975e+00 5.56e-4 7.937e+00 4.78e-3 7.975e+00 5.54e-5

3 3 − 3

DTLZ2
7.426e+00 2.34e-5 7.425e+00 4.06e-4 7.376e+00 7.14e-3 7.423e+00 9.85e-4

2,3,4 3,4 − 3

DTLZ3
6.339e+01 1.87e-2 6.340e+01 2.83e-2 6.336e+01 1.81e-2 6.341e+01 6.25e-3

3 3 − 1,2,3

DTLZ4
7.426e+00 1.05e+0 7.425e+00 4.37e-1 7.407e+00 4.91e-3 7.424e+00 1.84e-1

− 3 − 3

DTLZ5
6.050e+00 2.15e-4 5.954e+00 2.18e-1 6.015e+00 3.26e-3 6.103e+00 1.09e-4

2,3 − − 1,2,3

DTLZ6
5.821e+00 7.95e-2 5.444e+00 1.15e-1 5.748e+00 6.70e-2 5.877e+00 7.63e-2

2,3 − 2 2,3

DTLZ7
9.729e+00 2.61e-2 1.739e+01 2.88e-2 1.736e+01 1.15e-2 1.754e+01 1.24e-2

− 1,3 1 1,2,3

WFG1
5.305e+01 1.45e+0 4.907e+01 1.59e+0 5.443e+01 1.79e+0 5.492e+01 1.67e+0

2 − 2 2

WFG2
9.666e+01 1.16e+0 1.003e+02 1.80e-1 1.001e+02 1.61e-1 1.008e+02 1.04e-1

− 1,3 1 1,2,3

WFG3
7.283e+01 6.74e-1 7.408e+01 1.53e-1 7.505e+01 1.47e-1 7.522e+01 1.54e-1

− 1 1,2 1,2,3

WFG4
7.382e+01 4.23e-1 7.656e+01 1.04e-1 7.668e+01 9.41e-2 7.661e+01 8.90e-2

− 1 1,2 1

WFG5
7.134e+01 5.35e-1 7.373e+01 8.87e-2 7.353e+01 8.09e-2 7.383e+01 4.10e-2

− 1,3 1 1,2,3

WFG6
7.153e+01 6.24e-1 7.412e+01 2.69e-1 7.401e+01 3.76e-1 7.422e+01 3.13e-1

− 1 1 1

WFG7
7.308e+01 8.38e-1 7.685e+01 7.76e-2 7.682e+01 8.26e-2 7.700e+01 5.64e-2

− 1 1 1,2,3

WFG8
6.945e+01 9.24e-1 7.285e+01 2.67e-1 7.266e+01 2.02e-1 7.293e+01 2.29e-1

− 1 1 1,3

WFG9
6.821e+01 1.79e+0 7.392e+01 9.19e-1 7.489e+01 1.10e+0 7.513e+01 2.70e-1

− 1 1,2 1,2
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Table 3.8: Median and standard deviation of the s-energy indicator for the compared
MOEAs and MOMBI-III.

Problem MOEA/D (1) NSGA-III (2) MOMBI-II (3) MOMBI-III (4)

ZDT1
6.481e+04 5.26e+01 6.487e+04 1.45e+02 6.486e+04 1.43e+02 5.693e+04 1.88e+02

2,3 − − 1,2,3

ZDT2
5.606e+04 1.85e+02 5.606e+04 3.70e+03 5.606e+04 3.45e+02 5.612e+04 1.02e+02

4 4 4 −

ZDT3
1.691e+06 5.51e+07 1.315e+05 5.69e+04 2.080e+07 1.28e+07 4.401e+04 2.14e+03

3 1,3 − 1,2,3

ZDT4
6.450e+04 2.29e+02 6.484e+04 5.55e+03 6.489e+04 4.81e+03 5.645e+04 3.04e+02

2,3 − − 1,2,3

ZDT6
7.073e+04 2.30e+02 7.001e+04 1.13e+04 7.070e+04 7.50e+05 6.936e+04 4.38e+02

− − − 1,2,3

DTLZ1
7.820e+05 2.25e+03 7.842e+05 1.12e+08 8.150e+05 1.43e+03 8.011e+05 4.57e+03

2,3,4 3,4 − 3

DTLZ2
1.191e+05 5.54e+00 1.192e+05 2.14e+02 1.250e+05 3.36e+02 1.182e+05 5.05e+02

2,3 3 − 1,2,3

DTLZ3
1.163e+05 3.65e+07 1.355e+05 9.25e+06 1.391e+05 3.62e+10 1.164e+05 1.51e+03

2,3 − − 2,3

DTLZ4
1.191e+05 - 1.192e+05 9.79e+12 1.236e+05 7.82e+02 1.176e+05 1.68e+06

− 3 − 1,2,3

DTLZ5
6.376e+15 8.00e+15 8.663e+14 1.89e+37 6.450e+16 1.41e+18 3.041e+06 1.52e+05

3 − − 1,2,3

DTLZ6
1.214e+09 5.23e+10 3.282e+11 1.64e+21 4.892e+13 4.33e+15 4.489e+05 1.78e+05

2,3 − − 1,2,3

DTLZ7
3.073e+10 1.73e+18 1.731e+06 1.01e+07 5.544e+11 1.30e+12 5.075e+04 2.22e+03

− 1,3 − 1,2,3

WFG1
8.868e+09 7.33e+11 1.566e+05 5.71e+06 3.479e+08 6.75e+10 4.654e+04 6.16e+03

− 1,3 1 1,2,3

WFG2
2.496e+04 1.21e+08 2.004e+04 8.16e+04 9.639e+08 3.12e+11 2.064e+04 1.38e+03

3 1,3 − 1,3

WFG3
2.202e+09 1.26e+10 2.662e+06 2.47e+08 8.204e+08 1.89e+11 3.911e+04 2.52e+03

− 1,3 − 1,2,3

WFG4
8.175e+03 1.28e+02 8.931e+03 4.38e+01 9.313e+03 1.00e+05 8.353e+03 1.14e+02

2,3,4 3 − 2,3

WFG5
1.659e+05 8.21e+07 8.852e+03 2.70e+01 9.156e+03 3.99e+07 8.398e+03 1.25e+02

− 1,3 1 1,2,3

WFG6
7.663e+03 1.41e+02 8.937e+03 7.02e+04 1.010e+04 6.12e+05 8.397e+03 1.29e+02

2,3,4 3 − 2,3

WFG7
7.665e+03 1.40e+02 8.858e+03 1.20e+03 9.173e+03 1.64e+06 8.447e+03 1.18e+02

2,3,4 3 − 2,3

WFG8
8.032e+03 2.16e+02 2.182e+04 5.33e+05 3.886e+08 2.05e+10 8.293e+03 1.42e+02

2,3,4 3 − 2,3

WFG9
2.931e+05 3.65e+15 1.083e+04 3.91e+04 5.015e+05 1.12e+07 4.314e+03 4.83e+01

− 1,3 − 1,2,3
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Figure 3.5: Pareto fronts produced by the MOEAs on DTLZ−1 test problems.

3.4.3 Inverted test problems

According to a recent study [74], optimizers that rely on weight vectors or reference
points, such as MOEA/D or NSGA-III, deteriorate their performance on inverted
benchmarks, such as DTLZ−1 and WFG−1. Therefore, in this section, we investigate
the behavior of MOMBI-III in such problems. The results are presented in Tables 3.9,
3.10, and 3.11. For three and four objectives, there is no doubt that MOMBI-III
showed a clear advantage, significantly outperforming MOEA/D and NSGA-III 15
times, out of 16. Only in WFG1−1 there was a tie with MOEA/D. On the other
hand, NSGA-III ranked second in most DTLZ−1 test problems, whereas MOEA/D
ranked second in the WFG−1 benchmark. For five objectives, MOMBI-III ranked
first in all problems, followed by MOEA/D. Finally, in Figures 3.5 and 3.6, we show
some examples of Pareto fronts generated by MOMBI-III. As can be observed, our
proposal produced more uniform distributions than the compared algorithms.
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Table 3.9: Median and standard deviation of the hypervolume indicator
on inverted test problems for three objectives.

Problem MOEA/D (1) NSGA-III (2) MOMBI-III (3)

DTLZ1−1 1.71e+07 5.72e+5 2.02e+07 1.62e+5 2.22e+07 5.17e+4

− 1 1,2

DTLZ2−1 2.23e+01 7.25e-2 2.24e+01 1.03e-1 2.28e+01 2.64e-2

− 1 1,2

DTLZ3−1 4.74e+09 6.03e+7 4.85e+09 3.71e+7 4.96e+09 9.24e+6

− 1 1,2

DTLZ4−1 2.23e+01 3.82e+0 2.23e+01 9.40e-2 2.28e+01 3.37e-2

− − 1,2

DTLZ5−1 2.26e+01 4.90e-2 2.25e+01 6.40e-2 2.31e+01 2.60e-2

− − 1,2

DTLZ6−1 6.33e+02 1.73e+0 6.41e+02 1.93e+0 6.50e+02 5.99e-1

− 1 1,2

DTLZ7−1 2.70e+01 1.92e-3 2.70e+01 4.72e-3 2.70e+01 1.57e-3

− 1 1,2

WFG1−1 2.50e+01 4.92e+0 1.21e+01 4.69e+0 2.49e+01 4.34e+0

2 − 2

WFG2−1 6.11e+01 7.86e-2 6.06e+01 9.56e-2 6.15e+01 4.66e-2

2 − 1,2

WFG3−1 4.37e+01 1.30e-1 4.27e+01 3.58e-1 4.49e+01 8.84e-2

2 − 1,2

WFG4−1 7.38e+01 1.40e-1 7.24e+01 5.00e-1 7.49e+01 5.06e-2

2 − 1,2

WFG5−1 7.39e+01 8.55e-2 7.28e+01 2.27e-1 7.46e+01 5.43e-2

2 − 1,2

WFG6−1 7.41e+01 7.43e-2 7.35e+01 2.32e-1 7.49e+01 7.18e-2

2 − 1,2

WFG7−1 7.37e+01 1.64e-1 7.19e+01 3.24e-1 7.45e+01 1.04e-1

2 − 1,2

WFG8−1 7.42e+01 7.25e-2 7.36e+01 2.82e-1 7.49e+01 9.12e-2

2 − 1,2

WFG9−1 7.30e+01 3.08e-1 7.26e+01 3.41e-1 7.44e+01 1.61e-1

2 − 1,2
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Table 3.10: Median and standard deviation of the hypervolume indicator
on inverted test problems for four objectives.

Problem MOEA/D (1) NSGA-III (2) MOMBI-III (3)

DTLZ1−1 3.68e+08 5.88e+5 8.34e+08 1.01e+8 1.35e+09 4.42e+7

− 1 1,2

DTLZ2−1 3.09e+01 3.73e-1 3.23e+01 7.38e-1 3.52e+01 2.78e-1

− 1 1,2

DTLZ3−1 3.42e+12 1.30e+1 3.88e+12 1.33e+1 4.30e+12 4.51e+0

− 1 1,2

DTLZ4−1 3.03e+01 1.25e+1 3.13e+01 7.00e-1 3.52e+01 2.44e-1

− 1 1,2

DTLZ5−1 3.57e+01 3.07e-1 3.51e+01 4.74e-1 3.95e+01 1.09e-1

2 − 1,2

DTLZ6−1 2.67e+03 1.72e+1 2.82e+03 5.57e+1 3.07e+03 1.60e+1

− 1 1,2

DTLZ7−1 4.37e+01 4.61e+0 4.37e+01 7.90e-2 4.38e+01 1.45e-2

− − 1,2

WFG1−1 5.60e+01 9.80e+0 1.21e+01 2.81e+0 5.36e+01 1.02e+1

2 − 2

WFG2−1 1.92e+02 2.59e-1 1.66e+02 1.01e+1 2.01e+02 5.95e-1

2 − 1,2

WFG3−1 1.44e+02 1.98e-1 1.26e+02 4.40e+0 1.55e+02 6.33e-1

2 − 1,2

WFG4−1 3.87e+02 1.95e+0 3.40e+02 9.93e+0 4.05e+02 1.78e+0

2 − 1,2

WFG5−1 3.88e+02 1.36e+0 3.61e+02 8.60e+0 4.03e+02 6.54e-1

2 − 1,2

WFG6−1 3.91e+02 7.46e-1 3.71e+02 7.34e+0 4.06e+02 1.02e+0

2 − 1,2

WFG7−1 3.87e+02 1.67e+0 3.50e+02 9.88e+0 4.02e+02 1.62e+0

2 − 1,2

WFG8−1 3.91e+02 8.46e-1 3.76e+02 8.34e+0 4.06e+02 1.00e+0

2 − 1,2

WFG9−1 3.83e+02 3.24e+0 3.69e+02 7.60e+0 4.05e+02 1.85e+0

2 − 1,2
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Table 3.11: Median and standard deviation of the hypervolume indicator
on inverted test problems for five objectives.

Problem MOEA/D (1) NSGA-III (2) MOMBI-III (3)

DTLZ1−1 5.25e+08 3.81e+7 9.02e+09 2.83e+9 2.11e+10 4.14e+9

− 1 1,2

DTLZ2−1 3.45e+01 1.74e-1 2.35e+01 2.24e+0 3.53e+01 9.61e-1

2 − 1,2

DTLZ3−1 2.14e+15 5.53e+3 1.23e+15 2.07e+4 2.19e+15 9.49e+3

2 − 1,2

DTLZ4−1 3.43e+01 1.30e+1 2.10e+01 3.81e+0 3.51e+01 9.13e-1

2 − 1,2

DTLZ5−1 4.66e+01 1.42e-1 3.52e+01 1.90e+0 5.11e+01 4.27e-1

2 − 1,2

DTLZ6−1 9.10e+03 4.83e+1 6.53e+03 5.80e+2 9.63e+03 2.75e+2

2 − 1,2

DTLZ7−1 2.41e+01 4.81e+0 6.28e+01 2.10e-1 6.37e+01 5.38e-2

− 1 1,2

WFG1−1 7.96e+01 1.17e+1 1.59e+01 1.98e+0 1.05e+02 2.22e+1

2 − 1,2

WFG2−1 3.86e+02 2.63e-1 3.14e+02 3.80e+1 5.39e+02 2.96e+0

2 − 1,2

WFG3−1 4.10e+02 4.08e-1 2.81e+02 1.88e+1 4.65e+02 6.33e+0

2 − 1,2

WFG4−1 1.90e+03 5.74e+0 1.41e+03 8.87e+1 2.01e+03 2.00e+1

2 − 1,2

WFG5−1 1.89e+03 3.30e+0 1.59e+03 9.20e+1 2.01e+03 1.40e+1

2 − 1,2

WFG6−1 1.89e+03 2.73e+0 1.64e+03 8.58e+1 2.02e+03 1.51e+1

2 − 1,2

WFG7−1 1.89e+03 2.72e+1 1.41e+03 8.46e+1 2.00e+03 1.52e+1

2 − 1,2

WFG8−1 1.89e+03 2.31e+0 1.67e+03 9.76e+1 2.01e+03 1.31e+1

2 − 1,2

WFG9−1 1.87e+03 1.62e+1 1.66e+03 7.57e+1 2.06e+03 1.35e+1

2 − 1,2
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Figure 3.6: Pareto fronts produced by the MOEAs on WFG−1 test problems.

3.4.4 Many-objective optimization problems

In this experiment, we investigated the behavior of MOMBI-III in many-objective
instances of DTLZ1. For this purpose, we performed a comparative study with the
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Table 3.12: Median and standard deviation of the hypervolume indicator on
many-objective instances of DTLZ1.

m MOEA/D (1) NSGA-III (2) MOMBI-II (3) MOMBI-III (4)

4
1.5995e+01 1.23e-4 1.5995e+01 8.66e-5 1.5945e+01 8.54e-3 1.5995e+01 4.35e-5

3 1,3 − 1,3

5
3.1999e+01 9.18e-5 3.1999e+01 6.97e-5 3.1930e+01 1.68e-2 3.1999e+01 3.65e-5

3 1,3 − 1,2,3

6
6.3998e+01 4.27e-4 6.4000e+01 9.66e-5 6.3922e+01 2.08e-2 6.4000e+01 7.23e-5

3 1,3 − 1,2,3

7
1.2800e+02 8.25e-4 1.2800e+02 1.36e-2 1.2784e+02 5.71e-2 1.2800e+02 1.17e-4

3 1,3 − 1,3

8
2.5599e+02 4.47e-3 2.5600e+02 2.00e-2 2.5577e+02 8.23e-2 2.5600e+02 8.56e-4

3 1,3 − 1,3

9
5.1196e+02 2.69e-2 5.1199e+02 7.76e-2 5.1164e+02 1.78e-1 5.1200e+02 1.36e-3

3 1,3 − 1,2,3

10
1.0238e+03 7.78e-2 1.0240e+03 3.41e-2 1.0232e+03 2.63e-1 1.0240e+03 8.59e-4

3 1,3 − 1,2,3

same algorithms of the previous experiment. The results of the hypervolume indicator
are presented in Table 3.12. In this case, MOMBI-III outperformed MOEA/D and
MOMBI-II in all instances and performed slightly better than NSGA-III.

3.5 Summary

In this chapter, we presented for the first time, a Hyper-Heuristic of Scalarizing Func-
tions (MOMBI-III) for solving continuous multi-objective optimization problems,
which are transformed into single-objective ones. The adopted set of scalarizing func-
tions has several advantages, from which the most relevant are its low computational
cost and compatibility with Pareto dominance. Although MOMBI-III can incorpo-
rate scalarizing functions that are incompatible with any form of Pareto optimality
(e.g., PBI), an extra effort is required at each iteration to filter dominated solutions.
Furthermore, MOMBI-III incorporates the s-energy indicator for generating even
distributions in objective space. Our experimental results showed that MOMBI-III
significantly outperformed single heuristics as well as advanced algorithms, such as
NSGA-III and MOEA/D in the majority of the instances of the ZDT, DTLZ, DTLZ−1,
WFG and WFG−1 test suites. Although MOMBI-III relies on weight vectors, it does
not suffer from the overspecialization problem that MOEA/D and NSGA-III have.
Furthermore, our proposal showed promise in solving many-objective problems.
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A Density Estimator based on
Parallel Coordinates

Parallel Coordinates [68], or Value-Path [103], is a widely used visualization technique
for multivariate data, allowing to identify patterns, clusters and correlation between
variables [56]. In the context of multi-objective optimization, Parallel Coordinates has
been frequently used for visualizing approximation sets, specially in high-dimensional
spaces. Its applicability varies from the identification of differences and similarities
between alternatives, guidance to the decision-maker in selecting solutions, moni-
toring the progress of an optimization run, assessment of the relative performance
of different algorithms [103, 127] to, more recently, guidance during the search in
bio-inspired meta-heuristics [63, 64].

In the following, we propose a density estimator based on this visualization tool,
which can be seen as an off-line selection hyper-heuristic. To validate its efficiency, we
first couple it with a Pareto-based MOEA, named Multi-objective Optimizer based
on Value Path (MOVAP). Then, in Chapter 5, the use of this density estimator is
extended to an archiving technique for an island-based MOEA.

The remainder of this chapter is organized as follows. In Section 4.1, we provide
the motivation behind our work and a brief overview of the related work. Section 4.2
is devoted to the description of our proposed algorithm. In Section 4.3, the compu-
tational complexity of MOVAP is derived. In Section 4.4, we present a comparative
study using the ZDT and the WFG test suites. A discussion of the experimental
results is presented in Section 4.5. Section 4.6 provides a summary of this chapter.

4.1 Motivation

Value-Path is built in the 2-dimensional plane, where m copies of the real line IR are
placed perpendicular to the x-axis and a point in IRm is represented by a connected
series of line segments (known as polygonal line or polyline) with vertices on the
parallel axes. In Figure 4.1, we show an example of this graph with its corresponding
Pareto front, composed of eleven non-dominated solutions. The basic idea of our
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Figure 4.1: An example of approximation set in two-dimensional objective space (left) and
its corresponding Parallel-Coordinates graph (right).

proposal is based on the following observations:

1. The POF is represented by the shaded area, which we named trade-off area.

2. The boundaries between the white regions and the trade-off area, which we call
Pareto coordinates, give us a hint of the shape of the POF.

3. Those individuals intersecting the upper-Pareto coordinate are beyond the POF
(see for example points i, j and zmax).

4. As the number of uniformly distributed solutions in the approximation set in-
creases, the coverage of the trade-off area becomes better (see Figure 4.2).

Therefore, the 2D-graphs of each distinct pair of objective functions are trans-
formed into a digital image1 and this information is extracted in order to assign a
contribution to each individual.

Hu and Yen [64] have been the only ones to propose density estimators based on
Value Path, embedding them within a multi-objective particle swarm optimizer. The
basic principle is that non-dominated solutions are ranked according to the height
of intersection between the parallel axes and the polylines. In contrast with our
proposal, this algorithm is sensitive to objective ordering.

To the best of our knowledge, MOVAP is the first evolutionary algorithm that
incorporates automatic image analysis [48] in its search mechanism.

1 The term image refers to a two dimensional light intensity function g(a, b) where a and b denote
spatial coordinates and the value of g at any point (a, b) is proportional to the brightness (or gray
level) of the image at that point. Thus, a digital image is an image that has been discretized in both
its spatial coordinates and brightness [48].
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Figure 4.2: Different distributions of a concave Pareto front (above) and their
corresponding Parallel-Coordinates graph (bottom). In each case, the hypervolume and

1-energy values are shown. For the former, the reference point (1.1, 1.1) is adopted.

4.2 Proposed Approach

MOVAP uses Pareto dominance as its primary search engine and a density estimator
based on Parallel Coordinates, which is applied to both the parent and the survival
selection mechanisms.

The core idea is to create a digital image containing the Parallel Coordinates of
each distinct pair of objective functions (see Algorithm 4). These sub-graphs are
attached next to each other and only normalized individuals are considered (line 5).
The digital image is represented as a matrix, where its dimensions are fixed, depen-
ding on the number of objectives (m), the population size (|P |) and the resolution
parameter (γ) (lines 1-4). An element of this array (pixel) corresponds to the number
of intersecting polylines (line 14) and the region above the upper-Pareto coordinate
is identified with the value |P | + 1 (lines 16-20). Therefore, the gray levels oscillate
in the range [0, |P |+ 1].

In Algorithm 4, we adopt the notation p.y to refer to the objective vector of
an individual p. The total number of sub-graphs is given in line 1, and each line
segment is represented by its start and end pixels (lines 9-12). The Midpoint line
algorithm [12],[37, p. 74], which is discussed later in this chapter, is used to effi-
ciently compute the coordinates of the pixels that lie close to every line segment.
Furthermore, in Figure 4.3, we show an example of a digital image using a resolution
parameter γ = 3.

The next step is to determine the density of an individual (see Algorithm 5). For
this purpose, all pixels, as well as their boundaries of a polyline are inspected (lines
13-27). The boundary of a pixel q is limited to the eight points that are at a unit
distance from it, denoted by N8(q) (see, e.g., coordinate (15, 7) from Figure 4.3). This
set of neighbors must fall inside the current sub-graph (denoted by c).
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Algorithm 4 Build PC-image

Input: Population P , resolution γ, objectives m
Output: Image IA×B, parameter θ

1: s← m(m− 1)/2
2: θ ← γ|P |/s
3: A← θ, B ← θs
4: I ← 0A×B
5: for all

{
p ∈ P : p.y ∈ [0, 1]m

}
do

6: c← 0
7: for all i ∈ {1, . . . ,m− 1} do
8: for all j ∈ {i+ 1, . . . ,m} do
9: x0 ← θc

10: y0 ← −b(θ − 1)(1− p.yi)c
11: x1 ← θc+ θ − 1
12: y1 ← −b(θ − 1)(1− p.yj)c
13: 〈(bk, ak)〉θ−1

k=0 ← Midpoint Line(x0, y0, x1, y1)
14: I[−ak, bk]← I[−ak, bk] + 1, for all k = 0, . . . , θ − 1
15: c← c+ 1
16: for all b ∈ {0, . . . , B} do
17: a← 0
18: while a < A and I[a, b] = 0 do
19: I[a, b]← |P |+ 1
20: a← a+ 1
21: return I
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0 1 1212121212121212121212121212121212121212121212121212121212 2 0
1 1 1 121212121212121212121212121212121212121212121212121212 2 0 0
0 0 1 2 12121212121212121212121212121212121212121212121212 2 0 1 1
1 0 0 0 2 12121212121212121212121212121212121212121212 1 2 1 1 0 0
1 1 1 0 0 2 1 12121212121212121212121212121212121212 1 2 1 0 0 0 0
0 1 1 2 1 1 1 1 1212121212121212121212121212121212 2 2 1 1 2 2 2 2
0 0 0 0 1 1 2 3 2 1 1212121212 1 1 1 1 1 1 1 1 2 3 3 2 1 1 0 0 0 0
1 1 2 1 1 1 1 1 3 3 4 2 1 1 1 0 0 0 0 0 0 2 2 2 2 0 0 0 0 0 0 0 0
1 1 0 1 1 1 1 1 1 2 1 3 4 3 3 1 1 2 2 3 2 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 2 2 3 3 3 2 0 2 1 2 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 1 2 1 0 0 2 1 0 1 3 2 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 0 1 1 2 1 1 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Figure 4.3: Digital image of Fig. 4.1
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Algorithm 5 Calculate population density

Input: Population P , image IA×B, parameter θ, extreme solutions E, objectives m
Output: Density values D|P |×1

1: D ← 0|P |×1

2: vmin ←∞, vmax ← −∞
3: for all

{
p ∈

(
P \ E

)
: p.y ∈ [0, 1]m

}
do

4: c← 0
5: for all i ∈ {1, . . . ,m− 1} do
6: for all j ∈ {i+ 1, . . . ,m} do
7: x0 ← θc
8: y0 ← −b(θ − 1)(1− p.yi)c
9: x1 ← θc+ θ − 1

10: y1 ← −b(θ − 1)(1− p.yj)c
11: 〈(bk, ak)〉θ−1

k=0 ← Midpoint Line(x0, y0, x1, y1)
12: for all k ∈ {0, . . . , θ − 1} do
13: S ← N8(I[−ak, bk])
14: nedge ←|

{
s ∈ S : s = |P |+ 1

}
|

15: nempty ←| {s ∈ S : s = 0} |
16: nfilled ← 8− nedge − nempty
17: nsum ←

∑
s∈S,s>0 s

18: D[p]← D[p] + (A− a)I[−ak, bk]
19: if nempty > 0 and nedge > 0 then
20: D[p]← D[p] + (a+ 1)nedgenempty
21: else
22: D[p]← D[p]− (a+ 1)

(
nedge + nempty

)
23: if nfilled > 0 then
24: if m > 2 and (b mod 2) = 0 then
25: D[p]← D[p]− (A− a)nfilled
26: else
27: D[p]← D[p] + (A− a)nsum/nfilled
28: c← c+ 1
29: vmin ← min{vmin, D[p]− 1}
30: vmax ← max{vmax, D[p]}
31: Normalize ∀p ∈

(
P \ E

)
:

D[p]←

{
D[p]−vmin

vmax−vmin
if p ∈ [0, 1]m

‖p.y‖ otherwise
32: return D

During the inspection process, the number of edged, empty and filled pixels are
counted (lines 14-17). The overall density is updated according to their values, in
such a way that highly dense points (lines 18 and 27) or those intersecting the upper-
Pareto coordinate (lines 19 and 20) are penalized, whereas isolated ones (lines 22 and
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25), belonging to the trade-off area, are rewarded. This set of rules or heuristics were
derived from empirical knowledge with the aim to obtain well-distributed solutions
in objective space. Therefore, the density estimator of MOVAP can be seen as an
off-line selection hyper-heuristic.

Once the matrix has been processed, the population density is normalized (line
31). Thus, extreme solutions obtain zero (the best) value and the most crowded gets
one (the worst value). The density of individuals lying outside the interval [0, 1] is
equal to the Euclidean norm of the objective vector.

The proposed density estimator is coupled with a steady state genetic algorithm,
where one offspring is created at each generation. In the following paragraph, we
describe the main loop of MOVAP, shown in Algorithm 6.

First, the population is initialized, either randomly or from a previously computed
solution (line 3). At each iteration, a binary tournament selection is performed, based
on the population density (line 5). Thus, isolated individuals have a high probability
of mating. Next, an offspring is created using the variation operators (line 6). The
new individual is added to the current population and a normalization procedure
(explained later on) is invoked (lines 7 and 8). If there are individuals outside the
region of interest, the one with the highest norm is removed from the population.
Otherwise, the population is ranked using the non-dominated sorting procedure of
NSGA-II [31] (lines 10-13). If the last front consists of one individual (lines 14 and
15), then it is eliminated. Otherwise, the digital image is built for calculating the
density estimator, and the individual with the highest value is discarded (lines 17-19).

