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Abstract

This paper introduces optimisation modules of a process planning system called OPPS-PRI
(Optimised Process Planning System for PRIsmatic parts) which has been developed together with its
interfaces to provide a complete CAD/CAM integration. Primary objective of this work is to develop an
intelligent and integrated CAD/CAM system for shop-¯oor use that can be used by an average operator
and to produce globally optimised results (process plans and part programs). For this purpose, in this
work, an attempt has been made to include the impact and potential of arti®cial intelligence (AI) in
process planning applications and to optimise all events in an integrated CAD/CAM environment. GAs
were extensively used in the development of process planning facilities and in the optimisation issues, in
order to include pro®ts of AI techniques into the system. # 1999 Elsevier Science Ltd. All rights
reserved.

1. Introduction

Computer aided process planning (CAPP) is considered as the key technology for computer
aided design and manufacturing (CAD/CAM) integration and consists of the determination of
processes and parameters required to convert a block into a ®nished product. A huge amount
of CAPP systems have been reported in the literature. However, only a few of them have
intended to provide globally-optimised process plans [1]. In addition, there have not been so
many researches for prismatic components as compared to those for the turning processes.
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This is mainly due to problems in geometrical representation of the 3D parts which have often
complex shapes and also intricate nature of cutting mechanism in milling.

Arti®cial intelligence (AI) has the largest impact on the recent advances in CAD/CAM
integration. Genetic algorithm (GA) being one of the most popular combinatorial algorithms and
AI techniques, is a search technique for solving optimisation problems based on the mechanics
of the survival of the ®ttest. GAs have been successfully applied to various optimisation
problems, such as the travelling sales person (TSP) problem, Boolean satis®ability, space
allocation, job-shop scheduling, etc. [2]. A detailed information on the use of GAs for
engineering design and optimisation can be found in Ref. [3].

This paper presents the development of optimisation modules of a process planning system
for prismatic parts; called OPPS-PRI (Optimised Process Planning System for PRIsmatic
Parts). OPPS-PRI is implemented on a PC. Its goal in the ®rst place is to integrate CAD and
CAM with corresponding interfaces while taking optimality in each stage of planning
endeavour into account. GAs are extensively utilised for optimising the process planning
functions. It is mainly composed of the modules prepared for the following functions;

. interfacing CAD to CAPP: feature recognition based on STEP (STandart for the Exchange
of Product modelling data) standard,

. determination and elimination of critical regions on the component,

. selection of an optimum workpiece size,

. determination of machining operations and set-up planning,

. operations sequencing and/or optimisation of sequence of operations,

. optimisation of cutting parameters (conditions),

. selection of cutting tools and auxiliary tooling,

. optimisation of index positions of cutting tools on tool magazines,

. interfacing CAPP to CAM: CNC code generation and veri®cation.

These modules are grouped into ®ve divisions. The ®rst division consists of the modelling
platform and feature recogniser. The second includes usual process planning works. The third
involves optimisation of process planning events. The fourth division o�ers a utility on design
for manufacturing (DFM). The last division is devoted to the CAPP/CAM interface.

A typical session that can be traced within the OPPS-PRI is as follows. After the component
is modelled on a CAD platform and the STEP ®le of the component is obtained, the
machining features on the component are recognised. An optimum workpiece size is selected
from standard workpiece database. The type of machining operations for each feature of the
component is determined correspondingly. Machining operations are collapsed into set-ups.
They are ®rst sequenced using the machinability rules. The cutting tools as well as the other
auxiliary tooling are selected from respective tool libraries. The sequence of operations is
optimised, based on a user-selected sequencing criterion like safety or minimum tool change.
The machining parameters (speed, feed, depth of cut, and number of passes for each operation)
are optimised. Critical regions between the features of the component are checked using the
DFM module in order to determine whether they are machinable or not, under the speci®ed
machining conditions. If any problem exists, it is eliminated. Optimal positions of the cutting
tools on the tool magazine of a selected machine tool are found. The most usable result of the
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system is a part program executable on a vertical machining centre (VMC) which is generated
with the use of the CAD/CAM data base prepared by up-stream modules of the system.
The OPPS-PRI has a modular structure. For each of the modules speci®ed, a program has

been written in C programming language. The modules have been combined under a
supervisory program. The developed package can work either as a stand-alone system or might
be integrated with other process planning systems developed for prismatic parts, since both
ends of the OPPS-PRI were left `open'. Among the modules described, in this paper, the
emphasis is given to the optimisation modules involved in the third division which includes the
optimisation of; (a) sequence of operations, (b) index positions and (c) cutting parameters. These
modules mainly attempt to enhance the performance of the optimisation issues of a process
planning system. The methodologies used in the development of the optimisation modules are
discussed in the following sections. The rest of this paper is organised as follows. Section 2
introduces the state-of-the art of the optimisation work and procedures in process planning.
Genetic operators are explained brie¯y in Section 3. Sections 4±6 present the GA-based
systems developed for ®nding optimal sequence of operations, index positions and cutting
parameters, respectively, while demonstrating their methodologies with practical examples.
Discussion and conclusions are left to Section 7.

2. State of the art

Optimisation of corporate activities in computer integrated manufacturing (CIM) and process
planning is one of the foremost targets of intelligent manufacturing systems (IMSs), since it is
believed that only those industries capable of making e�ective productions would withstand
international competition in the next millennium.
Determination of the optimal cutting parameters is considered as an indispensable stage in

process planning. The e�ective optimisation of these parameters a�ects dramatically the cost
and production time of machined components. Although the importance of using optimal
cutting parameters was identi®ed in the early 1900s, the advance in the development
optimisation strategies has been very slow, since the problem is too complex due to the
nonlinear dependence of machining variables. Therefore, the literature in the domain of the
optimisation of machining operations has not been so inclusive. It has been also recognised
that the progress in developing constrained optimisation systems for milling operations has
been even slower than for turning operations [4].
Use of many methods has been reported in the literature to solve the optimisation problem

for cutting parameters. These methods include the use of nomograms, graphical methods,
linear programming, geometric programming, dynamic programming, search procedures,
feasible directions, and AI [5]. Computer aided mathematical programming techniques and
numerical search techniques were generally used in the past. AI-based optimisation techniques
have come into view recently. Most of the works using AI have been carried out in the last
four or ®ve years.
Direct search methods include function evaluations and comparisons only. Gradient methods

need values of function and its derivatives, and their computerisation are also problematic.
They are more di�cult than the direct search methods, but they can yield more accurate
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solutions for the same computational e�ort. Derivative-based mathematical optimisation
techniques are actually not manageable for optimising functions of discrete variables. Dynamic
programming which may be applied to problems whose solution involve a multistage decision
process, can handle both continuous and discrete variables. Contrary to many other
optimisation methods, it can yield a global optimum solution. However, if the optimisation
problem involves a large number of independent parameters with a wide range of values (as in
the case of optimisation of cutting parameters ), the use of dynamic programming is limited [6].
As the number of variables and constraints increases, the optimum has a tendency to grow
¯atter with less probability that the realisable optimum will be a mathematical optimum, and
hence, computational e�ort increases considerably. Geometric programming is a useful method
that can be used for solving nonlinear problems subject to nonlinear constraints, especially if
the objective function to be optimised is a posynomial with fractional and negative exponents,
while the constraints may be incorporated in the solution techniques. It is more powerful than
other mathematical optimisation techniques when the problem is restricted by one or two
constraints [7]. However, if the degree of di�culty increases, the formulated problem might be
more complicated than the original problem. Geometric programming can only handle
continuous variables [8]. Somlo and Nagy [7] pointed out that as the number of constraints
increases in large-scale problems, other optimisation techniques should be employed in
conjunction with the geometric programming. SoÈ nmez et al. [4] have recently developed a
system for the constrained optimisation of cutting parameters to be used in the multipass plain
and face milling operations using dynamic programming and geometric programming. They
reproached about the long execution times needed for good scores of the objective function.
The solution to the optimisation problems which include real-valued variables can be

