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t The penalty fun
tion method has been used widely in 
onstrained evo-lutionary optimization (CEO). This 
hapter provides an in-depth anal-ysis of the penalty fun
tion method from the point of view of sear
hlands
ape transformation. The analysis leads to the insight that apply-ing di�erent penalty fun
tion methods in evolutionary optimization isequivalent to using di�erent sele
tion s
hemes. Based on this insight,two 
onstraint handling te
hniques, i.e., sto
hasti
 ranking and global
ompetitive ranking, are proposed as sele
tion s
hemes in CEO. Ourexperimental results have shown that both te
hniques performed verywell on a set of ben
hmark fun
tions. Further analysis of the two te
h-niques explains why they are e�e
tive: they introdu
e few lo
al optimaex
ept for those de�ned by the obje
tive fun
tions.Keywords: Constrained evolutionary optimization (CEO), penalty fun
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21. Introdu
tionThe general nonlinear programming problem 
an be formulated asminimize f(x); x = (x1; : : : ; xn) 2 Rn (1.1)where f(x) is the obje
tive fun
tion, x 2 S \ F , S � Rn de�nes thesear
h spa
e whi
h is an n-dimensional spa
e bounded by the parametri

onstraints xj � xj � xj ; j 2 f1; : : : ; ng; (1.2)and the feasible region F is de�ned byF = fx 2 Rn j gk(x) � 0 8 k 2 f1; : : : ;mgg; (1.3)where gk(x); k 2 f1; : : : ;mg, are inequality 
onstraints. Equality 
on-straints h(x) 
an be approximated by inequality 
onstraints using jh(x)j�Æ � 0, where Æ is a small positive number that indi
ates the degree of
onstraint violation. Only minimization problems are 
onsidered in this
hapter without loss of generality sin
e maxff(x)g = �minf�f(x)g.The penalty fun
tion methods 
onsidered in this 
hapter belong to theexterior penalty approa
h. They are used widely in evolutionary 
on-strained optimization (ECO), although some of the methods are equallyappli
able to non-evolutionary optimization algorithms. In 
ontrast tonumerous penalty fun
tion methods proposed for ECO (Mi
halewi
z andS
hoenauer, 1996), few theoreti
al analysis are available to explain howand why a penalty fun
tion method works. This 
hapter �lls in thisgap by providing an in-depth analysis of penalty fun
tion methods andtheir relationship to sear
h lands
ape transformation. Su
h analysis hasled to the development of new 
onstraint handling te
hniques for CEO.In essen
e, a penalty fun
tion method transforms the sear
h lands
apeby adding a penalty term to the obje
tive fun
tion. Su
h transforma-tion in
uen
es the relative �tness of individuals in a population. It alsoalters the 
hara
teristi
s of the sear
h lands
ape, e.g., ruggedness. Apreviously �t individual a

ording to the obje
tive fun
tion might notbe �t anymore on the transformed sear
h lands
ape. Sin
e the primary,if not the only, pla
e in an evolutionary algorithm that �tness is used issele
tion, it is easy to see that an e�e
tive approa
h to \implementing" apenalty fun
tion method is to design a new sele
tion s
heme. Two rank-based sele
tion s
hemes are des
ribed in this 
hapter to illustrate howpenalty fun
tion methods 
an be \implemented" e�e
tively by designingnew ranking s
hemes in ECO.The rest of this 
hapter is organized as follows. Se
tion 2 analysis thepenalty fun
tion method in CEO and dis
usses how di�erent penalty



Constrained Evolutionary Optimization 3fun
tion methods in
uen
e evolutionary sear
h. In parti
ular, the re-lationship between di�erent penalty fun
tion methods and the rankingof individuals in a population is dis
ussed in detail. Se
tions 3 and 4present the ideas and algorithms of two 
onstraint handling te
hniquesbased on ranking, i.e., sto
hasti
 ranking (Runarsson and Yao, 2000)and global 
ompetitive ranking. Se
tion 5 provides further analysis ofpenalty fun
tion methods and shows how the penalty fun
tion methodworks through two detailed examples. Se
tion 6 gives our experimentalresults on the two 
onstraint handling te
hniques. Finally, Se
tion 7gives a brief summary of this 
hapter.2. The Penalty Fun
tion MethodConstrained optimization problems have often been transformed intoun
onstrained ones by adding a measure of the 
onstraint violation tothe obje
tive fun
tion (Fia

o and M
Cormi
k, 1968). This 
onstrainedhandling te
hnique is known as the penalty fun
tion method.The introdu
tion of the penalty term enables the transformation ofa 
onstrained optimization problem into a series of un
onstrained ones,e.g.,  (x) = f(x) + r(g) �(gj(x); j = 1; : : : ;m) (1.4)where � � 0 is a real valued fun
tion whi
h imposes a penalty, �(gj(x),
ontrolled by a sequen
e of penalty 
oeÆ
ients fr(g)gG0 . G indi
ates themaximum number of generations used in CEO. The general form of fun
-tion � in
ludes both the generation 
ounter g (for dynami
 penalty) andthe population (for adaptive penalty). In our 
urrent notation, this isre
e
ted in the penalty 
oeÆ
ient r(g). This transformation, i.e. equa-tion (1.4), has been used widely in CEO (Kazarlis and Petridis, 1998;Siedle
ki and Sklansky, 1989). In parti
ular, the following quadrati
loss fun
tion (Fia

o and M
Cormi
k, 1968), whose de
rease in valuerepresents an approa
h to the feasible region, has often been used as thepenalty fun
tion (Mi
halewi
z and Attia, 1994; Joines and Hou
k, 1994):�(gj(x); j = 1; : : : ;m) = mXj=1maxf0; gj(x)g2: (1.5)However, any other penalty fun
tion is equally valid. Di�erent penaltyfun
tions 
hara
terize di�erent problems. It is unlikely that a generi
penalty fun
tion exists whi
h is optimal for all problems. The intro-du
tion of penalties may transform a smooth obje
tive fun
tion into arugged one. The sear
h may then be
ome more easily trapped in lo
alminima. For this reason, it is ne
essary to develop a penalty fun
tion



