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The penalty function method has been used widely in constrained evo-
lutionary optimization (CEQO). This chapter provides an in-depth anal-
ysis of the penalty function method from the point of view of search
landscape transformation. The analysis leads to the insight that apply-
ing different penalty function methods in evolutionary optimization is
equivalent to using different selection schemes. Based on this insight,
two constraint handling techniques, i.e., stochastic ranking and global
competitive ranking, are proposed as selection schemes in CEO. Our
experimental results have shown that both techniques performed very
well on a set of benchmark functions. Further analysis of the two tech-
niques explains why they are effective: they introduce few local optima
except for those defined by the objective functions.

Constrained evolutionary optimization (CEO), penalty function method,
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1. Introduction

The general nonlinear programming problem can be formulated as
minimize f(x), x=(z1,...,2,) ER" (1.1)

where f(x) is the objective function, x € SN F, § C R" defines the
search space which is an n-dimensional space bounded by the parametric
constraints

and the feasible region F is defined by
F={xeR"|gx)<0Vke{l,...,m}} (1.3)

where gi(x),k € {1,...,m}, are inequality constraints. Equality con-
straints h(x) can be approximated by inequality constraints using |h(x)|—
0 < 0, where § is a small positive number that indicates the degree of
constraint violation. Only minimization problems are considered in this
chapter without loss of generality since max{f(x)} = —min{—f(x)}.

The penalty function methods considered in this chapter belong to the
exterior penalty approach. They are used widely in evolutionary con-
strained optimization (ECO), although some of the methods are equally
applicable to non-evolutionary optimization algorithms. In contrast to
numerous penalty function methods proposed for ECO (Michalewicz and
Schoenauer, 1996), few theoretical analysis are available to explain how
and why a penalty function method works. This chapter fills in this
gap by providing an in-depth analysis of penalty function methods and
their relationship to search landscape transformation. Such analysis has
led to the development of new constraint handling techniques for CEO.
In essence, a penalty function method transforms the search landscape
by adding a penalty term to the objective function. Such transforma-
tion influences the relative fitness of individuals in a population. It also
alters the characteristics of the search landscape, e.g., ruggedness. A
previously fit individual according to the objective function might not
be fit anymore on the transformed search landscape. Since the primary,
if not the only, place in an evolutionary algorithm that fitness is used is
selection, it is easy to see that an effective approach to “implementing” a
penalty function method is to design a new selection scheme. Two rank-
based selection schemes are described in this chapter to illustrate how
penalty function methods can be “implemented” effectively by designing
new ranking schemes in ECO.

The rest of this chapter is organized as follows. Section 2 analysis the
penalty function method in CEO and discusses how different penalty
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function methods influence evolutionary search. In particular, the re-
lationship between different penalty function methods and the ranking
of individuals in a population is discussed in detail. Sections 3 and 4
present the ideas and algorithms of two constraint handling techniques
based on ranking, i.e., stochastic ranking (Runarsson and Yao, 2000)
and global competitive ranking. Section 5 provides further analysis of
penalty function methods and shows how the penalty function method
works through two detailed examples. Section 6 gives our experimental
results on the two constraint handling techniques. Finally, Section 7
gives a brief summary of this chapter.

2. The Penalty Function Method

Constrained optimization problems have often been transformed into
unconstrained ones by adding a measure of the constraint violation to
the objective function (Fiacco and McCormick, 1968). This constrained
handling technique is known as the penalty function method.

The introduction of the penalty term enables the transformation of
a constrained optimization problem into a series of unconstrained ones,
e.g.,

p(x) = f(x) + 79 $(gj(x);5 =1,...,m) (1.4)

where ¢ > 0 is a real valued function which imposes a penalty, ¢(g;(x),
controlled by a sequence of penalty coefficients {r(g)}g. G indicates the
maximum number of generations used in CEO. The general form of func-
tion ¢ includes both the generation counter g (for dynamic penalty) and
the population (for adaptive penalty). In our current notation, this is
reflected in the penalty coefficient 7(9). This transformation, i.e. equa-
tion (1.4), has been used widely in CEO (Kazarlis and Petridis, 1998;
Siedlecki and Sklansky, 1989). In particular, the following quadratic
loss function (Fiacco and McCormick, 1968), whose decrease in value
represents an approach to the feasible region, has often been used as the
penalty function (Michalewicz and Attia, 1994; Joines and Houck, 1994):

$gj(x);j = 1,...,m) = Y max{0,g;(x)}". (1.5)
j=1

However, any other penalty function is equally valid. Different penalty
functions characterize different problems. It is unlikely that a generic
penalty function exists which is optimal for all problems. The intro-
duction of penalties may transform a smooth objective function into a
rugged one. The search may then become more easily trapped in local
minima. For this reason, it is necessary to develop a penalty function
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method which attempts to preserve the topology of the objective func-
tion and yet enables a CEO algorithm to locate the optimal feasible
solution.

The penalty function method may work quite well for some problems.
However, deciding an optimal (or near-optimal) value for r(9) turns out
to be a difficult optimization problem itself! If 79 is too small, an
infeasible solution may not be penalized enough. Hence an infeasible
solution may be evolved by an evolutionary algorithm. If r9) is too
large, then a feasible solution is very likely to be found but could be of
very poor quality. A large r(9) discourages the exploration of infeasible
regions even in the early stages of evolution. This is particularly inef-
fective for problems where feasible regions in the whole search space are
disjoint. In this case, it may be difficult for an evolutionary algorithm
to move from one feasible region to another unless they are very close
to each other. Reasonable exploration of infeasible regions may act as
bridges connecting two or more different feasible regions. The critical
issue here is how much exploration of infeasible regions (i.e., how large
r(9) is) should be considered as reasonable. The answer to this question
is problem dependent. Even for the same problem, different stages of
evolutionary search may require different 7(9) values.