obtained using numerous methods. However, each method has its own pro®ts and hindrances.
There is no e�cient all-purpose optimisation method available for nonlinear programming
problems. The computational time and cost involved in the determination of the optimal
parameters commonly depend on the complexity or simplicity of the model. Some models can
produce accurate solutions by making rigorous computation which is not economic in terms of
the computational time and cost. Sometimes, the solutions from these models may not be
optimal. Some other models may develop solutions far from the optimum in a fast manner.
Therefore, a compromise between the high accuracy of a rigorous solution and low accuracy of
an oversimpli®ed solution should be made [9]. This middle course may be achieved using GAs
which are easy to implement and also powerful to search large solution spaces.
The optimisation problem for sequence of operations is similar to the optimisation problem

for index positions of cutting tools to be used on the tool magazines of CNC machine tools.
Use of numerous strategies has been noti®ed for determining an optimal sequence of
operations. These techniques include the use of integer programming, branch&bound, dynamic
programming and evolutionary techniques [10]. Solution spaces to be considered in these
optimisation problems are very large, since there are many possible alternative solutions,
although the solution space is reduced by the use of feasibility constraints. It is too di�cult to
search e�ectively such large spaces using dedicated search strategies. Consideration of all
applicable constraints results in di�culties in the formulation and solution of the problem.
Therefore, evolutionary search techniques which often require less e�ort to search the large
solution spaces are generally preferred [10].
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GA is a search strategy ideally suited to parallel computing and most e�ectively applied to
problems in which small changes result in very nonlinear behaviour in the solution space [11].
GAs are able to search very large solution spaces e�ciently by providing a concise
computational cost, since they use probabilistic transition rules instead of deterministic ones.
They are easy to implement and increasingly used to solve inherently intractable problems
called NP-hard problems. The optimising routines to handle NP-hard problems increase
quickly with increasing problem size. Therefore, more emphasis is given on the development of
heuristic procedures which usually do not claim for reaching either a local or global optimum
and on obtaining near optimal solutions within a reasonable computation time. This results in
the restriction of the search space in some way, leaving some parts totally untouched.
Although GAs are heuristic procedures themselves, they test a wealth of samplings from
di�erent regions of the search space for ®tness simultaneously, and sort out and exploit regions
of interest very quickly [12]. It has been proved that the TSP problem which can be referred to
either a combinatorial optimisation problem or a NP-complete problem cannot be solved by
deterministic algorithms within an acceptable time, since it has numerous local minima. Some
traditional optimisation methods like exhaustive search method, greedy method, and dynamic
programming, have been applied to this problem. They were either too time-consuming or too
di�cult to ®nd an acceptable solution. GAs are well suited to solving complicated and multi-
variable optimisation problems [13].
Although simulated annealing (SA), tabu search (TS) and GAs are originally developed for

the combinatorial optimisation problems, they have been also used with success in numerical
optimisation problems as well [14]. The detailed discussion on the consideration of GAs as
valid approaches to numerical optimisation and the reasons can be found in Refs. [15,16].

3. Genetic operators

In GA terminology, a candidate solution is represented by a sequence of numbers and/or
characters known as a chromosome or string. Each element in the string is called a gene and
represents a process variable. A selected number of strings is called a population and the
population at a given time is a generation. A typical GA is composed of several genetic
operators such as crossover, inversion and mutation. There are also other types of genetic
operators that yield good results. Genetic operators operate on the genes to replace their place
within the chromosome. In the following examples, a gene is abbreviated by `G' in the
chromosomes.
Simple crossover involves two parents and crossover points are selected randomly. If two

parents to be used for generating new chromosomes are; {Parent 1: G1-G2-G3-G4-G5} and
{Parent 2: G5-G3-G1-G4-G2} and a crossover point was chosen randomly as 2; this produces
the following children: {Child 1: G1-G2-vG1-G4-G2} and {Child 2: G5-G3-vG3-G4-G5}. From
the example above, it is obvious that using simple one-point crossover produces undesirable
results, and therefore, a modi®ed crossover operator was used, referred to as PMX ( partially
matched crossover ) [11] or sometimes LOX (linear order crossover ) [17]. PMX is actually a
method of reproduction that arose to deal with TSP problem. Under PMX two parents are
randomly picked from the population, and two crossover points are randomly chosen. These
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two points de®ne where the crossover is to take place. The genes between the crossover points
are replaced between the parents and the children are generated. The example below illustrates
how PMX operator works. If the same parents (Parent 1 and Parent 2) are used for generating
new chromosomes with PMX or LOX and two crossover points were chosen randomly as 2
and 4; this produces the following children: {Child 3: G1-G2-vG1-G4-vG5} and {Child 4: G5-
G3-vG3-G4-vG2}. These intermediate children are not valid, since some of the genes appears
more than once and others do not appear at all. To eliminate this problem, the children go
through a veri®cation process that produces valid chromosomes from the invalid children,
making sure that the genes between the crossover points are not changed and each gene
appears once and only once in a chromosome. The ®nal result is: {Child 3: G3-G2-vG1-G4-
vG5} and {Child 4: G5-G1-vG3-G4-vG2}.
Inversion operates on a single parent. It reverses the order of the element between two

randomly chosen points in the parent: {Parent 5: G1-vG2-G3-vG4-G5}. Assuming that the two
random inversion points are 1 and 3, the child generated by the inversion operator on the
parent is: {Child 5: G3-G2-G1-G4-G5}.
Mutation operation involves a single parent. An index into the parent is randomly picked,

and the gene at that position becomes the ®rst gene in the new chromosome. From this picked
position on, the parent is wrapped around to produce the child. This operation keeps some of
the parent characteristics. If the parent is: {Parent: G1-G2-vG3-G4-G5}, pick position is 2; this
operator produces: {Child: G3-G4-G5-G1-G2}.

4. Optimisation of sequence of operations

This section describes the strategy behind an optimisation system developed for determining
optimal sequence of machining operations based on either minimum tool change (MTC) or
minimum tool travelling distance (MTTD) or safety (based on either geometric constraints or
strength). Combinations of these criteria might also be used. Among the three alternative
objective functions, GA-based optimisation system gives best response to the safety criterion.
Input to the optimisation system includes an explicit CAD data base for each component.