The normalization done in Algorithm 7 works in objective space and serves for
three purposes: it translates vectors to the origin, if their coordinates are negative
(lines 1-3); it finds the extreme points (lines 5-8); and it normalizes the population
(line 9). It is noteworthy that if there are several candidates parallel to one axis,
the solution with the lowest norm is preferred. Additionally, each component of zmin

corresponds to the best objective value found so far (line 4).

Re-taking our previous example of Figure 4.1, we provide the density values of
the eleven non-dominated individuals in Table 4.1. The best individuals are the
extreme solutions a and h, whereas the three candidates to be removed are i, j
and k. This is because they are outside the region of interest, beyond the Pareto
front or too close to other individuals. Moreover, the special pattern of solution j,
where it intersects the upper-Pareto coordinate, is recognized in the bounded pixels of
Figure 4.3. Finally, the concave geometry of the approximation set can be appreciated
as a valley-like curve in the upper-Pareto coordinate. Here, it is worth mentioning
that when the geometry is convex, the lower-Pareto coordinate takes a mountain-like
curved shape, while when it is linear, the upper-Pareto coordinate forms a triangle.
In high dimensionality, if the same pattern is repeated for each pair of objectives,
we can infer that the Pareto front adopts such form. Otherwise, it corresponds to a
mixed shape.
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Algorithm 6 Main loop of MOVAP

Input: MOP, stopping criterion, image resolution γ
Output: Approximation set P

1: i← 1
2: D ← 0|P |×1

3: Initialize population P i

4: while termination condition is not fulfilled do
5: Perform parent selection
6: Create an offspring o
7: P i ← P i ∪ {o}
8: [P ′, E]← Normalize objectives (P i,m)
9: Q←

{
p ∈ P ′ : p.y /∈ [0, 1]m

}
10: if Q 6= ∅ then
11: r ← arg maxq∈Q ‖q.y‖
12: else
13: {F1, . . . , Fk} ← Non-dominated sorting(P i)
14: if |Fk| = 1 then
15: r ← Fk
16: else
17: [I, θ]← Build PC-image (P ′, γ,m)
18: D ← Calculate pop. density (P ′, I, θ, E,m)
19: r ← arg maxp∈Fk

D[p]
20: Reduce population P i+1 ← P i \ {r}
21: i←i + 1
22: return P i

Algorithm 7 Normalize objectives

Input: Population P , objectives m
Output: Population P ′, extreme points E

1: vi ←| min
(
{0} ∪ {p.yi : p ∈ P}

)
|,

∀i ∈ {1, . . . ,m}
2: if v 6= 0 then
3: P ′ ← {p.y + v : p ∈ P}
4: Update the minimum reference point

zmin

5: for all i ∈ {1, . . . ,m} do
6: e← arg minp∈P ′

p.yi
‖p.y‖

7: E ← E ∪ {e}
8: zmax

i ← ei {see Figure 4.1}
9: p.y← p.y−zmin

zmax−zmin , ∀p ∈ P ′
10: return P ′, E

Table 4.1: Sample data

Solution f Density

a (1e-12, 1.00) 0.0000

b (0.17, 0.99) 0.0003

c (0.40, 0.92) 0.2491

d (0.58, 0.82) 0.4747

e (0.74, 0.68) 0.4753

f (0.86, 0.51) 0.6107

g (0.95, 0.32) 0.2067

h (1.00, 0.00) 0.0000

i (0.00, 1.20) 1.2000

j (0.73, 0.81) 1.0000

k (0.83, 0.55) 0.6819
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The Midpoint line method, invoked in Algorithms 4 and 5, is given in Algorithm 8.
It was originally proposed by Bresenham [12] and later simplified by Foley et al. [37,
p. 74]. Given start (x0, y0) and end (x1, y1) pixels describing a line with slope between
[−1, 1], this method efficiently computes the coordinates of the pixels that lie close to
such line. The main advantage of this algorithm is its speed since it avoids divisions
and frequent calls to the floor function (b·c). Another merit is that it prompts a
maximum error of 1

2
.

Algorithm 8 Midpoint Line [12],[37, p. 74]

Input: Start (x0, y0) and end (x1, y1) points
Output: Sequence of points S discretizing a line in the fourth quadrant

1: dx← x1 − x0

2: dy ← y1 − y0

3: m← dy/dx {Slope’s line}
4: incrE ← 2dy {Increment used for moving east}
5: incrNE ← 2(dy − dx) {Increment used for moving northeast}
6: incrSE ← 2(dy + dx) {Increment used for moving southeast}
7: x← x0

8: y ← y0

9: S ← (x, y)
10: if m ≥ 0 then {Increasing or horizontal line}
11: d← 2dy − dx {Midpoint evaluation d = F (x, y + 1

2
) = Ax+By + C}

12: while x < x1 do
13: if d ≤ 0 then {Midpoint is above or in the line, thus we choose east}
14: d← d+ incrE
15: else {Midpoint is below the line, so we choose northeast}
16: d← d+ incrNE
17: y ← y + 1
18: x← x+ 1
19: S ← S ‖ (x, y)
20: else {Decreasing line}
21: d← 2dy + dx {Midpoint evaluation d = F (x, y − 1

2
) = Ax+By + C}

22: while x < x1 do
23: if d ≥ 0 then {Midpoint is above or in the line, thus we choose east}
24: d← d+ incrE
25: else {Midpoint is below the line, so we choose southeast}
26: d← d+ incrSE
27: y ← y − 1
28: x← x+ 1
29: S ← S ‖ (x, y)
30: return S
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The conceptual idea is that the next pixel (xi+1, yi+1) is calculated incrementally,
i.e., by using information of the current pixel (xi, yi). For this purpose the midpoint
is defined as (xi+1, yi+

1
2
) if the slope m is positive, or (xi+1, yi− 1

2
) if it is negative.

Depending on the position of the midpoint concerning the line (above or below), there
are three possible movements: northeast, east or southeast. Moreover, to determine
the position of the midpoint, the algorithm tests the sign of the general form of the
linear equation at the midpoint. This value is denoted by d in Algorithm 8. In lines
1-3, the changes in the coordinate axes, as well as the line’s slope are calculated.
The possible increments of d are calculated in lines 4-6. Next, the current pixel is
initialized and added to the sequence of points S in lines 7-9. According to the slope’s
sign, the d value is initialized in lines 11 and 21. At each iteration of lines 12-19 and
22-29, d is inspected for making the right movement. Then, d is updated, and the new
pixel is added to the sequence (‖ denotes concatenation). This procedure is repeated
until the end pixel is reached.

4.3 Computational Complexity

In the following, we determine the complexity of MOVAP (Algorithm 6). Parent
selection is performed in O(1), as well as the offspring generation and population
reduction. The normalization (Algorithm 7) and verification of individuals inside the
region of interest is done in O(|P |m), each. Nondominated sorting is of O(|P |2m).
The building of the image (Algorithm 4) and the density calculation (Algorithm 5)
can be performed in O(|P |2m2). Therefore, the overall complexity of MOVAP at each
iteration is O(|P |2m2) with a maximum storage of O(|P |2).

4.4 Experimental Results

In this section, we investigate the effectiveness of MOVAP, not only in artificial many-
objective problems (of 5 and 7 objectives), but also in low dimensionality. For this
purpose, we present a comparative study that includes the algorithms SPEA2, NSGA-
II, NSGA-III and HypE, all of which were developed in our framework EMO Project
(see Chapter 6 on page 89). Next, we describe the experimental settings, test pro-
blems, and the performance assessment measure adopted.

All the MOEAs were implemented using real-numbers encoding and their para-
meters were identical (see Table 4.2). The variation operators were polynomial-based
mutation and SBX. As suggested in [29], the crossover rate and its distribution index
were set to 0.9 and 20, for 2 and 3 objectives, and 1.0 and 30 for many-objective
problems. The mutation rate and its distributed index was set to 1/n and 20, re-
spectively. For NSGA-III, the set of weight vectors was generated using the Simplex-
Lattice Design method (see page 23) with a proportionality parameter H shown in
Table 4.2. For HypE, the number of sampling points was fixed to 20,000. In MOVAP,
the image resolution was empirically determined, being independent of the problem to
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Table 4.2: Parameters adopted in our study

m
WFG

|P |
NSGA-III MOVAP

n k H γ

2 24 4 100 99 3

3 24 4 120 14 2

5 47 8 196 4,5 2

7 71 12 210 4,5 2

be solved. For this purpose, we correlated its behavior with the hypervolume indica-
tor, and we found the average optimum values of Table 4.2. We observed that as this
value increases, the overlapping level among polylines is minimum, and even though
the individuals are not well distributed, the density estimator reflects the opposite.

For two objectives, we selected the five real-valued problems of the ZDT test suite
and for larger dimensionality, we used the WFG benchmark. The decision variables
(n) for ZDT were set according to the original specification. In the case of WFG, the
variables and position-related parameter (k) are specified in Table 4.2. The number
of function evaluations was set to 40,000 and 50,000 for the ZDT and WFG test
problems, respectively. For comparing results, we adopted the hypervolume indicator.
The reference points used were (1.1, . . .) for the ZDT test suite, (3, 5, 7, . . .) for the
instances WFG1 and WFG3; and (2.2, 4.2, 6.2, . . .) for the rest of the problems. We
also used the Value Path for inspecting diversity. We performed 30 independent runs
of each of the five MOEAs compared on all the test instances adopted. With the
aim of comparing the performance of all algorithms among themselves in a pairwise
fashion, the Wilcoxon rank sum test (one-tailed) with the Bonferroni correction was
applied to the hypervolume indicator values. Experimental results appear in Tables
4.3 and 4.4, and some examples of the approximation sets, corresponding to the
median values, are depicted in Figures 4.4 and 4.5. For comparison purposes in the
ZDT benchmark, the approximation sets are plotted with a vertical shift.

4.5 Discussions

With seven and five objectives, the best algorithm was MOVAP, obtaining the highest
hypervolume values and significantly outperforming the other algorithms: HypE,
NSGA-III, NSGA-II and SPEA2. Only in WFG2 (a problem with disconnected geo-
metry), for seven objectives, MOVAP was second, without being significantly sur-
passed by NSGA-II. The second best optimizer was NSGA-III, which was able to get
very close to the Pareto optimal fronts. However, it produced very poor diversity.
On the other hand, HypE encouraged spread over distribution, being unable to cover
the complete Pareto front. NSGA-II and SPEA2, in general, experimented some
stagnation during the search, being incapable of reaching the optimal solution.

In three and two objectives, MOVAP ranked second, producing similar results
to HypE (which ranked first) and significantly outperforming SPEA2, NSGA-II and
NSGA-III in almost all cases. This behavior was expected, since HypE is using the
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Table 4.3: Median and standard deviation of the hypervolume indicator. In each case, the
outperformance relation among algorithms is shown, using a significance level of α = 0.5
(for example, SPEA2 performs significantly better than HypE on WFG1). The two best

values are shown in gray scale, where a darker tone corresponds to the best value.

Problem SPEA2 (1) NSGA-II (2) NSGA-III (3) HypE (4) MOVAP (5)

7 objectives

WFG1
6.18e+05(7.97e+3) 6.49e+05(9.21e+3) 6.71e+05(1.33e+4) 5.32e+05(1.96e+4) 8.36e+05(1.64e+4)

4 1,4 1,2,4 − 1,2,3,4

WFG2
7.88e+05(7.98e+3) 8.11e+05(5.74e+3) 7.96e+05(4.65e+4) 7.24e+05(6.64e+4) 8.09e+05(6.77e+3)

4 1,3,4 4 − 1,3,4

WFG3
1.06e+06(8.32e+4) 1.32e+06(1.87e+4) 1.05e+06(3.21e+4) 1.13e+06(3.48e+4) 1.42e+06(6.50e+3)

− 1,3,4 − 1,3 1,2,3,4

WFG4
4.65e+05(1.89e+4) 3.15e+05(1.69e+4) 5.72e+05(8.12e+3) 2.76e+05(1.59e+4) 6.52e+05(5.12e+3)

2,4 4 1,2,4 − 1,2,3,4

WFG5
4.31e+05(1.79e+4) 3.25e+05(1.85e+4) 5.52e+05(5.52e+3) 2.94e+05(1.60e+4) 6.14e+05(3.70e+3)

2,4 4 1,2,4 − 1,2,3,4

WFG6
4.24e+05(2.17e+4) 3.34e+05(2.26e+4) 5.64e+05(1.58e+4) 2.68e+05(2.64e+4) 5.99e+05(1.40e+4)

2,4 4 1,2,4 − 1,2,3,4

WFG7
3.68e+05(2.36e+4) 3.25e+05(1.91e+4) 5.99e+05(8.52e+3) 2.94e+05(1.63e+4) 6.65e+05(4.40e+3)

2,4 4 1,2,4 − 1,2,3,4

WFG8
3.42e+05(2.34e+4) 3.23e+05(1.48e+4) 4.69e+05(4.10e+4) 2.42e+05(1.72e+4) 5.05e+05(4.43e+3)

2,4 4 1,2,4 − 1,2,3,4

WFG9
4.14e+05(1.87e+4) 2.78e+05(1.78e+4) 4.71e+05(2.52e+4) 2.32e+05(1.74e+4) 4.82e+05(1.81e+4)

2,4 4 1,2,4 − 1,2,4

5 objectives

WFG1
3.60e+03(8.17e+1) 3.71e+03(7.79e+1) 3.67e+03(4.94e+1) 2.82e+03(1.17e+2) 4.57e+03(1.07e+2)

4 1,3,4 1,4 − 1,2,3,4

WFG2
4.61e+03(2.56e+2) 4.63e+03(2.19e+2) 4.61e+03(2.26e+2) 4.24e+03(3.00e+2) 4.64e+03(3.78e+2)

4 4 4 − 4

WFG3
6.19e+03(1.65e+2) 6.93e+03(1.11e+2) 6.33e+03(1.02e+2) 5.55e+03(1.55e+2) 7.34e+03(5.36e+1)

4 1,3,4 4 − 1,2,3,4

WFG4
2.72e+03(6.26e+1) 2.34e+03(8.39e+1) 3.11e+03(4.16e+1) 1.69e+03(9.10e+1) 3.38e+03(2.12e+1)

2,4 4 1,2,4 − 1,2,3,4

WFG5
2.63e+03(5.72e+1) 2.39e+03(7.30e+1) 2.94e+03(2.33e+1) 1.96e+03(1.33e+2) 3.19e+03(1.31e+1)

2,4 4 1,2,4 − 1,2,3,4

WFG6
2.55e+03(5.85e+1) 2.21e+03(8.35e+1) 2.97e+03(5.63e+1) 1.80e+03(1.36e+2) 3.21e+03(4.93e+1)

2,4 4 1,2,4 − 1,2,3,4

WFG7
2.44e+03(6.60e+1) 2.19e+03(1.34e+2) 3.22e+03(2.94e+1) 1.82e+03(1.10e+2) 3.45e+03(1.62e+1)

2,4 4 1,2,4 − 1,2,3,4

WFG8
2.03e+03(7.13e+1) 1.88e+03(4.94e+1) 2.39e+03(4.80e+1) 1.48e+03(1.24e+2) 2.66e+03(2.56e+1)

2,4 4 1,2,4 − 1,2,3,4

WFG9
2.47e+03(8.43e+1) 2.09e+03(1.17e+2) 2.63e+03(1.21e+2) 1.75e+03(1.68e+2) 2.75e+03(5.47e+1)

2,4 4 1,2,4 − 1,2,3,4

exact hypervolume in its search mechanism and we are using the same performance
indicator for comparing results. Nonetheless, we found that HypE focused more on
the spread than on the distribution of solutions, while MOVAP favored distribution
over spread. For example, in ZDT2, which has a concave Pareto front, MOVAP was
able to find good representatives near the extreme points (see Figure 4.4). Moreover
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Table 4.4: Median and standard deviation of the hypervolume indicator (cont’d).

Problem SPEA2 (1) NSGA-II (2) NSGA-III (3) HypE (4) MOVAP (5)

3 objectives

WFG1
4.75e+01(2.65e+0) 4.41e+01(2.12e+0) 4.22e+01(2.93e+0) 5.66e+01(1.62e+0) 5.25e+01(2.32e+0)

3 3 − 1,2,3,5 1,2,3

WFG2
5.20e+01(3.62e+0) 5.15e+01(3.73e+0) 5.14e+01(4.02e+0) 5.34e+01(4.21e+0) 4.43e+01(4.13e+0)

2,3 − − 1,2,3,5 −

WFG3
7.28e+01(3.22e-1) 7.45e+01(3.61e-1) 7.28e+01(3.81e-1) 7.59e+01(2.19e-1) 7.51e+01(3.71e-1)

− 1,3 − 1,2,3,5 1,2,3

WFG4
2.67e+01(2.41e-1) 2.51e+01(4.26e-1) 2.78e+01(1.09e-1) 2.97e+01(4.66e-2) 2.88e+01(1.13e-1)

2 − 1,2 1,2,3,5 1,2,3

WFG5
2.54e+01(2.03e-1) 2.42e+01(2.93e-1) 2.59e+01(1.09e-1) 2.74e+01(9.65e-1) 2.68e+01(1.25e-1)

2 − 1,2 1,2,3,5 1,2,3

WFG6
2.51e+01(3.69e-1) 2.39e+01(4.60e-1) 2.59e+01(3.08e-1) 2.77e+01(2.68e-1) 2.71e+01(3.16e-1)

2 − 1,2 1,2,3,5 1,2,3

WFG7
2.74e+01(2.53e-1) 2.62e+01(3.61e-1) 2.84e+01(7.93e-2) 2.98e+01(2.01e-2) 2.92e+01(3.78e-2)

2 − 1,2 1,2,3,5 1,2,3

WFG8
2.21e+01(2.03e-1) 2.11e+01(2.94e-1) 2.30e+01(1.60e-1) 2.34e+01(2.81e-1) 2.40e+01(1.22e-1)

2 − 1,2 1,2,3 1,2,3,4

WFG9
2.36e+01(1.02e+0) 2.25e+01(8.25e-1) 2.58e+01(1.33e+0) 2.17e+01(1.75e+0) 2.40e+01(1.44e+0)

2,4 4 2,4 − 2,4

2 objectives

ZDT1
8.71e-01(3.10e-4) 8.70e-01(5.70e-4) 8.71e-01(3.36e-5) 8.72e-01(2.79e-5) 8.72e-01(8.58e-5)

2 − 1,2 1,2,3,5 1,2,3

ZDT2
5.38e-01(5.40e-4) 5.37e-01(4.66e-4) 5.38e-01(5.15e-5) 5.39e-01(2.59e-5) 5.38e-01(3.69e-5)

2 − 1,2 1,2,3,5 1,2,3

ZDT3
1.33e+00(9.72e-4) 1.33e+00(1.18e-3) 1.33e+00(4.01e-4) 1.33e+00(1.52e-2) 1.33e+00(3.39e-2)

3 3 − 1,2,3,5 1,2,3

ZDT4
8.68e-01(1.94e-3) 8.68e-01(1.35e-3) 8.69e-01(1.64e-3) 8.71e-01(5.63e-4) 8.70e-01(2.03e-3)

− − − 1,2,3,5 −

ZDT6
4.99e-01(1.14e-3) 4.99e-01(1.14e-3) 4.97e-01(1.59e-3) 5.03e-01(3.01e-4) 5.03e-01(3.12e-4)

3 3 − 1,2,3,5 1,2,3

in WFG8, a non-separable and biased problem, for three objectives, MOVAP out-
performed HypE. Only in WFG2, MOVAP could not perform significantly better
than the other algorithms. With respect to NSGA-III, it produced a more uniform
distribution than SPEA2 and NSGA-II, obtaining the best results in WFG9 (a multi-
modal, deceptive, non-separable and biased problem) for three objectives. Finally,
SPEA2 obtained slightly better results than NSGA-II, standing out by the diversity
of its solutions.

In conclusion, we observed that MOVAP produced much better solutions near
the Pareto optimal front than NSGA-II and SPEA2 in low and high dimensionality.
With respect to NSGA-III, it had better diversity and in comparison with HypE,
MOVAP was competitive in low dimensionality and produced much better results for
five and seven objectives. For this reason, we believe that our proposed approach is
a promising alternative for solving MOPs, in both low and high dimensionality.
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Figure 4.4: Pareto fronts produced by MOEAs on some problems of the ZDT test suite
(top) and the corresponding digital images generated by MOVAP (bottom).

4.6 Summary

This chapter presents a new algorithm, called MOVAP (Multi-Objective Optimizer
based on Value Path), which uses image analysis concepts in its selection mechanism.
The basic idea consists in discretizing the Parallel Coordinates graph and assigning a
fitness value to each individual based on the density of its polylines. Our experimental
results indicated that the proposed approach significantly outperforms HypE, NSGA-
III, NSGA-II and SPEA2 in more than 35% of the test instances, producing much
better diversity of solutions, and exploring more regions of the search space in high-
dimensionality than the MOEAs with respect to which it was compared. Whereas in
low dimensionality, our proposed approach was competitive, producing very similar
results to those generated by HypE. Moreover, the complexity of MOVAP is quadratic
with respect to the number of objectives and the population size. Based on these
preliminary results, we believe that our proposed approach is a suitable alternative
for solving many-objective problems.
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Figure 4.5: Approximation sets of MOEAs in WFG1, WFG3, WFG4 and WFG9 (from
top to bottom).
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Chapter 5

A Parallel Version of SMS-EMOA

In the last decade, there has been a growing interest in multi-objective evolutio-
nary algorithms that use performance indicators to guide the search. A simple and
effective one is the S-Metric Selection Evolutionary Multi-Objective Algorithm (SMS-
EMOA) [35], which is based on the hypervolume indicator. Even though the maxi-
mization of the hypervolume is equivalent to achieving Pareto optimality, its compu-
tational cost increases exponentially with the number of objectives, which severely
limits its applicability to many-objective optimization problems. In this chapter, we
present a parallel version of SMS-EMOA, where the execution time is reduced through
an asynchronous island model with micro-populations. Furthermore, diversity is pre-
served by external archives that are pruned to a fixed size employing a technique
based on the Parallel-Coordinates graph (presented in Chapter 4). The proposed
approach is called S-PAMICRO (PArallel MICRo Optimizer based on the S metric).

The organization of this chapter is as follows. In Section 5.1, we give the motiva-
tion and some background. Section 5.2 is devoted to the description of our proposed
parallel MOEA. In Section 5.3 we present our experiments. Finally, Section 5.4 pro-
vides a summary of the Chapter.

5.1 Motivation

We focus on SMS-EMOA due to its simplicity and superiority over several Pareto-
and aggregation-based algorithms [35, 78, 136]. This optimizer creates an offspring at
each iteration from randomly selected parents. In the survival selection, it adopts the
non-dominated sorting procedure of NSGA-II [31], where the discarded individual is
chosen from the last front, having the lowest hypervolume contribution. For a deeper
discussion on the computation of the hypervolume contribution, see Appendix A,
where the most efficient algorithm proposed by the Walking Fish Group is repro-
duced without errors. Since the worst-case complexity of SMS-EMOA is O(|P |m)
[144], parallelizing it arises as a possible alternative to reduce its computational cost,
where at least two strategies are possible [95]: 1) parallelization of the computa-
tions, in which the operations applied to an individual are performed in parallel, and
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Figure 5.1: Average execution time of SMS-EMOA.

2) parallelization of the population, in which the population is partitioned and each
subpopulation evolves in semi-isolation (individuals can be exchanged between sub-
populations). Klinkenberg et al. [78], Wessing et al. [142] and Manoatl et al. [97]
have studied the first approach. In [78], a variation of SMS-EMOA parallelized the
expensive evaluations of individuals using a surrogate model, whose purpose was to
approximate the function values. In [142], the synchronous and asynchronous master-
slave implementations of SMS-EMOA were compared on problems with fluctuations
in the evaluation time of the objective functions. In [97], the exact hypervolume
contributions of SMS-EMOA were parallelized through the use of GPUs. To the best
of our knowledge, our work is the first attempt to incorporate the second sort of
approach (parallelization of the population) into SMS-EMOA.

In order to get a better grasp of the variability of the execution time of SMS-
EMOA, we sampled several points on the multi-frontal test problem DTLZ1 (see
Section B.3 on page 150), varying the number of objective functions and the popu-
lation size on a PC Intel(R) Core(TM) i7 CPU 950 @ 3.07 GHz × 8 with 3.8 GB of
memory, using the same parameters in all our experiments [35]. The average resulting
surface is shown in Figure 5.1. An interesting observation is that, regardless of the
number of objectives, time was almost negligible when using small populations (less
than 20 individuals). This fact is considered in our proposal, where we use micro-
populations in an asynchronous island model [128]. Moreover, diversity is improved
by external archives that are kept to a constant size by the proposed density estimator
of Chapter 4, which is scalable in objective space.

5.2 Proposed Approach

The PArallel MICRo Optimizer based on the S metric (S-PAMICRO) draws ideas
from the island model. To deal with the prohibitive computational cost of SMS-
EMOA, we divide the population into several micro-populations, i.e., subpopulations
(or islands) with no more than 10 or 11 individuals. Islands are connected in a
logical unidirectional ring topology, where occasionally, few copies of the solutions
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. . .
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Figure 5.2: Schematic representation of the parallel micro optimizer based on the S metric.

Algorithm 9 Outline of an island in S-PAMICRO

Input: MOP, stopping criterion, island identification id, number of islands nisland,
number of migrants nmig, frequency of migration fmig, and image resolution γ.

Output: Final sub-population A
1: Initialize micro-population P at random
2: A← ∅ {initialize external archive}
3: n← nisland× |P | {archive size limit}
4: while the stopping criterion is not satisfied do
5: P ← SMS-EMOA(MOP, fmig, P ) {execute during fmig evaluations of the

objective vector}
6: S ←Migration Policy(A ∪ P , nmig) {nmig random solutions are selected}
7: Send copies of S to the (id+ 1) (mod nisland) island
8: R ← Check the arrival of immigrants from the island (nisland + id − 1)

(mod nisland)
9: A← NDS(A ∪ P ∪R)

10: if |A| > n then
11: A← Pruning(A, n, γ, m) {see Algorithm 10}
12: P ← Replacement Policy(P ∪ R) {dominated individuals are likely to be dis-

carded}
13: return A

are transferred using asynchronous communication (i.e., they migrate). Each island
evolves independently a serial SMS-EMOA in combination with an external archive of
non-dominated solutions. These external archives help to maintain diversity and are
pruned to a fixed size employing the technique described in Chapter 4, which is based
on the Parallel-Coordinates graph. The goal of S-PAMICRO is not only to reduce
the execution time of SMS-EMOA but also to improve its exploration capabilities,
because of the separated search of the islands, which changes the behavior of the
serial version and yields a new kind of algorithm [95, 128]. In Figure 5.2, we present
a schematic representation of S-PAMICRO.

The pseudocode of an island is given in Algorithm 9. At the beginning, the
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Algorithm 10 Pruning

Input: Population A, desired size n, image resolution γ, objectives m
Output: Reduced population A

1: E ← Determine extreme solutions
2: Calculate z ∗ and znad

3: Normalize population a.~y′ ← a.~y−z ∗
znad−z ∗ , ∀a ∈ A, a.~y ∈ IRm

4: while |A| > n do
5: [I, θ]← Build PC-image (A, γ,m) (see Algorithm 4 on page 64)
6: D ← Calculate pop. density (A, I, θ, E,m) (see Algorithm 5 on page 65)
7: r ← arg max~a∈AD[a]
8: A← A \ {r}
9: return A

subpopulation and the external archive are initialized. The maximum number of
individuals that the external archive can store is |P | times the number of islands,
where |P | stands for the subpopulation size. The purpose of the external archive is
to introduce elitism by retaining “good” representatives in terms of convergence and
diversity. At each iteration, the parallel MOEA evolves the current subpopulation
using a serial SMS-EMOA during fmig evaluations of the objective vector. Next,
nmig individuals are selected from the external archive and the current population
according to the migration policy for sending copies to the destination island. Sub-
sequently, S-PAMICRO checks for the arrival, without blocking, of immigrants from
the source island. The external archive is updated adding the current subpopulation
as well as the immigrants and then removing dominated solutions. If the external
archive exceeds its limit size, a pruning step is invoked, which will be explained below.
In the following, the immigrants are incorporated into the subpopulation regarding
the replacement policy. At the end, the final sub-populations of all islands are col-
lected and adjusted to the size nisland × |P |, using the same pruning technique.
This operation is performed by a designated island. Regarding the migration and
replacement policies any of those presented on page 28 can be coupled to our scheme.