4method whi
h attempts to preserve the topology of the obje
tive fun
-tion and yet enables a CEO algorithm to lo
ate the optimal feasiblesolution.The penalty fun
tion method may work quite well for some problems.However, de
iding an optimal (or near-optimal) value for r(g) turns outto be a diÆ
ult optimization problem itself! If r(g) is too small, aninfeasible solution may not be penalized enough. Hen
e an infeasiblesolution may be evolved by an evolutionary algorithm. If r(g) is toolarge, then a feasible solution is very likely to be found but 
ould be ofvery poor quality. A large r(g) dis
ourages the exploration of infeasibleregions even in the early stages of evolution. This is parti
ularly inef-fe
tive for problems where feasible regions in the whole sear
h spa
e aredisjoint. In this 
ase, it may be diÆ
ult for an evolutionary algorithmto move from one feasible region to another unless they are very 
loseto ea
h other. Reasonable exploration of infeasible regions may a
t asbridges 
onne
ting two or more di�erent feasible regions. The 
riti
alissue here is how mu
h exploration of infeasible regions (i.e., how larger(g) is) should be 
onsidered as reasonable. The answer to this questionis problem dependent. Even for the same problem, di�erent stages ofevolutionary sear
h may require di�erent r(g) values.There has been some work on the dynami
 setting of r(g) values inCEO (Joines and Hou
k, 1994; Kazarlis and Petridis, 1998; Mi
halewi
zand Attia, 1994). Su
h work usually relies on a prede�ned monotoni-
ally nonde
reasing sequen
e of r(g) values. This approa
h worked wellfor some simple problems but failed for more diÆ
ult ones be
ause theoptimal setting of r(g) values is problem dependent (Reeves, 1997). A�xed and prede�ned sequen
e 
annot solve a variety of di�erent problemssatisfa
torily. A trial-and-error pro
ess has to be used in this situationin order to �nd a proper fun
tion for r(g) for ea
h problem, as is donein (Joines and Hou
k, 1994; Kazarlis and Petridis, 1998).An adaptive approa
h, where r(g) values are adjusted dynami
allyand automati
ally by an evolutionary algorithm itself, appears to bemost promising in ta
kling di�erent 
onstrained optimization problems.For example, population information 
an be used to adjust r(g) valuesadaptively (Smith and Coit, 1997). Di�erent problems lead to di�erentpopulations in evolutionary sear
h and thus lead to di�erent r(g) values.The advantage of su
h an adaptive approa
h is that it 
an be appliedto problems where little prior knowledge is available be
ause there is noneed to �nd a prede�ned r(g) value, or a sequen
e of r(g) values.A

ording to (1.4), di�erent r(g) values lead to di�erent �tness fun
-tions. A �t individual under one �tness fun
tion may not be �t undera di�erent �tness fun
tion. When rank-based sele
tion is used in CEO,



Constrained Evolutionary Optimization 5�nding a near optimal r(g), adaptively, is equivalent to ranking individu-als in a population adaptively. Hen
e, the issue of setting r(g) adaptivelybe
omes how to rank individuals a

ording to their obje
tive and penaltyvalues.To fa
ilitate later dis
ussion, some notations are �rst introdu
ed here.The individuals being ranked will be arbitrarily assigned some numeri
allabels. Then for any ranking of individuals, the 
orresponding permuta-tion � 2 P� will be a fun
tion from f1; : : : ; �g onto itself, whose argu-ments are the individuals and whose values are the ranks. The followingnotation is used: �(i) is the rank given to individual i and ��1(j) is theindividual assigned the rank j. Sin
e ��1(j) is the individual assignedthe rank j, the bra
ket notation� = h��1(1); ��1(2); : : : ; ��1(�)i
orresponds to listing all individuals in their ranked order.For a given penalty 
oeÆ
ient r(g) > 0 let the ranking of � individualsbe  (x�-1(1)) �  (x�-1(2)) � : : : �  (x�-1(�)) (1.6)where  is the transformation fun
tion given by equation (1.4). Nowexamine the adja
ent pair ��1(i) and ��1(i+ 1) in the ranked order:fi + r(g)�i � fi+1 + r(g)�i+1; i 2 f1; : : : ; �� 1g; (1.7)where notations fi = f(x�-1(i)) and �i = �(gj(x�-1(i)); j = 1; : : : ;m)) areused for 
onvenien
e.De�ne a parameter, �ri, whi
h will be referred to as the 
riti
al penalty
oeÆ
ient for the adja
ent pair i and i+ 1, as�ri = (fi+1 � fi)=(�i � �i+1); for �i 6= �i+1: (1.8)For a given 
hoi
e of r(g) � 0, there are three di�erent 
ases whi
h maygive rise to Inequality (1.7):1 fi � fi+1 and �i � �i+1: the 
omparison is said to be dominatedby the obje
tive fun
tion and 0 < r(g) � �ri be
ause the obje
tivefun
tion f plays the dominant role in determining the inequality.When individuals are feasible, �i = �i+1 = 0 and �ri !1.2 fi � fi+1 and �i < �i+1: the 
omparison is said to be dominatedby the penalty fun
tion and 0 < �ri < r(g) be
ause the penaltyfun
tion � plays the dominant role in determining the inequality.3 fi < fi+1 and �i < �i+1: the 
omparison is said to be nondomi-nated and �ri < 0.



6 When 
omparing nondominated and feasible individuals, the valueof r(g) has no impa
t on Inequality (1.7). In other words, it does not
hange the order of ranking of the two individuals. However, the valueof r(g) is 
riti
al in the �rst two 
ases as �ri is the 
ipping point thatwill determine whether the 
omparison is obje
tive or penalty fun
tiondominated. For example, if r(g) is in
reased to a value greater than �ri inthe �rst 
ase, individual ��1(i+1) would 
hange from a �tter individualinto a less �t one. For the entire population, the 
hosen value of r(g) usedfor 
omparisons will determine the fra
tion of individuals dominated bythe obje
tive and penalty fun
tions.Not all possible r(g) values 
an in
uen
e the ranking of individuals.They have to be within a 
ertain range, i.e. rg < r(g) < rg, to in
uen
ethe ranking, where the lower bound rg is the minimum 
riti
al penalty
oeÆ
ient 
omputed from adja
ent individuals ranked only a

ording tothe obje
tive fun
tion and the upper bound rg is the maximum 
riti-
al penalty 
oeÆ
ient 
omputed from adja
ent individuals ranked onlya

ording to the penalty fun
tion. In general, there are three di�erent
ategories of r(g) values (Runarsson and Yao, 2000):1 r(g) < r(g): All 
omparisons are based only on the obje
tive fun
-tion. r(g) is too small to in
uen
e the ranking of individuals. Thisis 
alled under-penalization.2 r(g) > r(g): All 
omparisons are based only on the penalty fun
-tion. r(g) is so large that the impa
t of the obje
tive fun
tion 
anbe ignored. This is 
alled over-penalization.3 r(g) < r(g) < r(g): All 
omparisons are based on a 
ombination ofobje
tive and penalty fun
tions.Penalty fun
tion methods 
an be 
lassi�ed into one of the above three
ategories. Some methods may fall into di�erent 
ategories during dif-ferent stages in evolutionary sear
h. It is important to understand thedi�eren
e among these three 
ategories be
ause they indi
ate whi
h fun
-tion (or 
ombination of fun
tions) is driving the sear
h pro
ess and howsear
h progresses. For example, most dynami
 penalty methods startwith a low r(g) value (i.e., r(g) < r(g)) in order to �nd a good region thatmay 
ontain both feasible and infeasible individuals. Towards the end ofsear
h, a high r(g) value (i.e., r(g) > r(g)) is often used in order to lo
atea good feasible individual. Su
h a dynami
 penalty method would workwell for problems for whi
h the un
onstrained global optimum is 
lose tothe 
onstrained global optimum. It is unlikely to work well for problemsfor whi
h the 
onstrained global optimum is far away from the un
on-strained one, be
ause the initial low r(g) value would drive the sear
h



