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Abstract|The results obtained from the application of a ge-

netic algorithm, GENEsYs, to the NP-complete maximum

independent set problem are reported in this work. In con-

trast to many other genetic algorithm based approaches that

use domain-speci�c knowledge, the approach presented here

relies on a graded penalty term component of the �tness

function to penalize infeasible solutions. The method is ap-

plied to several large problem instances of the maximum

independent set problem. The results clearly indicate that

genetic algorithms can be successfully used as heuristics for

�nding good approximative solutions for this highly con-

strained optimization problem.

I. Introduction

Once the NP-hardness of a combinatorial optimization

problem is established, the search for an optimal solution

is abandoned. The goal then becomes one of �nding a

good heuristic, i.e. a polynomial running time algorithm

that can �nd solutions close to the optimal. In most cases,

traditional heuristics are problem dependent; a heuristic is

tailored to the speci�c problem it is trying to solve.

In this work, we present an alternative approach that

uses genetic algorithms as a generalized heuristic for solv-

ing NP-hard combinatorial optimization problems. The

application of a genetic algorithm is demonstrated here for

the maximum independent set problem. These algorithms

have been successfully applied to a broad range of prob-

lems. This wide range can be tackled by genetic algorithms

mainly due to the fact that they work with an encoding of

the domain rather than with the problem domain itself.

The interested reader is refered to chapter 5 of [5] for more

applications.

This robustness concerning the application domain is

achieved by working with the coding of the parameter set

rather than with the input data itself, such that genetic

algorithms are nowadays used in a variety of problem do-

mains.

The outline of the paper is as follows: Section II gives a

short introduction to genetic algorithms. In section III, the

maximum independent set problem and its representation

for an application of the genetic algorithm are explained,

and section IV presents the experimental results.

II. Genetic Algorithms

Genetic algorithms (GAs) [7; 9] are the best known rep-

resentative of a class of direct random search algorithms

based on the model of organic evolution, so-called evolu-
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tionary algorithms (see e.g. [17]). Canonical genetic algo-

rithms represent the individuals (search points) of a popu-

lation as binary vectors ~x = (x

1

; : : : ; x

n

) 2 f0; 1g

n

of �xed

length n. A �tness function f : f0; 1g

n

! IR that charac-

terizes the actual optimization problem provides the qual-

ity measure for individuals. The �tness values are used by

the selection procedure to direct the search towards regions

of higher �tness, hopefully leading to an optimal solution.

The classical probabilistic proportional selection opera-

tor uses the relative �tness p

s

(~x

i

) = f(~x

i

)=

P

�

j=1

f(~x

j

) to

serve as selection probabilities (� denotes the population

size). In case of minimization tasks or negative �tness val-

ues f(~x

i

) is usually linearly transformed before calculating

selection probabilities. This technique is known as linear

dynamic scaling (see [7], pp. 123{124, or [8]).

Innovation, i.e. new information, is introduced into the

population by means of mutation, which works by invert-

ing bits with a small probability p

m

(e.g. p

m

� 0:001 [10]).

Though mutation is often interpreted as a rather unimpor-

tant operator in genetic algorithms [9], recent theoretical

work gives strong evidence for an appropriate choice of a

mutation rate p

m

= 1=n on many problems [2; 12].

The recombination (crossover) operator allows for the

exchange of information between di�erent individuals. The

original one-point crossover [9] works on two parent indi-

viduals (which are randomly chosen from the population)

by choosing a crossover point � 2 f1; : : : ; n � 1g at ran-

dom and exchanging all bits after the �

th

one between

both individuals. The crossover rate p

c

(e.g., p

c

� 0:6

[10]) determines the probability per individual to undergo

crossover. The crossover operator can be extended to a

generalized multi-point crossover [10] or even to uniform

crossover, where an operator randomly decides for each bit

whether to exchange it or not [19]. The strong mixing ef-

fect introduced by uniform crossover is sometimes helpful

to overcome local optima.

After a random initialization of the population, the ge-

netic algorithm proceeds by iterating the steps �tness eval-

uation, selection, recombination, and mutation until a ter-

mination criterion is ful�lled. Usually, the algorithm is

terminated after a prede�ned number of iterations of the

basic cycle, and the best individual in the �nal population

serves as the result of the optimization process.

For the experiments reported in section IV the genetic

algorithm software package GENEsYs is used [1]. This im-

plementation is based on the widely used GENESIS soft-

ware by Grefenstette (see [3], pp. 374{377), but allows for



more 
exibility concerning genetic operators and data mon-

itoring. The parameter settings for our experiments are

given in section IV, where the experimental results are pre-

sented. First, however, section III presents an introduction

to the maximum independent set problem and the repre-

sentation of solution candidates as binary strings.