In the pruning technique (see Algorithm 10), the extreme solutions of the current
Pareto front, as well as the reference points are determined. Here, extreme points
are chosen in such a way that are parallel to the axes having the lowest Euclidean
norm (see Algorithm 7 on page 67). Next, the population is normalized using this
information. In line 3 of Algorithm 10, we adopt the notation a.y to refer to the
objective vector of an individual a. While the population has not reached the desired
size, members with the highest population density are removed one by one.

5.3 Experimental Results

In this section, we investigate the behavior and performance of S-PAMICRO. Thus,
the experiments were divided in two parts: analysis of the migration parameters
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(Subsection 5.3.1), and comparison of our proposed algorithm with respect to SMS-
EMOA, its parallel version using the asynchronous island model without external
archives and HypE. The algorithms were implemented under EMO Project using
MPICH version 3.2 and the C compiler was gcc 6.3.0. The variation operators were
polynomial-based mutation and SBX. The crossover rate and its distribution index
were set to 0.9 and 20, respectively, for 2 and 3 objectives, and 1.0 and 30 for many-
objective problems. The mutation rate and its distributed index were set to 1/n and
20, respectively. We performed 30 independent runs for all scenarios. In the following,
we provide further details about these experiments.

5.3.1 Migration parameters

The island model introduces six additional parameters. The numerical ones are the
frequency of migration, the number of individuals to migrate at each event, and the
number of islands in the model. On the other hand, the categorical parameters are
the logical network topology, as well as the migration and replacement policies. In the
next experiments, we analyze the behavior of all these parameters on S-PAMICRO,
except for the topology, which was originally established to be a unidirectional ring.
Here, we present the results for only DTLZ1 with 2, 4, 6, 8 and 10 objectives since
in the other instances, we observed similar patterns. Furthermore, when analyzing a
specific parameter, the others were fixed to the following values:

• migration frequency = 100

• number of migrants = 2

• migration policy = random (R)

• replacement policy = elitist ranking (EK)

As indicated in Table 5.1, the number of islands, the external archive size and the
resolution parameter varied according to the number of objectives. The stopping
criterion consisted of reaching a maximum number of evaluations (fevals) of the MOP.
In S-PAMICRO, each island contained a subpopulation of 10 individuals.

For the performance assessment, we relied on the hypervolume indicator using the
reference point (2, 2, . . .), and the IGD+ indicator where the reference set was sampled
at random m× 10, 000 times from the well-known Pareto fronts. Then, these points
were filtered using the non-dominated sorting algorithm [31]. Executions have been
done over the GNU/Linux ABACUS Cluster1 of 268 nodes with 128 GB of RAM
and Infiniband interconnection network. Each processor is a fourteen-core Intel Xeon
E5-2697v3 2.6GHz.

Figure 5.3 shows the median and interquartile ranges of the hypervolume (left)
and IGD+ (right) indicators when varying the migration frequency (note that the

1http://www.abacus.cinvestav.mx
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Table 5.1: Parameters adopted in our experiments

Objectives (m) 2 3 4 6 8 10
Islands 10 13 16 20 23 26

Archive size 100 130 160 200 230 260
Image resolution (γ) 3 2 2 2 2 2

fevals (×103) 40 60 70 80 100 110

x-axis is in logarithmic scale). This parameter is measured in objective function eva-
luations (fevals). The interquartile range was interpolated by using cubic splines [39],
which ensure monotonicity and convexity of the original 20 sampling points. In the
case of 2 objectives, consistent results were obtained from 8 to 1000 fevals. Beyond
this value, the behavior is erratic, showing a significant decrease in performance. It is
worth mentioning that after 40,000 fevals, which corresponds to the maximum bud-
get granted (see Table 5.1), there is no migration. Thus, subpopulations evolve in
complete isolation. The IGD+ indicator (to be minimized) shows alike results, having
the best performance in the range [8, 100]. Using 4 objectives, the highest variability
occurs in the interval [1, 30], and the best results occur in [50, 200] for both indicators.
For 6, 8 and 10 objectives, the effect of the migration frequency suffers less variability
beyond 20 fevals (see the ranges of the y-axis). The common range of better values is
in [100, 1000] regarding both performance indicators. In all cases, for the migration
frequency parameter, it is observed that high rates of migration (less than 10 fevals)
are harmful, and the absence of migration reduces performance.

The next parameter to analyze is the number of copies that are sent or received
at each migration event. The range in the x-axis is from zero to 10 individuals since
we are dealing with very small subpopulations. Adopting the same methodology of
the previous parameter, we observe in Figure 5.4 that for all objectives when there is
no migration, both indicators decrease their performance. In the range [1, 7], stable
results occur having the best values with 2 and 3 individuals. However, from 8
individuals onwards, the performance degrades.

In traditional parallel MOEAs, the population and the total budget, regarding
objective function evaluations or execution time, are divided among the islands. S-
PAMICRO handles the budget in the same way. However, the handling of the popu-
lation is a little different since the subpopulation size is limited to a fixed number of
individuals. Therefore, if S-PAMICRO has a low number of islands, subpopulations
will consume the budget for a long time, perhaps without having any improvement.
On the other hand, if S-PAMICRO has many islands, subpopulations will have no
opportunity to converge due to an insufficient budget. This trade-off between islands
and budget can be observed in Figure 5.5. The more stable results regarding the
hypervolume indicator are in the intervals: [10, 20], [11, 36], [25, 45], [18, 28], [21, 36]
for 2, 4, 6, 8 and 10 objectives, respectively. Concerning the IGD+ indicator, they
change a little bit: [10, 15], [35, 45], [43, 53], [36, 51] for 2, 6, 8 and 10 objectives,
respectively.
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Figure 5.3: The effect of the migration frequency in S-PAMICRO.
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Figure 5.4: The effect of the number of migrants in S-PAMICRO.
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Figure 5.5: The effect of the number of islands in S-PAMICRO.
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Figure 5.6: Comparison of different migration and replacement policies in S-PAMICRO.
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Table 5.2: Parameters adopted in our experiments

m
WFG MOEAs pMOEAs

feval
S-PAMICRO

n k |P | |P | nisland γ

2 24 4 100 10 10 40,000 3

3 24 4 120 10 12 50,000 2

5 47 8 196 11 18 50,000 2

10 105 18 276 11 25 80,000 2

The behavior of the migration and replacement policies are studied together, ma-
king combinations of the different possibilities presented in Section 2.2.3 (page 28). In
total, we consider three migration schemes: Random (R), Elitist Random (ER) and
Elitist Ranking (EK); and four replacement schemes: Random (R), Elitist Random
(ER), Elitist Ranking (EK), and Elitist (E). Therefore, in Figure 5.6 for 2 objectives
the rightmost boxplot corresponds to the elitist ranking migration (EK) and elitist re-
placement (E). As a common factor for all objectives, the worst behaved schemes are
R/ER, ER/ER and EK/ER (for the hypervolume values with 6, 8 and 10 objectives
box-plots are outside the range, much farther down). Concerning the other schemes,
there is no significant evidence that one combination excels over the others. The top 5
schemes with better performance indicators and lower variability are ER/EK, ER/R,
R/E, EK/E, and R/EK.

5.3.2 Comparison with parallel MOEAs

In this section, we investigate the effectiveness of S-PAMICRO on the WFG test suite.
We adopted the policies of random migration and the elitist ranking replacement. The
decision variables (n) and the position-related parameter (k) are specified in Table 5.2.
We compared the results of our proposed algorithm with respect to SMS-EMOA,
its parallel version using the asynchronous island model without external archives
(pSMS-EMOA), and HypE for 2, 3, 5 and 10 objectives. For HypE, the number of
sampling points was fixed to 20,000 and the resolution parameter of S-PAMICRO
(γ) is shown in Table 5.2.

The stopping criterion consisted of reaching a maximum number of objective func-
tion evaluations (feval), limiting the execution time to no more than two hours for
each run. In order to allow a fair comparison, the parameters were similar in the
sequential and parallel cases. The population size |P | of the sequential algorithms
(SMS-EMOA/HypE) and the parallel MOEAs (pSMS-EMOA/S-PAMICRO) are de-
fined in Table 5.2, as well as the number of islands or processors (nisland) in the
latter case. Here, nisland is equivalent to the division of the overall population size
among the micro-population size. Experiments were carried on a Cluster of 10 PCs
Intel(R) Core(TM) i7 CPU 950 @ 3.07 GHz × 8 with 3.8 GB of memory. The
frequency of migration, fmig, was set to 80 function evaluations and the number of
migrants nmig was set to 2 (these values were determined according to the experiment
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Figure 5.7: Average execution time of optimizers.

of Subsection 5.3.1). For comparing results, we adopted the hypervolume indicator,
bounded by the reference points (3, 5, 7, . . .) for the instances WFG1 and WFG3; and
(2.2, 4.2, 6.2, . . .) for the rest of the problems. We applied the Wilcoxon rank sum test
(one-tailed) to the mean hypervolume indicator values, in order to determine whether
S-PAMICRO performed better than the other MOEAs at the significance level of 5%.
Numerical results are provided in Figure 5.7 and Tables 5.3 and 5.4.

The average execution time, using a logarithmic scale for the y-axis, is shown
in Figure 5.7. As it can be observed, S-PAMICRO spent considerably less time
than SMS-EMOA and HypE. For example, with 10 objectives, a run of our proposed
approach took only 16 seconds out of the two hours that were allowed to the other
MOEAs. Using 5 objective functions, S-PAMICRO ended in 5 seconds, in contrast
to the 26 minutes spent by HypE. Even in low dimensionality, our algorithm could
reduce the running time a little bit. Furthermore, the overhead of handling the
external archive in S-PAMICRO is relatively low, compared to pSMS-EMOA that
was the fastest optimizer.

On the other hand, interesting results with respect to the quality of solutions
were obtained. In Tables 5.3 and 5.4, we present the hypervolume indicator values
of all the experiments. An arrow pointing upwards (↑) means that our algorithm
outperformed in a significantly better way, the other MOEAs compared. Conversely,
an arrow pointing downwards (↓) means that our algorithm was significantly out-
performed. An asterisk (∗) means that the algorithm was interrupted because the
allowable execution time was exceeded. In the majority of the cases for 5 and 10 ob-
jectives, S-PAMICRO obtained the best results, outperforming SMS-EMOA, HypE
and pSMS-EMOA. While with 2 and 3 objectives, our proposal only surpassed pSMS-
EMOA, being competitive with respect to SMS-EMOA and HypE.

In conclusion, we observed that S-PAMICRO could achieve much better results
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Table 5.3: Median and standard deviation of the hypervolume indicator on the WFG
benchmark. The two best values are shown in gray scale, where a darker tone corresponds

to the best value.

m HypE SMS-EMOA pSMS-EMOA S-PAMICRO
WFG1

2 5.17e+00 4.11e-1 ↑ 4.45e+00 3.63e-1 ↑ 3.66e+00 2.59e-1 ↑ 6.61e+00 9.65e-1

3 5.66e+01 1.62e+0 ↓ 5.28e+01 2.50e+0 ↑ 4.23e+01 3.08e+0 ↑ 5.56e+01 3.71e+0

5 2.82e+03 1.17e+2 ↑ 3.18e+03 7.20e+1 ∗ ↑ 3.91e+03 4.83e+1 ↑ 5.16e+03 3.88e+2

10 4.19e+09 1.81e+8 ↑ 1.88e+09 2.62e+8 ∗ ↑ 5.28e+09 5.76e+7 ↑ 5.87e+09 2.33e+8

WFG2
2 5.46e+00 2.79e-2 ↑ 5.47e+00 1.25e-1 ↑ 5.39e+00 1.71e-1 ↑ 5.49e+00 4.00e-2

3 5.34e+01 4.21e+0 ↓ 4.47e+01 4.47e+0 5.18e+01 2.00e+0 ↑ 5.32e+01 2.50e-1

5 4.24e+03 3.00e+2 ↑ 4.41e+03 3.32e+2 ∗ ↑ 4.66e+03 1.52e+1 ↑ 4.75e+03 2.00e+1

10 4.66e+09 3.22e+8 ↑ 3.80e+09 2.86e+8 ∗ ↑ 4.91e+09 1.75e+8 ↑ 4.93e+09 1.96e+8

WFG3
2 1.09e+01 3.06e-2 ↑ 1.09e+01 2.09e-2 ↑ 1.08e+01 3.23e-2 ↑ 1.09e+01 4.50e-2

3 7.59e+01 2.19e-1 ↑ 7.60e+01 1.52e-1 7.48e+01 1.06e-1 ↑ 7.61e+01 3.61e-1

5 5.55e+03 1.55e+2 ↑ 6.84e+03 5.88e+1 ∗ ↑ 6.93e+03 3.11e+1 ↑ 7.22e+03 5.86e+1

10 8.37e+09 1.38e+8 ↓ 7.64e+09 1.95e+8 ∗ ↑ 5.91e+09 3.30e+8 ↑ 8.19e+09 1.98e+9

than SMS-EMOA and HypE in high dimensionality, spending much less computa-
tional time. For this reason, we claim that our proposed approach is a promising
alternative for solving many-objective optimization problems.

5.4 Summary

This chapter presented a parallel version of the S-Metric Selection Evolutionary
Multi-Objective Algorithm (SMS-EMOA). The new approach, called PArallel MICRo
Optimizer based on the S metric (S-PAMICRO), draws ideas from the asynchronous
island model with relatively small populations. Diversity is preserved through exter-
nal archives that are pruned to a limit size, using a technique based on automatic
image analysis. In this chapter, we have analyzed the effects of the migration parame-
ters on S-PAMICRO, finding that: 1) the absence of migration reduces performance,
2) high rates of migration (less than 10 objective function evaluations) are harmful,
3) during migration, 2 or 3 individuals should be considered. This has the additional
advantage that the communication costs will be low, 4) there is a trade-off between
the number of islands and the budget allowable for performing function evaluations,
and 5) the worst behaved replacement scheme is the elitist random. Moreover, we
compared our proposal with respect to HypE, and with respect to the serial version of
SMS-EMOA and another parallel version of it. We observed that S-PAMICRO is a
viable alternative for solving many-objective optimization problems at an affordable
computational time. In fact, the execution time seems to be dominated by polynomial
terms and not the exponential terms when using micro-populations. The model of
the execution time (in seconds) of S-PAMICRO is 1.526m−1.632, using least-squares
approximation, where m is the number of objectives.
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Table 5.4: Median and standard deviation of the hypervolume indicator on the WFG
benchmark (cont’d).

m HypE SMS-EMOA pSMS-EMOA S-PAMICRO
WFG4

2 2.91e+00 3.46e-3 ↓ 2.90e+00 1.08e-2 2.77e+00 2.05e-2 ↑ 2.90e+00 2.10e-2

3 2.96e+01 5.19e-2 ∗ ↓ 2.97e+01 5.43e-2 ↓ 2.66e+01 2.41e-1 ↑ 2.88e+01 4.45e+0

5 1.69e+03 9.10e+1 ↑ 2.50e+03 6.71e+1 ∗ ↑ 3.13e+03 7.15e+1 ↑ 3.47e+03 1.16e+2

10 1.86e+09 1.03e+8 ∗ ↓ 1.37e+09 6.15e+7 ∗ ↓ 2.00e+09 4.38e+8 ↓ 1.22e+09 5.81e+8

WFG5
2 2.59e+00 2.40e-3 ↑ 2.58e+00 2.82e-3 ↑ 2.53e+00 1.21e-2 ↑ 2.59e+00 8.62e-3

3 2.74e+01 7.07e-1 ∗ ↓ 2.73e+01 1.38e-1 ↓ 2.52e+01 1.92e-1 ↑ 2.70e+01 1.46e-1

5 1.96e+03 1.33e+2 ↑ 2.47e+03 5.10e+1 ∗ ↑ 2.75e+03 1.50e+2 ↑ 3.31e+03 9.51e+1

10 1.95e+09 1.06e+8 ∗ ↑ 1.04e+09 3.14e+7 ∗ ↑ 1.04e+09 3.47e+8 ↑ 3.99e+09 6.24e+8

WFG6
2 2.65e+00 5.79e-2 ↑ 2.64e+00 5.43e-2 ↑ 2.56e+00 3.93e-2 ↑ 2.68e+00 2.11e-2

3 2.77e+01 2.68e-1 2.79e+01 2.12e-1 ↓ 2.52e+01 3.86e-1 ↑ 2.77e+01 4.05e-1

5 1.80e+03 1.37e+2 ↑ 2.08e+03 7.00e+1 ∗ ↑ 2.93e+03 6.19e+1 ↑ 3.39e+03 6.23e+1

10 1.83e+09 1.28e+8 ↑ 9.82e+08 3.55e+7 ∗ ↑ 2.02e+09 2.55e+8 ↑ 3.83e+09 5.36e+8

WFG7
2 2.92e+00 1.60e-3 ↓ 2.91e+00 1.05e-2 ↓ 2.84e+00 1.25e-2 ↑ 2.91e+00 3.05e-1

3 2.97e+01 2.72e-2 ∗ ↓ 2.99e+01 1.35e-2 ↓ 2.73e+01 2.64e-1 ↑ 2.93e+01 1.95e-1

5 1.82e+03 1.10e+2 ↑ 2.66e+03 7.07e+1 ∗ ↑ 3.20e+03 7.84e+1 ↑ 3.55e+03 4.62e+1

10 2.22e+09 1.08e+8 ↓ 1.26e+09 5.23e+7 ∗ 1.12e+09 2.77e+8 8.52e+08 7.72e+8

WFG8
2 2.25e+00 1.46e-2 ↓ 2.24e+00 1.13e-2 ↓ 2.10e+00 2.99e-2 ↑ 2.24e+00 3.37e-2

3 2.34e+01 2.82e-1 ↑ 2.52e+01 8.04e-2 ↓ 2.19e+01 4.28e-1 ↑ 2.43e+01 5.25e-1

5 1.52e+03 1.20e+2 ↑ 2.26e+03 5.62e+1 ∗ ↑ 2.55e+03 1.16e+2 ↑ 2.86e+03 3.62e+2

10 1.84e+09 1.29e+8 ↓ 1.06e+09 4.60e+7 ∗ ↓ 1.53e+09 3.69e+8 ↓ 4.64e+08 7.71e+8

WFG9
2 2.30e+00 2.61e-1 ↑ 2.78e+00 2.34e-1 ↑ 2.63e+00 2.09e-1 ↑ 2.81e+00 4.88e-1

3 2.16e+01 1.56e+0 ∗ ↑ 2.82e+01 1.77e+0 ↓ 2.25e+01 1.10e+0 ↑ 2.74e+01 6.78e+0

5 1.75e+03 1.65e+2 ↑ 2.36e+03 1.12e+2 ∗ ↑ 2.57e+03 6.33e+1 2.61e+03 8.93e+2

10 1.66e+09 1.10e+8 ↑ 1.12e+09 6.31e+7 ∗ ↑ 1.87e+09 3.46e+8 ↑ 2.31e+09 9.27e+8
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Chapter 6

EMO Project

In the literature, we can find few software frameworks for evolutionary multi-objective
optimization [94, 33, 126], where the majority of them rely on object oriented progra-
mming [94, 33]. Even tough these frameworks are indeed a step forward as tools to
design multi-objective evolutionary algorithms, several multi-objective users belong
to different knowledge areas, and therefore, they face difficulties when dealing with
these tools. For this reason, in this Chapter, we propose a novel software framework,
called EMO Project (Evolutionary Multi-objective Optimization Project), which
highlights for its simplicity, efficiency and parallel support.

EMO Project runs on Unix-based or Unix-like1 systems, and it is implemented in
ANSI C, MPI (Message Passing Interface)2 and Gnuplot.3 We chose the C progra-
mming language because it supports structured programming, it has been employed
to build operating system kernels, it has been the basis of many other programming
languages (e.g., Java, Phyton, Matlab), and because, it is one of the fastest progra-
mming languages4. MPI is used for the parallelization of MOEAs and concurrent
execution of commands over several processors. MPI has the advantage of suppor-
ting multi-processor scalability. On the other hand, Gnuplot is used for visualization
purposes. Both MPI and Gnuplot are optional in the installation process and their
functionality can be incorporated later when required. In addition, GNU Make5 is
used to build and install our free software framework, which is distributed under the
GNU General Public License.6 The main features of EMO Project are listed below:

• Currently available optimizers: SPEA2, NSGA-II, NSGA-III, MOEA/D, IBEA,
SMS-EMOA, HypE, MOMBI-II, MOMBI-III, and MOVAP.

1For Windows users, we recommend to use Cygwin (https://www.cygwin.com) or MinGW
(http://www.mingw.org).

2Support with two implementations: Open MPI (https://www.open-mpi.org) and MPICH
(https://www.mpich.org)

3http:/www.gnuplot.info
4 http://benchmarksgame.alioth.debian.org, https://attractivechaos.github.io/plb
5https://www.gnu.org/software/make
6http://www.gnu.org/licenses/gpl.html
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• Independent implementation of almost all MOEAs. However, when the code is
re-used, it is reported, referencing the original source.

• Validation of each MOEA with respect to the author’s version or reported re-
sults.

• Easy incorporation of new MOPs.

• A wide range of test problems: FON1, FON2, KUR, LAU, LIS, MUR, POL,
QUA, REN1, REN2, SCH1, SCH2, VIE1, VIE2, VIE3, DEB1, DEB2, DEB3,
OKA1, OKA2, BNH1, BNH3, SDD, STZ1, STZ2, STZ3, ZDT, CEC09, DTLZ,
EBN, LAME, MIRROR, WFG. Constrained test problems: BEL, BNH2, BNH4,
JIM, KITA, OBA, OSY1, OSY2, SRN, TMK, TNK, VIE4, DTLZ8, DTLZ9.
Real world applications: WATER, CAR-SIDE IMPACT, 2 BAR TRUSS.

• Setting parameters via one single configuration file.

• Structure and organization of output data.

• Log file creation with execution times.

• Flexible stopping criteria, including maximum number of function evaluations,
maximum execution time or a combination of both.

• Mersenne Twister pseudorandom number generator with the huge period of
219937−1.

• Different seeds for each run of a MOEA, loaded from a provided file.

• Real-time visualization of the progress of a MOEA.

• Various performance indicators: hypervolume, R2, GD, IGD, ∆p, etc.

• Fastest known algorithm for calculating the hypervolume, proposed by the
Walking Fish Group.7

• Diverse set of scalarizing (or utility) functions: CHE, PBI, ASF, etc.

• Initialization of the population at random or from a user-defined file.

• Filtering of non-dominated solutions.

• Synchronous and asynchronous island model of all the available MOEAs with
configurable migration and replacement schemes.

• Concurrent execution of line-command programs over several processors.

• Summary statistics of performance indicators or any other set of observations.

7http://www.wfg.csse.uwa.edu.au/hypervolume
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Figure 6.1: Architecture of EMO Project.

• Weight vector generation by using the Simplex-Lattice Design method (see page
23) or at random.

EMO Project is constituted by three main parts: the applications, the EMO
library, and the parallelization layer. Figure 6.1 shows a basic diagram of how these
parts fit together and interact with two special actors: the common user and the
developer. The former is able to invoke predefined applications, while the second
can define new problems, implement algorithms and create more applications. The
organization of the remainder of this chapter is the following: Sections 6.1, 6.2, and
6.3 describe in detail the main parts of EMO Project. Section 6.4 delineates how to
define MOPs in our software framework, whereas, Section 6.5 describes how to add
new MOEAs. Finally, Section 6.6 summarizes this chapter.

6.1 Applications

The applications consist of a set of command-line programs, which start with the
prefix “emo “, and their purpose is to perform essential operations in evolutionary
multi-objective optimization. Table 6.1 shows the list of available applications in
EMO Project. When they are invoked without arguments a help message will appear
about their usage syntax. In the remainder of this section, we describe each command
adopting the following conventions. An upper case item represents a variable para-
meter to be specified by the user. Items enclosed in brackets [·] are optional. Items
enclosed in curly brackets {·} denote a list of options, from which only one should be
selected by the user.

The command emo moea invokes a specific optimizer for solving a multi-objective
optimization problem. Its syntax is as follows:

emo_moea MOEA parameter_file {MOP, default} runs [initial_population_file(s)]
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Table 6.1: Available command applications in EMO Project.

Command Purpose

emo moea
Solve a multi-objective optimization problem
through an evolutionary algorithm.

emo indicator Evaluate the performance indicator of a solution set.
emo stat Retrieve statistics from a sample.
emo ndset Filter the non-dominated solutions form a set.

emo refpoint Determine the reference points from a solution set.

emo norm Normalize a solution set.
emo weight Generate a set of weight vectors.

emo task
Parallelize a list of Unix commands over a set of
processors.

emo pmoea
Parallelize the solution of a multi-objective
optimization problem through an evolutionary
algorithm.

The argument MOEA stands for the name of the optimizer, such as NSGA2, SPEA2,
MOMBI3, MOVAP, etc. The argument parameter file is a file that contains the
parameters of the optimizer, the MOP, as well as the environment. Comments in the
configuration file start with #, the list of parameters are separated by a new line, and
the assignment follows the pattern parameter = value. Parameter files are located
in the directory EMO Project/demo/input having the extension cfg. An example of
a parameter file is shown in Appendix C.

The third argument of emo moea refers to the MOP to be solved. In this case,
the user can opt for a predefined test problem, such as FON1, POL, ZDT1, OKA1,
BNH1, etc. Their specification can be found in the EMO Book8 [22]. Another option
is to solve a user-defined problem using the argument default. Here, the MOP
is defined in EMO Project/demo/emo moea.c:myMOP eval (see Section 6.4 for more
details).

The argument run specifies how many times the MOEA will be executed using
different seeds. The next arguments are optional and indicate the prefixes of the files
containing the initial population for each execution run. Here, the prefix omits the
filename extension. If only one prefix is provided, this will be used for all the runs.

The final results of emo moea will be written in the directory specified by the
output parameter in the configuration file, under the following names:

MOEA MOP ##D.log Log file of events registered during the MOEA execution

MOEA MOP ##D.sum Summary of results per execution run

MOEA MOP ##D R##.pos Decision variables

MOEA MOP ##D R##.pof Objective functions

MOEA MOP ##D R##.con Constraint values (if applicable)

8https://www.cs.cinvestav.mx/˜emoobook
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##D indicates the number of objectives using a format with two digits, R## de-
notes the execution run with also two digits. The file log keeps a register of the
parameter values that were read from the configuration file. It also stores unexpected
errors, developer-defined messages, as well as the function evaluations and execution
time required per run. Since the writing of the log file can be a time-consuming and
storage demanding task, this functionality can be disabled from the configuration file
setting the parameter debug = 0. The file sum summarizes the number of function
evaluations and execution time for each run. On the other hand, the files with exten-
sions pos, pof and con correspond to the final population produced by the selected
MOEA, and they are structured as follows:

# 10 2

1.408662e-04 9.881314e-01

9.065329e-02 6.989141e-01

2.141310e-02 8.536679e-01

4.158174e-01 3.551610e-01

1.651340e-01 5.936332e-01

8.057537e-01 1.023803e-01

6.475280e-01 1.953107e-01

2.872088e-01 4.640814e-01

9.998090e-01 9.553892e-05

5.407637e-01 2.646353e-01

The first row corresponds to the header, which indicates the number of rows and
columns contained in the file. Components are separated by a space, whereas solutions
are separated by a new line. This is the standard layout embraced by EMO Project
for input and output files.

If Gnuplot is installed and the parameter plot freq is greater than zero, then an
animation of the evolution of the population in objective space will be shown during
the execution of emo moea. If this parameter is set to zero, only the final population
will be presented. We conclude our description of emo moea with some examples
of its usage.

• The following instruction solves DTLZ1 for three objectives using SMS-EMOA:

emo_moea SMS_EMOA input/Param_03D.cfg DTLZ1 1

• This instruction solves the same problem, but with NSGA-III and recycling the
final population of SMS-EMOA. Note that the optimizer is executed ten times.

emo_moea NSGA3 input/Param_03D.cfg DTLZ1 10 output/SMS_EMOA_DTLZ1_03D_R01

• The next line solves a user-defined problem with SPEA2:

emo_moea SPEA2 input/Param_02D.cfg default 1

The command emo indicator calculates the performance indicator of a solution
set, usually in objective space (pof files). Its syntax is as follows:
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emo_indicator INDICATOR {file, prefix} number_of_runs [options...]