Constrained Evolutionary Optimization 7towards the un
onstrained global optimum and thus further away fromthe 
onstrained one.The traditional 
onstraint handling te
hnique used in evolution strate-gies (ESs) falls roughly into the 
ategory of over-penalization sin
e allinfeasible individuals are regarded as worse than feasible ones (S
hwefel,1995; Ho�meister and Sprave, 1996; Deb, 1999; Jim�enez and Verdegay,1999). In fa
t, 
anoni
al evolution strategies allow only feasible indi-viduals in the initial population. To perform 
onstrained optimization,an ES is �rst used to �nd a feasible initial population by minimizingthe penalty fun
tion (S
hwefel, 1995, p. 115). On
e a feasible initialpopulation is found, the ES algorithm will then minimize the obje
tivefun
tion and reje
t all infeasible solutions generated.It has been widely re
ognized that neither under- nor over-penalizationis a good 
onstraint handling te
hnique and there should be a balan
e be-tween preserving feasible individuals and reje
ting infeasible ones (Genand Cheng, 1997; Runarsson and Yao, 2000). Su
h a balan
e 
an bea
hieved by adjusting our measure of how �t an individual should be in
omparison with others. The adjustment 
an be done expli
itly throughranking individuals in evolutionary algorithms. In order to strike theright balan
e, ranking should be dominated by a mixture of obje
tiveand penalty fun
tions. That is, the penalty 
oeÆ
ient r(g) should bewithin the bounds: r(g) < r(g) < r(g). It is worth noting that the twobounds are not �xed. They are problem dependent and may 
hangefrom generation to generation as they are also in
uen
ed by the 
urrentpopulation.One way to measure the balan
e of dominan
e of obje
tive and penaltyfun
tions is to 
ount how many 
omparisons of adja
ent individual pairsare dominated by the obje
tive and penalty fun
tions respe
tively. Su
ha number of 
omparisons 
an be 
omputed for any given r(g) by 
ount-ing the number of 
riti
al penalty 
oeÆ
ients given by (1.8) whi
h aregreater than r(g). If there is a predetermined preferen
e for the num-ber of adja
ent 
omparisons that should be dominated by the penaltyfun
tion then a 
orresponding penalty 
oeÆ
ient 
an be determined.It is 
lear from the analysis in this se
tion that all a penalty fun
tionmethod tries to do is to obtain the right balan
e between obje
tive andpenalty fun
tions so that the sear
h moves towards the optimal feasiblesolution rather than the optimum in the 
ombined feasible and infea-sible spa
e. One way to a
hieve su
h balan
e e�e
tively and eÆ
ientlyis to adjust su
h balan
e dire
tly and expli
itly. Possible methods ofa
hieving this will be presented in the following two se
tions.



83. Sto
hasti
 RankingThe ranking pro
edure introdu
ed in this se
tion is sto
hasti
 ranking(Runarsson and Yao, 2000) where ranking is a
hieved by a bubble-sort-like pro
edure. In this approa
h a probability Pf of using only the ob-je
tive fun
tion for 
omparing individuals in the infeasible region of thesear
h spa
e is introdu
ed. That is, given any pair of two adja
ent indi-viduals, the probability of 
omparing them (in order to determine whi
hone is �tter) a

ording to the obje
tive fun
tion is 1 if both individualsare feasible, otherwise it is Pf .The pro
edure provides a 
onvenient way of balan
ing the dominan
ein a ranked set. In the bubble-sort-like pro
edure, � individuals areranked by 
omparing adja
ent individuals in at least � sweeps1. Thepro
edure is halted when no 
hange in the rank ordering o

urs within a
omplete sweep. Figure 1.1 shows the sto
hasti
 bubble sort pro
edureused to rank individuals in a population (Runarsson and Yao, 2000).If at least one individual is infeasible in an adja
ent pair, the prob-ability of an individual winning a 
omparison, i.e., holding the higherSto
hasti
 bubble sort (Pf , f , �):�(j) = j 8 j 2 f1; : : : ; �g;for i = 1 to N dofor j = 1 to �� 1 dosample u 2 U(0; 1);if (�(x� -1(j)) = �(x� -1(j+1)) = 0) or (u < Pf ) thenif (f(x� -1(j)) > f(x� -1(j+1))) thenswap(��1(j); ��1(j + 1));�elseif (�(x� -1(j)) > �(x� -1(j+1))) thenswap(��1(j); ��1(j + 1));��odif no swap done break; �odreturn (�)Figure 1.1. Sto
hasti
 ranking pro
edure, where U(0; 1) is a uniform random numbergenerator and N is the number of sweeps going through the whole population. WhenPf = 0 the ranking is equivalent to over-penalization. When Pf = 1 the ranking isequivalent to under-penalization. The initial ranking is generated at random.



Constrained Evolutionary Optimization 9rank, in the ranking pro
edure isPw = PfwPf + P�w(1� Pf ) (1.9)where Pfw is the probability of the individual winning a

ording to theobje
tive fun
tion and P�w is the probability of the individual winninga

ording to the penalty fun
tion. In the 
ase where adja
ent individualsare both feasible Pw = Pfw, the probability of winning k more 
ompar-isons than losses 
an be 
omputed. The total number of wins will bek0 = (N + k)=2 where N is the total number of 
omparisons made. Theprobability of winning k0 
omparisons out of N is given by the binomialdistribution Pw(y = k0) = �Nk0�P k0w (1� Pw)N�k0 : (1.10)The probability of winning at least k0 
omparisons isP 0w(y � k0) = 1� k0�1Xj=0 �Nj �P jw(1� Pw)N�j : (1.11)Equations (1.10) and (1.11) show that the greater the number of 
om-parisons (N) the less in
uen
e the initial ranking will have. It is worthnoting that the probability Pw usually varies for di�erent individualsin di�erent stages of ranking. Now 
onsider the 
ase where Pw is 
on-stant during the entire ranking pro
edure, whi
h will be true if fi < fj,�i > �j ; j 6= i; j = 1; : : : ; �. Then Pfw = 1 and P�w = 0. If Pf = 0:5 is
hosen then Pw = 0:5. There will be an equal 
han
e for a 
omparisonto be made based on the obje
tive or penalty fun
tion. Be
ause we areinterested in feasible solutions as the �nal solution, Pf should be lessthan 0:5 su
h that there is a pressure against infeasible solutions. Thestrength of the pressure 
an be adjusted easily by adjusting only Pf .When parameter N , the number of sweeps, approa
hes 1, the rank-ing will be determined by Pf . That is, if Pf > 0:5, the ranking will bebased on the obje
tive fun
tion. If Pf < 0:5, the ranking is equivalent toover-penalization. Hen
e, an in
rease in the number of ranking sweepsis e�e
tively equivalent to 
hanging parameter Pf . Hen
e, N = � 
anbe �xed and Pf adjusted to a
hieve the best performan
e.The e�e
tiveness and eÆ
ien
y of sto
hasti
 ranking will be evaluatedin Se
tion 6 through experimental studies.4. Global Competitive RankingA di�erent method of ranking individuals in a population, in orderto strike the right balan
e between obje
tive and penalty fun
tions, is



