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ABSTRACT

NO FREE LUNCH, BAYESIAN INFERENCE, AND UTILITY: A

DECISION-THEORETIC APPROACH TO OPTIMIZATION

Christopher Kenneth Monson

Department of Computer Science

Doctor of Philosophy

Existing approaches to continuous optimization are essentially mechanisms

for deciding which locations should be sampled in order to obtain information

about a target function’s global optimum. These methods, while often effective

in particular domains, generally base their decisions on heuristics developed in

consideration of ill-defined desiderata rather than on explicitly defined goals or

models of the available information that may be used to achieve them.

The problem of numerical optimization is essentially one of deciding what

information to gather, then using that information to infer the location of the global

optimum. That being the case, it makes sense to model the problem using the

language of decision theory and Bayesian inference. The contribution of this work

is precisely such a model of the optimization problem, a model that explicitly de-

scribes information relationships, admits clear expression of the target function

class as dictated by No Free Lunch, and makes rational and mathematically prin-



cipled use of utility and cost. The result is an algorithm that displays surprisingly

sophisticated behavior when supplied with simple and straightforward declara-

tions of the function class and the utilities and costs of sampling.

In short, this work intimates that continuous optimization is equivalent to

statistical inference and decision theory, and the result of viewing the problem in

this way has concrete theoretical and practical benefits.
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Chapter 1

Introduction

Optimization is the task of finding a vector in a function’s domain that

produces the maximum (or minimum) value of its range, a pervasive problem that

plays an important role in many disciplines. Frequently the only way to obtain

information about the function is through sampling: querying it for values at

discrete points in its domain. Many sample-based optimization techniques can

be considered in a broad sense to be evolutionary: sample values are obtained,

information about the function is inferred from those samples, and new sample

locations are selected in the hopes of discovering more about the location of the

function’s global maximum.

Many continuous evolutionary optimization algorithms exist, each of which

employs a distinct approach to the selection of sample locations and the way

they are used to find the location of the global optimum. Among the more pop-

ular approaches are Particle Swarm Optimization (PSO) [Kennedy and Eberhart

1995; Shi and Eberhart 1998a; Clerc and Kennedy 2002], Genetic Algorithms (GAs)

[Holland 1975; Goldberg 1989; Vose 1999], and Estimation of Distribution Algo-

rithms (EDAs) [Larrañaga et al. 1999; Pelikan et al. 1999; Larrañaga and Lozano

2001], to name a few. Each algorithm has some advantages over the others in

particular domains; indeed, this must be the case because of No Free Lunch

(NFL) theorems for optimization: no algorithm can have better average perfor-
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mance than random search on all possible functions [Macready and Wolpert 1996;

Wolpert and Macready 1997].

While optimization researchers are generally sensitive to the consequences

of NFL, i.e., that any algorithm that performs well on one class of functions must

perform poorly on the rest, the full impact of the theorems on a given algorithm

is generally unknown. In particular, given a traditionally developed optimization

algorithm, it is often difficult and usually impossible to obtain a precise definition of

the function class on which it will perform well; that it will perform well on one such

class is clear, but the exact nature of that class is not. The existence of NFL forces

researchers to consider and address this issue, resulting in the common application

of awkward empirical approaches (such as the use of benchmark functions) to

post-design discovery of the function class [Whitley and Watson 2006].

The application of algorithms to benchmarks is not altogether bad, as it at

least establishes common ground for the sake of comparison, but it does little to

answer the core question posed by NFL: if an algorithm can only perform well on

one class of functions, what is that class?

That this question remains open for traditional approaches to algorithm

design represents a serious problem with the way that continuous optimization

is perceived in general; when optimization must be done, researchers generally

consider the desired behavior of the algorithm much more than the nature of the

problem. Therefore, algorithm design is a process of developing heuristics that

achieve certain behavioral characteristics that, while frequently motivated by an

implicitly defined function class, leave the pursuit of its precise specification as a

subsequent empirical exercise; design and performance desiderata do not match.

This causes difficulties for the optimization practitioner who is primarily concerned

with selecting an algorithm that is appropriate for a given task: if the algorithm’s

2



class is unknown, how can principled algorithm selection be achieved? Answering

this question is one of the purposes of this work.

1.1 Thesis Statement

The issues introduced by NFL are not insurmountable, and can be directly ad-

dressed by viewing continuous, unconstrained, single-objective optimization for

what it is: a problem of selectively gathering and making intelligent use of informa-

tion to determine the location of the global optimum. In other words, it is a decision

process where useful samples are selected based on their potential information con-

tent or utility, and it is an inference process where the information obtained from

those samples is combined with assumptions about the function to indicate the

location of the global optimum. It therefore makes sense to model the optimization

problem and the process by which it is solved using the lingua franca of decision

theory: probability density functions, Bayesian inference, and utility.

The central contribution of this work is precisely such a model of the opti-

mization problem, transforming its solution into the process of using well-defined

utilities and costs to determine what information should be gathered, then making

the most of that information using Bayesian inference. In this model, the function

class for which an optimization algorithm is well-suited is not discovered as part

of a post-design testing procedure, but declared by the practitioner as an algorithm

prerequisite. This specification requirement elegantly bridges the traditional gap

between design and performance desiderata while providing new insights into the

nature and impact of NFL for optimization. The resulting algorithm is fixed, intu-

itive, and powerful, displaying rational and sophisticated behavior when provided

with simple and direct specifications.
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1.2 Organization

This work is composed of three essential parts, addressing the issues created by No

Free Lunch, the role that Bayesian statistics can play in principled evolutionary

algorithm design and analysis, and how the problem of optimization may be

approached using the tools of decision theory. The first two issues are explored in

the context of Particle Swarm Optimization (PSO), and the last introduces a set of

novel algorithms.