There has been some work on the dynamic setting of 7(9) values in
CEO (Joines and Houck, 1994; Kazarlis and Petridis, 1998; Michalewicz
and Attia, 1994). Such work usually relies on a predefined monotoni-
cally nondecreasing sequence of r(9) values. This approach worked well
for some simple problems but failed for more difficult ones because the
optimal setting of r(9) values is problem dependent (Reeves, 1997). A
fixed and predefined sequence cannot solve a variety of different problems
satisfactorily. A trial-and-error process has to be used in this situation
in order to find a proper function for r(9) for each problem, as is done
in (Joines and Houck, 1994; Kazarlis and Petridis, 1998).

An adaptive approach, where 79 values are adjusted dynamically
and automatically by an evolutionary algorithm itself, appears to be
most promising in tackling different constrained optimization problems.
For example, population information can be used to adjust (¥ values
adaptively (Smith and Coit, 1997). Different problems lead to different
populations in evolutionary search and thus lead to different (%) values.
The advantage of such an adaptive approach is that it can be applied
to problems where little prior knowledge is available because there is no
need to find a predefined r(9) value, or a sequence of 79 values.

According to (1.4), different 7(9) values lead to different fitness func-
tions. A fit individual under one fitness function may not be fit under
a different fitness function. When rank-based selection is used in CEO,
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finding a near optimal r9) | adaptively, is equivalent to ranking individu-
als in a population adaptively. Hence, the issue of setting r(9) adaptively
becomes how to rank individuals according to their objective and penalty
values.

To facilitate later discussion, some notations are first introduced here.
The individuals being ranked will be arbitrarily assigned some numerical
labels. Then for any ranking of individuals, the corresponding permuta-
tion m € P* will be a function from {1,...,\} onto itself, whose argu-
ments are the individuals and whose values are the ranks. The following
notation is used: 7(4) is the rank given to individual s and 7~!(j) is the
individual assigned the rank j. Since 7=1(j) is the individual assigned
the rank j, the bracket notation

™= (7r_1(1),7r_1(2), ... ,71'_1()\))

corresponds to listing all individuals in their ranked order.
For a given penalty coefficient (9 > 0 let the ranking of X individuals
be

Q,ZJ(XFJ(U) S ’(/}(Xﬂ.-l(Q)) S ce S ’([}(Xﬂ.-l(/\)) (].6)
where 1 is the transformation function given by equation (1.4). Now
examine the adjacent pair 77! (i) and 7='(i + 1) in the ranked order:

fi+ D¢ < fivr +r Dy, ie{l,...,x—1}, (1.7)

where notations f; = f(xz1(3;)) and ¢; = ¢(g;(xr1(3)),7 = 1,...,m)) are
used for convenience.

Define a parameter, 7;, which will be referred to as the critical penalty
coefficient for the adjacent pair 2 and ¢ + 1, as

i = (fig1 — [i)/ (i — div1), for ¢; # diy1. (1.8)

For a given choice of r(¥) > 0, there are three different cases which may
give rise to Inequality (1.7):

1 fi < fix1 and ¢; > ¢;51: the comparison is said to be dominated
by the objective function and 0 < r9) < 7 because the objective
function f plays the dominant role in determining the inequality.
When individuals are feasible, ¢; = ¢;+1 = 0 and #; — oo.

2 fi > fir1 and ¢; < ¢piy1: the comparison is said to be dominated
by the penalty function and 0 < 7 < ) because the penalty
function ¢ plays the dominant role in determining the inequality.

3 fi < fix1 and ¢; < ¢;11: the comparison is said to be nondomi-
nated and 7; < 0.



When comparing nondominated and feasible individuals, the value
of 7(9) has no impact on Inequality (1.7). In other words, it does not
change the order of ranking of the two individuals. However, the value
of (9 ig critical in the first two cases as 7; is the flipping point that
will determine whether the comparison is objective or penalty function
dominated. For example, if 7(9) is increased to a value greater than 7; in
the first case, individual 7=!(i+ 1) would change from a fitter individual
into a less fit one. For the entire population, the chosen value of 7(9) used
for comparisons will determine the fraction of individuals dominated by
the objective and penalty functions.

Not all possible 79 values can influence the ranking of individuals.
They have to be within a certain range, i.e. r, < rl9) < 74, to influence
the ranking, where the lower bound r, is the minimum critical penalty
coefficient computed from adjacent individuals ranked only according to
the objective function and the upper bound 7, is the maximum criti-
cal penalty coefficient computed from adjacent individuals ranked only
according to the penalty function. In general, there are three different
categories of 7(9) values (Runarsson and Yao, 2000):

1 r@ < r9): All comparisons are based only on the objective func-
tion. 79 is too small to influence the ranking of individuals. This
is called under-penalization.

2 7 > 79 All comparisons are based only on the penalty func-
tion. r(9) is so large that the impact of the objective function can
be ignored. This is called over-penalization.

3 r@ < rl@ <79 All comparisons are based on a combination of
objective and penalty functions.

Penalty function methods can be classified into one of the above three
categories. Some methods may fall into different categories during dif-
ferent stages in evolutionary search. It is important to understand the
difference among these three categories because they indicate which func-
tion (or combination of functions) is driving the search process and how
search progresses. For example, most dynamic penalty methods start
with a low 79 value (i.e., rl9) < z(g)) in order to find a good region that
may contain both feasible and infeasible individuals. Towards the end of
search, a high 7(9) value (i.e., 79 > 79)) is often used in order to locate
a good feasible individual. Such a dynamic penalty method would work
well for problems for which the unconstrained global optimum is close to
the constrained global optimum. It is unlikely to work well for problems
for which the constrained global optimum is far away from the uncon-
strained one, because the initial low (9 value would drive the search
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towards the unconstrained global optimum and thus further away from
the constrained one.