This data base is obtained from the feature recognition module of the OPPS-PRI. Features and
their accompanying operations (determined in the operation selection module) are sequenced
for each set-up (determined in the set-up planning module). The datum of the features are
described in 2D. A reward/penalty matrix called REPMAX for each set-up is automatically
prepared by a reward/penalty generator according to the selected criterion by using the
corresponding rules structured in the system. Feature sequencing is performed using a GA to
®nd an optimal sequence which is the one that has the least total penalty or largest total
reward. It takes the list of features and then generates an initial population of sequences.
Strings from branch&bound algorithm are also fed into the initial population to enhance the
production of good sequences. Genetic operators are used in the generation of the new
sequences.
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Fig. 1. Flowchart of the GA-based optimisation system for sequence of operations.

T. Dereli, _I.H. Filiz / Computers & Industrial Engineering 36 (1999) 281±308 287



4.1. Proposed approach

The approach we adopt is based on a GA in which the initial population is fed with closed-
end alternative solutions obtained by branch&bound methodology. Simpli®ed ¯owchart of
developed system is given in Fig. 1. The selected tools for the machining operations can be
accessed from the tooling module of OPPS-PRI. The features are listed as collapsed according
to approach directions (set-ups) into 2D, in the CAD data base. The physical interactions as
well as relationships and associations between features are then determined. Intersections or
interfeature relations are considered when two or more feature volumes that physically interact
or overlap with each other, whereas an association can be considered when there are two
features of the same type or similar surface area on the part [11]. The next stage is the selection
of criterion to be used in the optimisation. For each type of criterion, a rule base is prepared.
Some of the rules for the safety criterion included within the system are as follows;

. Rule 1: if htwo features partially intersecti, then hmachine the feature with smaller surface
area ®rsti

. Rule 2: if htwo features are nested inside one anotheri, then hmachine the top-most feature
®rsti

. Rule 3: if hthere is an edge cut on the parti, then hit should always be machined lasti
Construction of the REPMAX based on the rules of selected criterion is an important stage of
the methodology. Each rule has a penalty or reward (negative penalty). The REPMAX for
each set-up is automatically prepared by a reward/penalty generator. The penalty scale used in
the preparation of REPMAX is as follows; if precedence of operations such as i and j satis®es
the sequencing rules, according to degree of satisfaction of rules, a reward is given. If
precedence of operations does not satisfy the sequencing rules, according to degree of non-
satisfaction of the rules, a positive penalty is given. For example, an edge cut must normally be

Fig. 2. Isometric view of sample part.

T. Dereli, _I.H. Filiz / Computers & Industrial Engineering 36 (1999) 281±308288



machined last due to safety criteria. In a precedence relationship of two features, if an edge cut
is to be machined ®rst, its penalty would be a highly positive penalty in the REPMAX. At this
stage, branch&bound algorithm takes the REPMAX as the input and gives closed-end solutions
(strings of sequence of features in which the relationship between the last and ®rst operation is
also considered) to be used in the initial population of GA together with other randomly
generated strings.

Number of strings from branch&bound algorithm is equal to total number of features on the
component. Other members of initial population of candidate sequences is generated by a
random number generator which is initialised with the randseed parameter. Total number of
strings in the initial population is taken as `200' in this study. The random number generator is
also used to select the mutation points that are used to generate the initial population. New
sequences can be generated by using the genetic operators in di�erent combination of
generation cycles. A ®tness function is then used to evaluate the goodness of each sequence in
terms of penalties or rewards speci®ed in the REPMAX between the feature pairs.

An example part is illustrated in Fig. 2. CAD data base of the part is given in Table 1. The
CAD data base includes the type and label of features, dimensions (width, radius, length and
depth) of features and the distances dx and dy (in x- and y-axis) between the main datum on
the body which is always at the lower-left corner and individual datum of the features.

The datum for hole features are located on their centre coordinates, while they are located
on the lower left corner of the pockets and slots. For step features, they are considered to be
on the inner corner of the feature. Fig. 3 illustrates how to measure the distances (dx and dy )
between a hole and a rectangular pocket and the main datum in x- and y-axes.

In this example, safety is selected as the sequencing criterion. Consider the precedence
relationship between F6 (E-CUT) and F7 (B-HOL). The sequence from 7 to 6 violates the rule-
3; `edge cut would always be machined last'. So such a sequence is not preferable and it must be
punished by a highly positive penalty in the REPMAX. As can be seen in Table 2, the relation

Table 1
CAD data base of the sample part shown in Fig. 2

Feature no. Feature type dx

(mm)

dy

(mm)

Width or

radius
(mm)

Length

(mm)

Depth

(mm)

Projected

area,
(mm)2

Volume

(mm)3

F1 R-PKT (rectangular pocket) 50 90 45 30 20 1350 27,000
F2 T-HOL (thru hole) 35 70 7.5 ± 25 176.71 4418
F3 B-STP (blind step) 110 110 20 30 25 600 15,000

F4 T-HOL (thru hole) 110 120 6 ± 35 113.1 3960
F5 T-HOL (thru hole) 30 120 6 ± 35 113.1 3960
F6 E-CUT (edge cut) 110 0 40 40 30 1600 48,000

F7 B-HOL (blind hole) 125 15 5 ± 25 78.54 1960
F8 B-STP (blind step) 30 110 20 30 25 600 15,000
F9 T-SLT (thru slot) 0 60 20 140 25 2800 70,000
F10 B-SLT (blind slot) 45 0 35 60 25 2100 52,500
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between 6 to 7 (not 7 to 6) that is REPMAX (6,7), is described by a positive penalty (105).
Other relations, and their penalties prepared by the reward/penalty generator are also shown in
Table 2. Notice that REPMAX (7,6) is equal to ÿ95 which promotes the sequences in which
F7 is before F6. Penalties of no relations are taken as 5 due to nature of the algorithm. In an
anticipated optimal sequence, F5 must be machined before F8, F4 must be machined before
F3, F2 must be machined before F9, F7 must be machined before F6, for satisfying the safety
rules.
The strings of sequences for the example part found by the branch&bound algorithm upon

inputting the REPMAX is given in Table 3. The next stage is the execution of GA. The ®rst
step is to randomly generate an initial population of sequences. The results obtained by the
branch&bound algorithm as shown in Table 3 are also included in the initial population. A
section of the initial population is shown in Table 4.
New chromosomes (children) are then generated from the initial population (parents)

by using the PMX operator. The children obtained from the parents are shown in Table 5.

Fig. 3. Distances between datum of the features and the main datum.

Table 2

Reward/penalty matrix (REPMAX) of the sample part shown in Fig. 2

FN F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

F1 1 5 35 25 25 5 5 35 45 5
F2 5 1 5 5 5 5 5 5 ÿ45 5

F3 ÿ25 5 1 85 5 5 5 5 5 5
F4 ÿ15 5 ÿ75 1 5 5 5 5 5 5
F5 ÿ15 5 5 5 1 5 5 ÿ75 5 5

F6 5 5 5 5 5 1 105 5 5 5
F7 5 5 5 5 5 ÿ95 1 5 5 5
F8 ÿ25 5 5 5 85 5 5 1 5 5
F9 ÿ20 55 5 5 5 5 5 5 1 ÿ15
F10 5 5 5 5 5 5 5 5 25 1
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PMX operator requires two crossover points (shown by `�'s in Table 4) which are randomly
chosen.
Generation of child chromosomes 201 and 202 from the parent chromosomes 1 and 2 is as

follows. Two random crossover points (i.e. 9 and 10) are picked along the sequence (by `�').
The cutting tools (genes) at the crossover points are switched between the parents and then