The argument INDICATOR refers to the name of the performance indicator, which
can be the hypervolume (HV), GD, IGD+, ∆p, R2, spacing (SP), etc. The second
argument stands for the file that contains the solution set or the common filename
prefix corresponding to several executions. These files should have the standard
layout of EMO Project. The third argument indicates the number of executions to
be processed. The argument options varies according to the performance indicator.
Therefore, when an argument is required, emo indicator provides a hint:

emo_indicator HV {prefix,file} number_of_runs reference_point [ALGORITHM]

emo_indicator GD {prefix,file} number_of_runs p_norm reference_set_file

emo_indicator IGD {prefix,file} number_of_runs p_norm reference_set_file

emo_indicator IGD+ {prefix,file} number_of_runs reference_set_file

emo_indicator Deltap {prefix,file} number_of_runs p_norm reference_set_file

emo_indicator EPS* {prefix_A,file_A} number_of_runs {prefix_B,file_B}

emo_indicator EPS+ {prefix_A,file_A} number_of_runs {prefix_B,file_B}

emo_indicator MAXIMIN {prefix_A,file_A} number_of_runs

emo_indicator R2 {prefix,file} #runs weight_filename UTILITY_FUNCTION

emo_indicator ONVG {prefix_A,file_A} number_of_runs

emo_indicator C {prefix_A,file_A} number_of_runs {prefix_B,file_B}

emo_indicator SP {prefix_A,file_A} number_of_runs

emo_indicator S-ENERGY {prefix_A,file_A} number_of_runs

When number of runs is one, the performance indicator value is shown in the
standard output, and when it is for more runs, the result is also stored in the file
prefix.INDICATOR. Some examples of usage of the command emo indicator are
provided next.

• Compute the hypervolume of a Pareto set using the reference point (0.7, 0.7, 0.7):

> emo_indicator HV output/NSGA3_DTLZ1_03D_R01.pof 1 0.7 0.7 0.7

1 output/NSGA3_DTLZ1_03D_R01.pof 0.316578

• Calculate the s-energy of ten MOEA runs:

> emo_indicator S-ENERGY output/NSGA3_DTLZ1_03D 10

Data stored in output/NSGA3_DTLZ1_03D.s-energy

> cat output/NSGA3_DTLZ1_03D.s-energy

# 10 1

5.267043e+05

4.402657e+05

4.417264e+05

1.822245e+06

1.485764e+06

4.401744e+05

4.723929e+05

6.044821e+05

4.424452e+05

4.383740e+05
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The command emo stat determines the statistics from a set of samples, being
useful to compare the performance of several optimizers. Its syntax is as follows:

emo_stat {max,min} data_file(s)

The first argument indicates if the data should be minimized or maximized. Each
data file must contain one column. For example, the following instruction obtains the
statistics of the s-energy for ten MOEA runs:

> emo_stat min output/NSGA3_DTLZ1_03D.s-energy

#id|file|min|max|median|mean|std|var|q1|q2|q3|iqr|imin|imax|imedian|samples

1|output/NSGA3_DTLZ1_03D.s-energy|4.383740e+05|1.822245e+06|4.424452e+05|

7.114574e+05|4.798922e+05|2.302965e+11|

4.402657e+05|4.574191e+05|6.044821e+05|

1.642164e+05|10|4|9|10

#rank|id|1|1|1|1|1

The results are displayed in the standard output. Here, the fields are separated
by the character | and the statistics of a data file are separated by a new line.

The first line is the header, which contains the name of the columns. id represents
an identification number of the data file. min, and max are the minimum, and ma-
ximum values, respectively. std is the standard deviation, var is the variance, q1-3
are the first, second, and third quartiles. iqr is the interquartile range. imin, imax,
and imedian are the samples corresponding to the minimum, maximum, and median
values, respectively. samples represents the total number of samples in the data file.
The last line of the file is the tail, and it contains the identification number of the
best statistics for the minimum, maximum, median, mean, and standard deviation.

> emo_stat min output/NSGA2_DTLZ1_03D.s-energy output/NSGA3_DTLZ1_03D.s-energy

output/MOEAD_DTLZ1_03D.s-energy

#id|file|min|max|median|mean|std|var|q1|q2|q3|iqr|imin|imax|imedian|samples

1|output/NSGA2_DTLZ1_03D.s-energy|1.283365e+06|7.372916e+08|2.171375e+08|

2.246065e+08|2.093779e+08|4.383912e+16|

4.024848e+07|2.201429e+08|2.722729e+08|

2.320244e+08|7|4|1|10

2|output/NSGA3_DTLZ1_03D.s-energy|4.383740e+05|1.822245e+06|4.424452e+05|

7.114574e+05|4.798922e+05|2.302965e+11|

4.402657e+05|4.574191e+05|6.044821e+05|

1.642164e+05|10|4|9|10

3|output/MOEAD_DTLZ1_03D.s-energy|4.321494e+05|4.409231e+05|4.382830e+05|

4.381763e+05|2.403019e+03|5.774499e+06|

4.372996e+05|4.385977e+05|4.399242e+05|

2.624600e+03|9|10|8|10

#rank|id|3,2,1|3,2,1|3,2,1|3,2,1|3,2,1

The command emo ndset filters the non-dominated solutions from a set. Its
syntax is as follows:

emo_ndset file
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The result will be written in file.nd, for example:

> emo_ndset output/NSGA3_DTLZ1_03D_R01.pof

Data stored in output/NSGA3_DTLZ1_03D_R01.pof.nd

The command emo refpoint retrives the minimum, maximum, ideal and nadir
points from a solution set. Its syntax is as follows:

emo_refpoint file

The result will be shown in the standard output:

> emo_refpoint output/NSGA3_DTLZ1_03D_R01.pof

output/NSGA3_DTLZ1_03D_R01.pof

zmin: 0.000000 0.000000 0.000000

zmax: 0.501256 0.528085 0.501018

ideal: 0.000000 0.000000 0.000000

nadir: 0.501256 0.528085 0.501018

The command emo norm adjusts the values of a solution set in the interval [0, 1].
Its syntax is as follows:

emo_norm file minimum_point maximum_point

The output will be written in file.norm:

> emo_norm output/NSGA3_DTLZ1_03D_R01.pof 0.0 0.0 0.0 0.501256 0.528085 0.501018

File created: output/NSGA3_DTLZ1_03D_R01.pof.norm

The command emo weight creates a set of weight vectors in the space [0, 1]m.
Each vector satisfies that |w|1 = 1. The comand’s syntax is as follows:

emo_weight METHOD dimension samples

The argument METHOD defines the technique in which the set is generated. It can
be at random (ran) or by the Simplex-Lattice Design method (sld). The second
argument specifies the dimension m. If the selected method is at random, the third
argument provides the number of samples. Otherwise, this argument represents the
parameter H in the Simplex-Lattice Design method (see page 23). The output will
be written in the file weight dimension samples.METHOD. For example:

> emo_weight sld 2 10

Data stored in weight_02D_10.sld

> cat weight_02D_10.sld

# 11 2

1.000000e+00 0.000000e+00

9.000000e-01 1.000000e-01

8.000000e-01 2.000000e-01

7.000000e-01 3.000000e-01

6.000000e-01 4.000000e-01

5.000000e-01 5.000000e-01

4.000000e-01 6.000000e-01

3.000000e-01 7.000000e-01

2.000000e-01 8.000000e-01

1.000000e-01 9.000000e-01

0.000000e+00 1.000000e+00
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Figure 6.2: mpirun -np 4 emo task command file

The command emo task simultaneously executes a list of unix commands over a
set of available processors. This command requires MPI to be installed. Its syntax is
as follows:

mpirun -np num_procs emo_task command_file

The argument num procs indicates the number of processors. If num procs is set
to one, the commands are processed sequentially. When num procs is greater than
one, it should be considered that a master processor manages the task distribution,
while num procs −1 slaves execute the commands. command file is a file that con-
tains the list of unix commands. Independent commands are separated by a new line,
whereas dependent commands are separated by a semicolon. Comments start with #

and they are ignored by emo task.
Figure 6.2 illustrates how emo task works. In this case, ten commands are pro-

cessed simultaneously using four processors (processor 0 is the master). command 3

depends on the completion of command 2. Thus, they are processed sequentially by
the same assigned processor. Similarly occurs with commands 5-7. Commands are
distributed among processors using a Round-robin scheme. Therefore, each processors
has equal chance to attend tasks. When there is no available processor, the master
waits until one is free. The list of completed commands and their result status are
stored in the file command file.done. A result different from zero means that the
command execution was not successful. Moreover, command file can be edited after
the launch of emo task. Thus, the master will process new or modified commands,
as long as the last ones are not yet completed. Log files, named Proc #.log, are
generated for each processor in order to track tasks, where # stands for the processor
identifier. Next, we show an example.
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> cat command_file

emo_moea SMS_EMOA input/Param_03D.cfg DTLZ1 3; emo_indicator HV output/SMS_EMOA_DTLZ1_03D 3 0.7 0.7 0.7

emo_moea NSGA3 input/Param_03D.cfg DTLZ1 5; gzip output/NSGA3_DTLZ1_03D*

emo_moea SPEA2 input/Param_03D.cfg DTLZ1 1

> mpirun -np 3 emo_task command_file

> cat command_file.done

DONE:result 0:emo_moea NSGA3 input/Param_03D.cfg DTLZ1 5; gzip output/NSGA3_DTLZ1_03D*

DONE:result 0:emo_moea SPEA2 input/Param_03D.cfg DTLZ1 1

DONE:result 0:emo_moea SMS_EMOA input/Param_03D.cfg DTLZ1 3; emo_indicator HV output/SMS_EMOA_DTLZ1_03D 3 0.7 0.7 0.7

> cat Proc_0.log

1|2018/02/13 13:47:44|pid 0 => Start of the debug

2|2018/02/13 13:47:44|pid 0 => Rank: 0, MPI version: 3, subversion: 1

3|2018/02/13 13:47:44|pid 0 => Master|send to slave 1|emo_moea SMS_EMOA input/Param_03D.cfg DTLZ1 3; emo_indicator HV...

4|2018/02/13 13:47:44|pid 0 => Master|send to slave 2|emo_moea NSGA3 input/Param_03D.cfg DTLZ1 5; gzip output/NSGA3_D...

5|2018/02/13 13:47:44|pid 0 => Master|there are no available slaves, waiting for one

6|2018/02/13 13:48:02|pid 0 => Master|recv from 2|DONE:result 0:emo_moea NSGA3 input/Param_03D.cfg DTLZ1 5; gzip outp...

7|2018/02/13 13:48:02|pid 0 => Master|send to slave 2|emo_moea SPEA2 input/Param_03D.cfg DTLZ1 1|result 0

8|2018/02/13 13:48:02|pid 0 => End of file command_file

9|2018/02/13 13:48:02|pid 0 => Master|send to 1|END|result 0

10|2018/02/13 13:48:02|pid 0 => Master|send to 2|END|result 0

11|2018/02/13 13:48:07|pid 0 => Master|recv from 2|DONE:result 0:emo_moea SPEA2 input/Param_03D.cfg DTLZ1 1

12|2018/02/13 13:50:05|pid 0 => Master|recv from 1|DONE:result 0:emo_moea SMS_EMOA input/Param_03D.cfg DTLZ1 3; emo_...

13|2018/02/13 13:50:05|pid 0 => End of the debug

> cat Proc_1.log

1|2018/02/13 13:47:44|pid 1 => Start of the debug

2|2018/02/13 13:47:44|pid 1 => Rank: 1, MPI version: 3, subversion: 1

3|2018/02/13 13:47:44|pid 1 => Slave|recv from master|emo_moea SMS_EMOA input/Param_03D.cfg DTLZ1 3; emo_indicator HV...

4|2018/02/13 13:47:44|pid 1 => Slave|executing emo_moea SMS_EMOA input/Param_03D.cfg DTLZ1 3; emo_indicator HV output...

5|2018/02/13 13:50:05|pid 1 => Slave|send to master|DONE:result 0:emo_moea SMS_EMOA input/Param_03D.cfg DTLZ1 3; emo_...

6|2018/02/13 13:50:05|pid 1 => Slave|recv from master|END|result 0

7|2018/02/13 13:50:05|pid 1 => Slave|halt

8|2018/02/13 13:50:05|pid 1 => End of the debug
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When processors are distributed in a collection of machines or hosts, emo task
can be invoked as follows:

mpirun --hostfile host_file emo_task command_file

where host file is a file containing the names of the hosts. Each host is included on
a separate line, and hosts should be reachable by ssh. For example, three processors
are launched for machineA, one for machineB, and two for machineC:

> cat host_file

machineA

machineA

machineA

machineB

machineC

machineC

The command emo pmoea parallelizes the execution of a MOEA using the island
model. This command requires MPI to be installed. Its syntax is as follows:

mpirun -np num_procs emo_pmoea MOEA parameter_file {MOP, default} runs

[initial_population_file(s)]

or

mpirun --hostfile host_file emo_pmoea MOEA parameter_file {MOP, default} runs

[initial_population_file(s)]

The argument num procs indicates the number of islands or processors. When pro-
cessors are distributed in a collection of hosts, the second instruction can be adopted.
Here, host file contains the name of the hosts (for more details see the description
of emo task). The remainder arguments of emo pmoea are the same as those in
emo moea. Here, it is worth mentioning that all the available MOEAs in EMO
Project can be parallelized by using the command emo pmoea.

The configuration file must include parameters related to the island model, such
as: logical topology of connection (topology), synchronous (sync = 1) or asyn-
chronous communication (sync = 0), migration (mpolicy) and replacement policy
(mpolicy), migration frequency (epoch), as well as the number of individuals to mi-
grate (migrant). emo pmoea equally divides the population (psize) and the func-
tion evaluations (feval) among the islands. The output files include the processor
identifier before the name of the MOP:

pMOEA # MOP ##D.log Log file of events registered during the MOEA execution

pMOEA # MOP ##D.sum Summary of results per execution run

pMOEA # MOP ##D R##.pos Decision variables

pMOEA # MOP ##D R##.pof Objective functions

pMOEA # MOP ##D R##.con Constraint values (if applicable)

As an example, the next instruction executes the island version of NSGA-II using
five processors:

mpirun -np 5 emo_pmoea NSGA2 input/Param_02D.cfg DTLZ1 1

CINVESTAV-IPN Computer Science Department



100 Chapter 6

6.2 EMO Library

The EMO library is defined in the emo.h header, and it is composed of built-in
functions, as well as structured data types. Built-in functions are thread-safe, and do
not allocate dynamic memory during their execution. Next, we list them.

Multi-objective optimization

EMO maxBound[2] Determine the maximum point of a set of points.

EMO minBound Determine the minimum point of a set of points.

EMO maxminBound
Determine the minimum and maximum points of a set
of points.

EMO findminBound Find the points that belong to the minimum point.

EMO findmaxminBound Find the points that belong to the maximum point.

EMO Dominance weak Check weak dominance relationship between solutions.

EMO Dominance strict Check strict dominance relationship between solutions.

EMO Dominance strong Check strong dominance relationship between solutions.

EMO Dominance alpha[2] Check α dominance relationship between solutions.

EMO Dominance favor Check favor relationship between solutions.

EMO Dominance incomparable
Check if two solutions are incomparable to each other
according to the given dominance relation.

EMO Dominance indifferent Check if two solutions are indifferent.

EMO Dominance constraint[2,3] Check if a solution constraint dominates another one.

EMO Dominance feasible Check if a solution is feasible or not.

EMO Dominance ndset
Filter the non-dominated solutions from a set according
to a given dominance relation.

EMO Indicator gd Calculate the generational distance of a solution set.

EMO Indicator igd plus Calculate the IGD+ of a solution set.

EMO Indicator deltap Calculate the ∆p of a solution set.

EMO Indicator r2 Calculate the R2 indicator of a solution set.

EMO Indicator senergy Calculate the s-energy indicator of a solution set.

... ...

Vector operations

EMO vnorm Calculate the norm of a vector.

EMO vmul Calculate the multiplication of a vector by a scalar.

EMO vsum Calculate the sum of a vector by a scalar.

EMO vdot Calculate the dot product.

EMO vproj Calculate the projection of a vector onto another vector.

EMO vadd Calculate the addition of two vectors.

EMO vdiff Calculate the difference of two vectors.

EMO vorth Calculate the orthogonal vector between a point and a line.

EMO vdist Calculate the distance between two points.

EMO vzero Return the zero vector.

EMO isvzero Check if the components of a vector are zero.

EMO vaxes Provide the axes of a Cartesian coordinate system.
EMO vcopy Copy the components of a vector into another vector.

EMO vprint[i] Write the components of a vector to the given stream.
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Matrix operations

EMO matmul Calculate the multiplication of two matrices.

EMO minverse Calculate the inverse of a matrix.

EMO mprint Write the elements of a matrix to the given stream.

Statistics

EMO mean Determine the mean of a data sample in IR.

EMO median Determine the median of a data sample in IR.

EMO quartile Determine the q1, q2, q3 quartiles, and the interquartile range.

EMO var Calculate the variance.

EMO std Calculate the standard deviation.

EMO [d]min Determine the minimum value.

EMO [d]max Determine the maximum value.

Miscellaneous functions

EMO File read Read a set of elements in IRk from a file.

EMO File write Write a set of elements in IRk to a file.

EMO quicksort Sort a set of elements in IRk according to the given criterion.
EMO Dictionary find Find the index position of a word into an array of strings.

EMO Dictionary print Write the array of strings to the given stream.

EMO Parser get token Get the next token from a string.

EMO shift Translates a set of elements in IRk in a given direction.
EMO toupper Convert lowercase string to uppercase.

EMO tolower Convert uppercase string to lowercase.

EMO trim Remove spaces from the left and right of a string.

The structured data types in EMO Project are employed for data organization,
where we adopt the philosophy to allocate dynamic memory once at the beginning
of the program. This action allows us to invoke recurrently functions that manipu-
late such structures without any extra computational overhead. At the end of the
program, the allocated memory is released. Moreover, structs are passed through
functions by reference, avoiding copies onto the stack. The function prototypes that
accomplish this task, for a given component, are:

EMO_Component_alloc(EMO_Component *comp, ...);

EMO_Component_run(EMO_Component *comp, ...);

EMO_Component_free(EMO_Component *comp);

Another technique that helps to improve efficiency is the way the population is repre-
sented. As shown in Figure 6.3, the variables of the parent and offspring populations
are stored in contiguous blocks of memory, allowing fast access and memory copy.
This also allows to send and receive data over MPI as a single block.

In the following, we describe the structures of the EMO Library. The related
functions are thread-safe.
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1f f 2 f m 1f f 2 f m 1f f 2 f m...... ... 1f f 2 f m 1f f 2 f m 1f f 2 f m...... ...obj

1g g2 go 1g g2 go 1g g2 go...... ... 1g g2 go 1g g2 go 1g g2 go...... ...con

1x x2 xn 1x x2 n 1x x2 xn

...

...... ... 1x x2 xn 1x x2 xn 1x x2 xn...... ...var x

Individual 1 Individual 2 Individual µ Individual µ+1 Individual µ+2 ... Individual µ+λ

Parents Offspring

Figure 6.3: Population representation in EMO Project.

EMO Population

Members
double *var Array of decision variables of all individuals.

double *obj Array of objective function values of all individuals.

double *con Array of constraint values of all individuals.

int *vio Flag that indicates if an individual violates any constraint.

double *cv Constraint violation value.

int mu Parent population size.

int lambda Offspring population size.

int size Total population size (µ+ λ)

Functions

EMO Population alloc
Allocate memory for the members of the structure using
the given MOP’s information and the sizes µ, and λ.

EMO Population init Randomly initialize a population.

EMO Population init from file
Initialize a population from the given files: pos, pof, and
con (if applicable).

EMO Population write
Write a population to the files: pof, pof, and con (if ap-
plicable).

EMO Population copy Copy individual i to the current position of individual j.

EMO Population copy2 Copy one population to another population.

EMO Population swap Interchange individual i by j in the population.

EMO Population survive
Keep the selected µ individuals in the first half of the
arrays var, obj and con.

EMO Population evaluate Evaluate the population.

EMO Population constrain Calculate the constraint violation value.

EMO Population free Free memory of the structure.

EMO MOP

Members
int nvar Number of decision variables.

int nobj Number of objective functions.

int ncon Number of inequality constraints.

double *xmin, *xmax Bounds on the decision variables.

void (*f)(struct EMO MOP *,
double *, double *)

Pointer to the MOP’s evaluation function having no ine-
quality constraints.
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void (*fc)(struct EMO MOP *,
double *, double *, double *)

Pointer to the MOP’s evaluation function having inequality
constraints.

name MOP’s name.

feval Current number of MOP’s evaluations.

Functions

EMO Benchmark alloc
Allocate memory and initialize the EMO MOP structure
using the given name of the test problem and parameters.

EMO Benchmark zdt1 Evaluate a solution on the ZDT1 test problem.

EMO Benchmark dtlz1 Evaluate a solution on the DTLZ1 test problem.

EMO WFG wfg1 Evaluate a solution on the WFG1 test problem.

... ...

EMO Benchmark free Free memory of the EMO MOP structure.

EMO List

Members
int size Current number of elements.

int max size Maximum number of elements allowed to store.

Functions
EMO List alloc Allocate memory for a maximum number of elements.

EMO List clear Remove all elements from a list.

EMO List queue Add an element at the end of a list.

EMO List dequeue Extract the first element from a list.

EMO List add Insert an element at the given position.

EMO List remove Delete the first occurrence that matches with the given element.

EMO List retrieve Extract the element from the given position.

EMO List get Get the element at the given position.

EMO List seek Find the position of a given element.

EMO List count Count how many times an element appears in a list.

EMO List append Add the elements of a list to another list.

EMO List move Remove an element from a list and add it to another list.

EMO List move all Remove all elements from a list and add them to another list.
EMO List print Write the contents of a list to the given stream.

EMO List free Free memory of the structure.

EMO SMSEMOA

EMO SMSEMOA alloc Allocate memory for the members of the structure.

EMO SMSEMOA run Solve a MOP using SMS-EMOA and the specified parameters.

EMO SMSEMOA free Free memory of the structure.

EMO MOEA

EMO MOEA alloc Allocate memory for a generic MOEA.
EMO MOEA run Solve a MOP using the specified MOEA and parameters.

EMO MOEA free Free memory of the structure.
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EMO Stop

EMO Stop alloc Allocate memory for the members of the structure.

EMO Stop start Prepare the stopping criterion.

EMO Stop set feval
Enable the stopping criterion by setting a maximum number
of function evaluations.

EMO Stop set time Enable the stopping criterion by setting a time limit.

EMO Stop set fitness Enable the stopping criterion by setting a limit fitness.

EMO Stop set epoch
Enable the stopping criterion by setting epochs
(used in pMOEAs).

EMO Stop update epoch
Update current epoch according to the spent MOP’s evaluations
after initialization of the population.

EMO Stop now Activate immediate interruption.

EMO Stop end Indicate if a MOEA should stop its execution.

EMO Stop free Free memory of the structure.

EMO NDSort

Members
int nfront Total number of fronts.

EMO List *front Array of (nfront) fronts.

int *rank Rank for each individual.

Functions
EMO NDSort alloc Allocate memory for the members of the structure.

EMO NDSort run[2] Execute the non-dominated sorting algorithm of NSGA-II.

EMO NDSort free Free memory of the structure.

EMO HV

EMO HV alloc Allocate memory for the members of the structure.

EMO HV run[2]
Compute the hypervolume indicator using the implementation
of the Walking Fish Group (WFG).

EMO HV contribution
Compute the hypervolume contributions of a set of solutions using
a naive approach.

EMO HV free Free memory of the structure.

EMO IWFG

EMO IWFG alloc Allocate memory for the members of the structure.

EMO IWFG run
Execute the incremental IWFG algorithm for identifying the
smallest hypervolume-contributor of a set of non-dominated
solutions.

EMO IWFG free Free memory of the structure.
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EMO Debug

EMO Debug alloc Allocate memory for the log file.

EMO Debug rename Rename the log file.

EMO Debug print{f,v} Write a message in the log file.

EMO Debug error Write an error message in the log file.

EMO Debug free Free memory of the structure.

EMO Param

EMO Param alloc Allocate memory for the members of the structure.

EMO Param alloc from file
Allocate memory for the members of the structure and ini-
tialize parameters from a given file.

EMO Param init Initialize output files and plot display.

EMO Param save Save parameters in log files.

EMO Param set Set a parameter and its value.

EMO Param get int Retrieve the int value of a given parameter name.

EMO Param get double Retrieve the double value of a given parameter name.

EMO Param get char Retrieve the string value of a parameter name.

EMO Param get vector double Retrieve the double array of a parameter name.

EMO Param free Free memory of the structure.

EMO Rand

EMO Rand alloc Allocate memory for the members of the structure.

EMO Rand alloc from file Allocate and initialize the random number generation from a file.

EMO Rand next seed
Read the next seed from a file and reset the random number
generator. If indicated, discard certain number of seeds.

EMO Rand prob1 Generate a random number on the real interval [0,1].

EMO Rand prob2 Generate a random number on the real interval [0,1).

EMO Rand prob3 Generate a random number on the real interval (0,1).

EMO Rand real1 Generate a random number on the real interval [a,b].

EMO Rand real2 Generate a random number on the real interval [a,b).

EMO Rand real3 Generate a random number on the real interval (a,b).

EMO Rand int1 Generate a random number on the discrete interval [a,b].

EMO Rand int2 Generate a random number on the discrete interval [a,b).

EMO Rand int3 Generate a random number on the discrete interval (a,b).

EMO Rand flip Flip a coin based on a given probability.

EMO Rand shuffle Generate a random permutation using the Fisher-Yates algorithm.
EMO Rand box muller Generate a Gaussian random number.

EMO Rand free Free memory of the structure.
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EMO Utility

EMO Utility alloc Allocate memory for the members of the structure.

EMO Utility asf Compute the achievement scalarizing function for a given solution.

EMO Utility pbi Compute the penalty boundary intersection for a given solution.

EMO Utility ws Compute the weighted sum for a given solution.

... ...
EMO Utility free Free memory of the structure.

EMO Plot

EMO Plot alloc Allocate memory for the members of the structure.

EMO Plot run Plot the given Pareto front.

EMO Plot free Free memory of the structure.

6.3 Parallelization Layer

The parallelization layer is defined in the emo mpi.h header, and it is composed of
four structured data types.

EMO Task

EMO Task alloc Allocate memory for the members of the structure.

EMO Task run
Execute a set of unix commands, given in a file, over a set
of available processors.

EMO Task free Free memory of the structure.

EMO Migration

EMO Migration alloc Allocate memory for the members of the structure.

EMO Migration get type Determine the migration scheme.
EMO Replacement get type Determine the replacement scheme.

EMO Migration random
Select a given number of random individuals for migration
or replacement.

EMO Migration elitist random

Select a given number of random individuals from the
non-dominated set. If there are not enough members, the
rest is selected at random from the remainder of the
population.

EMO Migration elitist ranking
Select a given number of random individuals from the
Pareto front. If there are not enough members, the rest
is selected from the successively ranked Pareto fronts.

EMO Replacement elitist random
Replace a given number of random solutions, which are
dominated by the immigrants.

EMO Replacement elitist ranking
Rank all Pareto fronts and replace individuals from the
worst ranked front(s) with the immigrants.

EMO Replacement elitist
Combine immigrants with the current population, rank
all Pareto fronts and remove individuals from the worst
ranked front(s).

EMO Migration free Free memory of the structure.
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EMO Island

EMO Island alloc Allocate memory for the members of the structure.

EMO Island reset Reset communications (used for different pMOEA runs).

EMO Island send Send copies of individuals to destiny islands.

EMO Island receive Receive individuals from source islands.

EMO Island free Free memory of the structure.

EMO PMOEA

EMO PMOEA alloc Allocate memory for a generic parallel MOEA.

EMO PMOEA run Solve a MOP using the island version of a given MOEA and parameters.

EMO PMOEA free Free memory of the structure.

6.4 User-defined Problems

In order to define a new MOP, two functions should be edited in the files:

• EMO Project/demo/emo moea.c

• EMO Project/demo/emo pmoea.c

The former is for solving the problem with a sequential MOEA, and the latter is for
solving the problem with a parallel MOEA.

The function myMOP alloc assigns memory and initializes a MOP structure, pro-
viding the name, the number of decision variables, objective functions, and cons-
traints. The function myMOP eval represents the MOP’s function evaluation and
must not allocate dynamic memory to avoid latency. Next, we show these functions:

/**** Definition of a new Multi-objective Optimization Problem (MOP) ***

minimize {f_0(x), f_1(x), ..., f_{mop->nobj-1}(x)}

subject to g_0(x) >= 0

g_1(x) >= 0

...

g_{mop->ncon - 1}(x) >= 0

x \in [x_min, x_max]

f: vector of objective functions

g: vector of inequality constraints

x: vector of decision variables

Note: the following function prototype should be defined for a

MOP with inequality constraints:

void myMOP_eval(EMO_MOP *mop, double *f, double *g, double *x)
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A non feasible solution is that one which for any i g_i(x) < 0.