Part I explores selected domain-specific improvements to PSO, highlighting

the fact that each variant implies a different and unknown function class. Part II

addresses some deficiencies in the basic PSO mechanism, and it does so by cre-

ating a more principled, model-based algorithm design methodology for swarm

optimization. Part III generalizes those results, producing the decision-theoretic

approach to optimization that forms the core contribution of this work.
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Part I

No Free Lunch for

Particle Swarm Optimization

Each chapter within Part I is a paper focused on addressing one of the follow-

ing PSO issues: exposing bias, handling constraints, and premature convergence.

Many publications are written to address one or more of them in evolutionary

optimization literature.

While not calling direct attention to it, these papers highlight a problem with

the way in which evolutionary optimization algorithms are traditionally designed:

with no explicit consideration of the function class. Changing an algorithm to

improve its performance is really an exercise in altering the class of functions on

which it is expected to operate, and such changes are generally serendipitous in

nature; having made a change and shown it to be productive for a set of benchmark

functions does little to specify the shape of the function class that NFL dictates must

be present. That optimization researchers continue to be concerned with making

minor alterations to PSO in domain-specific ways is evidence of the fact that the

algorithm is implicitly defining a function class that does not include their favorite
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applications, and the papers in Part I provide examples of the difficulty this presents

when attempting to make directed and principled improvements.

In addition to highlighting these principles through the incremental nature

of the changes proposed in these papers, the specific problems that each paper

addresses are themselves evidence of NFL. Chapter 2, for example, addresses the

exposure of origin-seeking bias, showing that the selected test methodology is

critical for the exposure of bias; an algorithm commonly believed to be sound is

shown to have a significant bias; that this bias went undiscovered for so long is an

indication that this important feature of the function class was unknown.

Chapter 3 addresses constraints, but does so in a manner that contrasts with

a previously developed PSO extension, an extension that alters PSO such that its

effectiveness is drastically reduced; it represents an unwanted alteration of the class

of functions for which PSO is well-suited. Had that class been known, it may have

been easier to prevent the resulting performance degradation. The approach in

this paper restores desirable behavior by allowing unmodified PSO to be applied.

Finally, Chapter 4 addresses an issue that is perhaps the most common

in PSO literature: premature convergence. This problem is intimately tied to the

notion of the function class assumed by the algorithm: PSO moves particles in such

a way as to favor functions that are relatively smooth, and violating that property

causes its performance to decrease. Addressing the issue of convergence is a way

of enlarging the “smoothness-favoring” function class to include functions that do

violate this property to some extent, but a precise definition of that class continues

to be unavailable and an approximation must be inferred through experimentation.

In each case, the proposed changes expose the need for knowledge of the

function class. In PSO this class specification is buried within its subtle machinery

and changes with every minor algorithmic alteration; a more explicit specification

is needed and will be provided in subsequent parts of this work.
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Chapter 2

Exposing Origin-Seeking Bias in PSO

Published in Proceedings of GECCO 2005, Volume 1, pages 241–248

Abstract

We discuss testing methods for exposing origin-seeking bias in PSO motion algo-

rithms. The strategy of resizing the initialization space, proposed by Gehlhaar and

Fogel and made popular in the PSO context by Angeline, is shown to be insuffi-

ciently general for revealing an algorithm’s tendency to focus its efforts on regions

at or near the origin. An alternative testing method is proposed that reveals prob-

lems with PSO motion algorithms that are not visible when merely resizing the

initialization space.
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2.1 Introduction

Particle swarms are now well known as an effective and interesting approach to

function optimization. The basic algorithm scatters particles in a limited feasible

region of the function’s domain space, moving them over time in a search for areas

of better fitness. Each particle keeps track of a current position x and velocity v,

as well as the most fit location it has ever seen p. The best p among all particles is

denoted g. In classical PSO, these data are easily combined:

vt+1 = χ
(
vt + φ1 U()(p − xt) + φ2 U()(g − xt)

)
(2.1)

xt+1 = xt + vt+1 (2.2)

where U() is a sample from a standard uniform distribution, φi are usually some-

where near 2, and χ represents the addition of a constriction coefficient that serves

to control the convergence properties of the algorithm [Clerc and Kennedy 2002].

Throughout the remainder of this paper, it will be assumed that minimiza-

tion is performed. It will also be implied that g refers to the best known position

among all p in a particle’s neighborhood. While this is a slight departure from the

norm, where local neighborhood bests have different notation (l), the two nota-

tions are rarely if ever used in the same context. Therefore, it will be understood

that where a notion of sociometry is present, g is the best known among all of the

particles in a particular neighborhood and is therefore particle-dependent.

Many population-based optimization approaches, including PSO, suffer

from a notable bias: they tend to perform best when the optimum is located at

or near the center of the initialization region, which is often the origin. This is espe-

cially true when some kind of averaging operator is used to combine information

from different members of the population [Angeline 1998]. In many of the standard

benchmark functions, the global optimum is at or very near the origin, making this
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Figure 2.1: Angeline’s initialization region for PSO

bias a potential problem when developing and testing a new algorithm. To expose

this bias while testing PSO algorithms, Angeline [1998] popularized a method pre-

viously introduced by Gehlhaar and Fogel [1996]. The method, hereafter referred

to as “Region Scaling” (RS) explicitly excludes the optimum from the initialization

region by initializing particles in a new region whose sides are all 1/4 the length of

the original, as shown in Figure 2.1.