The traditional constraint handling technique used in evolution strate-
gies (ESs) falls roughly into the category of over-penalization since all
infeasible individuals are regarded as worse than feasible ones (Schwefel,
1995; Hoffmeister and Sprave, 1996; Deb, 1999; Jiménez and Verdegay,
1999). In fact, canonical evolution strategies allow only feasible indi-
viduals in the initial population. To perform constrained optimization,
an ES is first used to find a feasible initial population by minimizing
the penalty function (Schwefel, 1995, p. 115). Once a feasible initial
population is found, the ES algorithm will then minimize the objective
function and reject all infeasible solutions generated.

It has been widely recognized that neither under- nor over-penalization
is a good constraint handling technique and there should be a balance be-
tween preserving feasible individuals and rejecting infeasible ones (Gen
and Cheng, 1997; Runarsson and Yao, 2000). Such a balance can be
achieved by adjusting our measure of how fit an individual should be in
comparison with others. The adjustment can be done explicitly through
ranking individuals in evolutionary algorithms. In order to strike the
right balance, ranking should be dominated by a mixture of objective
and penalty functions. That is, the penalty coefficient (9 should be
within the bounds: r¥ < r® < 79 Tt is worth noting that the two
bounds are not fixed. They are problem dependent and may change
from generation to generation as they are also influenced by the current
population.

One way to measure the balance of dominance of objective and penalty
functions is to count how many comparisons of adjacent individual pairs
are dominated by the objective and penalty functions respectively. Such
a number of comparisons can be computed for any given 79 by count-
ing the number of critical penalty coefficients given by (1.8) which are
greater than r(9). If there is a predetermined preference for the num-
ber of adjacent comparisons that should be dominated by the penalty
function then a corresponding penalty coefficient can be determined.

It is clear from the analysis in this section that all a penalty function
method tries to do is to obtain the right balance between objective and
penalty functions so that the search moves towards the optimal feasible
solution rather than the optimum in the combined feasible and infea-
sible space. One way to achieve such balance effectively and efficiently
is to adjust such balance directly and explicitly. Possible methods of
achieving this will be presented in the following two sections.
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3. Stochastic Ranking

The ranking procedure introduced in this section is stochastic ranking
(Runarsson and Yao, 2000) where ranking is achieved by a bubble-sort-
like procedure. In this approach a probability P; of using only the ob-
jective function for comparing individuals in the infeasible region of the
search space is introduced. That is, given any pair of two adjacent indi-
viduals, the probability of comparing them (in order to determine which
one is fitter) according to the objective function is 1 if both individuals
are feasible, otherwise it is P;.

The procedure provides a convenient way of balancing the dominance
in a ranked set. In the bubble-sort-like procedure, A individuals are
ranked by comparing adjacent individuals in at least A sweeps!. The
procedure is halted when no change in the rank ordering occurs within a
complete sweep. Figure 1.1 shows the stochastic bubble sort procedure
used to rank individuals in a population (Runarsson and Yao, 2000).

If at least one individual is infeasible in an adjacent pair, the prob-
ability of an individual winning a comparison, i.e., holding the higher

Stochastic bubble sort (Pf, f, ¢):
7(j) =3 ¥ j € {L,..., A}
fori=1to N do
forj=1toA—1 do
sample u € U(0, 1);
if (gb(x -1(7)) = gb( (]-I—l)) = 0) or (u < Pf) then
if (f (%7 1(5)) > f( 1(j+1))) then
swap( 1(J)ﬂr’l(J +1));
fi
else

if (¢(X7r () ) > ¢( (j+1) )) then
swap(r= 1 (7),7 (G +1));
fi
fi
od
if no swap done break; fi
od
return ()

Figure 1.1. Stochastic ranking procedure, where U(0, 1) is a uniform random number
generator and N is the number of sweeps going through the whole population. When
P; = 0 the ranking is equivalent to over-penalization. When P; = 1 the ranking is
equivalent to under-penalization. The initial ranking is generated at random.
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rank, in the ranking procedure is
Py = Py Py + Py (1 — Py) (1.9)

where Py, is the probability of the individual winning according to the
objective function and P, is the probability of the individual winning
according to the penalty function. In the case where adjacent individuals
are both feasible P, = P}, the probability of winning & more compar-
isons than losses can be computed. The total number of wins will be
k' = (N +k)/2 where N is the total number of comparisons made. The
probability of winning &’ comparisons out of N is given by the binomial
distribution

N l o
Puty =) = () PE (1= P ¥ (110
The probability of winning at least k' comparisons is
K1 _
Rwzi=1-% (ra-rp o aw
: J
J=0

Equations (1.10) and (1.11) show that the greater the number of com-
parisons (N) the less influence the initial ranking will have. It is worth
noting that the probability P, usually varies for different individuals
in different stages of ranking. Now consider the case where P, is con-
stant during the entire ranking procedure, which will be true if f; < f;,
¢i > ¢j5 j #4,5=1,...,\. Then Pp, =1 and Py, = 0. If Py = 0.5 is
chosen then P, = 0.5. There will be an equal chance for a comparison
to be made based on the objective or penalty function. Because we are
interested in feasible solutions as the final solution, P; should be less
than 0.5 such that there is a pressure against infeasible solutions. The
strength of the pressure can be adjusted easily by adjusting only Py.
When parameter N, the number of sweeps, approaches oo, the rank-
ing will be determined by P;. That is, if Pf > 0.5, the ranking will be
based on the objective function. If Py < 0.5, the ranking is equivalent to
over-penalization. Hence, an increase in the number of ranking sweeps
is effectively equivalent to changing parameter P;. Hence, N = X can
be fixed and P; adjusted to achieve the best performance.

The effectiveness and efficiency of stochastic ranking will be evaluated
in Section 6 through experimental studies.