*/

void myMOP_eval(EMO_MOP *mop, double *f, double *x) {

f[0] = x[0] * x[0];

f[1] = pow(x[0] - 1.0, 2.0);

}

void myMOP_alloc(EMO_MOP *mop) {

int i;

/* MOP’s name */

mop->name = (char *) malloc(sizeof(char) * 200);

strcpy(mop->name, "WING_DESIGN");

/* Number of decision variables */

mop->nvar = 2;

/* Number of objectives */

mop->nobj = 2;

/* Box constraints */

mop->xmin = (double *) calloc(sizeof(double), mop->nvar);

mop->xmax = (double *) calloc(sizeof(double), mop->nvar);

for(i = 0; i < mop->nvar; i++) {

mop->xmin[i] = 0.0;

mop->xmax[i] = 1.0;

}

/* Required */

mop->npos = 0;

mop->feval = 0;

mop->coding = EMO_REAL;

/* MOP without inequality constraints */

mop->ncon = 0;

mop->f = myMOP_eval;

/* MOP with inequality constraints */

//mop->ncon = #;

//mop->fc = myMOP_eval;

}

After these changes, the user should recompile the project and execute the com-
mand emo moea or emo pmoea with the default option as a MOP’s name.
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6.5 Adding New MOEAs

With the aim to include a new evolutionary algorithm in EMO Project, developers
need to follow four simple steps.

1. Define the structure of the new optimizer, for example EMO SMSEMOA, in the file
EMO Project/src/smsemoa.h, and encode the functions EMO SMSEMOA alloc,
EMO SMSEMOA run, and EMO SMSEMOA free in the file EMO Project/src/smsemoa.c.

2. Include the definitions of the new algorithm in the generic MOEA structure. For
this purpose, the files EMO Project/src/moea.h, and EMO Project/src/moea.c

should be edited for adding the following marked lines:

/* File EMO_Project/src/moea.h */

#ifndef _MOEA_H

#define _MOEA_H

#include "common.h"

#include "param.h"

#include "smsemoa.h" /* NEW ALGORITHM */

#include "nsga2.h"

#include "nsga3.h"

#include "mombi2.h"

#include "mombi3.h"

#include "ibea.h"

#include "moead.h"

#include "spea2.h"

#include "hype.h"

#include "movap.h"

/* Generic MOEA */

typedef void (*EMO_MOEA_falloc)(void *, EMO_Param *,

EMO_Population *, EMO_MOP *);

typedef void (*EMO_MOEA_ffree)(void *);

typedef void (*EMO_MOEA_frun)(void *, EMO_Param *,

EMO_Population *, EMO_MOP *);

typedef struct {

EMO_MOEA_falloc alloc;

EMO_MOEA_ffree free;

EMO_MOEA_frun run;

union {

EMO_SMSEMOA smsemoa; /* NEW ALGORITHM */

EMO_NSGA2 nsga2;

EMO_NSGA3 nsga3;

EMO_MOMBI2 mombi2;

EMO_MOMBI3 mombi3;

EMO_IBEA ibea;

EMO_MOEAD moead;

EMO_SPEA2 spea2;

CINVESTAV-IPN Computer Science Department



110 Chapter 6

EMO_HYPE hype;

EMO_MOVAP movap;

} alg;

void *palg;

} EMO_MOEA;

void EMO_MOEA_alloc(EMO_MOEA *moea, EMO_Param *param,

EMO_Population *pop, EMO_MOP *mop, const char *str);

void EMO_MOEA_free(EMO_MOEA *moea);

void EMO_MOEA_run(EMO_MOEA *moea, EMO_Param *param,

EMO_Population *pop, EMO_MOP *mop);

#endif

/* File EMO_Project/src/moea.c */

#include <string.h>

#include "string2.h"

#include "moea.h"

const char *EMO_MOEA_list[] = {

"SMS_EMOA", /* NEW ALGORITHM */

"NSGA2",

"NSGA3",

"MOMBI2",

"MOMBI3",

"HV_IBEA",

"EPS_IBEA",

"R2_IBEA",

"MOEAD",

"SPEA2",

"HYPE",

"MOVAP",

NULL };

void EMO_MOEA_alloc(EMO_MOEA *moea, EMO_Param *param,

EMO_Population *pop, EMO_MOP *mop, const char *str) {

const EMO_MOEA_falloc a[] = {

(EMO_MOEA_falloc) EMO_SMSEMOA_alloc, /* NEW ALGORITHM */

(EMO_MOEA_falloc) EMO_NSGA2_alloc,

(EMO_MOEA_falloc) EMO_NSGA3_alloc,

(EMO_MOEA_falloc) EMO_MOMBI2_alloc,

(EMO_MOEA_falloc) EMO_MOMBI3_alloc,

(EMO_MOEA_falloc) EMO_IBEA_alloc,

(EMO_MOEA_falloc) EMO_IBEA_alloc,

(EMO_MOEA_falloc) EMO_IBEA_alloc,

(EMO_MOEA_falloc) EMO_MOEAD_alloc,

(EMO_MOEA_falloc) EMO_SPEA2_alloc,

(EMO_MOEA_falloc) EMO_HYPE_alloc,

(EMO_MOEA_falloc) EMO_MOVAP_alloc };
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const EMO_MOEA_ffree f[] = {

(EMO_MOEA_ffree) EMO_SMSEMOA_free, /* NEW ALGORITHM */

(EMO_MOEA_ffree) EMO_NSGA2_free,

(EMO_MOEA_ffree) EMO_NSGA3_free,

(EMO_MOEA_ffree) EMO_MOMBI2_free,

(EMO_MOEA_ffree) EMO_MOMBI3_free,

(EMO_MOEA_ffree) EMO_IBEA_free,

(EMO_MOEA_ffree) EMO_IBEA_free,

(EMO_MOEA_ffree) EMO_IBEA_free,

(EMO_MOEA_ffree) EMO_MOEAD_free,

(EMO_MOEA_ffree) EMO_SPEA2_free,

(EMO_MOEA_ffree) EMO_HYPE_free,

(EMO_MOEA_ffree) EMO_MOVAP_free };

const EMO_MOEA_frun r[] = {

(EMO_MOEA_frun) EMO_SMSEMOA_run, /* NEW ALGORITHM */

(EMO_MOEA_frun) EMO_NSGA2_run,

(EMO_MOEA_frun) EMO_NSGA3_run,

(EMO_MOEA_frun) EMO_MOMBI2_run,

(EMO_MOEA_frun) EMO_MOMBI3_run,

(EMO_MOEA_frun) EMO_IBEA_run,

(EMO_MOEA_frun) EMO_IBEA_run,

(EMO_MOEA_frun) EMO_IBEA_run,

(EMO_MOEA_frun) EMO_MOEAD_run,

(EMO_MOEA_frun) EMO_SPEA2_run,

(EMO_MOEA_frun) EMO_HYPE_run,

(EMO_MOEA_frun) EMO_MOVAP_run };

char *aux;

int i;

aux = EMO_toupper(str);

i = EMO_Dictionary_find(EMO_MOEA_list, aux);

if(i == -1) {

printf("Error, unknown MOEA %s in EMO_MOEA_alloc.\n", aux);

free(aux);

exit(1);

}

moea->alloc = a[i];

moea->free = f[i];

moea->run = r[i];

switch(i) {

case 0: moea->palg = &moea->alg.smsemoa; /* NEW ALGORITHM */

break;

case 1: moea->palg = &moea->alg.nsga2;

break;

case 2: moea->palg = &moea->alg.nsga3;

break;

case 3: moea->palg = &moea->alg.mombi2;
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break;

case 4: moea->palg = &moea->alg.mombi3;

break;

case 5: case 6: case 7:

moea->palg = &moea->alg.ibea;

break;

case 8: moea->palg = &moea->alg.moead;

break;

case 9: moea->palg = &moea->alg.spea2;

break;

case 10: moea->palg = &moea->alg.hype;

break;

case 11: moea->palg = &moea->alg.movap;

break;

default: printf("Error, unknown MOEA (2) %s.\n", aux);

free(aux);

exit(1);

}

moea->alloc(moea->palg, param, pop, mop);

free(aux);

}

void EMO_MOEA_free(EMO_MOEA *moea) {

moea->free(moea->palg);

}

void EMO_MOEA_run(EMO_MOEA *moea, EMO_Param *param,

EMO_Population *pop, EMO_MOP *mop) {

moea->run(moea->palg, param, pop, mop);

}

3. Update the structure of EMO MOEA in the file EMO Project/include/emo.h. Be-
sides, add the structure of EMO SMSEMOA and its prototype functions.

4. Incorporate a new target in the Makefiles before compilation:

# EMO_Project/src/Makefile and EMO_Project/demo/Makefile

OBJS_NOMPI = moead.o nsga3.o smsemoa.o.

smsemoa.o: smsemoa.h smsemoa.c

$(CC) $(CFLAGS) -c smsemoa.c

If the new optimizer requires new parameters, they should be included in the
configuration file. With these four steps, we guarantee that the parallel version of the
new algorithm will be available in the command emo pmoea.
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6.6 Summary

In this chapter, we have presented EMO Project, a free software framework for evo-
lutionary multi-objective optimization, which is implemented in ANSI C, MPI and
Gnuplot. EMO Project highlights for its simplicity, efficiency and parallel support.
It can be used by employing a set of command-line programs for regular users or
as a toolkit with predefined libraries for advanced users. Through the chapter, we
have presented the architecture of EMO Project, illustrating how to implement new
problems and algorithms. Furthermore, EMO Project has support to paralleliza-
tion of MOEAs, and concurrent execution of commands over several processors. Our
proposal is available for download at:

http://computacion.cs.cinvestav.mx/~rhernandez
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Real World Applications

There is a wide range of real-world applications of multi-objective optimization in
different areas, such as engineering, science, industry, and medicine [93, 21, 120, 116].
Most of these applications involve equality (hj(x) = 0), inequality (gi(x) ≥ 0), and
box constraints (xlk ≤ xk ≤ xuk). In practice, these constraints define material charac-
teristics, regulations, physical conditions and logical restrictions, among others [83].
The way multi-objective evolutionary algorithms deal with box constraints is by avoi-
ding them, i.e., all generated individuals are within the valid bounds of the decision
variables. This task is ensured by the variation operators. Nevertheless, equality and
inequality constraints require a special treatment. Before solving a MOP, each equa-
lity constraint must be transformed into two inequalities with different signs. Then,
all inequalities are changed to the same direction (see the MOP definition on page 9)
by multiplying -1 in both sides. It is said that a solution x ∈ X is feasible if all
constraints are satisfied, or infeasible if at least one is not fulfilled.

Constraints can make MOPs even more complicated since their mathematical
formulations may lack of linearity, convexity or differentiability. Besides, constraints
may demarcate small or disconnected feasible regions, where objective vectors are not
always available for infeasible solutions. For these reasons, it is essential to consider an
effective constraint-handling technique when designing optimizers. In the literature,
we can find several approaches, where the majority have been adapted from single-
objective optimization [101, 22, 83, 82, 102].

In this chapter, we successfully adopt an easy-to-implement constraint-handling
technique that, although it can be incorporated to any of our proposals, is applied to
MOMBI-III (see page 39). The organization of the remainder of this chapter is the fo-
llowing: Section 7.1 describes the constraint-handling technique. Section 7.2 outlines
the experiments. Section 7.3 validates this approach on three difficult test problems
with two and three objectives. Then, we investigate the performance on three en-
gineering design optimization problems: the car side-impact problem in Section 7.4,
which is defined by three objectives and ten constraints; the water resources planning
in Section 7.5, which is a five-objective problem with seven constraints; and the design
of an analog integrated circuit in Section 7.6, which involves eight objective functions
with more than thirty constraints. Finally, Section 7.7 summarizes this chapter.
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7.1 Constraint-Handling Technique

The adopted constraint-handling technique consists in dividing the population into
two subsets according to the feasibility and infeasibility of solutions. Each subset re-
ceives special treatment. These changes are addressed in the main loop of MOMBI-III,
which is presented in Algorithm 11. In line 1, the population is initialized uniformly
at random. After that, it is evaluated according to the MOP definition. At each ite-
ration, new individuals are created from parents selected uniformly at random (lines
4 and 5). These individuals are evaluated in line 6. Next, the feasible solutions from
the union of parents and offspring are segregated in subset Q. Depending on the
cardinality of this set, we proceed as follows:

• If there are more feasible solutions than the population size, then the individuals
from

{
P
⋃
P ′
}
\Q are discarded, and the next population is selected from Q as

done in the unconstrained version of MOMBI-III (lines 9-12). The R2 Ranking
and Reduce procedures were described in Chapter 3 (page 44).

• In case there are less feasible solutions than the population size, then all in-
feasible solutions are stored in set Q′ (line 15). Next, the constraint violation
(CV ) is calculated as the number of constraints that were not satisfied for each
solution q′ ∈ Q′. In lines 17 and 18, the set Q′ is sorted regarding the CV va-
lues in increasing order, removing the |P ′| individuals having the highest values.
Therefore, in line 19, the next generation is formed with the feasible solutions
(Q) and the best infeasible solutions (Q′).

• In case the number of feasible solutions matches exactly the population size,
then set Q becomes the next generation.

The principal advantages of this method are: 1) it does not require extra parame-
ters, 2) the computational complexity remains the same, and 3) it is applicable even
for an infeasible solution with invalid objective function values. This latter scenario
commonly happens in simulators as a result of undefined operations on floating point
numbers, such as dividing by zero or numerical overflow.

7.2 Experimental Methodology

In all the experiments of this chapter, we compared our MOMBI-III against NSGA-II,
NSGA-III, and MOEA/D with the constraint handling techniques that were proposed
for them in the literature. In the following, we describe such techniques and define
the parameters used by the algorithms.

For NSGA-II, Deb et al. [31] extended the preference relation ≺n, used when
comparing solutions in the parent and survival selection mechanisms. A solution p
is said to constraint-dominate a solution q if any of the following conditions is true:
1) p is feasible and q is not; 2) p and q are both infeasible, but p has a smaller
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Algorithm 11 Main loop of MOMBI-III for handling constraints

Input: MOP, stopping criterion, set of weight vectors W , set of heuristics H
Output: Final population P

1: Initialize population P at random
2: Evaluate MOP for each element p ∈ P
3: while the stopping criterion is not satisfied do
4: Select random parents from P
5: P ′ ← Generate offspring using variation operators
6: Evaluate MOP for each p′ ∈ P ′
7: Q← Filter feasible solutions from P

⋃
P ′

8: if |Q| > |P | then
9: Update the reference points zmin and zmax from Q

10: Normalize objective functions by setting
q.y← q.y−zmin

zmax−zmin , ∀q ∈ Q, where q.y ∈ IRm

11: R← R2 Ranking (Q,W,H)
12: P ← Reduce (Q,R, |P |)
13: else
14: if |Q| < |P | then
15: Q′ ← Filter infeasible solutions from P

⋃
P ′

16: CV [q′]← |{i ∈ {1, 2, . . . , o} : q′.gi(x) < 0}| for all q′ ∈ Q′
17: Sort Q′ w.r.t. CV in increasing order
18: Remove from Q′ the last |P ′| solutions
19: P ← Q

⋃
Q′

20: else
21: P ← Q
22: return P

constraint violation; 3) p and q are feasible, but p ≺ q. The constraint violation of a
solution p is calculated as follows:

CV [p] :=
o∑
i=0

〈gi(p.x)〉, (7.1)

where the bracket operator 〈α〉 returns |α| if α < 0 and returns zero, otherwise.
For NSGA-III, Jain and Deb [53] suggested to normalize constraints by dividing

them by a constant term. For example, given gi(x) ≥ bi, the normalized constraint
function becomes g′i(x) = gi(x)/bi − 1 ≥ 0, and similarly for equality constraints ob-
taining the term h′j(x). Then, the constraint violation for an individual p is given by:

CV [p] :=
o∑
i=0

〈g′i(p.x)〉+
r∑
j=0

|h′j(p.x)|. (7.2)

Expression (7.2) is considered to check constraint domination in both selection me-
chanisms. Nonetheless, in the binary tournament of the parent selection, when both
solutions are feasible, a random solution is chosen.
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Table 7.1: Parameters adopted for the problems with constraints

Problem m |P | Objective
function

evaluations

Crossover Mutation Weight
vector

partitions

MOEA/D
nicheproba-

bility
distr.
index

proba-
bility

distr.
index

TNK1 2 100 25,000 0.9 20 1/n 20 99 20
OSY2 2 100 40,000 0.9 20 1/n 20 99 20
VIE4 3 106 40,000 0.9 20 1/n 20 13 20

Car side-impact 3 156 78,000 0.9 20 1/n 20 16 20
Water resources

planning
5 212 212,000 1.0 30 1/n 20 6 42

Design of analog
integrated ciruit

8 250 50,000 0.9 20 1/n 15 n/a 20

For MOEA/D, although there is a constraint version proposed by its develo-
pers [76], we decided to adopt the method described by Jain and Deb [53], named
C-MOEA/D. The main reason was that the first approach relies on a penalty function
that requires the proper setting of two scaling parameters for a given MOP. Another
disadvantage of the technique in [76] is that it assumes that objective values are
always available for infeasible solutions. Nevertheless, this is not the case for the pro-
blem of analog circuit design (Section 7.6), which may generate invalid numbers. On
the other hand, C-MOEA/D uses the same comparison principle of NSGA-III. Here,
in the survival selection mechanism, when a child and a neighbor are both feasible,
the scalarizing function is used instead of Pareto dominance.

Regarding the parameters employed in the algorithms, they are shown in Table 7.1.
The scalarizing function in C-MOEA/D was CHE for two objectives and PBI with
θ = 5 for the remaining objectives. As suggested by the authors [149], since the
objectives are in different scales in the design of the analog circuit, the population of
C-MOEA/D was normalized during its evolution. The parameter models adopted for
MOMBI-III are shown in Table 2.3 (page 20).

For NSGA-III, C-MOEA/D and MOMBI-III the weight vectors were generated
using the Uniform Design method [147] regarding the problem of analog circuit design.
Here, the number of weights is the same as the population size. In the remaining
problems, weight vectors were created by the Simplex-Lattice Design method (see
page 23) with a partition parameter shown in Table 7.1. The variation operators were
Polynomial-based mutation and SBX. The stopping criterion consisted of reaching a
maximum number of evaluations.

To assess performance, we adopted the hypervolume, ONVG, IGD+, and two set
coverage. All of them were described in Chapter 2 (page 14). In the case of IGD+,
the approximation set was the result of collecting the non-dominated solutions of all
independent executions and algorithms.

Unless otherwise stated, we performed 30 independent runs for each algorithm
and problem with different initial populations. We applied the Wilcoxon rank sum
test (one-tailed) to the mean of IGD+ and hypervolume, in order to determine if
MOMBI-III outperformed the other algorithms.
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7.3 Validation

In this section, we investigate our proposed method via solving three widely known
test problems: TNK1, OSY2 and VIE4. Their definition can be found in Section B.6
(page 158). The reference points for the hypervolume indicator were set to (1.1, 1.1)
for TNK1, (−20, 80) for OSY2, and (10,−10, 30) for VIE4.

Table 7.2: Median and standard deviation of the performance indicators for the
constrained-test problems. The best results are presented in boldface.

Optimizer
Indicator

ONVG Hypervolume IGD+

TNK1
NSGA-II 74 2.259794 0.428369 0.000261 ↑ 0.002970 0.000100 ↑
NSGA-III 69 2.512414 0.427553 0.000643 ↑ 0.003000 0.000156 ↑

C-MOEA/D 62 2.167692 0.427636 0.000408 ↑ 0.003489 0.000225 ↑
MOMBI-III 95 2.897509 0.429029 0.000429 - 0.002313 0.000123 -

OSY2
NSGA-II 96 17.112049 14974.32 3364.193461 ↑ 0.959872 46.168012 =
NSGA-III 95 4.138706 14933.77 300.499811 ↑ 1.076940 1.396692 ↑

C-MOEA/D 95 34.005490 14897.06 3444.743443 ↑ 1.440762 26.022540 ↑
MOMBI-III 100 0.300000 14998.72 1147.806237 - 0.875703 9.768181 -

VIE4
NSGA-II 102 1.682921 279.5652 0.332322 ↑ 0.079862 0.009458 ↑
NSGA-III 103 1.580787 278.5841 0.491143 ↑ 0.059660 0.007093 ↑

C-MOEA/D 70 2.222361 268.1726 1.678036 ↑ 0.055481 0.001812 ↑
MOMBI-III 106 0.179505 280.5825 0.125802 - 0.035694 0.000986 -

Table 7.3: Two-set coverage of the optimizers for the constrained-test problems.

Optimizer NSGA-II NSGA-III MOEA/D MOMBI-III
TNK1

NSGA-II - 0.179787 0.231436 0.121631
NSGA-III 0.228514 - 0.231436 0.126001

C-MOEA/D 0.173913 0.171277 - 0.104880
MOMBI-III 0.303337 0.265957 0.321782 -

OSY2
NSGA-II - 0.191675 0.130526 0.065132
NSGA-III 0.237146 - 0.103158 0.072368

C-MOEA/D 0.143757 0.138432 - 0.052632
MOMBI-III 0.473242 0.425944 0.174737 -

VIE4
NSGA-II - 0.029039 0.000957 0.022794
NSGA-III 0.016206 - 0.000478 0.013603

C-MOEA/D 0.003337 0.003723 - 0.001838
MOMBI-III 0.034318 0.026433 0.000000 -

Tables 7.2 and 7.3 present our experimental results. Regarding the ONVG indica-
tor, MOMBI-III obtained for the three problems the highest number of non-dominated
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Figure 7.1: Pareto fronts produced by the optimizers corresponding to the median
hypervolume for the constrained-test problems.

solutions. NSGA-II ranked second, followed by NSGA-III. Concerning the hypervo-
lume indicator, MOMBI-III significantly outperformed the other algorithms (denoted
by ↑) in all cases at the confidence interval of 99%. In the second place, we had
NSGA-II followed by NSGA-III. With respect to the IGD+, MOMBI-III also signifi-
cantly outperformed NSGA-II, NSGA-III and C-MOEA/D at the confidence interval
of 99%. Only for OSY2, there was a tie with NSGA-II. This last algorithm outper-
formed NSGA-III and C-MOEA/D in the TNK1 and OSY2 problems. For VIE4,
C-MOEA/D was the second best algorithm, whereas NSGA-III was in the third po-
sition.

The two set coverage revealed a similar behavior. MOMBI-III performed better
than the other optimizers. Only for VIE4, NSGA-II obtained slightly better results
than our proposal. Finally, Figure 7.1 illustrates some Pareto fronts. As can be
noticed, MOMBI-III achieved a much better distribution than the other algorithms.
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ABC

AC

ABCD

B−pillar

Figure 7.2: Typical pillar configurations of automobiles (left) and isolation of the
B-pillar (right). The A-pillar supports the windshield. The B-pillar provides strength to
the midsection of the vehicle (many sports cars do not have it). The C-pillar is often the
most heavily leveraged pillar from a styling perspective. The D-pillar is the end of the

line, designed for housing the rear door in a wagon or suburban.

7.4 Car Side-Impact Problem

In this problem, a car is subject to a side-impact based on European Enhanced
Vehicle-Safety Committee (EEVC) procedures. The effect of the side-impact on a
dummy passenger in terms of load in abdomen, pubic symphysis force, viscous crite-
rion, and rib deflections are considered. Moreover, the effect on the car is considered
in terms of the average velocity of the B-Pillar (see Figure 7.2), which is responsible
for withstanding the impact load. An increase in dimensions of the B-pillar may
improve the performance on the dummy passenger but with a burden of increased
weight of the car, which may have an adverse effect on the fuel economy. Thus, there
is a need to find a design balancing the weight and the safety performance.

The problem, redefined by Jain and Deb [53] from Gu et al. [49], is aimed at
minimizing the weight of the car (f1), the pubic force experienced by a dummy pas-
senger (f2) and the average velocity of the B-pillar (f3). There are seven decision
variables describing the thicknesses (in millimeters) of B-pillar inner (x1), B-pillar
reinforcement (x2), floor side inner (x3), cross members (x4), door beam (x5), door
beltline reinforcement (x6), and roof rail (x7). There are ten constraints involving the
regulations and requirements for vehicle side impact:

g1(x) Abdomen load ≤ 1 kN

g2(x) Upper viscous criteria ≤ 0.32 m/s

g3(x) Middle viscous criteria ≤ 0.32 m/s

g4(x) Lower viscous criteria ≤ 0.32 m/s

g5(x) Upper rib deflection ≤ 32 mm

g6(x) Middle rib deflection ≤ 32 mm

g7(x) Lower rib deflection ≤ 32 mm

g8(x) Pubic symphysis force (F ) ≤ 4 kN
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g9(x) Velocity of B-pillar at middle point
(VMBP ) ≤ 9.9 mm/ms

g10(x) Velocity of front door at B-pillar
(VFD) ≤ 15.7 mm/ms

The mathematical formulation of the problem is given below.

F =4.72− 0.5x4 − 0.19x2x3

VMBP =10.58− 0.674x1x2 − 0.67275x2

VFD =16.45− 0.489x3x7 − 0.843x5x6

f1(x) =1.98 + 4.9x1 + 6.67x2 + 6.98x3 + 4.01x4 + 1.78x5 + 0.00001x6 + 2.73x7

f2(x) =F

f3(x) =0.5(VMBP + VFD)

g1(x) =0.3717x2x4 + 0.0092928x3 − 0.16 ≥ 0

g2(x) =0.059 + 0.0159x1x2 + 0.06486x1 + 0.019x2x7 − 0.0144x3x5 − 0.0154464x6 ≥ 0

g3(x) =0.106− 0.00817x5 + 0.045195x1 + 0.0135168x1 − 0.03099x2x6 + 0.018x2x7

− 0.007176x3 − 0.023232x3 + 0.00364x5x6 + 0.018x2
2 ≥ 0

g4(x) =0.61x2 + 0.031296x3 + 0.031872x7 − 0.227x2
2 − 0.42 ≥ 0

g5(x) =3.02− 3.818x3 + 4.2x1x2 − 1.27296x6 + 2.68065x7 ≥ 0

g6(x) =5.057x1x2 − 2.95x3 + 3.795x2 + 3.4431x7 − 3.31728 ≥ 0

g7(x) =9.9x2 + 4.4505x1 − 14.36 ≥ 0

g8(x) =4− F ≥ 0

g9(x) =9.9− VMBP ≥ 0

g10(x) =15.7− VFD ≥ 0

x1, x3, x4 ∈ [0.5, 1.5], x2 ∈ [0.45, 1.35],

x5 ∈ [0.875, 2.625], and x6, x7 ∈ [0.4, 1.2].

Table 7.4: Median and standard deviation of the performance indicators for the car
side-impact problem. The best results are presented in boldface.

Optimizer
Indicator

ONVG Hypervolume IGD+

NSGA-II 155 6.674995e-01 10.801690 5.423048e-02 ↑ 8.013675e-02 9.073953e-03 ↑
NSGA-III 153 1.797838e+00 10.893650 9.993456e-02 ↑ 1.060380e-01 7.496957e-02 ↑

C-MOEA/D 146 4.016079e+00 4.202341 8.193931e-02 ↑ 2.379462e-01 2.983392e-03 ↑
MOMBI-III 156 2.494438e-01 11.5209 1.695381e-02 - 4.602613e-02 4.210079e-03 -

Table 7.5: Two-set coverage of the optimizers for the car side-impact problem.

Optimizer NSGA-II NSGA-III MOEA/D MOMBI-III
NSGA-II - 0.167378 0.000000 0.014601
NSGA-III 0.210963 - 0.000000 0.011025

C-MOEA/D 0.073699 0.039710 - 0.029499
MOMBI-III 0.485951 0.427412 0.000296 -
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Tables 7.4 and 7.5 present our experimental results. The reference point for the
hypervolume indicator was set to (42.8, 4.1, 12.6). Regarding the ONVG indicator,
MOMBI-III obtained the maximum number of non-dominated solutions. NSGA-II
scored in second place followed by NSGA-III. Concerning the hypervolume indicator,
MOMBI-III significantly outperformed the other optimizers (denoted by ↑) at the
confidence interval of 99%. NSGA-III ranked second followed by NSGA-II. With res-
pect to the IGD+, MOMBI-III also significantly outperformed NSGA-II, NSGA-III
and C-MOEA/D at the confidence interval of 99%. NSGA-II ranked second followed
by NSGA-III. The two set coverage revealed a similar behavior since MOMBI-III per-
formed better than the other optimizers. Figures 7.3 and 7.4 show some examples of
Pareto fronts. It is worth noticing that MOMBI-III achieved much better distribution
than the other algorithms.
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Figure 7.3: Pareto fronts produced by the optimizers corresponding to the median
hypervolume for the car side-impact problem.
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MOMBI-III
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Figure 7.4: Pareto fronts produced by the optimizers corresponding to the median
hypervolume for the car side-impact problem (cont’d).