Table 3
The sequences from branch&bound algorithm for the sample part shown in Fig. 2

Sequence of features Closed-end ®tness value Open-end ®tness value

7-6-4-3-5-8-1-2-9-10 ÿ310 ÿ315
5-8-1-2-9-10-7-6-4-3 ÿ310 ÿ315
4-3-5-8-1-2-9-10-7-6 ÿ310 ÿ315
2-9-10-7-6-4-3-5-8-1 ÿ310 ÿ315
8-1-2-9-10-7-6-4-3-5 ÿ310 ÿ235
9-10-7-6-4-3-5-8-1-2 ÿ310 ÿ265
10-7-6-4-3-5-8-1-2-9 ÿ310 ÿ295
6-4-3-5-8-1-2-9-10-7 ÿ310 ÿ215
3-5-8-1-2-9-10-7-6-4 ÿ310 ÿ235
1-2-9-10-7-6-4-3-5-8 ÿ310 ÿ285

Table 4

Randomly generated initial population of sequences

ParentsÐchromosome no. Sequence of features

1 1-2-5-3-10-7-6-4-9-�8�

2 10-3-9-1-2-8-4-5-6-�7�

3 8-9-�5-6�-1-3-10-7-2-4
4 5-3-�8-6�-2-7-10-1-4-9

Strings from the branch&bound algorithm 7-6-4-3-5-8-1-2-9-10

5-8-1-2-9-10-7-6-4-3
4-3-5-8-1-2-9-10-7-6
2-9-10-7-6-4-3-5-8-1

8-1-2-9-10-7-6-4-3-5
9-10-7-6-4-3-5-8-1-2
10-7-6-4-3-5-8-1-2-9

6-4-3-5-8-1-2-9-10-7
3-5-8-1-2-9-10-7-6-4
1-2-9-10-7-6-4-3-5-8

197 5-7-6-2-�3�-4-1-9-10-8
198 6-7-8-5-�4�-1-2-3-9-10
199 4-7-�5-8-9�-2-10-6-3-1
200 8-6-�9-10-4�-1-7-3-5-2
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children are generated. We have {Parent 1: 1-2-5-3-10-7-6-4-9-8} and {Parent 2: 10-3-9-1-2-8-4-
5-6-7}. The uniform crossover operator produces the following children; {Child 201: 1-2-5-3-
10-7-6-4-9-7} and {Child 202: 10-3-9-1-2-8-4-5-6-8}. These intermediate sequences are not valid,
since some of the features appear more than once (7 in Child 201 and 8 in Child 202 ). The
children are validated and modi®ed to produce valid sequences from the invalid children,
making sure that the features at the crossover points are not changed and feature appears only
once in a sequence. The ®nal result is then: {Child 201: 1-2-5-3-10-8-6-4-9-7} and {Child 202:
10-3-9-1-2-7-4-5-6-8}. All the chromosomes in the initial population are matched two by two,
and new population is generated using the PMX operator as described above. We have now
400 chromosomes; 200 from the initial population and 200 from the new population. At this
point, an objective function (®tness function) is used to measure the goodness of both parents
and child chromosomes in terms of penalties or rewards speci®ed in the REPMAX of the part.
The ®tness function ( fchromosome) for each chromosome can be expressed mathematically by the
following equation;

fchromosome �
Xi�nÿ1, j�n

i�1, j�2
REPMAX�gene�i ���gene� j�� �1�

where; n is the total number of genes in a chromosome or in other words is the total number
of features on the component, and gene is the vectorial representation of genes in a single
chromosome. For example, the ®tness value of Parent-1 that involves the operations {1-2-5-3-10-
7-6-4-9-8} assigned to the sequence numbers {1-2-3-4-5-6-7-8-9-10} is calculated as follows;

REPMAX[[gene[1]],[gene[2]]] (=REPMAX[1][2]=5) + REPMAX[[gene[2]],[gene[3]]]
(=REPMAX[2][5]=5) +
REPMAX[[gene[3]],[gene[4]]] (=REPMAX[5][3]=5) + REPMAX[[gene[4]],[gene[5]]]
(=REPMAX[3][10]=5) +
REPMAX[[gene[5]],[gene[6]]] (=REPMAX[10][7]=5) + REPMAX[[gene[6]],[gene[7]]]
(=REPMAX[7][6]=ÿ95 +

Table 5
Sequences generated by the PMX operator

ChildÐchromosome no. Sequence of features

201 1-2-5-3-10-8-6-4-9-7
202 10-3-9-1-2-7-4-5-6-8
203 5-9-8-6-1-3-10-7-2-4

204 8-3-5-6-2-7-10-1-4-9

397 5-7-6-2-4-3-1-9-10-8

398 6-7-8-5-3-1-2-4-9-10
399 5-7-9-10-4-2-8-6-3-1
400 10-6-5-8-9-1-7-3-4-2
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REPMAX[[gene[7]],[gene[8]]] (=REPMAX[6][4]=5) + REPMAX[[gene[8]],[gene[9]]]
(=REPMAX[4][9]=5) +
REPMAX[[gene[9]],[gene[10]]] (=REPMAX[9][8]=5)= Fitness value (=ÿ45)
The next step is to put all 400 chromosomes in a descending order starting from the one

which has the most negative cumulative ®tness. Based on the ®tness values, the next generation
(current population) is formed from the newly generated sequences and old population such
that it includes 80% of good positioning sets and 20% of bad positioning sets among 400
chromosomes in due order. At this stage, each chromosome in the new population is mutated
and reproduced randomly using the mutation and inversion operators, respectively. The
random number generator is used to select the mutation and inversion points. Finally, the
order of the chromosomes in the new population is re-mixed before the PMX re-operates on
the genes. The iterations are continued by this way. GA seeks to ®nd the chromosomes with the
most negative cumulative ®tness. As the execution of the genetic algorithm reaches to certain
number of iterations, the better sequences with the least ®tness values dominate in the
population and the system eventually converges to an optimal solution. The number of
iterations can be speci®ed by the user or the system automatically stops, if the solutions cannot
be improved for a cycle of generations.
For this relatively simple example, the GA ®nds optimal solutions which have a ®tness value

of ÿ315 (more than 50 solutions) using 3 to 10 iterations. Some of these solutions have been
already given by the branch&bound algorithm. As shown in Table 3, the open-end ®tness
value of the best four strings are also equal to (ÿ315). However, for highly di�cult
components including many interacting features, the proposed GA can ®nd more optimal
sequences than branch&bound algorithm. For instance, for a particular component with highly
interacting features, the REPMAX is given in Table 6. The best string of the branch&bound
algorithm is {8-6-3-5-9-1-10-7-4-2} which has an open-end ®tness value of ÿ340 (see Table 7).
However, the optimal sequence found by the proposed GA is; {1-10-7-4-2-9-8-6-3-5} or {1-6-3-
5-9-8-10-7-4-2} that has an open end ®tness value of ÿ345. This result can be achieved by
performing on the average 40 iterations completed in 4 min. It is worth noting that the total
number of iterations required to reach an optimal value is ¯uctuating from 1 to 100, as the

Table 6

Reward/penalty matrix prepared for a highly di�cult part

FN 1 2 3 4 5 6 7 8 9 10

1 1 ÿ30 ÿ20 ÿ10 ÿ10 ÿ10 ÿ10 ÿ10 ÿ10 ÿ10
2 50 1 ÿ10 ÿ5 ÿ5 ÿ5 ÿ5 ÿ5 ÿ10 ÿ20
3 40 10 1 ÿ30 ÿ50 ÿ10 5 10 15 20
4 45 ÿ45 ÿ5 1 4 40 ÿ25 60 ÿ30 ÿ10
5 100 40 60 55 1 5 20 ÿ10 ÿ20 5

6 100 70 ÿ50 ÿ15 40 1 40 20 ÿ5 10
7 60 5 30 ÿ25 5 5 1 ÿ15 30 20
8 90 30 ÿ5 10 ÿ5 ÿ35 80 1 15 ÿ25
9 ÿ75 10 ÿ5 5 ÿ40 40 20 ÿ90 1 ÿ5
10 80 30 ÿ20 45 75 25 ÿ30 30 35 1
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execution time varies from 1 to 10 min, since the iteration process is based on a random
number generator.