III. The Maximum Independent Set Problem

The maximum independent set problem consists of �nding

the largest subset of vertices of a graph such that none of

these vertices are connected by an edge (i.e., all vertices are

independent of each other). Thus, if G = (V;E) denotes a

graph where V is the set of nodes andE the set of edges, the

problem is to determine a set V

0

� V such that 8i; j 2 V

0

the edge hi; ji 62 E and jV

0

j is maximum. This problem is

NP-complete (see [6], pp. 53{56).

In the following, we present a formal de�nition of the

maximum independent set problem by making use of Stin-

son's terminology for combinatorial optimization problems

[18]:

Problem instance: A graph G = (V;E), where V =

f1; 2; : : :; ng is the set of vertices and E � V � V the

set of edges. An edge between vertices i, j is denoted

by the pair hi; ji 2 E, and we de�ne the adjacency

matrix (e

ij

) according to

e

ij

=

�

1 ; if hi; ji 2 E

0 ; otherwise :

Feasible solution: A set V

0

of nodes such that 8i; j 2

V

0

: hi; ji 62 E (i.e., e

ij

= 0).

Objective function: The size jV

0

j of the independent set

V

0

.

Optimal solution: An independent set V

0

that maximi-

zes jV

0

j.

In order to encode the problem to use a genetic algo-

rithm, we choose the following representation of a candi-

date solution as a binary string (x

1

; x

2

; : : : ; x

n

): x

i

= 1,

i 2 V

0

. This way, the i

th

bit indicates the presence (x

i

= 1)

or absence (x

i

= 0) of vertex i in the candidate solution.

Note that a particular bitstring may (and will often hap-

pen to) represent an infeasible solution. Instead of trying

to prevent this, we allow infeasible strings to join the pop-

ulation and use a penalty function approach to guide the

search towards the feasible region [13]. The penalty term

in the objective function has to be graded in the sense that

the farther away from feasibility the string is, the larger its

penalty term should be. The exact nature of the penalty

function, however, is not of high importance if it ful�lls the

property of being graded (see [16]).

Taking this design rule for a penalty function into con-

sideration, we developed the following �tness function to

be maximized by the genetic algorithm:

f(~x) =

n

X

i=1

0

@

x

i

� n � x

i

�

n

X

j=i

x

j

e

ij

1

A

: (1)

This �tness function penalizes infeasible strings ~x by a

penalty of n for every node j in the candidate solution

V

0

represented by ~x that is connected to a node i 2 V

0

.

For feasible strings ~x, f(~x) � 0 and the �tness value is

just given by the number of nodes in the independent set

represented by ~x.

In solving the maximum independent set problem, we

also have a solution for two other graph problems: The

minimum vertex cover problem (given G = (V;E), �nd

the smallest subset V

0

� V such that 8hi; ji 2 E : i 2

V

0

_ j 2 V

0

) and the maximum clique problem (given G =

(V;E), �nd the largest subset V

0

� V such that 8i; j 2 V

0

:

hi; ji 2 E). The close relationship between these problems

is characterized by the following lemma (see e.g. [6]):

Lemma 1

For any graph G = (V;E) and V

0

� V , the following state-

ments are equivalent:

� V

0

is the maximum independent set in G.

� V � V

0

is the minimum vertex cover of G.

� V �V

0

is the maximumclique in G

C

= (V;E

C

), where

E

C

= f hi; ji j i; j 2 V ^ hi; ji 62 E g.

Consequently, one can obtain a solution of the minimum

vertex cover problem by taking the complement of the solu-

tion to the maximum independent set problem. A solution

to the maximum clique problem is obtained by applying

the maximum independent set heuristic to G

C

= (V;E

C

).

IV. Experimental Results

The experiments reported in this section are performed by

using a genetic algorithm with a population size � = 50,

a mutation rate p

m

= 1=n, crossover rate p

c

= 0:6, pro-

portional selection, and two-point crossover (which is, ac-

cording to the experimental results reported in [4; 15], ex-

pected to perform better than the traditional one-point

crossover). In order to become applicable to the maximum

independent set problem, no component of this general ge-

netic algorithm | except, of course, the �tness function

| has to be modi�ed. This fact re
ects the wide applica-

bility and robustness of genetic algorithms in contrast to

problem-speci�c heuristics.

1 2 3 4 5

6 7 8 9 10

Fig. 1: Example graph \misp10" with n = 10 nodes. The in-

dependent set V

0

= f1;3;5; 6;8;10g, represented by the bitstring

(1010110101), is indicated by the dashed lines. Notice that the inde-

pendent set f2;4; 7;9g, represented by the bitstring (0101001010), is

a local maximum.