7.5 Water Resources Planning

This application involves optimal planning for storm-drainage systems in urban areas,
described originally by Musselman and Talavage [104], and also attempted by Jain
and Deb [53], Cheng and Li [18], and Ray et al. [110].

The problem is to examine, in terms of its storm drainage needs, a particular
subbasin within a watershed. The subbasin is assumed to be hydrologically indepen-
dent of other subbasins, having its own drainage network, on-site detention storage
facility, treatment plant, and tributary to a receiving water body. The various factors
involved in this problem as well as how they conceptually interlink are illustrated in
Figure 7.5. Runoff due to rainfall and snowfall is channeled to a treatment facility
before being discharged into the receiving body of water. Any water which is not
able to be immediately treated is rerouted to a temporary storage facility to await
treatment. Once the storage facility has filled, any further runoff either overflows into
the receiving body of water or it backs up.

The subbasin’s storm drainage system is assumed to be characterized by three
decision variables: x1 local detention storage capacity (basin inches), x2 maximum
treatment rate (basin · inches/hour), and x3 maximum allowable overflow rate (basin
inches/hour). Restricting the overflow rate makes it possible to incorporate into the
analysis any damages caused by local flooding. Once the detention storage facility
is filled and the overflow rate is at its maximum, the drainage system’s conveying
capacity is significantly reduced. This results in local flooding, the consequence of
which is structural damage and economic disruption to the area.

The problem is modeled with five objective functions to be minimized: f1 drainage
network cost, f2 storage facility cost, f3 treatment facility cost, f4 expected flood
damage cost, and f5 expected economic loss due to flood; and seven constraints:
g1 average number of floods per year, g2 probability of exceeding a flood depth of
0.01 basin-inches, g3 average number of pounds per year of suspended solids, g4 ave-
rage number of pounds per year of settleable solids, g5 average number of pounds per
year of biochemical oxygen demand, g6 average number of pounds per year of nitro-
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Figure 7.5: Subbasin’s storm drainage system (reproduced from [104]).

gen, g7 average number of pounds per year of orthophosphate. The mathematical
formulation of the problem is given as follows:

f1(x) =106780.37(x2 + x3) + 61704.67

f2(x) =3000x1

f3(x) =305700× 2289x2/(0.06× 2289)0.65

f4(x) =250× 2289 exp(−39.75x2 + 9.9x3 + 2.74)

f5(x) =25((1.39/(x1x2)) + 4940x3 − 80)

g1(x) =1− 0.00139/(x1x2)− 4.94x3 + 0.08 ≥ 0

g2(x) =1− 0.000306/(x1x2)− 1.082x3 + 0.0986 ≥ 0

g3(x) =50000− 12.307/(x1x2)− 49408.24x3 − 4051.02 ≥ 0

g4(x) =16000− 2.098/(x1x2)− 8046.33x3 + 696.71 ≥ 0

g5(x) =10000− 2.138/(x1x2)− 7883.39x3 + 705.04 ≥ 0

g6(x) =2000− 0.417/(x1x2)− 1721.26x3 + 136.54 ≥ 0

g7(x) =550− 0.164/(x1x2)− 631.13x3 + 54.48 ≥ 0

x1 ∈ [0.01, 0.45]

x2, x3 ∈ [0.01, 0.10].

Tables 7.6 and 7.7 present the experimental results of our MOMBI-III and the
algorithms NSGA-II, NSGA-III and C-MOEA/D. The reference point for the hyper-
volume indicator was set to (76490, 1360, 2853470, 8781920, 25010).

Regarding the ONVG indicator, MOMBI-III obtained the maximum number of
non-dominated solutions. NSGA-II ranked second followed by NSGA-III. Concerning
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the hypervolume indicator, MOMBI-III significantly outperformed the other optimi-
zers (denoted by ↑) at the confidence interval of 99%. In the second place, there was
NSGA-II followed by NSGA-III. With respect to the IGD+, MOMBI-III also signifi-
cantly outperformed NSGA-II, NSGA-III and C-MOEA/D at the confidence interval
of 99%. NSGA-II ranked second followed by NSGA-III. The two set coverage revealed
a similar behavior since MOMBI-III performed better than NSGA-II and NSGA-III.
Finally, Figure 7.6 depicts the parallel coordinates of some optimal solutions. It is
worth noticing that NSGA-II and MOMBI-III covered much more area than the other
algorithms.

Table 7.6: Median and standard deviation of the performance indicators for the water
problem. The best results are presented in boldface.

Optimizer
Indicator

ONVG Hypervolume IGD+

NSGA-II 211 0.87 4.757204e+24 3.27e+22 ↑ 1.044788e+04 1.17e+03 ↑
NSGA-III 208 2.27 4.496746e+24 2.08e+23 ↑ 7.272726e+04 7.38e+04 ↑

C-MOEA/D 187 2.57 2.104973e+24 2.23e+21 ↑ 9.089462e+04 1.56e+02 ↑
MOMBI-III 212 0.37 4.897308e+24 1.88e+22 - 8.716032e+03 7.81e+02 -

Table 7.7: Two-set coverage of the optimizers for the water problem.

Optimizer NSGA-II NSGA-III C-MOEA/D MOMBI-III
NSGA-II - 0.067285 0.000000 0.000475
NSGA-III 0.061300 - 0.000000 0.000634

C-MOEA/D 0.001963 0.001078 - 0.000000
MOMBI-III 0.084206 0.077421 0.000000 -
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Figure 7.6: Normalized parallel coordinates of the Pareto front produced by optimizers
corresponding to the median hypervolume.
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Figure 7.7: Recycled Folded Cascode OTA.

7.6 Design of an Analog Integrated Circuit

In this section, we optimize the design of an analog integrated circuit, more specifi-
cally, the Recycled Folded Cascode (RFC) Operational Transconductance Amplifier
(OTA). An OTA is a DC-coupled high-gain electronic voltage amplifier with a dif-
ferential input and, usually, a single-ended current output. The gain is measured as
current divided by voltage.

The RFC OTA, initially proposed by Assad and Silva-Martinez [6] and then ex-
panded by Guerra-Gómez et al. [50], delivers a substantially enhanced performance
over the conventional folded OTA. The circuit is composed of 25 Metal Oxide Semi-
conductor Field Effect Transistors (MOSFETs) using the configuration of Figure 7.7.
The goal is to find the dimensions of all MOSFETs that optimize at the same time
the eight objectives of Table 7.8. Ten decision variables represent the width (W)
or length (L) of the MOSFETs as shown in Table 7.9. Each variable is an integer
multiple of the minimum value allowed by the fabrication process (0.18 µm). Also,
the problem involves 25 constraints for the saturation conditions in all MOSFETs
and seven target specifications, which are provided in the last column of Table 7.8.

The evaluation of the MOP is performed via the simulator ngspice version 261.
The RFC OTA is biased with Iref = 400µA and V dd = 1.8V. The electrical mea-
surements consider a load capacitor of 5.6 pF, and the ngspice simulations are fixed
to LEVEL 49 standard CMOS Technology of 0.18 µm.

In 2013, Guerra-Gómez et al. [50] tackled this problem by employing NSGA-II
coupled to a module for handling constraints. The idea was to give priority to those
solutions having low sensitivity to natural variations of the fabrication process. For
this purpose, authors relied on finite differences and Richardson extrapolation to

1http://ngspice.sourceforge.net
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calculate the partial derivatives of the objective functions concerning the decision
variables. The adopted variation operator was Differential Evolution [121]. The main
drawback of this method is the incorporation of new user-defined parameters.

Table 7.8: Objective functions in the RFC OTA.

Requirement
Objective

Description Unit Constraint
Function

maximize

f1 DC gain dB ≥ 65.35
f2 gain bandwidth product (GBW) MHz ≥ 89.13
f3 phase margin (PM) degrees ≥ 45
f4 slew rate (SR) V/µsec ≥ 76.99

minimize

f5 power consumption (PW) mW ≤ 3.31× 10−3

f6 settling time (ST) nsec ≤ 20.14× 10−9

f7 input offset µV ≤ 206.79× 10−6

f8 input referred noise mVrms −

Table 7.9: Amplifier device dimensions.

Decision
Size Transistor Range Unit

Variable

x1 L1
M0, M3a, M3b, M4a, M4b, M9, M10,
MN1,. . .,MN4,MP1,. . .,MP4

[1, 4]× 0.18 µm

x2
L2 M5,. . .,M8

[1, 4]× 0.18 µ m
2L2 M1a, M1b, M2a, M2b

x3 W1 M0, MP1 [1, 778]× 0.18 µ m
x4 W2 M1a, M1b, M2a, M2b [1, 778]× 0.18 µ m
x5 W3 M3a, M4a [1, 778]× 0.18 µ m
x6 W4 M3b, M4b [1, 778]× 0.18 µ m

x7

W5 M5, M6, MN3, MN4
[1, 778]× 0.18 µ m2W5 MN1, MN2, MP4

4W5 MP2, MP3
x8 W6 M7, M8 [1, 778]× 0.18 µ m
x9 W7 M9, M10 [1, 778]× 0.18 µ m
x10 W8 M11, M12 [1, 778]× 0.18 µ m

Table 7.10 reproduces the best performances of Guerra-Gómez et al. [50] for each
objective using a budget of 50,000 evaluations of the MOP. For instance, p2, having
the decision vector (2, 1, 474, 400, 83, 39, 59, 100, 43, 59)× 0.18, is the best solution for
the objectives GBW and ST. On the other hand, Table 7.11 presents the best per-
formances of MOMBI-III. As can be appreciated for the objectives to be maximized,
DC gain (67.98 vs. 81.41), GBW (120.9 vs. 176.62), and SR (201.28 vs. 244.9) were
considerably improved by our proposal. Concerning the objectives to be minimized,
PW (3.25 vs. 3.0), ST (15.64 vs. 3.5), and Noise (2.97 vs. 2.3) were also enhanced
by MOMBI-III. Even though objectives PM and Offset could not be improved by
MOMBI-III, they are not so far from those of the literature and still satisfy the
constraints.
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Table 7.10: Best points (in boldface) reported by Guerra-Gómez et al. [50].

Feature
Solution

p1 p2 p3 p4 p5 p6 p7
L1 0.36 0.36 0.36 0.36 0.36 0.36 0.36
L2 0.18 0.18 0.18 0.18 0.18 0.18 0.18
W1 132.48 85.32 85.86 78.3 125.46 120.06 152.82
W2 58.5 72 41.94 49.68 45.18 52.2 45.72
W3 18.9 14.94 17.64 9.9 38.52 42.3 30.96
W4 9.9 7.02 8.1 4.86 19.62 22.14 16.92
W5 16.2 10.62 10.8 10.08 15.66 14.76 18.72
W6 32.76 18 17.1 69.66 61.92 25.92 59.58
W7 5.22 7.74 8.28 5.22 8.82 6.84 4.5
W8 24.3 10.62 18 31.14 8.28 2.88 12.96
DC gain 67.98 67.52 66.07 67.64 67.81 67.41 67.4
GBW 105.53 120.9 99.94 99.9 97.44 107.36 93.66
PM 77.62 76.4 80.74 78.64 77.53 75.86 77.26
SR 84.47 92.28 82.37 79.48 84.88 201.28 80.67
PW 3.26 3.29 3.3 3.25 3.29 3.29 3.26
ST 17.47 15.64 18.51 17.95 18.51 16.66 18.88
Offset 19.24 58.52 75.68 0.07 96.61 51.71 -0.98
Noise 3.15 3.08 3.06 2.97 3.52 3.43 3.25

Table 7.11: Best points (in boldface) obtained by MOMBI-III.

Features
Solution

p1 p2 p3 p4 p5 p6 p7 p8
L1 0.54 0.36 0.36 0.36 0.72 0.36 0.36 0.72
L2 0.36 0.18 0.18 0.18 0.18 0.18 0.18 0.18
W1 124.38 125.46 126.36 124.38 113.4 125.46 125.1 127.44
W2 139.32 134.1 55.98 138.6 125.64 126.18 136.62 132.48
W3 41.76 50.94 26.64 55.44 42.3 50.94 41.04 30.78
W4 33.3 31.32 17.1 31.32 32.4 31.32 29.34 20.88
W5 15.3 15.3 15.48 15.30 14.04 15.3 15.3 15.48
W6 71.82 43.92 7.56 42.84 14.4 43.56 48.6 133.2
W7 5.76 7.92 4.32 5.04 4.14 27 3.24 10.44
W8 2.52 1.44 6.48 2.52 6.66 1.44 1.62 25.02
DC gain 81.41 73.14 67.76 69.73 73.82 71.47 71.58 65.74
GBW 99.38 176.62 94.03 133.90 99.5 175.43 134.5 96.5
PM 50.96 47.24 78.33 63.74 61.57 46.62 59.04 56.64
SR 126.61 217.86 87.05 244.9 164.69 213.97 230.9 80.55
PW 3.05 3.3 3.15 3.26 3 3.3 3.17 3.04
ST 10.61 4.04 19.95 13.93 10.95 3.5 12.83 10.06
Offset 20.85 40.97 58.97 10.98 15.12 120.76 0.01 106.18
Noise 6.62 5.01 3.05 3.58 3.72 4.59 3.78 2.3

Table 7.12 shows the statistics, the median, average, minimum, maximum, and
standard deviation for all objectives among the final solution set. In all cases,
MOMBI-III achieved the best results. Table 7.13 provides some interesting solutions
that do not belong to extreme solutions of the Pareto front.

CINVESTAV-IPN Computer Science Department



130 Chapter 7

Table 7.12: Best points (in boldface) for the RFC OTA obtained by the state-of-the-art
Guerra-Gómez et al. [50] and MOMBI-III.

Objective Optimizer
Statistic

med avg min max std

DC gain
baseline - 67.01 66.46 67.83 0.42
MOMBI-III 71.35 71.56 65.35 81.41 3.21

GBW
baseline - 96.72 94.63 106.52 2.97
MOMBI-III 121.04 123.41 89.80 176.62 20.21

PM
baseline - 75.96 75.48 77.30 0.45
MOMBI-III 59.59 59.72 45.00 78.33 7.99

SR
baseline - 77.63 77.09 79.64 0.56
MOMBI-III 211.22 196.16 78.60 244.90 37.74

PW
baseline - 3.28 3.24 3.30 0.02
MOMBI-III 3.13 3.14 3.00 3.31 0.08

ST
baseline - 18.25 16.90 18.49 0.36
MOMBI-III 10.61 11.37 3.50 20.05 4.12

Offset
baseline - 34.84 0.03 96.97 31.96
MOMBI-III 35.96 49.29 0.01 204.16 45.12

Noise
baseline - 63.51 55.27 66.40 3.27
MOMBI-III 3.73 3.91 2.30 6.88 0.86

Table 7.13: Compromise solutions obtained by MOMBI-III.

Features
Solution

p9 p10 p11 p12 p13 p14 p15 p16
L1 0.36 0.36 0.36 0.36 0.54 0.54 0.36 0.36
L2 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18
W1 125.46 125.28 125.46 125.1 124.38 124.38 129.24 126.18
W2 86.04 138.78 136.98 135.36 107.64 108.36 138.24 135.36
W3 46.8 40.86 46.8 45.72 46.44 44.46 26.82 41.58
W4 31.32 31.14 31.32 30.96 32.4 32.58 22.86 26.1
W5 15.3 15.3 15.3 15.3 15.3 15.3 15.84 15.48
W6 48.6 39.96 48.6 75.24 12.24 34.92 70.92 63.18
W7 4.5 3.24 4.5 4.14 5.04 4.5 2.16 3.96
W8 1.44 1.44 1.44 1.44 2.52 2.52 1.44 1.98
DC gain 72.17 73.11 73.08 72.52 73.22 73.87 73.12 70.5
GBW 153.62 150.45 167.66 153.56 130.09 124.44 127.86 130.57
PM 54.51 50.66 46.05 51.13 55 56.44 51.85 62.33
SR 227.45 227.14 226.12 231.8 206.74 206.23 223.88 236.69
PW 3.24 3.17 3.25 3.22 3.12 3.1 3.1 3.22
ST 5.77 6.06 4.77 6.09 8.03 7.52 8.04 13.94
Offset 1.36 0.98 0.12 0.9 0.09 2.64 0.73 0.31
Noise 4.6 4.37 4.77 4.36 4.27 4.32 3.91 3.58

It is worth noticing that in our experiments, we performed only three independent
runs for each algorithm since this application is time-consuming. The average time it
takes a single optimization run is 6.5 hours using a PC Intel(R) Core(TM) i7 CPU 950
@ 3.07 GHz × 8 with 3.8 GB of memory. Furthermore, to obtain feasible solutions
at the end of generations in C-MOEA/D and NSGA-II, it was necessary to inject a
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feasible solution during the initialization of the population. Such solution is extracted
from the literature and appears in column p6 of Table 7.10.

Tables 7.14, 7.15 and 7.16 present the experimental results of MOMBI-III and the
compared algorithms. The reference point for the hypervolume indicator was set to
(−64,−6,−44,−75, 4, 21, 207, 8).

Regarding the ONVG indicator, MOMBI-III obtained the maximum number of
non-dominated solutions. NSGA-II ranked second followed by NSGA-III. Concer-
ning the hypervolume indicator, MOMBI-III significantly outperformed NSGA-II and
NSGA-III (denoted by ↑) at the confidence interval of 95%. With MOEA/D there
was a tie (denoted by =). MOEA/D ranked second followed by NSGA-II. For the
IGD+, MOMBI-III also significantly outperformed the three other optimizers at the
confidence interval of 95%. MOEA/D ranked second followed by NSGA-II. The two
set coverage confirms that MOMBI-III performed better than the other algorithms.
Finally, Figure 7.8 shows the parallel coordinates of the final sets. As can be observed,
NSGA-II and MOMBI-III covered much more area than the other two algorithms.

Table 7.14: Detailed information of the performance indicators for the RFC OTA. The
best results are presented in boldface.

Execution Optimizer
Number NSGA-II NSGA-III MOEA/D MOMBI-III

ONVG
1 249 234 212 250
2 250 231 210 250
3 248 234 211 249
all 730 688 621 733

Hypervolume
1 9.053320e+08 6.132072e+07 9.670065e+08 1.138170e+09
2 9.065817e+08 4.584645e+08 8.749099e+08 9.135469e+08
3 8.390591e+08 4.209148e+07 8.808672e+08 1.116637e+09
all 1.036827e+09 4.687917e+08 1.059399e+09 1.253497e+09

IGD+

1 2.477912e+00 7.896030e+01 2.130124e+00 7.269151e-01
2 2.604847e+00 1.051483e+01 2.223723e+00 1.633110e+00
3 4.008368e+00 7.935186e+01 2.849773e+00 8.939437e-01
all 1.795547e+00 1.024330e+01 1.595704e+00 3.918300e-01

Table 7.15: Median and standard deviation of the performance indicators for the
RFC OTA.

Optimizer
Indicator

ONVG Hypervolume IGD+

NSGA-II 249 8.16e-01 9.053320e+08 3.15e+07 ↑ 2.604847e+00 6.93e-01 ↑
NSGA-III 234 1.41e+0 6.132072e+07 1.92e+08 ↑ 7.896030e+01 3.24e+01 ↑
MOEA/D 211 8.16e-01 8.808672e+08 4.21e+07 = 2.223723e+00 3.19e-01 ↑

MOMBI-III 250 4.71e-01 1.116637e+09 1.01e+08 - 8.939437e-01 3.94e-01 -
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Table 7.16: Two-set coverage of the optimizers for the RFC OTA.

Optimizer NSGA-II NSGA-III C-MOEA/D MOMBI-III
NSGA-II - 0.116 0.00 0.001333
NSGA-III 0.001333 - 0.00 0.00

C-MOEA/D 0.086667 0.318667 - 0.013333
MOMBI-III 0.154667 0.324 0.008 -

NSGA-II NSGA-III

V
a
lu

e

Objective

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8

V
a
lu

e

Objective

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 3 4 5 6 7 8

C-MOEA/D MOMBI-III

V
a
lu

e

Objective

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 3 4 5 6 7 8

V
a
lu

e

Objective

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 3 4 5 6 7 8

Figure 7.8: Normalized parallel coordinates of the Pareto front produced by optimizers
corresponding to the median hypervolume.

7.7 Summary

In order to show the successful application on real-world problems of one of our
proposals, we incorporated to it, a mechanism to handle constraints. This mechanism
does not require extra parameters and does not increase the computational complexity
of the multi-objective evolutionary algorithm. The chapter also described the adopted
constraint-handling techniques of the state-of-the-art optimizers used to compare our
results. MOMBI-III was compared to C-MOEA/D, NSGA-II and NSGA-III on three
well-known test problems having two and three objectives, as well as in three real-
world applications having up to eight objectives. In all cases, our proposed approach
obtained the best results, proving to be a powerful tool.
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Conclusions and Future Work

Most real-world problems are multi-objective in nature, and their solution involves
finding a set of decision variables that represent the best possible trade-offs among
all their objectives. Evolutionary algorithms, as well as other bio-inspired meta-
heuristics, are powerful search techniques that are suitable to solve such types of
problems.

One main concern is that evolutionary algorithms based on Pareto dominance and
a niching technique may suffer stagnation or even involution during the search. Thus,
several approaches have replaced the niching technique by the hypervolume indicator,
which is compliant with Pareto dominance. However, the computational cost of the
hypervolume makes it unaffordable for many-objective optimization problems.

In order to address these issues, we have explored alternative techniques for the
selection of individuals. One possibility is the development of generic methods, which
can produce solutions of acceptable quality using a set of easy-to-implement low-level
heuristics. These methods are known as hyper-heuristics and can be seen as high-
level methodologies, which automatically produce an adequate combination of single
heuristics for solving a broad set of problems. Another possibility is the use of parallel
models, like the island model, providing additional benefits since not only execution
time is reduced but the quality of final solutions is also improved. Our proposals are
based on these strategies. A synopsis of their features is shown in Table 8.1.

In the remainder of this chapter, we conclude with the most remarkable results
obtained in this thesis, providing some paths for future research.

MOMBI-II adopts the Augmented Achievement Scalarizing Function since near
optimal solutions lie on the weight vectors provided by the user. In many-objective
problems, this is an important factor that prevents us from having an unexpected dis-
tribution in objective space. In [59], MOMBI-II was compared with other algorithms
(∆p-DDE, NSGA-III, R2-MOGA, R2-IBEA and MOMBI) on selected problems of the
DTLZ and WFG benchmarks. Experimental results indicated that MOMBI-II was
able to outperform all the compared algorithms in more than the 96% of the test in-
stances. Moreover, the solutions produced by MOMBI-II are uniformly distributed in
objective space, being similar to those generated by NSGA-III. However, MOMBI-II
requires much less computational effort and its source code is in the public domain.

133



134

Table 8.1: Summary of the proposals of this work thesis

Proposal Chapter Features

MOMBI-II 3
Ranking of the population using the R2 indicator.
Diversity is achieved through the set of weight vectors.
One scalarizing function (ASF).

MOMBI-III 3
Hyper-heuristic based on MOMBI-II with seven scalari-
zing functions. Diversity is also achieved through the
s-energy indicator.

MOVAP 4
Non-dominated Sorting coupled with a density estimator
based on the Parallel Coordinates, which can be seen as
a hyper-heuristic of rules derived from knowledge.

S-PAMICRO 5
Parallel version of SMS-EMOA using the island model,
small populations and an archiving technique based on
the density estimator of MOVAP.

EMO Project 6

Framework software designed to solve multi-objective
optimization problems. Other currently available algo-
rithms: SPEA2, NSGA-II, NSGA-III, MOEA/D, IBEA,
SMS-EMOA, HypE. Besides their parallelization.

In [107], results suggest that there is not a unique utility function that can solve
all the problems effectively. Instead, there is a subset of them that can tackle effec-
tively specific problems. In general, utility functions like the Augmented Achievement
Scalarizing Function, Penalty Boundary Intersection, Exponential Weighted Criteria
and Vector Angle Distance Scaling obtained excellent results, deserving more re-
search. Nevertheless, in some cases, Penalty Boundary Intersection and Vector Angle
Distance Scaling may find dominated solutions. Thus, we recommend that their use
should be verified with Pareto compliant scalarizing functions.

In Chapter 3, we observed that MOMBI-III could effectively outperform state-
of-the-art algorithms on the ZDT, DTLZ, and WFG test problems. Furthermore,
MOMBI-III could deal with inverted test problems, producing a uniform distributions
in objective space. This merit has not been achieved by optimizers like MOEA/D
or NSGA-III, which suffer from overspecialization. We also verified that MOMBI-
III could effectively handle many-objective problems with constraints, evidencing its
applicability in Chapter 7 for solving real-world problems.

In [61], MOVAP was compared with other algorithms (NSGA-III, HyPE, SPEA2
and NSGA-II) on the ZDT and WFG test problems. MOVAP showed a significant
gain in more than 35% of the test instances, producing a much better diversity of
solutions, and exploring more regions of the search space in high-dimensionality. Con-
versely, in low dimensionality, MOVAP was competitive.

In [60], S-PAMICRO was compared with HypE, the serial version of SMS-EMOA
and the standard island version of SMS-EMOA without the handling of the exter-
nal archive. In summary, we observed that S-PAMICRO could achieve much better
results than SMS-EMOA and HypE in high dimensionality, spending much less com-
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putational time. In fact, the execution time seemed to be dominated by polynomial
terms and not the exponential terms when using micro-populations. Moreover, we
have studied the effects of the migration parameters on S-PAMICRO, finding that: 1)
the absence of migration reduces performance, 2) high rates of migration are harmful,
i.e., sending copies of individuals to neighboring islands every 10 evaluations of the
MOP or less worsens the quality of solutions, 3) during migration, 2 or 3 individuals
should be considered, 4) there is a trade-off between the number of islands and the
budget allowable for performing function evaluations, and 5) the worst behaved re-
placement scheme is the elitist random, which selects random individuals from the
non-dominated set.

These experimental results confirm our hypotheses that: 1) through the combina-
tion of different performance indicators (the R2 indicator and s-energy), it is possible
to achieve convergence and diversity to the Pareto optimal front at the same time;
2) from Parallel Coordinates, it is possible to extract information that may guide the
search towards more promising regions of the Pareto optimal front; and 3) the com-
putational cost of the hypervolume is negligible when the population size is relatively
small.

As part of our future work, we would like to explore the following research lines:
Regarding MOMBI-III (see Chapter 3 on page 39), we would like to expand the

set of heuristics, incorporating more values for the model parameters of the current
scalarizing functions. Such values might be automatically adapted. We would also
like to explore a probabilistic approach for the heuristic selection process, since this
is currently performed in an exhaustive way.

With respect to MOVAP (see Chapter 4 on page 61), we are interested in studying
its scalability beyond seven objectives and studying the properties of the proposed
density estimator. Finally, although MOVAP does not require a set of reference points
as NSGA-III, or a large number of sampling points as HypE, it is worth indicating
that it needs a resolution parameter which, however, could be tuned during execution
time.

Concerning S-PAMICRO (see Chapter 5 on page 75), further studies are required,
adopting more benchmarks and comparing it to other state-of-the-art MOEAs.

EMO Project (see Chapter 6 on page 89) was designed with the aim to provide
users with efficient implementations of MOEAs, having support to parallel platforms.
Nevertheless, to improve its usability a wide spectrum of optimizers should be added.
We are also interested in expanding the parallelization layer of EMO Project to new
technologies, such as cloud computing [139]. This platform would allow us to dis-
tribute computations asynchronously over several heterogeneous computers, which
may be loosely coupled. Thus, the approximation to the Pareto optimal set could be
stored in the cloud.
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Appendix A

Hypervolume Contribution

The hypervolume indicator has been subject of a lot of research in the last few years,
mainly because its maximization yields near-optimal approximations of the Pareto
optimal front of a multi-objective problem. This feature has been exploited by several
evolutionary optimizers, in spite of the considerable growth in computational cost
that is involved in the computation of the hypervolume as we increase the number
of objectives. Recently, the Walking Fish Group implemented a new version of the
incremental hypervolume algorithm, named IWFG 1.01. This implementation is the
fastest reported to date for determining the solution that contributes the least to the
hypervolume of a non-dominated set. Nevertheless, this new version has gone mostly
unnoticed by the research community. We believe that this is due to an error in the
source code provided by the authors of this algorithm, which appears when coupling
it to a multi-objective evolutionary algorithm. In this appendix, we describe this
error, and we propose a solution to fix it. Moreover, we illustrate the significant gains
in performance produced by IWFG 1.01 in many-objective optimization problems,
when integrated into SMS-EMOA.