5. Optimisation of tool index positions (tool indexing time)

Determination of optimal positions of cutting tools on the automatic tool changer (ATC) or
turret magazine of a CNC machine tool is an important task for reducing total non-machining
time since pro®ts are only generated when the machine is cutting and for achievement of
optimal process plans. The problem can actually be considered as the minimisation of the total
indexing time. Indexing can be broadly described as the process of automatic tool positioning

Table 7
The sequences from branch&bound algorithm based on Table 6

Sequence of features Closed-end ®tness value Open-end ®tness value

9-1-10-7-4-2-8-6-3-5 ÿ345 ÿ325
6-3-5-9-1-10-7-4-2-8 ÿ345 ÿ310
10-7-4-2-8-6-3-5-9-1 ÿ345 ÿ335
3-5-9-1-10-7-4-2-8-6 ÿ345 ÿ295
4-2-8-6-3-5-9-1-10-7 ÿ345 ÿ320
7-4-2-8-6-3-5-9-1-10 ÿ345 ÿ315
8-6-3-5-9-1-10-7-4-2 ÿ345 ÿ340
1-10-7-4-2-8-6-3-5-9 ÿ345 ÿ270
5-9-1-10-7-4-2-8-6-3 ÿ345 ÿ295
2-8-6-3-5-9-1-10-7-4 ÿ345 ÿ300

Fig. 4. ATC magazine and indexing time.
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and/or changing on the ATC or turret magazine of CNC machine tools, when the cutting tools
are called within the part program. However, its de®nition depends on the type of apparatus
(such as disk, turret, drum, or chain types) used for the tool changing or indexing, as turrets
are used on CNC lathes and turning centres, and ATCs are used on CNC milling machines
and milling centres. Chain type tool magazines are generally used in machining centres. ATC
indexing time ( from tool to tool or from pocket to next pocket ) can be de®ned as the time
elapsed in which an ATC magazine can move between two neighbouring stations, pockets or
tools as illustrated in Fig. 4. The indexing time is sometimes called the magazine rotating speed
in machine tool catalogues. Especially for those machines that cannot provide a fast tool-
indexing capability, it is extremely important to decrease the total tool-indexing time which
directly a�ects total non-cutting time. Although machine tool manufacturers have recently
equipped their machines with superior and faster turrets and ATCs, tool-indexing time still can
be reduced by applying an e�ective tool arrangement policy (or index allocation policy ) on the
tool magazines in order to increase the time in cut [18].

In this work, a GA-based optimisation system has been developed for allocating the optimal
index positions on the tool magazine to the speci®ed cutting tools. Position selection is
performed using a GA which leads to the least total tool-indexing time. It takes a list of
cutting tools characterised with certain numbers assigned to machining operations, together
with the total number of positions available on the ATC magazine, and the catalogue value of
the indexing time speci®ed in the manuals of CNC machine tools, as the input. The type of
ATC or turret magazine such that whether it has a uni-directional or bi-directional tool
indexing capability, is also considered. The methodology used in the optimisation of ATC
indexing time is similar to that used in the optimisation of sequence of operations based on a
GA which is presented in the previous section. The only di�erence between the two is the use
of di�erent objective functions (®tness functions) to be minimised. Instead of the objective
function given by Eq. (1) which is used to minimise the total rewards/penalties for a given
chromosome (set of operations), a simple objective function is used in this case in order to
minimise the total indexing time for a given chromosome (set of cutting tools). The value of the
objective function can easily be calculated by multiplying the total number of unit rotations

Fig. 5. A typical tool arrangement on a 12-station ATC.
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between the indexes of the tool magazine with the catalogue value of ATC indexing time. The
cutting tools are represented as the genes in the chromosomes. Fig. 5 shows a typical
arrangement of cutting tools on a 12-station ATC. The representation of this arrangement in
the GA as a typical chromosome of cutting tools is given in Table 8.
New chromosomes of cutting tools are generated from the initial population (parents) by

using the genetic operators. Fitness values of the chromosomes are then calculated, and based
on the ®tness values; the next generation is formed from the newly generated chromosomes of
cutting tools and the old population. As the iterations of the GA continues, the better tooling
arrangements (chromosomes) with lower total indexing time dominate and the system ®nally
converges to an optimal positional set of cutting tools.
In this work, the index allocation problem is handled using three phases in terms of the

relation between the total number of cutting tools employed and the total number of available
index positions on the ATC magazine of the machine tool to be used;

. Phase 1Ðthe number of cutting tools is equal to the number of index positions.

. Phase 2Ðthe number of cutting tools is smaller than the number of index positions,

(a) without duplicated tools or, (b) with duplicated tools.

. Phase 3Ðthe number of cutting tools is higher than the number of index positions.

The overall aim is to minimise the total manufacturing cost by reducing the tool operating or
tooling cost with the use of di�erent tool indexing policies like loading duplicate tools on the
tool magazines. If the problem falls into Phase 1, there is no need to duplicate the cutting tools
in the tooling set to avoid the second ATC set-up which increases the total non-machining time
considerably. If the total number of the cutting tools that are assigned for fully machining a
component, are smaller than the total number of available index positions on the ATC of a
machine tool (Phase 2), then the e�ect of the duplicated tools on a possible decrease in the tool
indexing time should be tested. For example, certain cutting tools can be duplicated on the
ATC, so in the chromosome of cutting tools in GA as well. In case Phase 3, the problem is
somewhat di�erent, so it changes to selecting the cutting tools to be used (shifted) in the
second set-up. It should also be noticed that there may be other sub-phases between the three
tool set-up phases speci®ed above. For instance, for Phase 2(b) where the duplicated tools are
used in such a way that no unloaded index is left on the ATC. However, there is another case
where the optimal arrangement of cutting tools may require an ATC organisation in which an
index (or more than one index) is left unloaded.
A machine tool data base is prepared by using the manuals of several CNC machine tools

and integrated to the system. When the user selects the machine tool, parameters like tool
capacity of the ATC, type of ATC movement and standard indexing time are captured and fed
into the optimisation software. When the system is executed in the OPPS-PRI, all necessary

Table 8
A chromosome equivalent to the representation given in Fig. 5

ATC index positions P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12
Chromosome of cutting tools T2 T5 T7 T1 T3 T2 T6 T4 T8 T9 T2 T10
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information regarding to machining operations and their associated cutting tools are prepared
by the operation selection/sequencing module and tool selection module, respectively. For ease
of managing, both the machining operations and corresponding cutting tools are characterised
by numbers. Their accompanying labels or speci®cations are also stored in the memory.