In order to obtain large test problems for an applica-



misp102 misp100-01 misp100-02 misp100-03 misp100-04 misp100-05

f

2�10

4
(~x) N f

2�10

4
(~x) N f

2�10

4
(~x) N f

2�10

4
(~x) N f

2�10

4
(~x) N f

2�10

4
(~x) N

52 | 47 1 45 34 45 77 45 96 45 99

50 1 46 1 43 3 44 1 33 1 17 1

48 14 45 3 41 2 41 6 32 1

46 32 44 6 40 3 37 3 25 1

44 40 43 4 39 10 36 3 10 1

42 10 42 4 38 1 34 1

40 3 41 9 37 8 33 1

40 4 36 1 32 1

39 6 35 1 30 1

38 12 34 6 29 1

37 5 33 6 26 1

< 37 45 < 33 25 < 26 4

�

f = 44:94

�

f = 37:39

�

f = 37:25

�

f = 42:38

�

f = 44:20

�

f = 44:72

Table 1: Experimental results for the regular graph \misp102" with n = 102 vertices and �ve random graphs with edge density d = 0:1

(\misp100-01"), d = 0:2 (\misp100-02"), d = 0:3 (\misp100-03"), d = 0:4 (\misp100-04") and d = 0:5 (\misp100-05"). An independent set

size k = 45 was chosen for the random graphs, but for the graph with d = 0:1 the genetic algorithm identi�ed a larger independent set.

tion of the genetic algorithm to the maximum independent

set problem, we make use of the scalable graph shown in

�gure 1, which can be constructed for an even number of

nodes n (n � 6). If n is a multiple of 4, two equivalent

global maxima of �tness value jV

0

j = n=2 are obtained by

partitioning the set of vertices into those of even (respec-

tively odd) node numbers. Otherwise, the unique global

maximum is given by V

0

= f1; 3; : : :; n=2; n=2 + 1; n=2 +

3; : : : ; ng, with �tness value n=2+1, and a local maximumis

obtained from V �V

0

with �tness value n=2�1. For n = 10,

the corresponding bitstrings are ~x

0

= (1010110101) and its

inverted form (0101001010) (see �gure 1).

In addition to this graph, which has a highly regular

structure, we use randomly constructed graphs which are

created according to the following algorithm with input

k 2 f1; : : : ; ng (number of nodes in V

0

) and d 2 [0; 1] (edge

density of the graph):

randomly select V

0

= fi

1

; : : : ; i

k

g � V = f1; : : : ; ng

for i = 1 to n do

for j = i + 1 to n do

if ((Random(0; 1) < d) and

((i 62 V

0

) or (j 62 V

0

)))

then e

ij

= 1

else e

ij

= 0

The algorithm at random preselects k nodes i

1

; : : : ; i

k

that are guaranteed to form an independent set (the graph

may, however, contain di�erent larger independent sets by

chance, especially when the edge density is low). Edges

are placed at random, according to the density parameter

d, such that it is guaranteed that a member of V

0

is never

connected to another member of V

0

(note that, according

to the construction method, only loop-free graphs are gen-

erated).

For the experimental test regular graphs of size n =

102, respectively n = 202 (with a maximum independent

set of size 52, respectively 102) and random graphs with

n = 100, k = 45, respectively n = 200, k = 90 and

d 2 f0:1; 0:2; 0:3;0:4;0:5g are used. For each of these prob-

lems, a total of N = 100 runs of the genetic algorithm

are performed. These runs are evaluated according to the

number of runs that yield solutions of identical quality.

The results are summarized in table 1 (for the graphs with

102 respectively 100 vertices) and table 2 (for the graphs

with 202 respectively 200 vertices) for the best results that

were encountered during the 100 runs for each test prob-

lem. For each experiment, the average �nal best �tness

value

�

f over all 100 runs is indicated at the bottom of the

table. The total number of function evaluations performed

for each single run is indicated as an index t in the notation

f

t

(~x); for n = 100 we use a value of t = 2 �10

4

, while this is

doubled for n = 200. Consequently, only a small fraction

of the search space (about 1:6 � 10

�24

% for n = 100 respec-

tively 2:5 � 10

�54

% for n = 200) is tested by the genetic

algorithm.

For the regular graphs \misp102" and \misp202", none

of the runs of the genetic algorithm identi�ed the globally

optimal solution of quality 52 respectively 102, but for all

runs a solution quality between 40 and 50 respectively 82

and 96 is obtained, i.e., solutions close to the optimal one

are found. Finding the global optimum in case of these

regular graphs becomes an extremely di�cult problem due

to large Hamming distances between local optima of sim-

ilar quality (e.g. consider f(101001010101001010) = 8,

f(101010101101010101) = 10, and the Hamming distance

between both strings is 10).