This paper focuses on test methods used to expose origin-seeking bias in PSO

algorithms and shows that RS is not always sufficient. Experiments are done using

Clerc’s TRIBES [Clerc 2003, 2004] with various kinds of particle motion. TRIBES is

described in some detail, followed by descriptions of the kinds of motion chosen

for the experiments. An alternative to RS called “Center Offset” (CO) is proposed

as a means of exposing the bias in PSO, and experimental results highlight the

contrast between the two approaches. Finally, some discussion of the meaning

of the results is presented with accompanying recommendations for testing new

algorithms.
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2.2 TRIBES

TRIBES is a parameter-free approach to swarm size and sociometry in PSO, at the

heart of which is a swarm restructuring algorithm which adapts the number of

particles and the topology of particle neighborhoods based on swarm performance

[Clerc 2003].

Because it is parameter-free, TRIBES provides a useful way to sidestep the

issue of swarm size and sociometry specification, providing an out-of-the box

approach that has been shown to work well. Because the parameters of swarm

size and sociometry are adapted based on the success of the swarm at a given

time, TRIBES zeros in rapidly on settings for those parameters that produce the

best performance. In the case of a biased motion algorithm, this feature of TRIBES

serves to expose that bias effectively.

Clerc’s TRIBES paper defines notions of tribes and informers. A tribe is a

data structure that keeps track of the particles that belong to it, representing a fully

connected subgraph of the overall swarm topology. The informers of a particle are

itself, all of the particles in its tribe, and any particles of other tribes to which it is

connected. All links are symmetrical.

The algorithm begins with one or more particles in a single tribe. The

memory of a particle is extended slightly to include not only p, but also the number

of times it has changed in succession. If the number of successive changes is greater

than 0, then improvement was made during the last position update and the particle

is labeled “good”1.

The tribes themselves also receive the labels “good” or “bad”, depending

on the number of good particles in the tribe. A tribe containing T particles is itself

1TRIBES also has a notion of “excellent”, assigned to a particle if the number is 2 or higher, but
we do not make use of that distinction in this paper.
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“good” only if U() ≤ G/T, where G is the number of good particles in a tribe and

U() is a draw from a standard uniform distribution. Otherwise the tribe is “bad”.

Good tribes, because they are doing well and presumably do not need as

many particles, will remove one of their particles. Assuming that f is the function

being minimized, a good tribe containing more than one particle will remove its

worst performer, or the particle with the highest f (p). When this occurs, any

external links to the particle are reassigned to the best performer in the tribe, i.e.

the particle with the lowest f (p).

If a good tribe contains only one particle, the tribe itself is removed only if

its particle’s best external informer has a better f (p) than itself. In this latter case,

all external links to the particle are reassigned to the external informer.

Bad tribes, on the other hand, presumably need more information, so each

creates a new particle outside of its tribe and forms a link between the new particle

and the best particle within the tribe. The set of all new particles created during

one restructuring step forms a new tribe. Each new particle is generated randomly

and uniformly within the initialization space.

Restructuring occurs once at the beginning of the algorithm and then peri-

odically as it progresses. If, after restructuring, the swarm has N particles and L

information links, then restructuring will occur again after L/2 swarm iterations,

or NL/2 function evaluations.

2.3 PSO Motion Algorithms

Several motion algorithms have been suggested for PSO, so many that they cannot

all be discussed here. This section describes algorithms that are representative of

some interesting features of existing approaches to PSO motion, and these will be

used in this paper’s empirical study of origin-seeking bias.
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2.3.1 Pivot

The central motion algorithm introduced in the TRIBES paper is the “Simple Pivot”

method. The “Noisy Pivot” method, also introduced in the TRIBES paper, is

an extension of Simple Pivot which performs an additional Gaussian sample to

generate the final position [Clerc 2003]. We will focus on the Simple Pivot here,

referring to it simply as “Pivot”.

The Pivot method, illustrated in Figure 2.2, generates a new position by

taking noisy samples in the neighborhood of p and g. First, each is taken to be the

center of a hypersphere whose radius is ‖p − g‖2. Second, a point is sampled from

a uniform distribution within each sphere. Each of these samples is given a mass

based on the relative fitness of its corresponding center point (either p or g), and

the new position is the center of mass of the two sampled points.

Mass may be assigned in a number of ways. One simple approach is to

assign mass linearly based on the relative fitness of each particle, thus:

xt+1 =
f (p)

f (p) + f (g)
(g +U (‖p − g‖2)) +

f (g)
f (p) + f (g)

(p +U (‖p − g‖2)) (2.3)

where U(·) is a sample from a hyperspherical uniform distribution with the specified

radius. This formula assumes that minimization is occuring, so smaller values of f

are favored. Maximization would reverse the positions of the fractional coefficients.
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2.3.2 PSOGauss

The second type of motion proposed in conjunction with TRIBES, but not given a

name, is based on constricted PSO with Gaussian noise [Clerc 2003]. We will refer

to this motion as PSOGauss:

vt+1 = χ
(
vt +G

(
p − xt,

1
4

I ‖p − xt‖22
)
+ G

(
g − xt,

1
4

I ‖g − xt‖22
))

(2.4)

where I is the identity matrix, χ ≈ 0.71441, and G(·, ·) is a sample from a Gaussian

distribution parameterized by the supplied mean and covariance matrix.

This approach is similar to constricted PSO and different from the others in

this section because it uses velocity instead of computing a position directly.