4. Global Competitive Ranking

A different method of ranking individuals in a population, in order
to strike the right balance between objective and penalty functions, is
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the deterministic global competitive ranking scheme. In this scheme,
an individual ¢ is ranked by comparing it against all other members of
the population. This is different from the stochastic ranking approach
where only adjacent individuals compete for a given rank. In the global
competitive ranking method, special consideration is given to tied ranks.
In the case of tied ranks the same lower rank will be used. For example,
for ranking © = (1, 3, (2,6), 7,(4,5)), we should have w(1) = 1, 7(3) = 2,
m(2) = m(6) =3, 7(7) =5 and 7(4) = 7(5) = 6.

Similar to the stochastic ranking approach, it is assumed that either
the objective or the penalty function will be used in deciding an individ-
ual’s rank. Py indicates the probability that a comparison is done based
on the objective function only. The probability that individual 7 holds
its rank m(7) when challenged by any other member of the population is,

0 A = myi)
A—1 A—1 "7
where the permutations my and 74 correspond to the ranking of individ-
uals based on the objective and penalty functions, respectively. Equa-
tion (1.12) can be used to determine the final ranking. That is, the
fitness function for the minimization problem becomes:
_ p () 1 mp(i) — 1
pixi) = Pr=35 A1
It is clear from the above that Py can be used easily to bias ranking
according to the objective or penalty function. In practice, the prob-
ability should take a value 0 < Py < 0.5 in order to guarantee that a
feasible solution may be found. The close the probability is to 0.5, the
greater the emphasis will be on minimizing the objective function. As
the Py approaches 0, not equal to zero, the ranking corresponds an over-
penalization. The global competitive ranking scheme, unlike stochastic
ranking, is deterministic. It can be summarized by Figure 1.2.

P(r(i)) = P; +(1—Pp) (1.12)

+(1-Py) (1.13)

Global competitive ranking (Py, f, ¢):
Step 1: Determine the ranking, m;, my4:
f(XTrf'l(l)) < f(XTrf'l(Q)) <...< f(XTrf'l(/\))
¢(Xr11)) < P(Xri(2) < oo S (X s1n)
Step 2. Compute competitive fitness:
$lxi) = PO + (1 - Pp) T80
Step 3. Determine final ranking, :

P(xr11) SPEra2) <ovs < P(Xpaqn))

Figure 1.2. Global competitive ranking method for constraint handling.
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5. How Penalty Methods Work

Convergence and convergence rate are two important issues in stochas-
tic optimization and search algorithms, such as EAs. For a stochastic
search procedure, average positive progress towards the global optimum,
x*, is necessary in order to find the optimum efficiently. One approach
of measuring progress is to compute the distance travelled between suc-
cessive generations (Schwefel, 1995) towards x*. The distance from the
best individual in generation (g) to the optimum x* should be on aver-
age greater than that of the best individual at generation (g + 1). That

is, the following (y should be greater than 0:

k 1 *
Ox = E[d(ngz(l),x ) —d(xgﬁr(l)),x ) ngz(l),...,ngz(u)], (1.14)
where the distance metric d(x,x*) =|| x — x* ||. A similar progress

definition is given by (Rudolph, 1997, p. 207) in terms of fitness for the
unconstrained problem:

o= E[f(xﬁg,z(l)) — f(ngja)))‘xgﬂ(l),...,Xgﬂ(“) . (1.15)

However, the progress rate computed from fitness values, as the one
given by (1.15), indicates the progress towards a local unconstrained
minimum only. Progress towards the global minimum in a multimodal
landscape can only be computed in terms of the distance and when the
global minimum is known (Yao et al., 1999). Computing ¢ analytically
is a difficult theoretical problem although there has been some published
work on drift analysis (He and Yao, 2001).

If positive progress towards the global optimum is to be maintained,
there must exist at least one parent x(9) which produces at least one
offspring that is closer than itself to the optimum x* on average. Con-
sider a simple (1, A\) EA where there is only one parent (u = 1) at each
generation producing A offspring. The offspring are produced using the
following mutation operator:

xUH =9 )+ Ni(0,0%) =1, (1.16)
where N;(0,0?) is a normally distributed random variable with zero
mean and variance o2. We can now use two examples to illustrate how a
penalty function method works by investigating the relationship between
different penalty function methods and progress rates. In particular, we
will examine how the progress in terms of fitness corresponds to that in
terms of the distance to the global optimum.
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Figure 1.3. Expected fitness of the best offspring as a function of parent position for
test function fi2. The curves lying below the dashed one (parent fitness) corresponds
to positive progress towards the global optimum.

The first example is a the benchmark test function, fi2 in (Koziel and
Michalewicz, 1999):

maximize: fia(x) = (100 —(z1 — 5)2 — (29 — 5)2 — (23 — 5)2) /100
subject to:
g(x) = (x1 — p)> + (z2 — q)® + (23 — )% — 0.0625 < 0,

where 0 < z; < 10 (4 = 1,2,3) and p,q,r = 1,2,...,9. The feasible
region of the search space consists of 9% disjointed spheres. A point
(21,9, x3) is feasible if and only if there exist p, ¢, r such that the above
inequality holds. Hence, the g(x) returned corresponds to its lowest
value for given p, q,r values. The feasible global optimum is located at
x* = (5,5,5) where fio(x*) = 1.

Figure 1.3 shows the results of 10,000 one-generational experiments
for a number of different parent values. In Figure 1.3, variables x5 and
x3 were fixed at 5 and only xy was adjusted between values 2 and 5.
The mean search step size used was o = 0.2 and the number of offspring
A = 10. This simulation was conducted using three different ranking
strategies: owver-penalization, stochastic ranking, and global competitive
ranking. In both the stochastic and global competitive ranking, the value
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of Py is 0.45. Over-penalization corresponds to a ranking with P; = 0.
The problem was treated as a minimization one.