10the deterministi
 global 
ompetitive ranking s
heme. In this s
heme,an individual i is ranked by 
omparing it against all other members ofthe population. This is di�erent from the sto
hasti
 ranking approa
hwhere only adja
ent individuals 
ompete for a given rank. In the global
ompetitive ranking method, spe
ial 
onsideration is given to tied ranks.In the 
ase of tied ranks the same lower rank will be used. For example,for ranking � = h1, 3, (2; 6), 7,(4; 5)i, we should have �(1) = 1, �(3) = 2,�(2) = �(6) = 3, �(7) = 5 and �(4) = �(5) = 6.Similar to the sto
hasti
 ranking approa
h, it is assumed that eitherthe obje
tive or the penalty fun
tion will be used in de
iding an individ-ual's rank. Pf indi
ates the probability that a 
omparison is done basedon the obje
tive fun
tion only. The probability that individual i holdsits rank �(i) when 
hallenged by any other member of the population is,P (�(i)) = Pf �� �f (i)�� 1 + (1� Pf )�� ��(i)�� 1 ; (1.12)where the permutations �f and �� 
orrespond to the ranking of individ-uals based on the obje
tive and penalty fun
tions, respe
tively. Equa-tion (1.12) 
an be used to determine the �nal ranking. That is, the�tness fun
tion for the minimization problem be
omes: (xi) = Pf �f (i)� 1�� 1 + (1� Pf )��(i) � 1�� 1 : (1.13)It is 
lear from the above that Pf 
an be used easily to bias rankinga

ording to the obje
tive or penalty fun
tion. In pra
ti
e, the prob-ability should take a value 0 < Pf < 0:5 in order to guarantee that afeasible solution may be found. The 
lose the probability is to 0:5, thegreater the emphasis will be on minimizing the obje
tive fun
tion. Asthe Pf approa
hes 0, not equal to zero, the ranking 
orresponds an over-penalization. The global 
ompetitive ranking s
heme, unlike sto
hasti
ranking, is deterministi
. It 
an be summarized by Figure 1.2.Global 
ompetitive ranking (Pf , f , �):Step 1: Determine the ranking, �f ; ��:f(x� -1f (1)) � f(x� -1f (2)) � : : : � f(x� -1f (�))�(x� -1� (1)) � �(x� -1� (2)) � : : : � �(x� -1� (�))Step 2. Compute 
ompetitive �tness: (xi) = Pf �f (i)�1��1 + (1� Pf )��(i)�1��1 :Step 3. Determine �nal ranking, �: (x� -1(1)) �  (x� -1(2)) � : : : �  (x� -1(�))Figure 1.2. Global 
ompetitive ranking method for 
onstraint handling.