2.3.3 BareBones

The BareBones motion algorithm is probably the simplest PSO algorithm proposed

to date, but it is very successful at optimization [Kennedy 2003]. The motion

equation is given here:

xt+1 = G
(1
2

(p + g), I ‖p − g‖22
)

(2.5)

where G(·, ·) is a sample from a Gaussian distribution parameterized on a mean

and covariance matrix.

This approach was developed after noting that the distribution of samples

between p and g was distinctly Gaussian at each time step in classical PSO and was

an effort to cull out any useless properties of the traditional motion equations.

This particular method was not the only one proposed in Kennedy’s Bare

Bones paper [2003], but it is the simplest and is very effective.
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2.4 Experiments

To test for origin seeking behavior, the following benchmark functions were used:

Sphere:

f (x) =
D∑

i=1

x2
i R = (−50, 50)D (2.6)

Rastrigin:

f (x) =
D∑

i=1

x2
i + 10 − 10 cos(2πxi) R = (−5.12, 5.12)D (2.7)

Rosenbrock:

f (x) =
D−1∑

i=1

100(xi+1−x2
i )2+(xi−1)2 R = (−100, 100)D (2.8)

Sphere is unimodal and symmetric, Rastrigin is highly multimodal and symmetric,

and Rosenbrock is multimodal and asymmetric. These functions are representative

of the essential characteristics of a number of popular benchmarks.

For each function and type of motion, experiments were performed using

“Region Scaling” (RS) and “Center Offset” (CO). In the first (RS), several different

initialization regions were chosen, each formed by taking a fraction of the feasible

rectangle in each dimension as shown in Figure 2.3(a)2. In the second (CO), the

center of each function was moved to a different location of space, as shown in

Figure2.3(b), leaving the initialization region in its original location. For example,
2This is somewhat different from Angeline’s approach, since the region is chosen from the

opposite corner. While this does not affect the symmetric Sphere or Rastrigin functions, it tends to
initialize particles in a more challenging part of Rosenbrock’s domain.
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Figure 2.3: Different methods of exposing origin-seeking bias

Sphere would become

f (x, c) =
D∑

i=1

(xi − ci)2

where c is the location of the new center, calculated using the feasible region and

the numbers shown in the figure (0.5 leaves the center unchanged). This can only

be applied to functions whose support extends outside of the feasible region, as

is the case with all of the benchmarks used here. CO values outside of the range

[0, 1] are valid and indicate that the center has moved beyond the boundaries of

the feasible region along the line shown.

2.5 Results

The results of all of the experiments are shown in Figures 2.4, 2.5, and 2.6. The

x-axis of each graph shows one tic per 50 function evaluations, and the y-axis is the

best fitness obtained among all particles. Because the focus is minimization, lower

values are better. All results are averaged over 30 runs and plotted on a log-log

scale.
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Figure 2.4: Pivot performance under Region Scaling and Center Offset
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Figure 2.5: PSOGauss performance under Region Scaling and Center Offset
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Figure 2.6: BareBones performance under Region Scaling and Center Offset
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Figure 2.4 shows the results of the experiments using the Pivot method.

Using RS the Pivot method appears to perform equally well in all cases, easily

overcoming the difficulties imposed by a smaller initialization region. When CO

is applied, however, the bias becomes evident. Pivot only performs well when the

global minimum is located at or near the origin.

Figure 2.5 displays results for PSOGauss. In this case, the origin seeking bias

is more subtle. The key is to look for natural grouping of results near the end of a

run. With Rastrigin and RS, some clustering occurs among the regions that include

the global minimum in Figure 2.5(c), but it does not show up when using CO in

Figure 2.5(d). Rosenbrock and Sphere show no significant clustering in either case.

In Figure 2.6 the results are shown for BareBones. Similar to PSOGauss,

clustering is observed with Rastrigin and RS in Figure 2.6(c) but not with CO in

Figure 2.6(d). On Rosenbrock, however, clustering is definitely observed (note

the log-log scales) both under RS in Figure 2.6(e) and CO in Figure 2.6(f). The

clustering observed is much more striking under CO, with some counterintuitive

results under RS. Again, no such clustering is observed when tested on Sphere.

2.6 Discussion

2.6.1 Exposure Methods

The behavior of Pivot in Figure 2.4 suggests that a strong argument can be made for

using CO to test for origin-seeking bias; it succeeded where RS failed. Additionally,

when looking at results for Rosenbrock among all motion algorithms, anywhere

that RS exposed a bias, CO did as well. In that sense, CO appears to be no worse

than RS, and in the case of Pivot it is vastly better for discovering bias.

The Rastrigin case is somewhat different, where any bias shown on that

function only occurred under RS. While this may say more about Rastrigin than
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any of the algorithms used to optimize it, it does expose weakness in both PSOGauss

and BareBones when dealing with such a highly regular and multimodal function.

The types of bias exposed by these two approaches are different. RS exposes

a bias toward the center of the initialization region, while CO exposes a bias toward

the absolute origin. To further verify this idea, other experiments were performed

that moved the center of the function and the initialization region by the same

amount simultaneously. This simply performed a coordinate shift for the entire

problem, something that would not be expected to cause difficulty for any of the

algorithms here. The results for Pivot, however, were nearly identical to those

shown here when using CO exclusively, indicating that there is indeed a bias

toward the absolute origin in that algorithm.

It is possible to combine both the RS technique and the CO technique into

a single experiment, shifting the coordinate system and then shrinking the initial-

ization region. This approach can sometimes expose both kinds of bias at once,

suggesting that if only one experiment is to be done, RS and CO should be com-

bined. Otherwise, it is best to do each separately in order to expose the various

potential algorithmic weaknesses.