5.1. An example

An example optimal sequence of operations together with the cutting tools selected for each
operation which are found in the upstream modules of the OPPS-PRI is given in Table 9. The
other inputs are; tool capacity of ATC (=10 tools), type of ATC movement (=bi-directional)
and indexing time between two adjacent tool stations on the ATC (=0.20 s).
The problem described here falls into Phase 1 where the total number of cutting tools

employed is equal to the total number of index positions available on ATC. Therefore it is not
possible to duplicate any tool on the ATC. The total number of operations is found to be 15.
The set-ups of cutting tools proposed by GA based optimisation software for di�erent number
of iterations are given in Table 10.
Note that GA converges rapidly to an optimal solution; 25 unit rotations of ATC or in

other words a total turret indexing time of 5 (=25 � 0.20) s. The above problem is also asked
to more than 10 average technicians, workers and operators. Average value of total unit
rotations of ATC and indexing time obtained from this quiz is equal to 30 and 6 s,
respectively. Even this is a small-size problem, the gain is 1 s per component to be produced.
For a batch of 40,000 parts, the total gain is about 11.11 h. The slower the ATC (the higher
value of indexing time from tool to tool), the higher the gain is. It should be noticed that
rotating speed of the machine tool magazine is also important. If the size of the problem
increases, the gain obtained from GA will also increase.

6. Optimisation of cutting parameters

Determination of optimal cutting parameters including number of passes, depth of cut for each
pass, speed, and feed applicable for selected cutting tools is a vital stage in process planning,
since the economy of machining operations plays an important role in increasing productivity
and competitiveness. Since CNC machine tools are extensively employed in manufacturing
industry, economic machining has gained a great importance. As everyone accepts, CNC
machine tools have eliminated the auxiliary tooling and reduced the set-up times considerably.
However, it is not possible to run the CNC machine tools e�ectively and economically without
using optimised machining parameters.

Table 9
Cutting tools assigned to machining operations

Operations (ordered) O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15

Cutting tools T1 T2 T3 T4 T5 T6 T3 T6 T7 T3 T8 T9 T6 T9 T10
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Many works have been done to optimise the cutting parameters. They rely on methods
which neither guarantee the optimal solutions nor provide clearly de®ned economic
characteristics of the optimisation problem [19]. Most of them used a single constraint `power'
in their optimisation strategies while ignoring other constraints like `surface ®nish' [5].
Therefore, there is still a need to develop an optimisation system for determining the optimal
values of cutting parameters for milling operations. In this work, for the optimisation of
multipass milling operations, a GA-based system called Cutting Parameters Optimisation
System (CPOS) is developed. It is an integrated module of the OPPS-PRI.

CPOS was initially constructed on a methodology using the geometric programming and
dynamic programming techniques. It was restricted only to face and plain milling operations.
One of the disadvantages of this initial system was its low execution speed due to large
empirical mathematical models involved in the algorithm and the large amount of derivatives
contained in the formulation of the problem. A detailed discussion on the previous state of this
system can be found in Ref. [4]. CPOS is then modi®ed to enhance its performance. The
modi®cation includes the replacement of the implementation tool; using a GA instead of
geometric programming which increases the processing speed.

CPOS has a multi-pass optimisation strategy incorporating several technological constraints
such as power, surface ®nish, speed, feed limitations, etc. It makes use of two methods called
volume sectioning and GA. Although the problem of optimisation of cutting parameters is
di�erent from the optimisation of sequence of operations and the optimisation of ATC indexing
time discussed in the previous sections, the structure of the GA is similar to those prepared for
the two previous events. However, in this case, two real-valued variables of cutting parameters,
namely; feed-rate (f) and cutting speed (V), should simultaneously be controlled within their
speci®ed ranges. Therefore, in this case, binary genetic chromosomes are used to represent the
feed-rate and cutting speed values. The ranges of two parameters are also di�erent from each
other, hence normalisation of chromosomes are necessary. A typical binary chromosome of
feed-rate and cutting speed is given in Table 11.

Table 10
Proposed solutions for index positions by GA-based optimisation system

Positions on ATC

Itr.
no.

No. of iterations/
elapsed time

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Fitness value:
no. of unit
rotations

Fitness value:
total indexing
time

1 1/6 s T9 T8 T5 T6 T7 T3 T4 T2 T1 T10 27 5.4 s
2 2/12 s T9 T8 T5 T6 T7 T3 T4 T2 T1 T10 27 5.4 s

3 3/17 s T9 T8 T5 T6 T7 T3 T4 T2 T1 T10 27 5.4 s
4 6/26 s T7 T6 T9 T10 T8 T1 T2 T4 T5 T3 26 5.2 s
5 10/35 s T10 T8 T9 T6 T7 T3 T5 T4 T2 T1 25 5.0 s
6 15/50 s T7 T3 T6 T8 T9 T10 T5 T4 T1 T2 25 5.0 s

7 30/80 s T10 T9 T8 T7 T6 T3 T4 T5 T2 T1 25 5.0 s
8 100/233 s T2 T5 T4 T3 T7 T6 T9 T8 T10 T1 25 5.0 s
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6.1. Optimisation model

Three basic cutting parameters are usually considered in the optimisation of milling
operations. They are; optimal number of passes and depth of cut for each pass, cutting
speed(s) and feed rate(s). Among these, depth of cut is the dominant parameter which is
determined by the upstream modules of the OPPS-PRI like feature recognition or operation
selection module. Although it is preferable to machine the features or volumes in single pass in
order to reduce the cost and time of machining (if possible), this is usually unachievable. The
reason for this is that the machining operations are constrained by not only the cutter but also
by other constraints imposed by the machine tool (by the characteristics of the feed drive and
main drive systems of machine tools) and the workpiece. This means that although the total
depth of cuts for machining the features are determined in the upstream modules of the process
planning, they may require more than one pass, due to unavailability of the cutting tools that
can provide the required cutting edge or due to the low power capacity of available machine
tool. It should be noticed that the multi-pass scheme inherently includes the single-pass
optimisation combinations, as well.

6.2. Objective functions

CPOS ®nds optimal cutting parameters based on the user-selected objective function such as
minimum production cost or minimum production time. The former minimises the unit cost (Cu)
of an operation, whereas the latter minimises the unit time (Tu) required to perform an
operation. Here, only the formulation of the ®rst one is given. The unit cost for an operation
can be represented by the sum of four cost terms; cost of raw material, cost of set-up, cost of
machining and cost of tool changing. Set-up cost and machining cost are the sum of the
corresponding labour and overhead costs. On top of labour and overhead cost, the cost of the
cutting tool is added in the case of the tool changing cost. However, tool changing cost is
rationalised with the machining time divided by tool life, since a cutting tool would have been
replaced before the machining operation takes place. So, the unit cost for an operation can be
represented by Eq. (2). Nomenclature used in Eq. (2) can be found in Table 12.