Constrained Evolutionary Optimization 115. How Penalty Methods WorkConvergen
e and 
onvergen
e rate are two important issues in sto
has-ti
 optimization and sear
h algorithms, su
h as EAs. For a sto
hasti
sear
h pro
edure, average positive progress towards the global optimum,x�, is ne
essary in order to �nd the optimum eÆ
iently. One approa
hof measuring progress is to 
ompute the distan
e travelled between su
-
essive generations (S
hwefel, 1995) towards x�. The distan
e from thebest individual in generation (g) to the optimum x� should be on aver-age greater than that of the best individual at generation (g + 1). Thatis, the following 'x should be greater than 0:'x = Ehd�x(g)�-1(1);x��� d�x(g+1)�-1(1);x�����x(g)�-1(1); : : : ;x(g)�-1(�)i; (1.14)where the distan
e metri
 d(x;x�) =k x � x� k. A similar progressde�nition is given by (Rudolph, 1997, p. 207) in terms of �tness for theun
onstrained problem:'f = Ehf�x(g)�-1(1)�� f�x(g+1)�-1(1)����x(g)�-1(1); : : : ;x(g)�-1(�)i: (1.15)However, the progress rate 
omputed from �tness values, as the onegiven by (1.15), indi
ates the progress towards a lo
al un
onstrainedminimum only. Progress towards the global minimum in a multimodallands
ape 
an only be 
omputed in terms of the distan
e and when theglobal minimum is known (Yao et al., 1999). Computing ' analyti
allyis a diÆ
ult theoreti
al problem although there has been some publishedwork on drift analysis (He and Yao, 2001).If positive progress towards the global optimum is to be maintained,there must exist at least one parent x(g) whi
h produ
es at least oneo�spring that is 
loser than itself to the optimum x� on average. Con-sider a simple (1; �) EA where there is only one parent (� = 1) at ea
hgeneration produ
ing � o�spring. The o�spring are produ
ed using thefollowing mutation operator:x(g+1)�-1(i) = x(g)�-1(1) +Ni(0; �2) i = 1; : : : ; �; (1.16)where Ni(0; �2) is a normally distributed random variable with zeromean and varian
e �2. We 
an now use two examples to illustrate how apenalty fun
tion method works by investigating the relationship betweendi�erent penalty fun
tion methods and progress rates. In parti
ular, wewill examine how the progress in terms of �tness 
orresponds to that interms of the distan
e to the global optimum.
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Figure 1.3. Expe
ted �tness of the best o�spring as a fun
tion of parent position fortest fun
tion f12. The 
urves lying below the dashed one (parent �tness) 
orrespondsto positive progress towards the global optimum.The �rst example is a the ben
hmark test fun
tion, f12 in (Koziel andMi
halewi
z, 1999):maximize: f12(x) = �100 � (x1 � 5)2 � (x2 � 5)2 � (x3 � 5)2� =100subje
t to:g(x) = (x1 � p)2 + (x2 � q)2 + (x3 � r)2 � 0:0625 � 0;where 0 � xi � 10 (i = 1; 2; 3) and p; q; r = 1; 2; : : : ; 9. The feasibleregion of the sear
h spa
e 
onsists of 93 disjointed spheres. A point(x1; x2; x3) is feasible if and only if there exist p; q; r su
h that the aboveinequality holds. Hen
e, the g(x) returned 
orresponds to its lowestvalue for given p; q; r values. The feasible global optimum is lo
ated atx� = (5; 5; 5) where f12(x�) = 1.Figure 1.3 shows the results of 10,000 one-generational experimentsfor a number of di�erent parent values. In Figure 1.3, variables x2 andx3 were �xed at 5 and only x1 was adjusted between values 2 and 5.The mean sear
h step size used was � = 0:2 and the number of o�spring� = 10. This simulation was 
ondu
ted using three di�erent rankingstrategies: over-penalization, sto
hasti
 ranking, and global 
ompetitiveranking. In both the sto
hasti
 and global 
ompetitive ranking, the value
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orresponds to a ranking with Pf = 0.The problem was treated as a minimization one.In Figure 1.3, the expe
ted obje
tive fun
tion value of the highestranked o�spring is plotted versus the parent value of x1. The dashedline 
orresponds to the obje
tive fun
tion value of the parent. Hen
e,positive progress toward the global optimum will be a
hieved when theexpe
ted obje
tive fun
tion value of the best o�spring lies beneath thedashed line. The �gure illustrates how the over-penalization approa
hhas e�e
tively transformed the original unimodal obje
tive fun
tion toa multimodal �tness fun
tion. There existed large regions of negativeprogress when the over-penalization approa
h was used. The sto
has-ti
 and global 
ompetitive ranking, however, maintained their positiveprogress towards the global feasible optimum even in infeasible regions,although the rate of progress is slower. This example shows that thepenalty fun
tion method works by transforming the sear
h lands
ape(Runarsson, 2000). Inappropriate penalty fun
tions may make the opti-mization task more diÆ
ult than it should be.The se
ond example is also a well known ben
hmark test fun
tion in(Koziel and Mi
halewi
z, 1999):minimize: f11(x) = x21 + (x2 � 1)2subje
t to: h(x) = x2 � x21 = 0;where �1 � x1 � 1 and �1 � x2 � 1. The global feasible optimum is atx� = (�1=p2; 1=2) where f11(x�) = 0:75. Figure 1.4 shows the obje
tivefun
tion, f11(x), and the 
onstraint 
urve h(x).In this example both parent variables x1 and x2 were varied in ourexperimental study. Sto
hasti
 ranking (Pf = 0:45) was 
ompared withover-penalization (Pf = 0). Sin
e there exist two optima for this ex-ample, the progress was 
omputed in terms of the maximum distan
e
overed towards one of the optima:'x = Ehmin�d�x(g)�-1(1);y��; d�x(g)�-1(1); z��	 (1.17)�min�d�x(g+1)�-1(1);y��; d�x(g+1)�-1(1); z��	iwhere z� and y� are the optima (�1=p2; 1=2).Two di�erent mean step sizes were used in our experiments: � = 0:05and � = 0:1. The number of o�spring generated was again � = 10.The progress rate given by Equation 1.17 is illustrated by 
ontour plots
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Figure 1.4. Fitness lands
ape for test fun
tion f11. The 
urve represents the regionof feasibility.
shown in Figure 1.5, where regions of negative progress are outlined with
ontour lines.It is 
lear from Figure 1.5 that negative regions of progress were lo-
ated around the global optima. This is not surprising sin
e the meansear
h step size used was too large in these regions. A de
reasing meansear
h step size should be used. For the over-penalization approa
h,however, there existed additional regions of negative progress whi
h werenot in the global optimum regions. These regions formed additional lo-
al attra
tors and would trap individuals as the mean sear
h step sizede
reased. Sto
hasti
 ranking did not 
reate any lo
al attra
tors in this
ase. This is also true for global 
ompetitive ranking, as will be seen inthe following se
tion.In summary, the introdu
tion of 
onstraints may produ
e additionallo
al optima in the sear
h lands
ape. A well designed 
onstraint han-dling te
hnique 
an minimize the number of su
h misleading lo
al op-tima. This is the primary reason why our ranking methods worked sowell on many test fun
tions. Our ranking methods also make it easy to
ontrol 
onstrained sear
h by adjusting Pf for di�erent problems.
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Figure 1.5. The �gures show the progress rate in terms of the distan
e metri
, i.e.'x where � = 1 and � = 10, for test fun
tion f11. The drawn 
ontours mark regionsof negative progress (darker regions). When Pf = 0 (over-penalization), there existsa region where no progress is maintained towards either global optima, and thusthe sear
h will get stu
k in this region. This �gure explains the poor performan
eobserved in Table 1.1 for this fun
tion.6. Experimental Study6.1. Evolutionary Optimization AlgorithmThe evolutionary optimization algorithm des
ribed in this se
tion isbased on the evolution strategy (ES) (S
hwefel, 1995). One reason for
hoosing ES is that it does not introdu
e any spe
ialized 
onstraint-handling variation operators. It will be shown that spe
ialized and
omplex variation operators for 
onstrained optimization problems areunne
essary although they may be quite useful for parti
ular types ofproblems (see for example (Mi
halewi
z et al., 1996)). A simple ex-tension to the ES, i.e., the use of the ranking s
hemes proposed in theprevious se
tions, 
an a
hieve signi�
antly better results than other more
ompli
ated te
hniques.



16In a (�; �)-ES algorithm, an individual i is a pair of real-valued ve
-tors, (xi; �i), 8 i 2 f1; : : : ; �g. The initial population of x is generateda

ording to a uniform n-dimensional probability distribution over thesear
h spa
e S. Let Æx be an approximate measure of the expe
ted dis-tan
e to the global optimum, then the initial setting for the `mean stepsizes' should be (S
hwefel, 1995, p. 117):�(0)i;j = Æxj=pn � (xj � xj)=pn; i 2 f1; : : : ; �g; j 2 f1; : : : ; ng; (1.18)where �i;j denotes the j-th 
omponent of the ve
tor �i. These initialvalues will also be used as upper bounds on �.Following the ranking s
hemes presented, the evaluated obje
tive f(x)and penalty fun
tion �(gk(x); k = 1; : : : ;m) for ea
h individual (xi; �i),8 i 2 f1; : : : ; �g is used to rank individuals in a population and thebest (highest-ranked) � individuals out of � are sele
ted for the nextgeneration. The trun
ation level is set at �=� � 1=7 (B�a
k, 1996, p. 79).Variation of strategy parameters is performed before the modi�
ationof obje
tive variables. New � strategy parameters are produ
ed fromthe � highest ranked individuals and then applied later for generating� o�spring. The `mean step sizes' are updated a

ording to the log-normal update rule (S
hwefel, 1995): i = 1; : : : ; �, h = 1; : : : ; �, andj = 1; : : : ; n, �(g+1)h;j = �̂(g)h;j exp(� 0N(0; 1) + �Nj(0; 1))); (1.19)where N(0; 1) is a normally distributed one-dimensional random vari-able with an expe
tation of zero and varian
e one. The subs
ript j inNj(0; 1) indi
ates that the random number is generated anew for ea
hvalue of j. The `learning rates' � and � 0 are set equal to '�=p2pnand '�=p2n respe
tively where '� is the expe
ted rate of 
onvergen
e(S
hwefel, 1995, p. 144) and is set to one (B�a
k, 1996, p. 72). Re
ombi-nation is performed on the self-adaptive parameters before applying theupdate rule given by (1.19). In parti
ular, global intermediate re
om-bination (the average) between two parents (S
hwefel, 1995, p. 148) isimplemented as�̂(g)h;j = (�(g)i;j + �(g)kj ;j)=2; kj 2 f1; : : : ; �g; (1.20)where kj is an index generated at random and anew for ea
h j.Having varied the strategy parameters, ea
h individual (xi; �i), 8 i 2f1; : : : ; �g, 
reates �=� o�spring on average, so that a total of � o�springare generated: x(g+1)h;j = x(g)i;j + �(g+1)h;j Nj(0; 1) (1.21)