2.6.2 TRIBES Behavior

The use of TRIBES as the basis for swarm size and sociometry, while not an arbitrary

choice, merits further discussion. It was mentioned previously that TRIBES was

chosen because it tends to find the right combination of sociometry and swarm

size for effectively exposing the bias in a motion algorithm. It does this because it

adapts swarm characteristics based on performance.

The biased behavior does not only show up when using TRIBES, however.

Figure 2.7 gives results for BareBones on various fixed-size fully connected swarms.

The experiments are performed under CO. It is especially clear in Figures 2.7(a)
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Figure 2.7: BareBones average fitness using CO, the star sociometry, and various
fixed swarm sizes

and 2.7(b) that BareBones displays origin-seeking bias on Rosenbrock. It is therefore

possible to find the behavior using a fixed swarm size and a specific sociometry,

but it can be difficult to find the right combination by hand. More particles implies

initially more diverse function samples and increases the likelihood of finding a

good area to explore at the beginning of the run, making it difficult to see any bias

that may exist. Fewer particles have little available information and therefore nearly

always get stuck quickly, making it difficult to make any convincing statements

about observed bias. TRIBES seems to get it just right.
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That TRIBES is good at exposing the bias actually makes a very positive

statement about the algorithm in general. The exposure occurs because it is using

just enough particles and just enough connections between them to get the best

results possible. In other words, when an algorithm is center seeking, it exploits

that fact because it finds a good combination of swarm size and sociometry for that

algorithm. It makes sense to test new algorithms using TRIBES because strange

origin-seeking behavior may otherwise be masked by lucky choices of fixed swarm

size and sociometry.

2.6.3 Benchmark Behavior

Rastrigin is somewhat unique among the benchmarks here in that it exposes a

bias only under RS. The others expose it either in both cases or only in the CO

case. Why does this happen with Rastrigin? The function is highly multimodal

with very deep local minima spread out on a regular grid. In order for particles to

find the global minimum, they must jump over or out of these local minima in a

reliable way. If particles manage to acquire the correct speed, they tend to jump

quickly from one minimum to the next since a straight line will pass through many

evenly-spaced local minima. A larger initialization space facilitates the discovery

of an appropriate velocity while a smaller one tends to generate particles that get

stuck because of small initial velocities.

Rosenbrock has some counterintuitive behavior. When applying RS, the

bias appears to be reversed in some cases. This may be due to its asymmetric

properties; too many particles in a misleading area of the space (with strange local

minima) can cause the swarm to converge too quickly to a challenging part of the

domain. As the initialization region is made smaller but still includes the global

minimum, fewer particles start out in misleading areas.

22



These properties do not discredit these benchmarks as indicators of bias, but

rather highlight some of the unique issues that they expose. It is a good idea to use

multiple different benchmarks when looking for bias.

2.6.4 Motion Algorithms

Pivot is undeniably biased, but what of the others? Between PSOGauss and Bare-

Bones, PSOGauss appears to display the least bias, since it works well on Rosen-

brock no matter what is done to it. BareBones, on the other hand, appears to show

significant bias on Rosenbrock. Both show a small amount of bias on Rastrigin

when the region size is altered.

If they must be ranked, then, it appears that PSOGuass is the least biased,

followed by the slightly more biased BareBones, finally followed by the extremely

biased Pivot.

What it is about Pivot and BareBones that makes them biased is not obvious

from the results. They are different from PSOGauss in one very fundamental way,

however: they update positions directly while PSOGauss updates velocities. This

one difference may be enough to account for a center seeking bias, though that idea

has not yet been fully explored. The reasons behind the extreme nature of Pivot’s

bias also merit further exploration.

2.7 Conclusion

Region Scaling (RS), a popular method of testing for bias in PSO, is effective but

not always sufficient for detecting origin-seeking behavior. In fact, on motion like

the Pivot method, it fails to expose any bias whatsoever. Center Offset (CO), on

the other hand, catches cases that are not otherwise visible, making it an essential

testing tool for any new PSO algorithm.
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Additionally, it was found that TRIBES provides a useful framework for

testing different kinds of PSO motion, given that it tends to exploit the best behavior

of a motion algorithm. This, in combination with CO and RS is a very effective

method of testing for origin-seeking bias.
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Chapter 3

Linear Equality Constraints and

Homomorphous Mappings in PSO

Published in Proceedings of CEC 2005, Volume 1, pages 73–80

Abstract

We present a homomorphous mapping that converts problems with linear equality

constraints into fully unconstrained and lower-dimensional problems for optimiza-

tion with PSO. This approach, in contrast with feasibility preservation methods,

allows any unconstrained optimization algorithm to be applied to a problem with

linear equality constraints, making available tools that are known to be effective

and simplifying the process of choosing an optimizer for these kinds of constrained

problems. The application of some PSO algorithms to a problem that has under-

gone the mapping presented here is shown to be more effective and more consistent

than other approaches to handling linear equality constraints in PSO.
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3.1 Introduction

Particle Swarm Optimization (PSO) [Kennedy and Eberhart 1995] is a social al-

gorithm that is most naturally applied to unconstrained optimization problems.

Potential solutions called ‘particles’ are initialized within and ‘flown’ through the

target function’s domain, searching for the global minimum or maximum. The

standard formulas for particle motion are given as follows:

vt+1 = ωvt + φ1U1t⊗(p − xt) + φ2U2t⊗(g − xt) (3.1)

xt+1 = xt + vt+1 (3.2)

whereω is the inertia weight, eachφi ≈ 2, each Ui is a vector of numbers drawn from

a standard uniform distribution, and ⊗ performs point-wise vector multiplication

[Mendes et al. 2004]. The variables p and g are different for each particle and

represent the best known position in the particle’s own past and the best known

position among particles in its neighborhood, respectively.