A comparison of the results for the random graphs re-

veals that the edge density is the major factor which de-

termines the complexity of the maximum independent set



misp202 misp200-01 misp200-02 misp200-03 misp200-04 misp200-05

f

4�10

4
(~x) N f

4�10

4
(~x) N f

4�10

4
(~x) N f

4�10

4
(~x) N f

4�10

4
(~x) N f

4�10

4
(~x) N

102 | 90 4 90 54 90 93 90 100 90 100

96 3 88 1 89 1 72 1

94 3 85 2 80 4 70 2

92 11 84 3 79 6 65 1

90 33 82 2 78 3 62 2

88 30 81 2 77 5 51 1

86 12 80 4 75 4

84 5 79 1 74 2

82 3 78 5 73 3

77 5 71 1

76 1 70 1

< 76 70 < 70 16

�

f = 88:90

�

f = 68:75

�

f = 81:05

�

f = 88:22

�

f = 90:00

�

f = 90:00

Table 2: Experimental results for the regular graph \misp202" with n = 202 vertices and �ve random graphs with edge density d = 0:1

(\misp200-01"), d = 0:2 (\misp200-02"), d = 0:3 (\misp200-03"), d = 0:4 (\misp200-04") and d = 0:5 (\misp200-05"). An independent set

size k = 90 was chosen for the random graphs.

problem. The smaller (larger) the edge density, the fewer

(more) runs succeed in �nding a solution of quality k = 45

respectively k = 90 or better (which is possible in case of

small edge density, e.g. for d = 0:1). For small edge density,

the number of local optima grows due to the possibility of

exchanges of groups of vertices and the existence of iso-

lated vertices. As the edge density increases to a value of

0:5, the frequency of runs that identify the solution with

45 respectively 90 vertices grows steadily. For the smaller

graphs, the genetic algorithm always found the best solu-

tion for an edge density above d = 0:5, while this property

holds for the larger graphs already for d = 0:4.

Notice that, according to the construction mechanism,

the edge density of the regular graph amounts to

4�(n�2)

n�(n�1)

�

4=n (the regular graph has 2n�4 edges, and the maximum

number of edges is n � (n� 1)=2 if no loops are permitted).

From the experience with random graphs, it is clear that

this small value provides further evidence for the complex-

ity of the regular graph problems.

All runs of the genetic algorithm are characterized by

the following properties, independently of the problem in-

stance the algorithm is applied to: The initial phase of the

search is used for �nding feasible solutions from a com-

pletely infeasible initial popluation. The genetic algorithm

quickly succeeds in leaving the infeasible region in each of

the runs reported here, thus demonstrating the appropri-

ateness of our graded panalty function approach. After at

most 200 respectively 400 generations (1 � 10

4

respectively

2 � 10

4

function evaluations) each run has settled in a lo-

cal optimum and does not show further improvement. The

quality of the optima found, however, clari�es the genetic

algorithms' reliability for identifying good approximative

solutions for the maximum independent set problem.

To illustrate the typical behavior of genetic algorithm

Fig. 2: Some representative courses of evolution for the maximum

independent set problem (using the \misp100-01" example).

runs, �gure 2 shows the course of evolution for three dif-

ferent runs on the \misp100-01" problem. The best �tness

value that occurred in the population is plotted over the

generation number for each of the three runs. Each run is

labeled by its �nal solution quality, and the ordinate axis is

restricted to a smaller range of values than really observed

(initially best �tness values are found around �3:5 � 10

3

).

Note that only about 50 generations are required to enter

the feasible region (which corresponds with nonnegative



�tness values). Further progress is observed until approxi-

mately generation 100, and afterwards the search stagnates

in local optima.

Figure 3 shows a magni�cation of the marked region from

�gure 2. This closer look reveals that between generations

50 and 100 a steady period of further improvement of fea-

sible solutions takes place. During this stage of the search,

the algorithm �ne-tunes solutions towards one of the local

optima of the search space.

Fig. 3: Magni�cation of the marked region in �gure 2.

V. Conclusion

We have shown in this work that genetic algorithms can

be used in a fairly straightforward way to �nd good ap-

proximative solutions of the NP-hard maximum indepen-

dent set problem. The robustness of our approach based on

a graded penalty function for infeasible strings is demon-

strated by the fact that no changes to the genetic algo-

rithm are required. Thus, rather than having to construct

tailored heuristics to handle the problem under considera-

tion, we advocate the use of genetic algorithms where the

only change to perform is the formulation of a new �tness

function.
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