Constrained Evolutionary Optimization 17Table 1.1. Over-penalization.f
n optimal best median st. dev. Gmf1 �15:000 �15:000 �15:000 0:0E+00 697f2 �0:803619 �0:803578 �0:785253 1:5E�02 1259f3 �1:000 �0:327 �0:090 7:2E�02 61f4 �30665:539 �30665:539 �30665:538 3:8E+00 632f5 5126:498 5126:945 5225:100 2:7E+02 213f6 �6961:814 �6961:814 �6961:814 1:9E�12 946f7 24:306 24:322 24:367 5:9E�02 546f8 �0:095825 �0:095825 �0:095825 2:7E�17 647f9 680:630 680:632 680:657 3:8E�02 414f10 7049:331 7117:416 7336:280 3:4E+02 530f11 0:750 0:750 0:953 5:4E�02 1750f12 �1:000000 �0:999972 �0:999758 1:4E�04 90f13 0:053950 0:919042 0:997912 1:5E�02 1750Re
ombination is not used in the variation of obje
tive variables.When an o�spring is generated outside the parametri
 bounds de�nedby the problem, the mutation (variation) of the obje
tive variable will beretried until the variable is within its bounds. In order to save 
omputa-tion time the mutation is retried only 10 times and then ignored, leavingthe obje
t variable in its original state within the parameter bounds.6.2. Experimental Results and Dis
ussionThirteen ben
hmark fun
tions are studied. The �rst 12 are taken from(Koziel and Mi
halewi
z, 1999) and the 13th from (Mi
halewi
z, 1995).The details, in
luding the original sour
es, of these fun
tions are listed inappendix 1.A. Fun
tions f2, f3, f8, and f12 are maximization problems.They are transformed to minimization problems using �f(x). For ea
hof the ben
hmark problems 30 independent runs are performed using a(30; 200)-ES and the ranking pro
edures des
ribed in the previous se
-tions. All runs are terminated after G = 1750 generations ex
ept for f12,whi
h was run for 175 generations. The experimental results using thesto
hasti
 and global 
ompetitive ranking, with Pf = 0:45, are given inTables 1.2 to 1.3. The results are 
ompared against the over-penalizationapproa
h (Table 1.1) used in ES (Ho�meister and Sprave, 1996). Theover-penalization approa
h 
orresponds to the ranking s
hemes dis
ussedfor Pf ! 0. In the tables the best feasible obje
tive value, median, stan-dard deviation, and median number of generations (Gm) needed to �ndthe best individual are given.



18Table 1.2. Sto
hasti
 ranking (Pf = 0:45).f
n optimal best median st. dev. Gmf1 �15:000 �15:000 �15:000 0:0E+00 741f2 �0:803619 �0:803515 �0:785800 2:0E�02 1086f3 �1:000 �1:000 �1:000 1:9E�04 1146f4 �30665:539 �30665:539 �30665:539 2:0E�05 441f5 5126:498 5126:497 5127:372 3:5E+00 258f6 �6961:814 �6961:814 �6961:814 1:6E+02 590f7 24:306 24:307 24:357 6:6E�02 715f8 �0:095825 �0:095825 �0:095825 2:6E�17 381f9 680:630 680:630 680:641 3:4E�02 557f10 7049:331 7054:316 7372:613 5:3E+02 642f11 0:750 0:750 0:750 8:0E�05 57f12 �1:000000 �1:000000 �1:000000 0:0E+00 82f13 0:053950 0:053957 0:057006 3:1E�02 349Table 1.3. Global 
ompetitive ranking (Pf = 0:45).f
n optimal best median st. dev. Gmf1 �15:000 �15:000 �15:000 0:0E+00 692f2 �0:803619 �0:803591 �0:792805 1:7E�02 1335f3 �1:000 �1:000 �1:000 2:6E�05 1725f4 �30665:539 �30665:539 �30665:538 5:4E�01 731f52 5126:498 5126:497 5126:721 1:1E+00 319f6 �6961:814 �6943:560 �6579:214 2:9E+02 13f7 24:306 24:308 24:361 1:1E�01 517f8 �0:095825 �0:095825 �0:095825 2:6E�17 398f9 680:630 680:631 680:657 5:8E�02 396f10 7049:331 { { { {f11 0:750 0:750 0:750 7:2E�05 76f12 �1:000000 �1:000000 �1:000000 0:0E+00 63f13 0:053950 0:053943 0:053987 1:3E�04 247As 
an be seen from Tables 1.1 to 1.3, both sto
hasti
 ranking andglobal 
ompetitive ranking performed very well for most test fun
tions,espe
ially for fun
tions f3; f11; f12, and f13, for the reasons given in Se
-tion 5. They are also mu
h faster than the over-penalization approa
h formost test fun
tions. There are, however, two test fun
tions that standout: f10 and f6. It is diÆ
ult to determine whether it is the 
onstrainthandling te
hnique or the underlying sear
h method whi
h is 
ontribut-ing to the su