While unconstrained optimization is the process of finding a vector g? ∈ RD

such that f (g?) is the global optimum, constrained optimization involves finding

an optimal g? ∈ F where F ⊂ RD is a feasible subspace of the original domain.

In other words, the addition of constraints always restricts the space from which

an optimal vector may be taken. A number of approaches have been used to

add constraint-handling capabilities to PSO, each different depending on the na-

ture of the constraints [Paquet and Engelbrecht 2003a; Coath and Halgamuge 2003;

Hu and Eberhart 2002; Parsopoulos and Vrahatis 2002; Pulido and Coello 2004].

Though diverse in detail, the various methods of handling constraints in

evolutionary optimization algorithms can be categorized as one or more of the

following [Koziel and Michalewicz 1999; Paquet and Engelbrecht 2003a]:
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Preserve: All potential solutions are initialized within F and special operators are

applied to search for new solutions without violating the constraints.

Penalize: The fitness of solutions not in F is artificially reduced in some way to

make those solutions less desirable.

Partition: Solutions are partitioned into feasible and infeasible sets and each set

is treated differently. This includes techniques such as repair of infeasible

solutions and prioritizing solutions based on feasibility.

Preprocess: The problem itself is transformed so that the constraints are either

easier to handle or eliminated. The Homomorphous Mapping introduced by

Koziel and Michalewicz [1999] is in this category.

This paper is concerned with improving the performance of PSO when ap-

plied to problems with linear equality constraints. These constraints are generally

given in the form Ax = b. Admittedly, linear equality constraints form a very

small subset of possible constraints, but they appear in useful real world problems

such as the training of support vector machines [Paquet and Engelbrecht 2003b].

Some interesting work specific to handling linear equality constraints in PSO is

found in the Linear PSO (LPSO) and Converging Linear PSO (CLPSO) algorithms

introduced by Paquet and Engelbrecht [2003a].

These algorithms, while simple to implement and empirically effective, have

two basic limitations. First, they rely on feasibility preservation, which inher-

ently restricts algorithm design because the constraints must define the set of

possible motion operators. Second, the linear restriction placed on the motion

equations is known to reduce the effectiveness of PSO in unconstrained problems

[Monson and Seppi 2004], leading one to ask whether another style of PSO motion

may be more effective in linearly constrained problems.
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We propose a homomorphous mapping that transforms a space constrained

by Ax = b into a space that is not only fully unconstrained, but also of lower dimen-

sionality, allowing any unconstrained optimization algorithm to be directly applied

to a much easier problem. We begin by discussing LPSO and CLPSO, followed

by the introduction of the homomorphous mapping suitable for handling linear

equality constraints and some discussion about the motivation for the algorithm.

Results comparing existing constrained optimization techniques are then given.

3.2 LPSO and CLPSO

LPSO (Linear PSO) is much like classical PSO, except that rather than use a different

random number for each element of the velocity and position vectors, a single scalar

is multiplied by each vector, thus:

vt+1 = ωvt+φ1U1t(pi−xt)+φ2U2t(gi−xt) . (3.3)

This means that the resultant velocity (and therefore position) is a strictly linear

combination of other particle positions. If the particles are all initialized within

F = {x|Ax = b}, then they will always be within F . CLPSO is similar to LPSO

except that its globally best particle has its own motion equation: its next position

is calculated as the sum of its personal best and a small random velocity within

the null space of the equality constraints. This allows the swarm to do more local

exploration and guarantees that at least a local minimum will be found.

These algorithms fill an interesting gap in the constrained PSO literature

because they focus solely on linear equality constraints. They also have the advan-

tage of relative implementation simplicity. While CLPSO appears to have much

better exploration capabilities than LPSO, however, both are based upon a version
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of PSO that has observably poor exploration characteristics as the particles near

convergence.

Consider for a moment the problem of unconstrained optimization using

LPSO. If we think of the positions of particles as vectors, some or all of which

participate in a basis set, then linear combinations of these vectors will span a

space. Motion that is a result of strictly linear operations of these positions will

force particles to always be within that span; this fact is what makes LPSO a

feasibility preserving method.

This same feature, however, cripples it in terms of exploration capability. If

there are fewer particles than effective constrained dimensions, then the algorithm

is doomed from the start to explore a space with lower effective dimensionality

than the target domain. If there are more particles than effective dimensions, they

must be initialized in such a way as to span the entire target domain, something

that is fairly likely when using random initialization. Even when this is the case,

however, as some particles approach convergence and diversity decreases in the

swarm, fewer of the positions will be sufficiently unique to contribute to a full

span, and the dimensionality of the searchable space decreases quickly.

In either case, the search space is eventually overconstrained. This behavior

of reduced search dimensionality can be observed when watching LPSO near con-

vergence. As some particles become still, the rest will increasingly explore along

a periodic straight line trajectory through g. This exploration strategy can work

well on some functions like Rastrigin, where the local minima are spread out on a

regular grid, but in general it is not effective.

Even the use of some diversity increasing approaches like ARPSO

[Riget and Vesterstrøm 2002] or Spatial Extension PSO [Krink et al. 2002] does lit-

tle to solve the problem, as these are commonly implemented to perform a linear
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change to the particle’s motion. As long as the underlying motion overconstrains

the search space, these diversity increasing methods are of little help.