The rest of this appendix is structured as follows. Section A.1 gives the motivation
and background of the hypervolume contribution. Section A.2 outlines the IWFG
1.01 algorithm. Section A.3 provides the description of the error and our proposed
solution. Section A.4 presents the validation of our proposed solution. Section A.5
contains a summary of the appendix.

A.1 Motivation

Optimizers, such as IBEA [155], SMS-EMOA [9], MO-CMA-ES [67] and HypE [7],
have incorporated the hypervolume indicator (see definition on page 14) in their
survival selection mechanism. The most common way is by using the exclusive hy-
pervolume (or hypervolume contribution) as fitness. The idea is to measure the size
of the part of objective space that a solution p dominates, but is not dominated by
any element of a set A:

ExcHV (p, A) := HV (A ∪ {p})−HV (A). (A.1)
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Algorithm 12 A naive computation of the exclusive hypervolume

Input: A ⊂ Z set of solutions
Output: Solution s that contributes the least to HV (A)

1: t← HV (A)
2: for all a in A do
3: fitness[a]← t−HV (A \ {a})
4: s← arg mina∈A fitness[a]
5: return s

Therefore, those individuals having the poorest contribution are discarded from
the population. In Algorithm 12, we present a naive implementation of this process.
Although the computational cost of calculating the exact hypervolume is exponential
with the scaling of the objectives, the Walking Fish Group (WFG)1 has proposed
clever implementations where, in practice, the real performance is unrelated to this
worst case complexity [144]. Of our particular interest is the Incremental Hypervo-
lume Algorithm (IWFG) [143, 24], designed for determining which point in a set con-
tributes least to the hypervolume. This algorithm uses several ideas to provide a sub-
stantial speed up. The most recent implementation is the IWFG 1.01 [24], which was
released in November 2015. This version reported outstanding performance for even
large fronts, being significantly faster than previous approaches in many-objective
optimization problems [10]. However, this important version has gone unnoticed by
the research community. Popular frameworks of evolutionary multi-objective opti-
mization, such as jMetal2 or MOEA Framework3 do not have this update, and still,
rely on the naive implementation of Algorithm 12. We believe that this omission is
because of the occurrence of an error, which is triggered when integrating IWFG 1.01
into a MOEA.

A.2 IWFG 1.01 Algorithm

In Algorithm 13, we reproduce the pseudocode of IWFG 1.01 [24]. This improved
version consists of two phases: the slicing process (lines 1 to 6), and the full compu-
tation of the exclusive hypervolume of the least-contributing solution (lines 7 to 11).
Here, head an tail are list functions.4 In the first phase, Rank heuristic imposes the
order in which objectives will be processed (in a worsening sequence). The overall
hypervolume is then processed in “slices“ made by cuts along the corresponding ob-
jective. Those slices related to a solution a are stored in the list S[a] (line 3). The
elements of this list are assumed to be ordered by size from the largest to the smallest.
In lines 4 and 5, the biggest slice of a solution a is successively divided by making

1http://www.wfg.csse.uwa.edu.au/hypervolume
2http://jmetal.github.io/jMetal
3http://moeaframework.org
4head([a, b, c, d]) := a and tail([a, b, c, d]) := [b, c, d].
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Algorithm 13 Incremental Hypervolume IWFG 1.01

Input: A ⊂ Z set of solutions, depth k ∈ IN
Output: Solution s that contributes the least to HV (A)

1: for all a in A do
2: Sort the objectives of a according to Rank heuristic
3: S[a]← the slices for a at the top level m
4: for d = 1 to k − 1 do
5: S[a]← slice(head(S[a]),m− d) ∪ tail(S[a])
6: p[a]← ExcHV (a, head(S[a]))
7: s← arg mina∈A p[a]
8: while S[s] 6= [ ] do
9: p[s]← p[s] + ExcHV (s, head(S[s]))

10: S[s]← tail(S[s])
11: s← arg mina∈A p[a]
12: return s

k − 1 cuts along the remaining objectives. These sub-slices are reinserted into the
list S[a]. In line 6, for each solution, the partial exclusive hypervolume relative to
the biggest slice is determined. In the second phase, a greedy approach is adopted,
named “best-first” queuing mechanism. The idea is to process at each iteration the
solution s with the smallest partial hypervolume until its list of slices has been com-
pletely processed. Moreover, instead of using the expression (A.1) for calculating the
exclusive hypervolume, IWFG 1.01 uses a more efficient mechanism [11]:

ExcHV (p, A) := IncHV (p)−HV (NDS(B)), (A.2)

where

B := {limit(p, a) | a ∈ A}, (A.3)

limit(< p1, . . . , pm >,< a1, . . . , am >)

:=< worse(p1, a1), . . . ,worse(pm, am) >,
(A.4)

and IncHV is the inclusive hypervolume, which is used to denote the size of the part
of objective space dominated by a solution p alone, that is:

IncHV (p) := HV ({p}). (A.5)

In Figure A.1, we illustrate the two different ways to compute the exclusive hyper-
volume. It is worth noticing that expression (A.2) calculates the hypervolume of only
two solutions, whereas expression (A.1) considers six solutions. This computational
effort reduction is because of the filtering of non-dominated solutions.
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Figure A.1: Steps for the calculation of the exclusive hypervolume using the naive way
HV (A ∪ {p})−HV (A) and the efficient way IncHV (p)−HV (NDS(B)), where

A = {a1, a2, a3, a4, a5, a6} and B = {b1, b2, b3, b4, b5, b6}.

> cat sample . dat
#
0.00 0 .00 0 .00 0 .00 1 .00
0 .51 0 .46 0 .73 0 .00 0 .00
0 .47 0 .43 0 .46 0 .45 0 .42
0 .00 0 .47 0 .54 0 .70 0 .00
0 .51 0 .46 0 .73 0 .00 0 .00
0 .00 0 .81 0 .00 0 .58 0 .00
0 .93 0 .00 0 .36 0 .00 0 .00
#
> . / iwfg sample . dat 1 .1 1 .1 1 .1 1 .1 1 .1
Segmentation f a u l t ( core dumped)

Figure A.2: Error reproduction in the IWFG 1.01 component.

A.3 The Error

In Figure A.2, we reproduce a common error of Algorithm IWFG 1.01 using data
produced by MOEAs. The program receives as input the file “sample.dat”, which
contains one front separated by #, and a reference point with five objectives. As can
be noticed, the component throws a fatal error causing an abnormal termination. In
this case, the segmentation fault is raised by hardware, which has memory protection,
notifying the operating system that the program iwfg attempts to access a memory
location that is not allowed.
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In order to track the source of this error, we relied on the debugging tools Val-
grind5 and gdb6. We found that the problem lies in the binarySearch function of
Figure A.3 since it does not contemplate the situation of identical solutions, as it
is the case for the objective vector (0.51, 0.46, 0.73, 0.00, 0.00) from our example in
Figure A.2. In evolutionary multi-objective optimization, these copies are known
as indifferent solutions [22, p. 244], and are occasionally present in a population
when variation operators are not applied, so the offspring become clones of the pa-
rents. According to expression (2.5) on page 11, indifferent solutions are considered
non-dominated to each other, so the requirement of the IWFG 1.0 to accept only
fronts with non-dominated solutions is still fulfilled. The purpose of the function
int binarySearch(POINT p,int d) is to locate the index i at which the solution p

resides in the array of memory addresses fsorted[d].points[i], assuming that ele-
ments are already sorted by the given objective d from the highest to the lowest value.
The ordering relation is achieved by the function int greaterorder(&p,&q), which
numerically compares two solutions. This function returns -1 if the dth objective of
p is greater than the dth objective of q. In the opposite case, it returns 1, and if
they have the same value, the remainder objectives are inspected in the same way
using the order imposed by the Rank heuristic. In the case of indifferent solutions,
greaterorder returns 0.

During the search, the error originates when the first occurrence of a repeated
solution does not match with the memory address of p. Thus, the binary search
focuses on the upper half of the array in lieu of examining adjacent elements. So,
if the solution is not found in this half, the function returns -1, which is an invalid
index. It is important to mention that the error happens only from three objectives
onwards.7 The binarySearch function is invoked by the Rank heuristic, which stores
the returning misinformation. The slicing process accesses the indexes, and it is until
then when the fault occurs.

One possible solution to this issue is to include the case when greaterorder

recognizes two identical solutions. In Figure A.4, we present the source code of our
proposed correction, named ourBinarySearch. Once a duplicated objective vector
is found, in lines 16 to 32, adjacent memory locations are inspected until there is
a match with the address of p. In Figure A.5, we show the right output of our
previous example using the proposed function. It is worth mentioning that one of the
duplicated solutions is suggested for removal.

The computational complexity of binarySearch is O(m lg |P |), where m repre-
sents the number of objectives and |P | is the number of non-dominated solutions
in the front. For ourBinarySearch is O(m(lg |P | + k)), where k denotes the num-
ber of indifferent solutions. Here, the worst case occurs when all elements are re-
peated, so the computational complexity is O(m|P |). However, this is very unlikely,
as in the average case k << |P |. Thus, the complexity of our proposed function

5http://valgrind.org
6https://www.gnu.org/software/gdb
7For two objectives the exclusive hypervolume is computed.
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1 int binarySearch (POINT p , int d) {
2 int min = 0 ;
3 int max = f s o r t e d [ d ] . nPoints −1;
4 gorder = torde r [ d ] ;
5
6 while ( min <= max) {
7 int mid = (max+min ) /2 ;
8 i f (p . o b j e c t i v e s==f s o r t e d [ d ] . po in t s [ mid ] . o b j e c t i v e s )
9 return mid ;

10 else i f ( g r e a t e r o r d e r (&p,& f s o r t e d [ d ] . po in t s [ mid ] ) ==−1)
11 max = mid−1;
12 else
13 min = mid+1;
14 }
15 return −1;
16 }

Figure A.3: Source code of the original binarySearch function.

1 int ourBinarySearch (POINT p , int d) {
2 int i , r ;
3 int min = 0 ;
4 int max = f s o r t e d [ d ] . nPoints −1;
5 gorder = torde r [ d ] ;
6
7 while ( min <= max) {
8 int mid = (max+min ) /2 ;
9

10 i f (p . o b j e c t i v e s==f s o r t e d [ d ] . po in t s [ mid ] . o b j e c t i v e s )
11 return mid ;
12 else i f ( ( r = g r e a t e r o r d e r (&p , &f s o r t e d [ d ] . po in t s [ mid ] ) ) == −1)
13 max = mid−1;
14 else i f ( r == 1)
15 min = mid+1;
16 else { /∗ ( r = 0) dup l i c a t ed s o l u t i o n s ∗/
17 /∗ check s o l u t i o n s on the l e f t o f mid ∗/
18 i = mid − 1 ;
19 while ( i >= min && g r e a t e r o r d e r (&p , &f s o r t e d [ d ] . po in t s [ i ] ) == 0) {
20 i f (p . o b j e c t i v e s == f s o r t e d [ d ] . po in t s [ i ] . o b j e c t i v e s )
21 return i ;
22 i−−;
23 }
24 /∗ check s o l u t i o n s on the r i g h t o f mid ∗/
25 i = mid + 1 ;
26 while ( i <= max && g r e a t e r o r d e r (&p , &f s o r t e d [ d ] . po in t s [ i ] ) == 0) {
27 i f (p . o b j e c t i v e s == f s o r t e d [ d ] . po in t s [ i ] . o b j e c t i v e s )
28 return i ;
29 i ++;
30 }
31 }
32 }
33 return −1;
34 }

Figure A.4: Source code of our proposed binarySearch function.

remains as the original one.
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> . / iwfg sample . dat 1 .1 1 .1 1 .1 1 .1 1 .1
mehv(1) = 0.0000000000000000
Smal l e s t : 0 .5100000000 0.4600000000 0.7300000000 0.0000000000 0.0000000000
Total time = 0.000000 ( s )

Figure A.5: Output of the IWFG 1.01 component using the function ourBinarySearch.

A.4 Experimental Results

We compared the performance of IWFG 1.01 versus the naive approach of Algo-
rithm 12. This latter version is denoted here as IWFG 1.00. Both methods calculate
the hypervolume using the method described in [144]. These versions were coupled
to SMS-EMOA, considering the DTLZ1, DTLZ2, and DTLZ7 test problems (see Sec-
tion B.3 on page 150). The variation operators were Polynomial-based mutation and
Simulated Binary Crossover (SBX). For the mutation operator, its probability and
distribution index were set to 1/n and 20, respectively. For the crossover operator,
these parameters varied according to the number of objectives: for two objectives we
adopted 0.9 and 20, whereas for higher dimensionality we adopted 1.0 and 30. In
all cases, the population size was set to 100 individuals. The maximum number of
evaluations (1×103) was set to 40, 60, 70, 80, 80, 90 for 2 to 7 objectives, respectively.

For the performance assessment, we relied on the hypervolume indicator using
the reference point (2, 2, . . .) for DTLZ1,2 and (2, 2, . . . , 2m + 1) for DTLZ7. In all
experiments, we performed 10 independent runs. We applied the Wilcoxon rank sum
test (two-tailed) to the mean hypervolume indicator values, in order to determine if
the distributions of both variants were identical or different at the confidence interval
of 99%. Finally, executions have been done over the GNU/Linux Xiuhcoatl Cluster8

of 72 nodes with 252 GB of RAM and InfiniBand interconnection network. Each
processor is a 32-core AMD Opteron(TM) Processor 6274 1.36 GHz. Algorithms
were implemented in C language and compiled with gcc 4.4.7 -O3.

In Figure A.6, we show the median execution time of the two variants. As can be
observed, SMS-EMOA IWFG 1.01 spent much less computational time than SMS-
EMOA IWFG 1.00. Furthermore, time reduction becomes more significant as the
number of objectives increases. Regarding the quality of the solutions, it is worth
mentioning that both versions produce slightly different Pareto front approximations
even though we used the same random seeds. This occurs because during the survival
selection process, several individuals may have the same hypervolume contribution.
Thus, the choice of the methods depends on the way in which the population is sorted.
In spite of this, there is no significant difference in quality, as shown in Table A.1.

8http://clusterhibrido.cinvestav.mx
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Figure A.6: Execution time of the two versions on some instances of the DTLZ benchmark.

Table A.1: Median and standard deviation of the hypervolume indicator. If p-value
> 0.01, then it means that the two samples are equivalent.

Problem m
SMS-EMOA

IWFG 1.00

SMS-EMOA

IWFG 1.01

Statistical Test

(p-value)

DTLZ1

2 3.873652e+00 1.81e-04 3.873610e+00 1.47e-04 9.10e-01

3 7.974010e+00 4.77e-05 7.974043e+00 8.25e-05 7.05e-01

4 1.599436e+01 3.06e-05 1.599437e+01 1.15e-05 2.39e-01

5 3.199857e+01 6.11e-05 3.199859e+01 5.11e-05 4.93e-01

6 6.399957e+01 2.06e-05 6.399956e+01 2.53e-05 5.16e-01

7 1.279999e+02 4.22e-05 1.279999e+02 4.82e-05 6.51e-01

DTLZ2

2 3.211015e+00 1.86e-05 3.211003e+00 2.64e-05 6.50e-01

3 7.427029e+00 5.39e-05 7.427018e+00 5.76e-05 8.50e-01

4 1.558050e+01 7.71e-05 1.558050e+01 7.71e-05 1.00e+00

5 3.168567e+01 7.59e-05 3.168567e+01 7.59e-05 1.00e+00

6 6.375871e+01 1.10e-04 6.375871e+01 1.10e-04 1.00e+00

7 1.278103e+02 1.43e-04 1.278103e+02 1.43e-04 1.00e+00

DTLZ7

2 4.418199e+00 1.60e-05 4.418197e+00 1.23e-05 8.80e-01

3 1.351650e+01 1.51e+00 1.351650e+01 1.51e+00 1.00e+00

4 3.455925e+01 4.64e+00 3.455925e+01 4.62e+00 9.40e-01

5 6.993100e+01 5.14e+00 6.982480e+01 5.14e+00 9.40e-01

6 1.242848e+02 1.55e+01 1.242848e+02 1.55e+01 1.00e+00

7 2.469422e+02 4.84e+01 2.469422e+02 4.84e+01 1.00e+00

A.5 Summary

Recently, an optimized version of the incremental hypervolume algorithm of the Walk-
ing Fish Group was proposed. This algorithm determines the solution that contributes
the least to the hypervolume of a non-dominated set. However, its use has been limi-
ted due to a bug in its implementation. We observed that this error occurs during the
slicing process, specifically in the function binarySearch, where duplicated solutions
are not considered for problems with more than two objectives. In this appendix,
we have proposed a corrected version of such function, which has an average-case
complexity of O(m lg |P |), where m denotes the number of objectives, and |P | the
population size. Clearly, there are other possible solutions to this issue, such as to re-
move duplicated solutions before calculating the incremental hypervolume. However,
we have presented the one that we believe is the easiest to update in the component
while keeping a low computational cost. The source code of all the algorithms were
developed in EMO Project (see page 89), being the IWFG modules thread-safe.
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Test Problems

With the aim of having a better understanding of the working principles of optimizers,
there are several benchmarks that have been suggested in the field of multi-objective
optimization. These artificial test problems examine the ability to control difficul-
ties in both converging to the true Pareto optimal front and in maintaining a widely
distributed set of solutions. Moreover, they offer many advantages over real-world
problems, such as scalability, knowledge of the exact shape and location of the re-
sulting Pareto optimal front, fast execution time, as well as ease of understanding,
implementation and visualization.

In this Appendix, we define the test problems for real-value encoding that were
adopted in our experiments. All of them were implemented in EMO Project. Sec-
tion B.1 starts with their characterization. Section B.2 is dedicated to the Zitzler-
Deb-Thiele (ZDT) benchmark [154]. Section B.3 describes the Deb-Thiele-Laumanns-
Zitzler (DTLZ) test suite [32]. Section B.4 presents the Walking-Fish-Group bench-
mark (WFG) [65]. Section B.5 includes the inverted problems of the DTLZ and WFG
benchmarks [74]. Section B.6 presents some selected test problems with inequality
constraints. Finally, Section B.7 concludes this appendix.

B.1 Difficulties in Multi-Objective Optimization

This section provides fundamental concepts about the features that may be present in
MOPs. Some of them represent a real challenge for optimizers. For a comprehensive
review on the topic, readers can consult the works of Huband et al. [65] and Deb [26].

In the following, we refer to fitness landscape as the mapping from the decision
space (X ) to the objective space (Z). As illustrated in Figure B.1(a), the fitness land-
scape can be one-to-one or many-to-one. In the former case, for each decision variable
in X , there is a different objective vector in Z. In the second case, two or more deci-
sion variables in X are associated to the same objective vector in Z. The many-to-one
mapping presents more difficulties to optimizers since choices must be made among
the decision vectors. This becomes critical in flat regions, where small perturbations
of the decision variables do not change the objective values (see Figure B.1b).
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a) b)

Objective SpaceDecision Space

Many−to−One Mapping

One−to−One Mapping

c) d)

e) f)

Figure B.1: Some features of multi-objective optimization problems: a) mapping between
X and Z, b) illustration of a flat function, c) examples of uni-modal and multi-modal
functions, d) a deceptive function, e) 100,000 random decision vectors from the biased

ZDT1 test problem, and f) an hypothetical disconnected and mixed Pareto front.
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Another feature of fitness landscapes is modality as depicted in Figure B.1c. In
a uni-modal MOP, every objective function has a single optimum. In a multi-modal
MOP, at least one objective function has multiple local optima. A special case of
multi-modality is a deceptive MOP, where one objective function has at least two
optima, a true optimum and a deceptive optimum, but the majority of the decision
space favors the deceptive optimum (see Figure B.1d). Thus, the global optimum is
in an unlikely place to explore. In general, multi-modal problems are difficult to solve
since optimizers can get stuck in local optima.

An important aspect of the fitness landscape is its distribution. We would expect
that an evenly distributed sample of the decision vectors in X maps to an evenly
distributed set of objective vectors in Z. However, in practice, this does not occur.
A MOP is said to be biased when there is a significant density variation between the
Pareto optimal set and the Pareto optimal front (see Figure B.1e). Bias has a natural
impact on the search process because most optimizers attempt to achieve an even
spread of solutions in objective space.

A decision variable xi is separable with respect to an objective function if the
Pareto optimal set is the same as such variable changes. Otherwise, xi, is non-
separable. If all the variables are independent, then the objective is said to be se-
parable. Thus, each decision variable can be optimized independently. Similarly, a
MOP is non-separable if at least one objective function is non-separable. Otherwise,
the MOP is separable. In general, separable MOPs are relatively easy to solve, when
compared with their non-separable version.

Decision variables can also be categorized regarding their relationship with the
fitness landscape. A decision variable xi is called distance-related parameter if it
only controls convergence to the Pareto optimal front1. A decision variable xi is
called position-related parameter if it controls diversity of the current Pareto front2.
All variables that are neither position nor distance related parameters are mixed
parameters. Thus, modifying mixed parameters on their own can result in a change
in position or distance.

The Pareto optimal front can have a wide variety of geometries. Recall that a set
is convex if and only if it covers its convex hull. Conversely, it is concave if and only if
it is covered by its convex hull. A set is strictly convex (respectively, strictly concave)
if it is convex (respectively, concave) and not concave (respectively, convex). A linear
set is one that is both concave and convex. A mixed front is one with connected
subsets that are each strictly convex, strictly concave, or linear, but not all of the
same type.

A degenerate Pareto front is a front that is of lower dimension than the objective
space in which it is embedded, less one. For example, a front that is a line segment
in a three objective problem is degenerate. Conversely, a two-dimensional front in
a three objective problem is not degenerate. Degenerate fronts can cause problems
for some algorithms. For example, methods employed to encourage an even spread

1Modifying xi may result in a solution that dominates or is dominated by the original one.
2Perturbing xi may result in a solution that is incomparable with respect to the original one.
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Table B.1: Properties of the benchmarks.

Problem Separability Modality Geometry Bias
ZDT1 separable uni convex no
ZDT2 separable uni concave no
ZDT3 separable multi disconnected no
ZDT4 separable multi convex no
ZDT6 separable multi concave polynomial

DTLZ1 separable multi linear no
DTLZ2 separable uni concave no
DTLZ3 separable multi concave no
DTLZ4 separable uni concave polynomial

DTLZ5 unknown uni
arc, parameter

degenerated dependent

DTLZ6 unknown uni
arc, parameter

degenerated dependent

DTLZ7
f1:m−1 not applicable f1:m−1 uni disconnected,

no
fm separable fm multi mixed

WFG1 separable uni
f1:m−1 convex polynomial,
fm mixed flat

WFG2 non-separable
f1:m−1 uni convex,

no
fm multi disconnected

WFG3 non-separable uni linear, degenerated no
WFG4 separable multi concave no
WFG5 separable deceptive concave no
WFG6 non-separable uni concave no

WFG7 separable uni concave
parameter
dependent

WFG8 non-separable uni concave
parameter
dependent

WFG9 non-separable
multi,

concave
parameter

deceptive dependent

of solutions across the Pareto optimal front might operate differently if the front
effectively employs fewer dimensions than expected.

We are also interested in whether a front is a connected set. In the literature, a
front that is a disconnected set is often referred to as discontinuous. Disconnected
fronts will test an algorithm’s ability to maintain subpopulations in different Pareto
optimal regions.

Examples of different Pareto front geometries are shown in Figure B.1f. Finally,
in Table B.1, we summarize the features of the benchmarks that are described in the
following sections.
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B.2 Zitzler-Deb-Thiele-Laumanns Test Problems

The Zitzler-Deb-Thiele (ZDT) benchmark [154] has six bi-objective functions. Here,
we only consider the five continuous problems of the benchmark. The range of the
decision variables is x1 ∈ [0, 1] and x2, . . . , x10 ∈ [−5, 5] for ZDT4; x1, . . . , x30 ∈ [0, 1]
for ZDT1-3; and x1, . . . , x10 ∈ [0, 1] for ZDT6. The Pareto optimal fronts, shown in
Figures B.2 and B.3, are formed with g(x) = 1.

ZDT1 ZDT2

f1(x) = x1,

f2(x) = g(x)
(

1−
√
f1/g(x)

)
g(x) = 1 +

9

n− 1

n∑
i=2

xi

f1(x) = x1

f2(x) = g(x)
(

1−
(
f1/g(x)

)2)
g(x) = 1 +

9

n− 1

n∑
i=2

xi

ZDT3 ZDT4

f1(x) = x1

f2(x) = g(x)

1−

√
f1
g(x)

− f1
g(x)

sin(10πf1)


g(x) = 1 +

9

n− 1

n∑
i=2

xi

f1(x) = x1

f2(x) = g(x)

1−

√
f1
g(x)


g(x) = 10n− 9 +

n∑
i=2

(
x2i − 10 cos(4πxi)

)
ZDT6

f1(x) = 1− exp(−4x1) sin6(6πx1)

f2(x) = g(x)

(
1−

(
f1
g(x)

)2
) g(x) = 1 + 9

(∑n
i=2 xi
9

)0.25

ZDT1
ZDT4

ZDT2

Figure B.2: Pareto optimal fronts and parallel coordinates of the ZDT benchmark.
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ZDT3

ZDT6

Figure B.3: ZDT benchmark (cont’d).

B.3 Deb-Thiele-Laumanns-Zitzler Test Problems

The Deb-Thiele-Laumanns-Zitzler (DTLZ) test suite [32] includes nine representative
test problems, which are scalable to any number of decision variables and objectives.
Here, we only consider the seven unconstrained problems. In all cases, the range of the
decision variables is [0, 1]. The number of decision variables is given by n = m+k−1,
where m represents the number of objectives and k is the number of distance-related
parameters. The distance vector of k entries is defined as y = {xm, xm+1, . . . , xn},
considering the decision vector x = {x1, . . . , xm−1, xm, . . . , xn}. In [32], authors sug-
gest k-values of 5 for DTLZ1, 10 for DTLZ2-6, and 20 for DTLZ7. In the case of
DTLZ4, α = 100 is recommended.

DTLZ1 DTLZ2

f1(x) =0.5
(
1 + g(y)

)m−1∏
i=1

xi

fj=2:m−1(x) =0.5
(
1 + g(y)

)
(
1− xm−j+1

)m−j∏
i=1

xi

fm(x) =0.5
(
1 + g(y)

)
(1− x1)

g(y) =100

k +

k∑
i=1

(yi − 0.5)
2

− cos(20π(yi − 0.5))



f1(x) =
(
1 + g(y)

)m−1∏
i=1

cos(xiπ/2)

fj=2:m−1(x) =
(
1 + g(y)

)m−j∏
i=1

cos(xiπ/2)


sin(xm−j+1π/2)

fm(x) =
(
1 + g(y)

)
sin(x1π/2)

g(y) =

k∑
i=1

(yi − 0.5)
2
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The Pareto optimal solution corresponds to y = (0.5, 0.5, . . .)T for DTLZ1-5
and y = (0, 0, . . .)T for DTLZ6-7. Moreover, it is fulfilled that

∑m
i=1 fi = 0.5 for

DTLZ1, and
∑m

i=1(fi)
2 = 1 for DTLZ2-4. DTLZ5-6 were originally proposed as

many-objective test problems with degenerate Pareto fronts. However, their Pareto
fronts are not degenerate when they have four or more objectives [65]. The Pareto
optimal fronts of this benchmark are shown in Figure B.4.

DTLZ3 DTLZ4

f1(x) =
(
1 + g(y)

)m−1∏
i=1

cos(xiπ/2)

fj=2:m−1(x) =
(
1 + g(y)

)m−j∏
i=1

cos(xiπ/2)


sin(xm−j+1π/2)

fm(x) =
(
1 + g(y)

)
sin(x1π/2)

g(y) =100

k +

k∑
i=1

(yi − 0.5)
2

− cos(20π(yi − 0.5))



f1(x) =
(
1 + g(y)

)m−1∏
i=1

cos(xαi π/2)

fj=2:m−1(x) =
(
1 + g(y)

)m−j∏
i=1

cos(xαi π/2)


sin(xαm−j+1π/2)

fm(x) =
(
1 + g(y)

)
sin(xα1 π/2)

g(y) =

k∑
i=1

(yi − 0.5)
2

DTLZ5 DTLZ6

f1(x) =
(
1 + g(y)

)m−1∏
i=1

cos(θiπ/2)

fj=2:m−1(x) =
(
1 + g(y)

)m−j∏
i=1

cos(θiπ/2)


sin(θm−j+1π/2)

fm(x) =
(
1 + g(y)

)
sin(θ1π/2)

θi =

{
xi, if i = 1
1+2g(y)
2(1+g(y))xi, otherwise

g(y) =

k∑
i=1

(yi − 0.5)
2

f1(x) =
(
1 + g(y)

)m−1∏
i=1

cos(θiπ/2)

fj=2:m−1(x) =
(
1 + g(y)

)m−j∏
i=1

cos(θiπ/2)


sin(θm−j+1π/2)

fm(x) =
(
1 + g(y)

)
sin(θ1π/2)

θi =

{
xi, if i = 1
1+2g(y)
2(1+g(y))xi, otherwise

g(y) =

k∑
i=1

y0.1i

DTLZ7
fj=1:m−1(x) =xj

fm(x) =
(
1 + g(y)

)m− m−1∑
i=1

[
fi

1 + g(y)

(
1 + sin(3πfi)

)]
g(y) =1 +

9

k

k∑
i=1

yi
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DTLZ1

DTLZ2-4

DTLZ5-6 not applicable

DTLZ7

Figure B.4: Pareto optimal fronts and parallel coordinates of the DTLZ benchmark.