Cu � cmat � �cl � co�ts � �cl � co�tm � �clttc � ct � cottc�
�
tm
T

�
�2�

Table 11
A typical chromosome of feed-rate and cutting speed

( f )Ðfeed-rate section (V )Ðcutting speed section

Positions 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11
Binary Rep. 210 29 28 27 26 28 24 23 22 21 20 210 29 28 27 26 28 24 23 22 21 20

Chromosome 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Value 1024 1
Divider 1000 10
Normalised value 1.024 mm/tooth 0.1 m/min
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6.3. Constraints

Following constraints are considered in the optimisation of cutting parameters; machine
power, surface ®nish, available feed rates on the machine tool, available spindle speeds on the
machine tool and cutting force.

6.4. Optimisation methodology

The optimisation problem discussed above involves four variables which are; the number of
passes and the corresponding depth of cut, cutting speed and feed rate for each pass required to
machine a component. The values of these four variables should be determined such that
combination of them will optimise the selected objective functions. The methodology proposed
herein has two stages. In the ®rst stage, tentative number of passes and depth of cut(s) to be
removed are determined through a method called volume sectioning, while the cutting speed
and feed-rate for each pass are calculated/optimised by using a GA in the second stage.
The volume sectioning can be considered as a multi-stage decision process in which each of

single-stage optimisation problem can be stated such that the volume to be cut is divided into
possible sections (depth of cuts). The decision variable in volume sectioning is the depth of cut aj
to be taken in the i-th pass, which is represented as a(i, j ). Total depth of cut at is divided into
N equal sections. The minimum increment of depth of cut is therefore equal to: at/N. This
increment should always be smaller than the maximum depth of cut and higher than the
minimum depth of cut allowed for a machine tool workpiece system; amax and amin,
respectively. The volume sectioning procedure applied to multipass milling operations can be
summarised as follows in conjunction with Fig. 6. The total depth of cut to be machined (at),
the minimum (amin) and maximum (amax) allowable depth of cuts and the number of sections
(N ) are the inputs to the volume sectioning procedure. Among them, the selection of a proper
number of sections for the problem has the extreme importance, since higher precision, i.e.,
selecting a higher number, will increase the execution time, although more e�ective optimal
values are calculated for the objective function. The value of N should be selected always by
making a compromise between the execution time and precision. The thickness of each section
(at/N ) is called unit depth of cut (section). The problem is to ®nd all the alternative possible
passes that are composed of certain number of unit sections. Fig. 6 shows a pass distribution
in which total depth of cut is divided into 5 sections (N ) and amax and amin are equal to 4
sections and 1 section. Here, thickness of each section can be considered as 1 mm. The

Table 12
Nomenclature used in the formulation of unit cost (Cu)

Symbol De®nes Unit

cl, co Labour cost, overhead cost $/min
cmat, ct Cost of machining, raw material and a cutting tool $
Cu Unit cost $

T Tool life min
tm, ts, ttc Machining time, set-up time, tool changing time min
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procedure is started from the 5th section. The stock can be machined from the outer end of the
5th section to the inner ends (right ends) of 4th, 3rd, 2nd sections, as shown in Fig. 6. Notice
that a cut (5,5) including 5 sections from the outer end of the 5th section to the inner ends of
the 1st section is not possible, since the maximum allowable depth of cut is 4 in terms of
sections.
The same procedure is continued successively until reaching to the ®rst section and all

possible cuts are stored for future use. To reach to the 1st section from the 5th section, we
have several alternative cutting strategies. These are;

. Cut(5,4)+Cut(1,1)

. Cut(5,3)+Cut(2,2)

. Cut(5,3)+Cut(2,1)+Cut(1,1)

. Cut(5,2)+Cut(3,3)

. Cut(5,2)+Cut(3,2)+Cut(1,1)

. Cut(5,2)+Cut(3,1)+Cut(2,2)

. Cut(5,2)+Cut(3,1)+Cut(2,1)+Cut(1,1)

. Cut(5,1)+Cut(4,4)

. Cut(5,1)+Cut(4,3)+Cut(1,1)

. Cut(5,1)+Cut(4,2)+Cut(2,2)

. Cut(5,1)+Cut(4,2)+Cut(2,1)+Cut(1,1)

. Cut(5,1)+Cut(4,1)+Cut(3,3)

. Cut(5,1)+Cut(4,1)+Cut(3,2)+Cut(1,1)

Fig. 6. Schematic representation of sectioning strategy (N = 5, amax=4, amin=1).
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. Cut(5,1)+Cut(4,1)+Cut(3,1)+Cut(2,2)

. Cut(5,1)+Cut(4,1)+Cut(3,1)+Cut(2,1)+Cut(1,1)

In milling processes; for example, Cut(1,1) and Cut(2,1) are equal because workpiece is ®xed
while cutter turns as opposed to the turning. As a result, we have;

. Cut(5,4)=Cut(4,4)

. Cut(5,3)=Cut(4,3)=Cut(3,3)

. Cut(5,2)=Cut(4,2)=Cut(3,2)=Cut(2,2)

. Cut(5,1)=Cut(4,1)=Cut(3,1)=Cut(2,1)=Cut(1,1)

Therefore, the number of alternative cutting strategies are reduced to 6. These are given
in Table 13. If amax were given equal to the total depth of cut (5 sections), a single pass
strategy (Cut(5,5)) would also be considered as an alternative solution with those given in
Table 13.
After the cutting strategy alternatives are determined by the volume sectioning procedure

discussed above, the developed GA ®nds the optimal values of feed-rate and cutting speed
which minimise the objective function for each pass. When they are found for each pass, the
cutting strategy (i.e. strategies given in Table 13) that leads to minimal objective function value
for multi-pass operation is selected as the optimal strategy. The number of passes, depth of cut
for each pass, feed-rate and cutting speed values associated with the optimal strategy are the
optimal cutting parameters to be used in machining.
In the optimisation of the feed-rate and cutting speed, GA uses the objective functions as the

®tness functions to measure the goodness of the chromosomes. New chromosomes of feed-rate
and cutting speed are generated from the initial population by using the genetic operators
discussed in the previous sections. Fitness values (unit costs or unit times) of the chromosomes
are then calculated, and based on the ®tness values, the next generation is formed from the
newly generated chromosomes of feed-rate and cutting speed, and the old population. As the
iterations of the GA continues, the better cutting parameters that minimises the objective
function based on the selected criterion dominate and the GA converges to an optimal set of
cutting parameters.