The overconstraining of the problem over time results in premature conver-

gence to locations of the target domain that are not even local minima, an issue that

motivated the development of CLPSO (Converging Linear PSO), which changes

the motion equation for the best particle in the swarm so that it explores in a com-

plete span of the feasible domain using a random velocity component in the null

space of A. This idea is mathematically sound and empirically effective, but it is

possible that fundamentally changing the underlying motion will produce better

results.

3.3 Homomorphous Mappings in PSO

The homomorphous mapping approach proposed by Koziel and Michalewicz

[1999] has many advantages over preservation methods like LPSO and CLPSO,

not least of which are the ability to use an unmodified unconstrained optimiza-

tion algorithm and a sometimes significant reduction of the dimensionality of the

problem. This idea is especially interesting when using PSO, since it is simple to

implement, effective at optimization, and most naturally applied to unconstrained

problems.

In general terms, the goal of a homomorphous mapping is to convert a

difficult constrained problem into a simpler constrained or unconstrained problem.

The burden of constraint handling is thus shifted from the optimization algorithm

to an algorithm that creates a transform or decoder H : S 7→ F such that S is

a space that is easier to work with than F . The use of the decoder allows an

optimization algorithm to work with points x ∈ S while evaluating the target

function in its original space: f (H (x)). For more information on this interesting

idea, see Koziel and Michalewicz [1999].
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3.3.1 Linear Equality Constraints

Linear equality constraints of the form Ax = b always define a hyperplane, assum-

ing that the rows of A are linearly independent [Paquet and Engelbrecht 2003a].

Since a hyperplane has lower effective dimensionality (D−) than the space in which

it exists (D), it is always possible to reorient the plane such that it is completely

contained within RD− , a space that is spanned by a subset of the axes in RD. For

example, a plane in R3 can always be oriented to lie in the x–y plane, and a line in

R
3 can be oriented to lie along the x axis.

The size ofRD− may be easily determined from the linear equality constraints

themselves. Each row of A represents a vector that is normal to a hyperplane inRD,

and the effective dimensionality of this hyperplane is always D − 1. To illustrate

this idea, it is useful to think of adding constraint hyperplanes into a space one at

a time; the first hyperplane reduces the effective dimensionality by 1, the second

forms an intersection with the first which drops another effective dimension, and

so on. The goal of the homomorphous mapping is to reorient the resulting lower-

dimensional hyperplane such that it is contained entirely within RD− , allowing

search to be restricted to that smaller unconstrained space during optimization.

The most obvious such mapping is a projection from the larger space into the

lower dimensional space, but this has some disadvantages, such as the necessity

of selecting out the appropriate dimensions in order to perform a useful (non-

degenerate) projection. The mapping on which we will focus our attention in this

paper is composed of rotations and translations which are represented in a single

homogeneous matrix H = T−1. The complete method for calculating T is given in

Algorithm 1 and a more detailed explanation follows.
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Algorithm 1 HHM(pairs)
1: T = I

# Rotate Space
2: for i = 1 to len(pairs) do
3: a = D − (i − 1)
4: p1,p2 = pairs[i]
5: for j = 1 to a − 1 do
6: n+ = T(p2 − p1)+
7: θ = atan2(n j, na)
8: T = Rθ, j,aT
9: end for

10: end for
# Translate Space

11: for i = 1 to len(pairs) do
12: a = D − (i − 1)
13: p1,p2 = pairs[i]
14: p̃+1 , p̃

+
2 = Tp+1 ,Tp+2

15: n = p̃2 − p̃1
16: q = (p̃1 · n)n
17: if qa , 0 then
18: Ta,D = −

∥∥∥q
∥∥∥2
/qa

19: end if
20: end for
21: return T

3.3.2 Homogeneous Homomorphous Mapping (HHM)

Because each row of A and each corresponding element of b together form the

equation of a hyperplane, the constraint system Ax = b may be rewritten as a set

of equations of the form ni · x = bi, where ni is normal to plane i and bi is a distance

parameter. If ni is of unit length, then bi has a convenient geometric interpretation:

it is the distance from the origin to the plane in the direction of ni as illustrated in

Figure 3.1. The figure also shows a useful alternative definition of a plane using

two points:

p1 = bn (3.4)

p2 = p1 + n . (3.5)
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This two-point definition of a hyperplane is used in Algorithm 1, which requires

that each n has unit length. Since any constraint system Ax = b may be trivially

rewritten to satisfy this requirement, it will be assumed throughout the rest of this

paper that constraints are normalized in this way.

The HHM algorithm is composed of two high-level steps. Starting at line 2

it calculates all of the necessary rotations that will orient the constraint hyperplane

so that it is parallel to RD− , but not necessarily contained within it. On line 9 it

begins the process of finding the translation that will move the hyperplane so that

it has no support outside of RD− .

Each of these steps will be given special consideration below. The result of

the algorithm is a homogeneous matrix of the form

T =




r1,1 · · · r1,D t1

...
. . .

...
...

rD,1 · · · rD,D tD

0 · · · 0 1




(3.6)

where ri, j participates in rotation and ti participates in translation. A vector multi-

plied through this matrix must also be homogeneous (augmented with a terminal

1):

p+1 =
(
p1,0 · · · p1,D 1

)>
. (3.7)

The value pairs required by the HHM algorithm is a list of point pairs

representing the constraint planes as defined in (3.4) and (3.5).

To better describe the HHM algorithm, which applies to arbitrary linear

equality constraints in any number of dimensions, it is useful to work through

a concrete example where the number of constraints and the dimensionality are

fixed. The discussion that follows will assume that A has two rows and that D = 3.
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Each constraint represents a plane in R3, and the two constraints together form a

line at their intersection. The HHM algorithm will be applied to create a transform

T that orients the entire space so that this line lies along the x-axis.