In Figure 1.3, the expected objective function value of the highest
ranked offspring is plotted versus the parent value of ;. The dashed
line corresponds to the objective function value of the parent. Hence,
positive progress toward the global optimum will be achieved when the
expected objective function value of the best offspring lies beneath the
dashed line. The figure illustrates how the over-penalization approach
has effectively transformed the original unimodal objective function to
a multimodal fitness function. There existed large regions of negative
progress when the over-penalization approach was used. The stochas-
tic and global competitive ranking, however, maintained their positive
progress towards the global feasible optimum even in infeasible regions,
although the rate of progress is slower. This example shows that the
penalty function method works by transforming the search landscape
(Runarsson, 2000). Inappropriate penalty functions may make the opti-
mization task more difficult than it should be.

The second example is also a well known benchmark test function in
(Koziel and Michalewicz, 1999):

minimize: fi1(x) = 27 + (2o — 1)?
subject to:
h(x) = 3 — 27 = 0,

where —1 < z; <1 and —1 < x5 < 1. The global feasible optimum is at
x* = (£1/v/2,1/2) where fi;(x*) = 0.75. Figure 1.4 shows the objective
function, f11(x), and the constraint curve h(x).

In this example both parent variables z; and zo were varied in our
experimental study. Stochastic ranking (Py = 0.45) was compared with
over-penalization (Py = 0). Since there exist two optima for this ex-
ample, the progress was computed in terms of the maximum distance
covered towards one of the optima:

oo = B min {d(x2) ), y"),d(x2), ), 2°)} (1.17)
—min {d(x\/ ]}, y*), d(x} 1), 7°) }]

where z* and y* are the optima (+1/v/2,1/2).

Two different mean step sizes were used in our experiments: ¢ = 0.05
and ¢ = 0.1. The number of offspring generated was again A = 10.
The progress rate given by Equation 1.17 is illustrated by contour plots
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Figure 1.4. Fitness landscape for test function fi1. The curve represents the region
of feasibility.

shown in Figure 1.5, where regions of negative progress are outlined with
contour lines.

It is clear from Figure 1.5 that negative regions of progress were lo-
cated around the global optima. This is not surprising since the mean
search step size used was too large in these regions. A decreasing mean
search step size should be used. For the over-penalization approach,
however, there existed additional regions of negative progress which were
not in the global optimum regions. These regions formed additional lo-
cal attractors and would trap individuals as the mean search step size
decreased. Stochastic ranking did not create any local attractors in this
case. This is also true for global competitive ranking, as will be seen in
the following section.

In summary, the introduction of constraints may produce additional
local optima in the search landscape. A well designed constraint han-
dling technique can minimize the number of such misleading local op-
tima. This is the primary reason why our ranking methods worked so
well on many test functions. Our ranking methods also make it easy to
control constrained search by adjusting P; for different problems.
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o =01, P; =0 o =0.1, P; = 0.45

o =0.05, Py =0.45

Figure 1.5. The figures show the progress rate in terms of the distance metric, i.e.
@z where p =1 and A = 10, for test function fi;. The drawn contours mark regions
of negative progress (darker regions). When P; = 0 (over-penalization), there exists
a region where no progress is maintained towards either global optima, and thus
the search will get stuck in this region. This figure explains the poor performance
observed in Table 1.1 for this function.

6. Experimental Study
6.1. Evolutionary Optimization Algorithm

The evolutionary optimization algorithm described in this section is
based on the evolution strategy (ES) (Schwefel, 1995). One reason for
choosing ES is that it does not introduce any specialized constraint-
handling variation operators. It will be shown that specialized and
complex variation operators for constrained optimization problems are
unnecessary although they may be quite useful for particular types of
problems (see for example (Michalewicz et al., 1996)). A simple ex-
tension to the ES, i.e., the use of the ranking schemes proposed in the
previous sections, can achieve significantly better results than other more
complicated techniques.
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In a (u, A)-ES algorithm, an individual 7 is a pair of real-valued vec-
tors, (x;,0;), Vi € {1,...,A}. The initial population of x is generated
according to a uniform n-dimensional probability distribution over the
search space S. Let 0z be an approximate measure of the expected dis-
tance to the global optimum, then the initial setting for the ‘mean step
sizes’ should be (Schwefel, 1995, p. 117):

0% = buj/vn~ (T —z;)/Vn, i€{l,...,\Lj€{l,...,n}, (118)

where o; ; denotes the j-th component of the vector o;. These initial
values will also be used as upper bounds on o.

Following the ranking schemes presented, the evaluated objective f(x)
and penalty function ¢(gi(x); &k =1,...,m) for each individual (x;, 0;),
Vi € {1,...,A} is used to rank individuals in a population and the
best (highest-ranked) p individuals out of A are selected for the next
generation. The truncation level is set at u/\ =~ 1/7 (Béck, 1996, p. 79).

Variation of strategy parameters is performed before the modification
of objective variables. New )\ strategy parameters are produced from
the p highest ranked individuals and then applied later for generating
A offspring. The ‘mean step sizes’ are updated according to the log-
normal update rule (Schwefel, 1995): ¢ = 1,...,u, h = 1,..., A, and
j=1,...,n,

U;f]jl-l) &}(lgd). exp(7'N(0,1) + 7N;(0,1))), (1.19)

where N(0,1) is a normally distributed one-dimensional random vari-
able with an expectation of zero and variance one. The subscript j in
N;(0,1) indicates that the random number is generated anew for each

value of j. The ‘learning rates’ 7 and 7’ are set equal to ¢*/\/2\/n
and ¢*/v/2n respectively where ¢* is the expected rate of convergence
(Schwefel, 1995, p. 144) and is set to one (Béack, 1996, p. 72). Recombi-
nation is performed on the self-adaptive parameters before applying the
update rule given by (1.19). In particular, global intermediate recom-
bination (the average) between two parents (Schwefel, 1995, p. 148) is
implemented as
~(9) _ ( _(9) (9) ,
o) = (O’i’j + akj’j)/Q, ki e{l,...,u}, (1.20)
where k; is an index generated at random and anew for each j.