ess or failure in lo
ating the optimum. In (Runarsson and



Constrained Evolutionary Optimization 19Table 1.4. Over-penalization versus sto
hasti
 ranking for test fun
tion f10 and ' =1=4. Pf optimal best median st. dev. Gm0:45 7049:331 7049:852 7054:111 5:7E+00 17330:00 7049:331 7049:955 7062:673 3:1E+01 1745Yao, 2000) the importan
e of the sear
h method was illustrated on testfun
tion f10 by setting ' = 1=4. This results is given in table 1.4 andillustrates how signi�
ant the sear
h method is.Test fun
tion f6 is the only test fun
tion solved more e�e
tively usingover-penalization. For this reason it is interesting to plot its progressrate lands
ape. The test fun
tion has two variables. The progress rateis simulated as before using 10:000 one generational experiments in theregion where suboptimal solutions are found. The result is depi
ted in�gure 1.6. Progress lands
apes for the step sizes � = 0:05 (dotted) and� = 0:01 (dashed) are plotted as 
ontours. Negative progress is main-tained to the right of the last of the three 
ontour lines plotted. Thesolid lines in the �gure are the 
onstraint 
urves and the 
ir
le marks thelo
ation of x�. The feasible region is the top narrow band formed by thetwo 
onstraint 
urves. From the �gure it be
omes 
lear that in this 
aseover-penalization guides the sear
h dire
tly to the optimal feasible solu-tions from the infeasible region. However, sto
hasti
 ranking approa
hesthe optimal solution from the 
ombined feasible and infeasible region.The progress 
ontours are simply rotated. In this test 
ase no additional
PSfrag repla
ements
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Figure 1.6. Progress lands
ape for test fun
tion f6 for step sizes � = 0:05 (dotted)and � = 0:01 (dashed). Negative progress is to the right of the last of the three
ontour lines. The solid lines are the 
onstraint 
urves and the 
ir
le the lo
ation ofx�. The feasible region is the top narrow band formed by the two 
onstraint 
urves.



20attra
tors are 
reated by the over-penalization method and thereforethe two approa
hes should yield similar performan
e. This leads one tospe
ulate whether the performan
e di�eren
e may be due to the la
k ofrotational invarian
e of the sear
h method. To test this the 
oordinatesystem is rotated by �=4 and the experiment is re-run. The results aregiven in table 1.5. This simple experiment supports our predi
tion thatthe performan
e di�eren
e is due to the la
k of rotational invarian
e ofthe sear
h method.Table 1.5. Over-penalization versus sto
hasti
 ranking for test fun
tion f6 and 
o-ordinate system rotated by �=4.Pf best median mean st. dev. worst Gm0:45 �6954:352 �6913:419 �6909:142 2:7E+01 �6842:484 9570:00 �6942:806 �6903:223 �6887:683 4:2E+01 �6782:945 8647. Con
lusionThe penalty fun
tion method is widely used in 
onstrained optimiza-tion. It is emphasized in this 
hapter that the penalty fun
tion methodtransforms a 
onstrained problem into an un
onstrained one by modify-ing the sear
h lands
ape. Di�erent modi�
ations lead to di�erent sear
hlands
apes and thus di�erent diÆ
ulties of optimization. We have giventwo 
on
rete examples to illustrate how additional lo
al optima 
ould beintrodu
ed through inappropriate penalty methods and how su
h lo
aloptima 
ould mislead sear
h.Sele
tion in an EA depends primarily on �tness values of individuals.Modi�
ations to a sear
h (�tness) lands
ape 
an be a
hieved throughmodi�
ations to the sele
tion s
heme, rather than to the �tness fun
tion.Ranking is a simple yet e�e
tive sele
tion method that 
an be usedto indi
ate whi
h individuals are �tter than others and thus a
hievethe goal of modifying the �tness lands
ape. Two ranking s
hemes havebeen introdu
ed in this paper to show how they 
an be used to handle
onstraints e�e
tively and eÆ
iently without adding a penalty term inthe �tness fun
tion. Experimental results on a set of ben
hmark testfun
tions are given in this 
hapter to support our analysis.Notes1. It would be exa
tly � sweeps if the 
omparisons were not made sto
hasti
.2. Statisti
s based on 11 feasible solutions found.
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REFERENCES 23Appendix: Test Fun
tion SuiteMinimize (Floundas and Pardalos, 1987):f1(x) = 5 4Xi=1 xi � 5 4Xi=1 x2i � 13Xi=5 xisubje
t to: g1(x) = 2x1 + 2x2 + x10 + x11 � 10 � 0g2(x) = 2x1 + 2x3 + x10 + x12 � 10 � 0g3(x) = 2x2 + 2x3 + x11 + x12 � 10 � 0g4(x) = �8x1 + x10 � 0g5(x) = �8x2 + x11 � 0g6(x) = �8x3 + x12 � 0g7(x) = �2x4 � x5 + x10 � 0g8(x) = �2x6 � x7 + x11 � 0g9(x) = �2x8 � x9 + x12 � 0where the bounds are 0 � xi � 1 (i = 1; : : : ; 9), 0 � xi � 100 (i = 10; 11; 12) and0 � x13 � 1. The global minimum is at x� = (1; 1; 1; 1; 1; 1; 1; 1; 1; 3; 3; 3; 1) where six
onstraints are a
tive (g1; g2; g3; g7; g8 and g9) and f1(x�) = �15.Maximize (Koziel and Mi
halewi
z, 1999):f2(x) = ����Pni=1 
os4(xi)� 2Qni=1 
os2(xi)pPni=1 ix2i ����subje
t to: g1(x) = 0:75 � nYi=1xi � 0g2(x) = nXi=1 xi � 7:5n � 0where n = 20 and 0 � xi � 10 (i = 1; : : : ; n). The global maximum is unknown, thebest we found is f2(x�) = 0:803619 (whi
h, to the best of our knowledge, is betterthan any reported value), 
onstraint g1 is 
lose to being a
tive (g1 = �10�8).Maximize (Mi
halewi
z et al., 1996):f3(x) = (pn)n nYi=1 xih1(x) = nXi=1 x2i � 1 = 0



24where n = 10 and 0 � xi � 1 (i = 1; : : : ; n). The global maximum is at x�i = 1=pn(i = 1; : : : ; n) where f3(x�) = 1.Minimize (Himmelblau, 1972):f4(x) = 5:3578547x23 + 0:8356891x1x5 + 37:293239x1 � 40792:141subje
t to:g1(x) = 85:334407 + 0:0056858x2x5 + 0:0006262x1x4 � 0:0022053x3x5 � 92 � 0g2(x) = �85:334407 � 0:0056858x2x5 � 0:0006262x1x4 + 0:0022053x3x5 � 0g3(x) = 80:51249 + 0:0071317x2x5 + 0:0029955x1x2 + 0:0021813x23 � 110 � 0g4(x) = �80:51249 � 0:0071317x2x5 � 0:0029955x1x2 � 0:0021813x23 + 90 � 0g5(x) = 9:300961 + 0:0047026x3x5 + 0:0012547x1x3 + 0:0019085x3x4 � 25 � 0g6(x) = �9:300961 � 0:0047026x3x5 � 0:0012547x1x3 � 0:0019085x3x4 + 20 � 0where 78 � x1 � 102, 33 � x2 � 45 and 27 � xi � 45 (i = 3; 4; 5). Theoptimum solution is x� =(78, 33, 29:995256025682, 45, 36:775812905788) wheref4(x�) = �30665:539. Two 
onstraints are a
tive (g1 and g6).Minimize (Ho
k and S
hittkowski, 1981):f5(x) = 3x1 + 0:000001x31 + 2x2 + (0:000002=3)x32subje
t to: g1(x) = �x4 + x3 � 0:55 � 0g2(x) = �x3 + x4 � 0:55 � 0h3(x) = 1000 sin(�x3 � 0:25) + 1000 sin(�x4 � 0:25) + 894:8 � x1 = 0h4(x) = 1000 sin(x3 � 0:25) + 1000 sin(x3 � x4 � 0:25) + 894:8 � x2 = 0h5(x) = 1000 sin(x4 � 0:25) + 1000 sin(x4 � x3 � 0:25) + 1294:8 = 0where 0 � x1 � 1200, 0 � x2 � 1200, �0:55 � x3 � 0:55 and �0:55 � x4 � 0:55. Thebest known solution (Koziel and Mi
halewi
z, 1999) x� = (679:9453; 1026:067; 0:1188764;�0:3962336) where f5(x�) = 5126:4981.Minimize (Floundas and Pardalos, 1987):f6(x) = (x1 � 10)3 + (x2 � 20)3subje
t to: g1(x) = �(x1 � 5)2 � (x2 � 5)2 + 100 � 0g2(x) = (x1 � 6)2 + (x2 � 5)2 � 82:81 � 0where 13 � x1 � 100 and 0 � x2 � 100. The optimum solution is x� = (14:095; 0:84296)where f6(x�) = �6961:81388. Both 
onstraints are a
tive.