B.4 Walking Fish Group Test Problems

The Walking-Fish-Group (WFG) benchmark, proposed by Huband et al. [65], is
composed of nine multi-objective test problems that are scalable with respect to
both objectives and variables (see Figure B.5). Each problem is defined in terms
of an underlying vector of parameters x ∈ IRm that defines the objective space
(m represents the number of objectives). All xi ∈ x have the domain [0, 1]. The
vector x is derived via a series of transition vectors from a decision vector z =
{z1, . . . , zk, zk+1, . . . , zn}. The domain of all zi ∈ z is [0, 2i]. The number of deci-
sion variables is given by n = k + l, where it should be satisfied that n ≥ m. The
first k ∈

{
m− 1, 2(m− 1), 3(m− 1), . . .

}
decision variables are the position-related

parameters and the last l ∈ {1, 2, . . .} decision variables are the distance-related
parameters. The optimizer directly manipulates z through which x is indirectly ma-
nipulated. For WFG1-WFG7, a solution is Pareto optimal if zi=k+1:n = (2i)0.35. For
WFG8, it is required that all of:

zi=k+1:n = (2i)0.35

(
0.02+49.98( 0.98

49.98
−(1−2u)|b0.5−uc+ 0.98

49.98
|)
)−1

,

u = r sum({z1, . . . , zi−1} , {1, . . . , 1}).
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WFG1

WFG2

WFG3

WFG4-9

Figure B.5: Pareto optimal fronts and parallel coordinates of the WFG benchmark.

To obtain a Pareto optimal solution, the position should first be determined by set-
ting z1:k appropriately. The required distance-related parameter values can then be
calculated by first determining zk+1, then zk+2, and so on, until zn has been calculated.

In the case of WFG9, for a solution to be Pareto optimal, it is required that all of:

zi=k+1:n = (2i)

0.35

(
0.02+1.96 r sum({zi+1,...,zn},{1,...,1})

)−1

, i 6= n

0.35, i = n,

which can be found by first determining zn, then zn−1, and so on, until the required
value for zk+1 is determined. Once the optimal values for zk+1:n are determined,
the position-related parameters can be varied arbitrarily to obtain different Pareto
optimal solutions.

The transformation functions, which map parameters with domain [0, 1] onto the
range [0, 1], add complexity to the problem. There are three types of transformation
functions: bias, shift and reduction functions. Bias and shift functions only employ
one parameter, whereas reduction functions can employ many. Bias transformations
have a natural impact on the search process by biasing the fitness landscape. Shift
transformations move the location of optimal values, and are used to apply a linear
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shift, or to produce deceptive and multi-modal problems. Reduction transformations
are used to produce non-separability of the problem. In the following, we define such
transformation functions.

Bias: Polynomial

When α > 1 or when α < 1, y is biased towards zero or towards one, respectively.

b poly(y, α) = yα, (B.1)

where α > 0 and α 6= 1.

Bias: Flat Region

Values of y between B and C (the area of the flat region) are mapped to the value
A.

b flat(y, A,B,C) = A+ min(0, by −Bc)A(B − y)

B

−min(0, bC − yc)(1− A)(y − C)

1− C
,

(B.2)

where A,B,C ∈ [0, 1], B < C, B = 0⇒ A = 0∧C 6= 1, and C = 1⇒ A = 1∧B 6= 0.

Bias: Parameter Dependent

A,B,C, the parameter vector w ∈ [0, 1]|w|, and the reduction function u together
determine the degree to which y is biased by being raised to an associated power:
values of u(w) ∈ [0, 0.5] are mapped linearly onto [B,B + (C − B)A], and values of
u(w) ∈ [0.5, 1] are mapped linearly onto [B + (C −B)A,C].

b param(y, u(w), A,B,C) = yB+(C−B)(A−(1−2u(w))|b0.5−u(w)c+A|), (B.3)

where A ∈ (0, 1), and 0 < B < C.

Shift: Linear

A ∈ (0, 1) is the value for which y is mapped to zero.

s linear(y, A) =
|y − A|

|bA− yc+ A|
. (B.4)

Shift: Deceptive

A is the value at which y is mapped to zero, and the global minimum of the trans-
formation. B is the “aperture” size of the well/basin leading to the global minimum
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at A, and C is the value of the deceptive minima (there are always two deceptive
minima).

s decept(y, A,B,C) = 1 +
(
|y − A| −B

)(by − A+Bc
(
1− C + A−B

B

)
A−B

+
bA+B − yc

(
1− C + 1−A−B

B

)
1− A−B

+
1

B

)
,

(B.5)

where A ∈ (0, 1), 0 < B � 1, 0 < C � 1, A−B > 0, and A+B < 1.

Shift: Multi-modal

A controls the number of minima, B controls the magnitude of the “hill sizes” of the
multi-modality, and C is the value for which y is mapped to zero. When B = 0,
2A + 1 values of y (one at C) are mapped to zero, and when B 6= 0, there are 2A
local minima, and one global minimum at C. Larger values of A and smaller values
of B create more difficult problems.

s multy(y, A,B,C) =

1 + cos

[
(4A+ 2) π

(
0.5− |y−C|

2(bC−yc+C)

)]
+ 4B

(
|y−C|

2(bC−yc+C)

)2

B + 2
,

(B.6)
where A ∈ {1, 2, . . .}, B ≥ 0, (4A+ 2)π > 4B, and C ∈ (0, 1).

Reduction: Weighted Sum

By varying the constants of the weight vector w, optimizers can be forced to treat
parameters differently.

r sum(y,w) =

(∑|y|
i=1wiyi

)
∑|y|

i=1wi
, (B.7)

where |w| = |y|, and w1, . . . , w|y|>0.

Reduction: Non-separable

A controls the degree of non-separability (noting that r nonsep(y, 1) = r sum(y, {1, . . . , })).

r nonsep(y, A) =

∑|y|
j=1

(
yj +

∑A−2
k=0 |yj − y1+(j+k)mod|y||

)
|y|
A
dA/2e

(
1 + 2A− 2dA/2e

) , (B.8)

where A ∈
{

1, . . . , |y|
}

, and |y|modA = 0.
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WFG1 WFG3

f1(x) = xm + 2

m−1∏
i=1

(
1− cos(xiπ/2)

)
fj=2:m−1(x) = xm + 2j

(m−j∏
i=1

(
1− cos(xiπ/2)

))(
1− sin(xm−j+1π/2)

)
fm(x) = xm + 2m

(
1− x1 −

cos(10πx1 + π/2)

10π

)
xi=1:m−1 = r sum

({
y(i−1)k/(m−1)+1, . . . , yik/(m−1)

}
,{

2(i− 1)k/(m− 1) + 1, . . . , 2ik/(m− 1)
})

xm = r sum
({
yk+1, . . . , yn

}
,
{

2(k + 1), . . . , 2n
})

yi=1:n = b poly(y′i, 0.02)

y′i=1:k = y′′i

y′i=k+1:n = b flat(y′′i , 0.8, 0.75, 0.85)

y′′i=1:k = zi/(2i) y′′i=k+1:n = s linear(zi/(2i), 0.35)

f1(x) = xm + 2

m−1∏
i=1

xi

fj=2:m−1(x) = xm + 2j
(m−j∏
i=1

xi

)(
1− xm−j+1

)
fm(x) = xm + 2m

(
1− x1

)
xi=1 = ui

xi=2:m−1 = xm

(
ui − 0.5

)
+ 0.5

xm = r sum
({
yk+1, . . . , yk+l/2

}
,
{

1, . . . , 1
})

ui = r sum
({
y(i−1)k/(m−1)+1, . . . , yik/(m−1)

}
,
{

1, . . . , 1
})

yi=1:k = y′i

yi=k+1:k+l/2 = r nonsep
({
y′k+2(i−k)−1, y

′
k+2(i−k)

}
, 2
)

y′i=1:k = zi/(2i) y′i=k+1:n = s linear(zi/(2i), 0.35)

WFG2 WFG4

f1(x) = xm + 2

m−1∏
i=1

(
1− cos(xiπ/2)

)
fj=2:m−1(x) = xm + 2j

(m−j∏
i=1

(
1− cos(xiπ/2)

))(
1− sin(xm−j+1π/2)

)
fm(x) = xm + 2m

(
1− x1 cos2(5x1π)

)
xi=1:m−1 = r sum

({
y(i−1)k/(m−1)+1, . . . , yik/(m−1)

}
,
{

1, . . . , 1
})

xm = r sum
({
yk+1, . . . , yk+l/2

}
,
{

1, . . . , 1
})

yi=1:k = y′i

yi=k+1:k+l/2 = r nonsep
({
y′k+2(i−k)−1, y

′
k+2(i−k)

}
, 2
)

y′i=1:k = zi/(2i) y′i=k+1:n = s linear(zi/(2i), 0.35)

f1(x) = xm + 2

m−1∏
i=1

sin(xiπ/2)

fj=2:m−1(x) = xm + 2j
(m−j∏
i=1

sin(xiπ/2)
)

cos(xm−j+1π/2)

fm(x) = xm + 2m cos(x1π/2)

xi=1:m−1 = r sum
({
y(i−1)k/(m−1)+1, . . . , yik/(m−1)

}
,
{

1, . . . , 1
})

xm = r sum
({
yk+1, . . . , yn

}
,
{

1, . . . , 1
})

yi=1:n = s multi(zi/(2i), 30, 10, 0.35)
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WFG5 WFG6

f1(x) = xm + 2

m−1∏
i=1

sin(xiπ/2)

fj=2:m−1(x) = xm + 2j
(m−j∏
i=1

sin(xiπ/2)
)

cos(xm−j+1π/2)

fm(x) = xm + 2m cos(x1π/2)

xi=1:m−1 = r sum
({
y(i−1)k/(m−1)+1, . . . , yik/(m−1)

}
,
{

1, . . . , 1
})

xm = r sum
({
yk+1, . . . , yn

}
,
{

1, . . . , 1
})

yi=1:n = s decept(zi/(2i), 0.35, 0.001, 0.05)

f1(x) = xm + 2

m−1∏
i=1

sin(xiπ/2)

fj=2:m−1(x) = xm + 2j
(m−j∏
i=1

sin(xiπ/2)
)

cos(xm−j+1π/2)

fm(x) = xm + 2m cos(x1π/2)

xi=1:m−1 = r nonsep
({
y(i−1)k/(m−1)+1, . . . , yik/(m−1)

}
, k/(m− 1)

)
xm = r nonsep

({
yk+1, . . . , yn

}
, l
)

yi=1:k = zi/(2i)

yi=k+1:n = s linear(zi/(2i), 0.35)

WFG7 WFG8

f1(x) = xm + 2

m−1∏
i=1

sin(xiπ/2)

fj=2:m−1(x) = xm + 2j
(m−j∏
i=1

sin(xiπ/2)
)

cos(xm−j+1π/2)

fm(x) = xm + 2m cos(x1π/2)

xi=1:m−1 = r sum
({
y(i−1)k/(m−1)+1, . . . , yik/(m−1)

}
,
{

1, . . . , 1
})

xm = r sum
({
yk+1, . . . , yn

}
,
{

1, . . . , 1
})

yi=1:k = y′i

yi=k+1:n = s linear(y′i, 0.35)

y′i=1:k = b param
(
zi/(2i), r sum

({
zi+1/(2(i+ 1)), . . . , zn/(2n)

}
,{

1, . . . , 1
})
,

0.98

49.98
, 0.02, 50

)
y′i=k+1:n = zi/(2i)

f1(x) = xm + 2

m−1∏
i=1

sin(xiπ/2)

fj=2:m−1(x) = xm + 2j
(m−j∏
i=1

sin(xiπ/2)
)

cos(xm−j+1π/2)

fm(x) = xm + 2m cos(x1π/2)

xi=1:m−1 = r sum
({
y(i−1)k/(m−1)+1, . . . , yik/(m−1))

}
,
{

1, . . . , 1
})

xm = r sum
({
yk+1, . . . , yn

}
,
{

1, . . . , 1
})

yi=1:k = y′i yi=k+1:n = s linear(y′i, 0.35)

y′i=k = zi/(2i)

y′i=k+1:n = b param
(
zi/(2i), r sum

({
z1/2, . . . , zi−1/(2(i− 1))

}
,{

1, . . . , 1
})
,

0.98

49.98
, 0.02, 50

)
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WFG9

f1(x) = xm + 2

m−1∏
i=1

sin(xiπ/2)

fj=2:m−1(x) = xm + 2j
(m−j∏
i=1

sin(xiπ/2)
)

cos(xm−j+1π/2)

fm(x) = xm + 2m cos(x1π/2)

xi=1:m−1 = r nonsep
({
y(i−1)k/(m−1)+1, . . . , yik/(m−1)

}
, k/(m− 1)

)
xm = r nonsep

({
yk+1, . . . , yn

}
, l
)

yi=1:k = s decept(y′i, 0.35, 0.001, 0.05)

yi=k+1:n = s multi(y′i, 30, 95, 0.35)

y′i=1:n−1 = b param
(
zi/(2i), r sum

({
zi+1/(2(i+ 1)), . . . , zn/(2n)

}
,{

1, . . . , 1
})
,

0.98

49.98
, 0.02, 50

)
y′n = zn/(2n)

B.5 Inverted DTLZ and WFG Test Problems

Recently, a slight change in the DTLZ and WFG formulations has been proposed by
Ishibuchi et al. [74]. The idea is to generate different Pareto front shapes by modifying
their general form to:

Minimize
{
−f1(x),−f2(x), . . . ,−fm(x)

}
(B.9)

subject to x ∈ X

Therefore, the same objective functions and the same constraint conditions are used
except that all objectives are multiplied by −1. The generated problems in (B.9) are
referred to as DTLZ−1 and WFG−1. The effect is that the Pareto front is inverted,
though some other properties of the original problems may also change. Figures B.6
and B.7 show the approximations to the Pareto optimal front of these problems. Note,
for example, that DTLZ1−1, DTLZ2−1, WFG1−1 and WFG4−1 have a rotated shape
of the Pareto front.

As pointed out by Ishibuchi et al. [74], multi-objective evolutionary algorithms
that rely on weight vectors or reference points, such as MOEA/D or NSGA-III, dete-
riorate their performance when changing only the shape functions of the DTLZ and
WFG test problems. This issue evidences the overspecialization of these algorithms
on regular and symmetric Pareto fronts.

B.6 Constrained Problems

The following problems consider inequality constraints (2.2), as well as bounds on the
decision variables (2.4) according to the MOP definition on page 9.
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DTLZ1−1

DTLZ2−1

DTLZ4−1

DTLZ3−1

DTLZ5−1

DTLZ6−1

DTLZ7−1

Figure B.6: Approximations to the Pareto optimal front and parallel coordinates of the
inverted DTLZ benchmark.

The non-linear constraints of the TNK1 problem, originally proposed by Tanaka
et al. [125], make difficult for an optimizer to find the disconnected regions of the
Pareto optimal front.

The OSY2 problem, suggested by Osyczka and Kundu [106], contains six cons-
traints that delimit six connected regions in the Pareto optimal front. For optimizers
it is very difficult to maintain subpopulations at these regions.
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WFG1−1

WFG2−1

WFG3−1

WFG4−1-
WFG9−1

Figure B.7: Approximations to the Pareto optimal front and parallel coordinates of the
inverted WFG benchmark.

TNK1

f1(x) =x1

f2(x) =x2

g1(x) =x21 + x22 − 1− 0.1 cos

(
16 arctan

(
x1
x2

))
≥ 0

g2(x) =
1

2
−
(
x1 −

1

2

)2

−
(
x2 −

1

2

)2

≥ 0

x1, x2 ∈ (0, π]

OSY2

f1(x) =− (25(x1 − 2)2 + (x2 − 2)2 + (x3 − 1)2

+ (x4 − 4)2 + (x5 − 1)2)

f2(x) =x21 + x22 + x23 + x24 + x25 + x26

x1, x2, x6 ∈ [0, 10]

x3, x5 ∈ [1, 5]

x4 ∈ [0, 6]

g1(x) =x1 + x2 − 2 ≥ 0,

g2(x) =6− x1 − x2 ≥ 0,

g3(x) =2 + x1 − x2 ≥ 0,

g4(x) =2− x1 + 3x2 ≥ 0,

g5(x) =4− (x3 − 3)2 − x4 ≥ 0

g6(x) =(x5 − 3)2 + x6 − 4 ≥ 0
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TNK1

OSY2

VIE4

Figure B.8: Pareto optimal fronts and parallel coordinates of the constrained problems.

Finally, VIE4, proposed by Viennet et al. [130, 131], is a three-objective problem
with three linear constraints. Optimizers face difficulties in achieving good uniformity
of solutions along the curved and asymmetric Pareto front.

VIE4

f1(x) =
(x1 − 2)2

2
+

(x2 + 1)2

13
+ 3

f2(x) =
(x1 + x2 − 3)2

175
+

(2x2 − x1)2

17
− 13

f3(x) =
(3x1 − 2x2 + 4)2

8
+

(x1 − x2 + 1)2

27
+ 15

g1(x) = 4− 4x1 − x2 > 0

g1(x) = x1 + 1 > 0

g1(x) = x2 − x1 + 2 > 0

x1, x2 ∈ [−4, 4]

The representations of each MOPs’ Pareto optimal front are shown in Figure B.8.
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B.7 Summary

When attempting to better understand the strengths and weaknesses of an optimizer,
it is important to have a strong understanding of the problem at hand. For this reason,
a large set of artificial test problems have been proposed.

In this appendix, we reviewed the most important benchmarks in the field of
evolutionary multi-objective optimization: the ZDT benchmark, which includes five
continuous problems, the DTLZ test suite, which includes seven unconstrained pro-
blems with degenerate and multi-modal Pareto optimal fronts, and the WFG test
suite, which includes nine problems with a wide variety of Pareto optimal geome-
tries and fitness landscapes, such as, bias, multi-modality, and non-separability. The
DTLZ and WFG benchmarks are scalable with respect to the number of objectives
and variables. Moreover, the exact location of the Pareto optimal sets are known.
Besides, we have included the inverted versions of the DTLZ and WFG benchmarks,
which challenges optimizers to maintain diversity. Finally, we have also considered
three constrained problems for two and three objectives.
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Appendix C

Example of a Configuration File

###############################################################

# Param_02D.cfg Configuration file of EMO Project #

# for two objectives. #

###############################################################

# File that contains the seeds of the random number generator.

# In sequential MOEAs a different seed is used for each run,

# while in parallel MOEAs, each processor gets one distinct

# seed for each run.

seed = ./input/seed.dat

# Population size

psize = 100

######################## MOP definition #######################

# Values are ignored when using the ’default’ option or when

# the MOP is not scalable w.r.t the number of objectives,

# decision variables or inequality constraints.

# Number of decision variables (0 default value)

nvar = 0

# Number of objective functions

nobj = 2

# Number of inequality constraints (0 default value)

ncon = 0

##################### WFG1-9 test problems ####################

# Number of decision variables

wfg_nvar = 24

# Number of position-related parameters

wfg_npos = 20

########## Test Problems Based on Lame Superspheres ###########

# Only apply for problems EBN, LAME and MIRROR.
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# Pareto front shape (1: linear, <1: convex, >1: concave)

lame_gamma = 6.0

# Difficulty of the problem

# 0: unimodal, 1: unimodal with equidistant local Pareto fronts,

# 2: many-to-one mappings

lame_difficulty = 2

########### Tanaka constrained problems (TNK1, TNK2) ##########

# In general, (a,b) controls the length of the continuous

# region of the Pareto front.

#

# By increasing the value of a, the length of the ‘‘cuts’’

# become deeper requiring the search to proceed along a

# narrower corridor. A suggested value is 0.1

tnk_a = 0.1

# The number of disconnected regions in the Pareto front

# increase for a bigger value of b.

# 16 and 32 are some suggested values.

tnk_b = 16.0

##################### Variation operators #####################

# Crossover probability

pc = 0.9

# Mutation probability (by default -1 is equivalent to pm = 1/nvar)

pm = -1

# Crossover distribution index (SBX)

nc = 20

# Mutation distribution index (Real polynomial mutation)

nm = 20

###################### Stopping condition #####################

# This section defines the stopping condition of the program,

# given by the number of function evaluations, execution

# time (in seconds), or a combination of them.

feval = 30000

#time = 350

########################## Plotting ###########################

# Animation of the evolution of approximation sets in objective

# space. This option is disabled when MPI is active.

# Frequency of plotting (given in function evaluations)

# -1 value disables plotting

# 0 value plots at the end

plot_freq = 500

# file’s name (inside of quotation marks) or mathematical

# expression (according to Gnuplot) of the true Pareto front.
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# It will be omitted, if it is left blank.

# Examples: "~/fronts/SEQ_ZDT2_02D.pof.nd", 1-sqrt(x)

plot_pftrue =

# Terminal type in Gnuplot (wxt, x11, etc.)

plot_term = x11

########################### Output ############################

# Output directory

output = ./output

# Debug (0 disabled, 1 enabled)

debug = 1

############ Utility (or Scalarization) Functions #############

# List of available utility functions for a particular MOEA.

# The 2 at the end of some functions means that each component

# of a weight vector is used as a divisor and not as a factor.

#

# { weighted_compromise_programming, weighted_compromise_programming2,

# weighted_power, weighted_power2, exponential_weighted_criteria,

# exponential_weighted_criteria2, weighted_product,

# weighted_product2, weighted_sum, weighted_sum2, weighted_norm,

# weighted_norm2, least_squares, least_squares2, chebyshev,

# augmented_chebyshev, augmented_chebyshev2, modified_chebyshev,

# modified_chebyshev2, achievement_scalarizing_function,

# augmented_achievement_scalarizing_function,

# penalty_boundary_intersection, two_level_penalty_boundary_intersection,

# quadratic_penalty_boundary_intersection, general_scalarizing_function,

# general_scalarizing_function2, normalized_scalarizing_function,

# normalized_scalarizing_function2, conic_scalarization,

# conic_scalarization2, vector_angle_distance_scaling,

# vector_angle_distance_scaling2, didass, didass2 }

#

moead_utility = chebyshev

mombi2_utility = achievement_scalarizing_function

# The reference point is the nadir point (0 disabled, 1 enabled)

utility_inverted = 0

# Weight vector file (NSGA-III, MOMBI-II, MOMBI-III, R2-IBEA, MOEA/D)

wfile = ./input/weight/weight_02D_99.sld

# Parameters of the model of each utility function

# H is the partition in Simplex Lattice Design method (SLD),

# parameter H for two_level_penalty_boundary_intersection

# and quadratic_penalty_boundary_intersection

utility_H = 99

# Penalization parameter for penalty_boundary_intersection
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# and quadratic_penalty_boundary_intersection

utility_theta = 5

# Penalization parameters for two_level_penalty_boundary_intersection

utility_theta1 = 0.1

utility_theta2 = 10

# Parameter for augmented_chebyshev[2],

# modified_chebyshev[2],

# augmented_achievement_scalarizing_function,

# two_level_penalty_boundary_intersection,

# quadratic_penalty_boundary_intersection,

# general_scalarizing_function[2],

# normalized_scalarizing_function[2]

# and conic_scalarization[2]

utility_alpha = 0.02

# Parameter for weighted_compromise_programming[2],

# weighted_power[2], exponential_weighted_criteria[2],

# weighted_norm[2] and vector_angle_distance_scaling[2]

utility_p = 200

# Parameter for general_scalarizing_function[2] and didass[2]

utility_beta = 0.1

# Parameter for didass[2]

utility_gamma = 0.1,0.1

########################### MOEA/D ############################

# Normalization of objective functions, useful when objectives

# are in different scale (0 disabled, 1 enabled)

moead_norm = 0

# Number of the weight vectors in the neighborhood of each

# weight vector.

moead_niche = 20

# Original version of MOEA/D, see \cite{Zhang07b}

# (0 disabled, 1 enabled)

moead_ver2007 = 1

# Variant of MOEA/D, see \cite{Li09c}

# the parameters moead_delta and moead_nr

# are ignored when moead_ver2007 = 1.

# The probability that parent solutions are selected from the neighborhood

moead_delta = 0.9

# The maximal number of solutions replaced by each child solution,

# it should be in the range [1, moead_niche]

moead_nr = 2
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########################## SMS-EMOA ###########################

# Scaling factor for the reference point in the hypervolume

# indicator, assuming objectives are normalized:

# zref = sfactor * (1,1,...,1)

smsemoa_sfactor = 20

# Incremental IWFG algorithm for calculating hypervolume

# contributions (see \cite{Cox16}), otherwise it uses the naive

# approach using the WFG algorithm (see \cite{While12}).

smsemoa_iwfg = 1

########################## MOMBI-II ###########################

# Number of generations in which the nadir point is stored

mombi2_record = 5

# Threshold of variances for the nadir vector

mombi2_alpha = 0.5

# Tolerance threshold

mombi2_epsilon = 1e-3

# Incorporate preferences in order to guide the search to the

# regions of main interest. This option will be omitted, if left blank.

# refpoint should be an infeasible point in R^nobj, where its entries

# are separated by comma and it can be set from previous executions.

# Examples:

# (zdt3) 0.547,-0.49

# (pol) 0.8472,20.6106

# (kur) -19.99,-11.99

mombi2_refpoint =

############################# IBEA ############################

# Reference point for the variant that uses the hypervolume

# indicator

hvibea_rho = 1.1

# Scaling factor for the variants that uses the epsilon and

# hypervolume indicators

ibea_kappa = 0.05

# Scaling factor for the variant that uses the R2 indicator

# For the variant that is based on the R2 indicator

r2ibea_kappa = 0.005

############################# HypE ############################

# Number of sampling points used in Monte Carlo simulation

# (with the -1 value calculates the exact hypervolume)

hype_samples = 10000

# Reference point

hype_bound = 2

############################# MOVAP ###########################
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# Image resolution

movap_xrs = 3

############## Parallel MOEAs - Island Model ###################

# Logical topology of connection

# topology = {line, ring, star, tree, full, torus, torusd, mesh}

topology = ring

# Only for tree topology

degree = 2

# Only for torus and torusd topologies

torus_row = 2

torus_col = 4

# Only for mesh topology

mesh_file =

# communication flow

# comm = {uni, bidi, scatter, gather}

# The default flow in full topology is bidirectional

comm = uni

# Enable synchronous communication (0 = disable, 1 = enable)

sync = 0

# External interruption (0 = disable, 1 = enable)

interrupt = 0

# Migration policy

# migra = {random, elitist_random, elitist_ranking,

# front, front_random, front_ranking}

mpolicy = random

# Replacement policy

# repla = {random, elitist_random, elitist_ranking, elitist}

rpolicy = elitist_ranking

# pMOEA

# Migration frequency in the island model

# (recommended 8 times the population size)

epoch = 100

# pMOEA

# Number of individuals to migrate in the island model

# subscript indicates the rank of the process

migrant = 2
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Publishing, Cham, 2015, pp. 129–138.

[47] , MOEA/D-HH: A Hyper-Heuristic for Multi-objective Problems, in Evo-
lutionary Multi-Criterion Optimization, 8th International Conference, EMO
2015, A. Gaspar-Cunha, C. H. Antunes, and C. Coello Coello, eds., Springer.
Lecture Notes in Computer Science Vol. 9018, Guimarães, Portugal, March 29
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and D. Pelta, eds., vol. 236 of Studies in Computational Intelligence, Springer
Berlin Heidelberg, 2009, pp. 261–272.

[89] C. León, G. Miranda, and C. Segura, Parallel Hyperheuristic: A Self-
Adaptive Island-Based Model for Multi-Objective Optimization, in 2008 Genetic
and Evolutionary Computation Conference (GECCO’2008), Atlanta, USA, July
2008, ACM Press, pp. 757–758. ISBN 978-1-60558-131-6.

[90] C. León, G. Miranda, and C. Segura, A Parallel Plugin-Based Frame-
work for Multi-objective Optimization, in International Symposium on Dis-
tributed Computing and Artificial Intelligence 2008 (DCAI 2008), J. Corchado,
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