Having varied the strategy parameters, each individual (x;,0;), Vi €
{1,..., u}, creates \/u offspring on average, so that a total of A offspring

are generated:

xgg{rl) ),

+1
J D 4+ o N0, 1) (1.21)
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Table 1.1. Over-penalization.

fen | optimal best median st. dev. | Gm
fi —15.000 —15.000 —15.000 0.0E4-00 697
f2 —0.803619 —0.803578 —0.785253 1.5E—02 1259
fa —1.000 —0.327 —0.090 7.2E—-02 61
fa —30665.539 —30665.539 —30665.538 3.8E4+00 632
fs 5126.498 5126.945 5225.100 2.7E+402 213
fe —6961.814 —6961.814 —6961.814 1.9E—-12 946
fr 24.306 24.322 24.367 5.9E—-02 546
fs —0.095825 —0.095825 —0.095825 2.7TE-17 647
fo 680.630 680.632 680.657 3.8E—-02 414
fio 7049.331 7117.416 7336.280 3.4E+02 530
fu 0.750 0.750 0.953 5.4E—-02 1750
fi2 —1.000000 —0.999972 —0.999758 1.4E-04 90
fis 0.053950 0.919042 0.997912 1.5E—02 1750

Recombination is not used in the variation of objective variables.
When an offspring is generated outside the parametric bounds defined
by the problem, the mutation (variation) of the objective variable will be
retried until the variable is within its bounds. In order to save computa-
tion time the mutation is retried only 10 times and then ignored, leaving
the object variable in its original state within the parameter bounds.

6.2. Experimental Results and Discussion

Thirteen benchmark functions are studied. The first 12 are taken from
(Koziel and Michalewicz, 1999) and the 13th from (Michalewicz, 1995).
The details, including the original sources, of these functions are listed in
appendix 1.A. Functions fs, f3, fs, and fi2 are maximization problems.
They are transformed to minimization problems using — f(x). For each
of the benchmark problems 30 independent runs are performed using a
(30,200)-ES and the ranking procedures described in the previous sec-
tions. All runs are terminated after G = 1750 generations except for fio,
which was run for 175 generations. The experimental results using the
stochastic and global competitive ranking, with Py = 0.45, are given in
Tables 1.2 to 1.3. The results are compared against the over-penalization
approach (Table 1.1) used in ES (Hoffmeister and Sprave, 1996). The
over-penalization approach corresponds to the ranking schemes discussed
for Py — 0. In the tables the best feasible objective value, median, stan-
dard deviation, and median number of generations (G,,) needed to find
the best individual are given.
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Table 1.2. Stochastic ranking (P; = 0.45).

fen | optimal best median st. dev. | Gm
f —15.000 —15.000 —15.000 0.0E+400 741
f2 —0.803619 —0.803515 —0.785800 2.0E—02 1086
fa —1.000 —1.000 —1.000 1.9E—-04 1146
fa —30665.539 —30665.539 —30665.539 2.0E—05 441
fs 5126.498 5126.497 5127.372 3.5E+4+00 258
fe —6961.814 —6961.814 —6961.814 1.6E+402 590
fr 24.306 24.307 24.357 6.6E—02 715
fs —0.095825 —0.095825 —0.095825 2.6E—17 381
fo 680.630 680.630 680.641 3.4E—-02 557
fio 7049.331 7054.316 7372.613 5.3E402 642
fu 0.750 0.750 0.750 8.0E—05 57
fi2 —1.000000 —1.000000 —1.000000 0.0E+00 82
fi3 0.053950 0.053957 0.057006 3.1E—-02 349
Table 1.3. Global competitive ranking (Py = 0.45).

fen | optimal best median st. dev. Gm
f —15.000 —15.000 —15.000 0.0E+400 692
f2 —0.803619 —0.803591 —0.792805 1.7E—02 1335
fa —1.000 —1.000 —1.000 2.6E—05 1725
fa —30665.539 —30665.539 —30665.538 5.4E—01 731
152 5126.498 5126.497 5126.721 1.1E400 319
fe —6961.814 —6943.560 —6579.214 2.9E+402 13
fr 24.306 24.308 24.361 1.1IE-01 517
fs —0.095825 —0.095825 —0.095825 2.6E—17 398
fo 680.630 680.631 680.657 5.8E—02 396
fio 7049.331 - - - -
fu 0.750 0.750 0.750 7.2E—05 76
fi2 —1.000000 —1.000000 —1.000000 0.0E+4-00 63
fi3 0.053950 0.053943 0.053987 1.3E—04 247

As can be seen from Tables 1.1 to 1.3, both stochastic ranking and
global competitive ranking performed very well for most test functions,
especially for functions f3, f11, f12, and fi3, for the reasons given in Sec-
tion 5. They are also much faster than the over-penalization approach for
most test functions. There are, however, two test functions that stand
out: fi9 and fg. It is difficult to determine whether it is the constraint
handling technique or the underlying search method which is contribut-
ing to the success or failure in locating the optimum. In (Runarsson and
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Table 1.4. Over-penalization versus stochastic ranking for test function fip and ¢ =
1/4.

Py | optimal| best median st. dev. | Gm

0.45 | 7049.331 | 7049.852 7054.111 5.7E400 | 1733
0.00 | 7049.331 | 7049.955 7062.673 3.1E401 | 1745

Yao, 2000) the importance of the search method was illustrated on test
function fio by setting ¢ = 1/4. This results is given in table 1.4 and
illustrates how significant the search method is.