Table 13
Alternative cutting strategies

No. of sections to be cut in each pass

Cutting strategy no. Pass 1 Pass 2 Pass 3 Pass 4 Pass 5

1 1 4 ± ± ±

2 1 1 3 ± ±
3 1 2 2 ± ±
4 1 1 1 2 ±
5 1 1 1 1 1

6 2 3 ± ± ±
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6.5. Case study

A slot as shown in Fig. 7 is to be machined on a CNC VMC. It is required to ®nd optimal
values of feed-rate (f) and cutting speed (V) based on the objective functions of minimum
production cost and minimum production time and using the constraints discussed above.
Speci®cations of the required parameters and values of the constants are given in Table 14.
The information on the tooling is also provided in Table 15.
The optimum cutting parameters found by the proposed volume sectioning and GA

methodology as well as the catalogue values are tabulated in Table 16. The associated objective
function values are given in Table 17. The possible cutting strategies with their total objective-
function results are given in Table 18. As can be seen from Table 17 and Table 18, in which the
objective function values based on optimum machining parameters found by CPOS are given in
comparison with those from handbook recommendations [20], considerable cost or time savings
have been achieved with the optimal parameters in all cases.
For the minimum production time, the best cutting strategy is found to be (1-1-1-1-1, i.e., ®ve

passes of 1 mm) whereas for the minimum production cost, a single pass strategy (5 mm) results
in the better improvement. It should also be noted that these improvements can further be
increased by using higher number of iterations in GA cycle and loosening the feed range. For
example, when allowable feed range is relaxed to (0.050±0.600 mm/tooth) and 250 iterations
are used, the more e�ective values of feed and cutting speed can be found. However, in this
case the processing time is increased considerably. The values of machining parameters and
their ratings for a 5 mm depth of cut (single pass) are shown in Tables 19 and 20, respectively.
It is worth pointing out that most of the reported systems have used their own mathematical

models for the optimisation of machining parameters to be used in milling processes. Many
works have omitted some optimisation constraints like surface ®nish and considered removing
of stocks using only single-pass strategy, or were limited to handle only simple milling
operations like face milling, due to the lack of exponents, constants or empirical formulae for
some other types of milling operations. Each has used a di�erent data base of material
properties, tooling data, constants and exponents, etc. Since it is di�cult to ®nd a completely
similar study using di�erent approaches in the literature, we tried to compare our results with

Fig. 7. A slot.
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Table 14
Speci®cations and constants

Speci®cation Value

cmat 0.25 $
co 1.45 $/min
cl 0.45 $/min

ts 2 min
ttc 0.5
Machine tool VMC

Machine power 5.5 kW
e (e�ciency) 0.95
Material type Leaded steel
Material hardness 225 BHN

N (no. of sections) 5 mm
amax 5 mm
amin 1 mm

Table 15
Tooling data

Tool type Shear yield
strength

(MPa)

Diameter
(mm)

Cutting
length

(mm)

No. of
teeth

Price
($)

Shank
diameter

(mm)

Helix
angle

(8)

Lead
angle

(8)

Clearance
angle

(8)

HSS, end-mill 1000 12 40 4 10 10 45 0 5

Table 16
Handbook values [20] and optimum machining parameters found by CPOS when: feed range=0.050±0.300 mm/
tooth and no. of iterations in the GA=50

CPOS

Depth of cut (mm)
Catalogue values

Based on minimum
production cost

Based on minimum
production time

V (m/min) f (mm/tooth) V (m/min) f (mm/tooth) V (m/min) f (mm/tooth)

1 25.0 0.100 51.2 0.224 96.0 0.272

2 25.0 0.100 51.5 0.248 38.4 0.241
3 20.0 0.100 38.0 0.254 15.2 0.252
4 20.0 0.100 25.6 0.254 11.2 0.256
5 20.0 0.100 25.6 0.255 25.3 0.142
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handbook recommendations [20] as shown in Tables 16±20, as it is usually performed by the
previous studies. In this way, the percentage cost save and time save obtained by the developed
optimisation system against the handbook values can be calculated. CPOS described in this
paper has made signi®cant improvements over the handbook values as illustrated in Tables 16±
20. Many tests have been performed to check the performance of the optimisation system by
using di�erent types of workpiece materials and sizes. CPOS provided results better than

Table 18

Cutting strategies for machining with their ratings

Catalogue CPOS

Cutting strategy (pass distribution) (mm) Tu (min) Cu ($) Tu (min) Cu ($)

1-4 0.5258 0.9992 0.2317 0.2631

1-1-3 0.7595 1.4433 0.2084 0.3009
1-2-2 0.7011 1.3267 0.1543 0.2834
1-1-1-2 0.9348 1.7736 0.1469 0.3892

1-1-1-1-1 1.1685 2.2205 0.1395 0.4950
2-3 0.5258 0.9964 0.2158 0.2087
5 (single pass) 0.2921 0.5551 0.1627 0.1703

Table 17
Objective function values

Catalogue CPOS

Depth of cut (mm) Cu ($) Tu (min) Cu ($) Tu (min)

1 0.4441 0.2337 0.0990 0.0279

2 0.4413 0.2337 0.0922 0.0632
3 0.5551 0.2921 0.1165 0.1526
4 0.5551 0.2921 0.1709 0.2038

5 0.5551 0.2921 0.1703 0.1627

Table 19

Optimum machining parameters for 5 mm depth of cut (no. iterations=250) when: feed range=0.050±0.600 and no.
of iterations in the GA=250

Catalogue values CPOS

Depth of cut (mm) Minimum production cost Minimum production time

V (m/min) f (mm/tooth) V (m/min) f (mm/tooth) V (m/min) f (mm/tooth)

5 20 0.10 24.8 0.512 25.8 0.486
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handbook recommendations in all cases. The average values of percentage improvement on the
production cost and production time are about 38 and 45%, respectively, and are never below
30%.

7. Discussion and conclusion

Optimisation of all process parameters is one of the important duties of the CAPP systems.
Most of the optimisation systems related to process planning applications have been developed
as o�-line systems such that they cannot be used as integrated modules within process planning
packages. Therefore, optimisation systems need to be integrated with CAPP systems. The
impact of AI techniques on the optimisation of CAPP functions has been proven by many
research projects. The potential and the power of AI is very great and it is believed that with
the exploitation of AI methods, it will be possible to increase the capabilities of the IMSs. GA
is promoted as one of the promising AI technologies to be used for solving nonlinear and
combinatorial problems involved in process planning.
In this paper, the methodologies used for the development of the three GA-based systems

responsible for optimisation of sequence of operations, optimisation of ATC-index positions and
optimisation of cutting parameters are presented. They can be used as stand-alone systems or as
integrated optimisation modules within OPPS-PRI which has been implemented on a VMC.
The developed systems have been used in small and medium-sized manufacturing industries
making batch production of spare parts for the textile industry in Gaziantep city. The
methodologies reported in this paper can also be used for the optimisation of other process
planning functions like set-up planning with little modi®cations. The values obtained by the
developed optimisation modules have been tested for various components within the OPPS-
PRI and positive results have been obtained.
GAs have the advantage of rapid reaching to the region which includes the global optimum

due to their parallel structure. However, the most important drawback of the GA is that it is
easily trapped in local optima. A mixed methodology can be used to increase the performance
of the GA, by coupling the parallel computing ability of GAs with the advantages of the SA
which attempts to escape local optima. The computational cost of GAs can be reduced by
adopting an arti®cial selection mechanism in addition to the common natural selection
mechanics. It can also be reduced by using adaptive penalty approaches to handle the
optimisation constraints and to provide a way of evaluating how close is an infeasible solution
from the feasible region within the solution space to be searched.

Table 20
Ratings of parameters shown in Table 19

Catalogue CPOS

Cutting strategy (pass distribution) (mm) Tu (min) Cu ($) Tu (min) Cu ($)

5 (single pass) 0.2921 0.5551 0.0466 0.0882
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With GA-based optimisation systems developed in this work, it would be possible to
increase machining e�ciency by the use optimal cutting parameters, sequence of operations,
and positioning sets on tool magazines, and to contribute to the success of the manufacturing
industry. This will lead to increased utilisation of CNC machine tools. The increased use of
GAs will probably enhance the performances of future process planning systems.
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