REFERENCES 25Minimize (Ho
k and S
hittkowski, 1981):f7(x) = x21 + x22 + x1x2 � 14x1 � 16x2 + (x3 � 10)2 + 4(x4 � 5)2 + (x5 � 3)2 +2(x6 � 1)2 + 5x27 + 7(x8 � 11)2 + 2(x9 � 10)2 + (x10 � 7)2 + 45subje
t to: g1(x) = �105 + 4x1 + 5x2 � 3x7 + 9x8 � 0g2(x) = 10x1 � 8x2 � 17x7 + 2x8 � 0g3(x) = �8x1 + 2x2 + 5x9 � 2x10 � 12 � 0g4(x) = 3(x1 � 2)2 + 4(x2 � 3)2 + 2x23 � 7x4 � 120 � 0g5(x) = 5x21 + 8x2 + (x3 � 6)2 � 2x4 � 40 � 0g6(x) = x21 + 2(x2 � 2)2 � 2x1x2 + 14x5 � 6x6 � 0g7(x) = 0:5(x1 � 8)2 + 2(x2 � 4)2 + 3x25 � x6 � 30 � 0g8(x) = �3x1 + 6x2 + 12(x9 � 8)2 � 7x10 � 0where �10 � xi � 10 (i = 1; : : : ; 10). The optimum solution is x� = (2:171996,2:363683, 8:773926, 5:095984, 0:9906548, 1:430574, 1:321644, 9:828726, 8:280092,8:375927) where f7(x�) = 24:3062091. Six 
onstraints are a
tive (g1, g2, g3, g4,g5 and g6).Maximize (Koziel and Mi
halewi
z, 1999):f8(x) = sin3(2�x1) sin(2�x2)x31(x1 + x2)subje
t to: g1(x) = x21 � x2 + 1 � 0g2(x) = 1� x1 + (x2 � 4)2 � 0where 0 � x1 � 10 and 0 � x2 � 10. The optimum is lo
ated at x� = (1:2279713; 4:2453733)where f8(x�) = 0:095825. The solution lies within the feasible region.Minimize (Ho
k and S
hittkowski, 1981):f9(x) = (x1 � 10)2 + 5(x2 � 12)2 + x43 + 3(x4 � 11)2 +10x65 + 7x26 + x47 � 4x6x7 � 10x6 � 8x7subje
t to: g1(x) = �127 + 2x21 + 3x42 + x3 + 4x24 + 5x5 � 0g2(x) = �282 + 7x1 + 3x2 + 10x23 + x4 � x5 � 0g3(x) = �196 + 23x1 + x22 + 6x26 � 8x7 � 0g4(x) = 4x21 + x22 � 3x1x2 + 2x23 + 5x6 � 11x7 � 0



26where �10 � xi � 10 for (i = 1; : : : ; 7). The optimum solution is x� = (2:330499,1:951372, �0:4775414, 4:365726, �0:6244870, 1:038131, 1:594227) where f9(x�) =680:6300573. Two 
onstraints are a
tive (g1 and g4).Minimize (Ho
k and S
hittkowski, 1981):f10(x) = x1 + x2 + x3subje
t to: g1(x) = �1 + 0:0025(x4 + x6) � 0g2(x) = �1 + 0:0025(x5 + x7 � x4) � 0g3(x) = �1 + 0:01(x8 � x5) � 0g4(x) = �x1x6 + 833:33252x4 + 100x1 � 83333:333 � 0g5(x) = �x2x7 + 1250x5 + x2x4 � 1250x4 � 0g6(x) = �x3x8 + 1250000 + x3x5 � 2500x5 � 0where 100 � x1 � 10000, 1000 � xi � 10000 (i = 2; 3) and 10 � xi � 1000(i = 4; : : : ; 8). The optimum solution is x� = (579:3167, 1359:943, 5110:071, 182:0174,295:5985, 217:9799, 286:4162, 395:5979) where f10(x�) = 7049:3307. Three 
on-straints are a
tive (g1, g2 and g3).Minimize (Koziel and Mi
halewi
z, 1999):f11(x) = x21 + (x2 � 1)2subje
t to: h(x) = x2 � x21 = 0where �1 � x1 � 1 and �1 � x2 � 1. The optimum solution is x� = (�1=p2; 1=2)where f11(x�) = 0:75.Maximize (Koziel and Mi
halewi
z, 1999):f12(x) = (100� (x1 � 5)2 � (x2 � 5)2 � (x3 � 5)2)=100subje
t to: g(x) = (x1 � p)2 + (x2 � q)2 + (x3 � r)2 � 0:0625 � 0where 0 � xi � 10 (i = 1; 2; 3) and p; q; r = 1; 2; : : : ; 9. The feasible region of thesear
h spa
e 
onsists of 93 disjointed spheres. A point (x1; x2; x3) is feasible if andonly if there exist p; q; r su
h that the above inequality holds. The optimum is lo
atedat x� = (5; 5; 5) where f12(x�) = 1. The solution lies within the feasible region.Minimize (Ho
k and S
hittkowski, 1981):f13(x) = ex1x2x3x4x5



REFERENCES 27subje
t to: h1(x) = x21 + x22 + x23 + x24 + x25 � 10 = 0h2(x) = x2x3 � 5x4x5 = 0h3(x) = x31 + x32 + 1 = 0where �2:3 � xi � 2:3 (i = 1; 2) and �3:2 � xi � 3:2 (i = 3; 4; 5). The op-timum solution is x� = (�1:717143, 1:595709, 1:827247, �0:7636413, �0:763645)where f13(x�) = 0:0539498.