Test function fg is the only test function solved more effectively using
over-penalization. For this reason it is interesting to plot its progress
rate landscape. The test function has two variables. The progress rate
is simulated as before using 10.000 one generational experiments in the
region where suboptimal solutions are found. The result is depicted in
figure 1.6. Progress landscapes for the step sizes o = 0.05 (dotted) and
o = 0.01 (dashed) are plotted as contours. Negative progress is main-
tained to the right of the last of the three contour lines plotted. The
solid lines in the figure are the constraint curves and the circle marks the
location of x*. The feasible region is the top narrow band formed by the
two constraint curves. From the figure it becomes clear that in this case
over-penalization guides the search directly to the optimal feasible solu-
tions from the infeasible region. However, stochastic ranking approaches
the optimal solution from the combined feasible and infeasible region.
The progress contours are simply rotated. In this test case no additional

Py =0.45

15

ry 1

Figure 1.6. Progress landscape for test function fg for step sizes o = 0.05 (dotted)
and ¢ = 0.01 (dashed). Negative progress is to the right of the last of the three
contour lines. The solid lines are the constraint curves and the circle the location of
x*. The feasible region is the top narrow band formed by the two constraint curves.
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attractors are created by the over-penalization method and therefore
the two approaches should yield similar performance. This leads one to
speculate whether the performance difference may be due to the lack of
rotational invariance of the search method. To test this the coordinate
system is rotated by 7/4 and the experiment is re-run. The results are
given in table 1.5. This simple experiment supports our prediction that
the performance difference is due to the lack of rotational invariance of
the search method.

Table 1.5. Over-penalization versus stochastic ranking for test function fs and co-
ordinate system rotated by m/4.

Py | best median mean  st. dev. worst | G

0.45 | —6954.352 —6913.419 —6909.142 2.7TE4+01 —6842.484 | 957
0.00 | —6942.806 —6903.223 —6887.683 4.2E401 —6782.945 | 864

7. Conclusion

The penalty function method is widely used in constrained optimiza-
tion. It is emphasized in this chapter that the penalty function method
transforms a constrained problem into an unconstrained one by modify-
ing the search landscape. Different modifications lead to different search
landscapes and thus different difficulties of optimization. We have given
two concrete examples to illustrate how additional local optima could be
introduced through inappropriate penalty methods and how such local
optima could mislead search.

Selection in an EA depends primarily on fitness values of individuals.
Modifications to a search (fitness) landscape can be achieved through
modifications to the selection scheme, rather than to the fitness function.
Ranking is a simple yet effective selection method that can be used
to indicate which individuals are fitter than others and thus achieve
the goal of modifying the fitness landscape. Two ranking schemes have
been introduced in this paper to show how they can be used to handle
constraints effectively and efficiently without adding a penalty term in
the fitness function. Experimental results on a set of benchmark test
functions are given in this chapter to support our analysis.

Notes

1. Tt would be exactly X sweeps if the comparisons were not made stochastic.

2. Statistics based on 11 feasible solutions found.
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Appendix: Test Function Suite
Minimize (Floundas and Pardalos, 1987):

4 4 13
ICEE) DD DR 31t
i=1 i=1 i=5
subject to:

g1(x) =2z1 +2z2 + 210+ 211 —10 <0
g2(x) =2z1 + 223 + x10 + 212 —10 <0
g3(x) = 2z2 + 273 + 711 + 212 — 10 < 0
ga(x) = —8x1 + 710 <0

gs(x) = —8zx2+z11 <0

g6(x) = —8x3 4+ x12 <0

g7(x) = —2z4 — x5 + 210 < 0

ga(x) = —2z6 —z7 + 211 <0

go(x) = —2z8 — o + 212 < 0

where the bounds are 0 < z; <1 (1 =1,...,9), 0 < z; <100 (+ = 10,11,12) and
0 < w13 < 1. The global minimum is at x* = (1,1,1,1,1,1,1,1,1,3, 3,3, 1) where six
constraints are active (g1, 82, g3, g7, 8s and go) and fi(x*) = —15.

Maximize (Koziel and Michalewicz, 1999):

n 4 n 2
._cos”(xz;) —2][_; cos™(z;
ey -
i=1 1T
subject to:
gi(x) =075 —[[zi <0
i=1
g2 (x) = Zml —7.5n <0
=1
where n =20 and 0 < z; <10 ( = 1,...,n). The global maximum is unknown, the
best we found is f2(x*) = 0.803619 (which, to the best of our knowledge, is better
than any reported value), constraint g; is close to being active (g3 = —107%).

Maximize (Michalewicz et al., 1996):
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where n =10 and 0 < z; <1 (i = 1,...,n). The global maximum is at z; = 1/\/n
(:=1,...,n) where f3(x*) =1.

Minimize (Himmelblau, 1972):
falx) = 5.3578547x3 4 0.8356891x:1 x5 + 37.293239z1 — 40792.141
subject to:

g1(x) = 85.334407 + 0.0056858z2 x5 + 0.0006262z1 x4 — 0.0022053z325 — 92 < 0
g2(x) = —85.334407 — 0.0056858z 25 — 0.0006262z1 x4 + 0.0022053z325 < 0
g3(x) = 80.51249 + 0.0071317z225 4 0.0029955z1 22 + 0.0021813z3 — 110 < 0
ga(x) = —80.51249 — 0.0071317z225 — 0.002995521 x> — 0.0021813z3 + 90 < 0
gs(x) = 9.300961 + 0.0047026z3z5 + 0.0012547x1 23 + 0.0019085z324 — 25 < 0
gs(x) = —9.300961 — 0.0047026x3x5 — 0.0012547z1 23 — 0.0019085z374 + 20 < 0

where 78 < 21 < 102, 33 < z» < 45 and 27 < 2; < 45 (i = 3,4,5). The

optimum solution is x* =(78, 33, 29.995256025682, 45, 36.775812905788) where
fa(x™) = —30665.539. Two constraints are active (g1 and gg).

Minimize (Hock and Schittkowski, 1981):
f5(x) = 321 4 0.000001z} + 22> 4 (0.000002/3)x5
subject to:

gi(x)=—z4+23—0.55<0

g2(x) = —w3 + x4 —0.55 <0

ha(x) = 1000 sin(—z3 — 0.25) + 1000 sin(—z4 — 0.25) + 894.8 — z1 = 0
ha(x) = 1000 sin(z3 — 0.25) + 1000 sin(zs — x4 — 0.25) + 894.8 — 22 = 0
hs(x) = 1000 sin(z4 — 0.25) + 1000 sin(z4 — z3 — 0.25) + 1294.8 =0

where 0 < z1 <1200, 0 < z2 <1200, —0.55 < 3 < 0.55 and —0.55 < x4 < 0.55. The
best known solution (Koziel and Michalewicz, 1999) x* = (679.9453, 1026.067, 0.1188764,
—0.3962336) where f5(x*) = 5126.4981.

Minimize (Floundas and Pardalos, 1987):
fo(x) = (z1 = 10)* + (w2 — 20)°
subject to:

gi1(x) = —(z1 —5)° — (22— 5)>+ 100 < 0
ga(x) = (z1 —6)* + (z2 — 5)> —82.81 <0

where 13 < z1 < 100 and 0 < z2 < 100. The optimum solution is x* = (14.095, 0.84296)
where f(x™) = —6961.81388. Both constraints are active.
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Minimize (Hock and Schittkowski, 1981):

fr(x) = zi 4234z — 141 — 1629 + (3 — 10)® + 4(xs — 5)% + (25 — 3)% +
2xe — 1)% + b2 + 7(zs — 11)% + 2(xo — 10)* + (10 — 7)? + 45

subject to:

g1(x) = —105 + 4z1 + bza — 3z7 + 925 < 0

g2(x) =10z — 8x2 — 17x7 + 225 < 0

g3(x) = —8x1 + 2w2 + 5x9 — 210 — 12 < 0

ga(x) = 3(z1 — 2)” + 4(x2 — 3)® + 223 — Twa — 120 < 0
gs(x) = 51:% + 8zo + (3 — 6)2 —2x4—40<0

gs(x) = m% + 2(x2 — 2)2 —2x122 + 1425 — 626 < 0
g7(x) = 0.5(x1 —8)> +2(xa —4)® + 322 —26 — 30 <0
gs(x) = —3x1 + 6z + 12(x0 — 8)” — Tw10 < 0

where —10 < z; < 10 (+ = 1,...,10). The optimum solution is x* = (2.171996,
2.363683, 8.773926, 5.095984, 0.9906548, 1.430574, 1.321644, 9.828726, 8.280092,
8.375927) where fr(x*) = 24.3062091. Six constraints are active (g1, g2, g3, &4,
gs and gg).

Maximize (Koziel and Michalewicz, 1999):

sin® (271 ) sin(27z2)
(21 + x2)

fa(x) =

subject to:

gi(x)=ai —22+1<0
g2x)=1—214 (22 —4)> <0

where 0 < 21 < 10and 0 < 22 < 10. The optimum is located at x* = (1.2279713, 4.2453733)
where fs(x*) = 0.095825. The solution lies within the feasible region.

Minimize (Hock and Schittkowski, 1981):
fo(x) = (21 —10)2 4+ 5(xs — 12)® + 25 + 3(za — 11)% +
1028 + 72k + 2% — dzexy — 1026 — 827
subject to:

gi(x) = —127 + 227 + 375 + T3 + 423 + 55 < 0
go(x) = —282 + Txy + 3z2 + 10m§ +x4—125<0
g3(x) = —196 + 23z, + x5 + 625 — 87 <0
ga(x) = 49:% + a:% — 3x122 + 29:?; + 5z — 1127 <0
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where —10 < z; < 10 for (4 = 1,...,7). The optimum solution is x* = (2.330499,
1.951372, —0.4775414, 4.365726, —0.6244870, 1.038131, 1.594227) where fo(x*) =
680.6300573. Two constraints are active (g1 and g4).

Minimize (Hock and Schittkowski, 1981):

fio(xX) =x1 + 22+ 23

subject to:
gi1(x) = —1+0.0025(z4 + z6) <0
g2(x) = —1+0.0025(z5 + z7 — z4) <0
g3(x) = —140.01(xs —z5) <0

ga(x) = —z176 + 833.33252x4 + 100z — 83333.333 <0
g5(x) = —z2x7 + 125025 + xows — 125024 < 0
g6(x) = —xaxs + 1250000 + z325 — 250025 < 0

where 100 < z; < 10000, 1000 < z; < 10000 (: = 2,3) and 10 < z; < 1000
(i =4,...,8). The optimum solution is x* = (579.3167, 1359.943, 5110.071, 182.0174,
295.5985, 217.9799, 286.4162, 395.5979) where fio(x*) = 7049.3307. Three con-
straints are active (g1, g2 and gs).

Minimize (Koziel and Michalewicz, 1999):
fui(x) =21 + (22 — 1)
subject to:

h(x)=a>—21 =0

where —1 < z; < 1 and —1 < 22 < 1. The optimum solution is x* = (+1/v/2,1/2)
where fi1(x*) = 0.75.

Maximize (Koziel and Michalewicz, 1999):
fr2(x) = (100 = (z1 — 5)* = (w2 — 5)* — (w3 — 5)*)/100
subject to:

g(x) = (x1 —p)* + (z2 — q)° + (w5 — r)> = 0.0625 < 0

where 0 < z; < 10 (i = 1,2,3) and p,q,r = 1,2,...,9. The feasible region of the
search space consists of 9° disjointed spheres. A point (z1,xs,23) is feasible if and
only if there exist p, g, such that the above inequality holds. The optimum is located
at x* = (5,5,5) where fi2(x*) = 1. The solution lies within the feasible region.

Minimize (Hock and Schittkowski, 1981):

fia(x) = 17273245
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subject to:

hi(x) =2 +a5+x5+z;+25—10=0
hy(x) = 2223 — brazs =0
hy(x) =27 +25+1=0

where —2.3 < z; < 23 (i = 1,2) and —3.2 < z; < 3.2 (i = 3,4,5). The op-
timum solution is x* = (—1.717143, 1.595709, 1.827247, —0.7636413, —0.763645)
where fi3(x*) = 0.0539498.