Rotation

The first step is to rotate each plane so that the intersection is parallel to the x axis.

We begin with plane 1, which is defined by two points p1,p2 = pairs[1]. This plane

will be rotated so that its normal is parallel to the z axis, effectively eliminating the

need to consider that axis during subsequent rotations.

The first plane is realigned by rotating a projection of the normal in two

planes, starting with the x–z plane; the normal is transformed so that its projection

in the x–z plane (denoted nx,z
1 ) lies along the z axis. Once this is done, the projection

will be oriented correctly, but the actual normal vector may still have some support

along the y axis.

Figure 3.2 illustrates what the algorithm is doing on lines 6–7: it first gets

the normal into the current space and then calculates the rotation angle θ that will

cause the projection of the normal into the j–a plane to lie along the a axis. In this

example, j is the index of the x component in n and a is the index of the z component

in n.

The angle θ is computed by

θ = arctan
n j

na
(3.8)

and is used to construct a rotation matrix Rθ, j,a that will orient nx,z
1 along the z axis.

The rotation matrix is the identity matrix of size D + 1 with the exception of the
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following elements:

R j, j = cosθ R j,a = − sinθ

Ra, j = sinθ Ra,a = cosθ .

Again referring to the example, the process is repeated in the y–z plane so that ny,z
1

lies along the z axis. When finished, the unprojected n1 = (0 0 1)> and is therefore

lined up along the z axis.

Because the first plane now has constant support along the z axis, the in-

tersection of the planes does as well. Therefore, when applying this process to

subsequent planes, that axis need not be considered again. When the next plane

is considered, a rotation is performed in the x–y plane so that the projection of the

second normal into that plane (nx,y
2 ) lines up with the y axis. When that is done,

the intersection of the two planes will be parallel with the x axis, and the rotation

step is complete.

Translation

Because the planes may not have crossed through the origin, the rotation step does

not limit the constraint hyperplane toRD− . It does, however, have constant support

in all but the first D− dimensions. The last step performed by the HHM algorithm

performs a translation so that this constant support is removed, e.g. the intersection

of the two planes in R3 is not merely parallel to the x-axis, but superimposed over

it.

This translation step is made more convenient by the two-point definition

of a plane shown in Figure 3.1. Translating so that the first plane contains the

origin is very simple: its normal points along the z-axis and therefore it needs to

be translated by its (easily calculated) distance from the origin. Once this step
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is complete, however, the second plane may look something like that shown in

Figure 3.3. Note that p̃1 is no longer the point in the plane closest to the origin, and

therefore
∥∥∥p̃1

∥∥∥ , b.

Fortunately, it is easy to calculate the point in the plane closest to the origin

using a dot product: p̃1 · (p̃2 − p̃1) = b. The point q closest to the origin is simply

b(p̃2 − p̃1) as calculated in lines 13–14 of Algorithm 1. Given q it is possible to

calculate the amount of y axis translation necessary to ensure that plane 2 contains

the origin. As long as no translation occurs in the z axis, the first plane will still

contain the origin as well.

Figure 3.4 illustrates the way in which the translations are calculated. The

angle θ is part of two triangles, and can therefore be used in two formulas to find

the unknown distance x:

cosθ = qa/
∥∥∥q

∥∥∥ (3.9)

cosθ =
∥∥∥q

∥∥∥ /x (3.10)

producing

x =
∥∥∥q

∥∥∥2
/qa (3.11)

which is how the translation is calculated in lines 15–16. This calculation works for

every plane to which it is applied, including the first.

3.3.3 Comments on HHM

The result of applying HHM is a homogeneous matrix T that transforms every

point in RD to another point in RD. Importantly, points in the feasible region F

are all transformed by this process to be contained within RD− , e.g. no vector in
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F will have a nonzero value for y or z after applying T, effectively reducing the

dimensionality of the target function.

To obtain the desired matrix H : RD− 7→ RD, one need merely invert T and

appropriately pad vectors in RD− with zeros and a trailing 1 before multiplying.

Performing a general inverse operation, however, is unnecessary because of the

nature of rotation matrices; it is straightforward to obtain the inverse by splitting

out the rotation and translation components of T. The effects of applying H can

then be obtained by first applying the negative of the translation vector followed by

the transposed rotation matrix. Other optimizations are possible, but are beyond

the scope of this paper.

It is natural to ask why something simple like Gaussian Elimination was

not used instead of this rotation/translation mapping. The advantages of the HHM

presented here are that it preserves Euclidean distance and it produces an easily-

reversed mapping, fulfilling two of the desiderata for homomorphous mappings

[Koziel and Michalewicz 1999]. Gaussian Elimination, on the other hand, performs

a projection and is difficult to implement in a numerically stable way in all cases; in

order to apply Gaussian Elimination in a way that is guaranteed to be stable, one

must choose the appropriate subset of axes on which to do the projection (equiv-

alent to determining the way in which columns of A are reordered), hopefully in

such a way that distances in the projection correspond to similar distances in the

original space [Koziel and Michalewicz 1999]. The HHM does this automatically

by preserving Euclidean distance, and its potential numerical problems inherent in

repeated matrix multiplication are easily addressed by infrequent reorthonormal-

ization.
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3.4 Experiments

Given the above algorithm for calculating a mapping, handling linear constraints is

as simple a task as finding H and searching using particles x ∈ RD− while evaluating

f (Hx) in the original space. The approach outlined here is actually more general

than its application to PSO, since any unconstrained optimization procedure may

be applied afterH has been calculated.

3.4.1 Experimental Setup

Several benchmark functions were applied with the introduction of LPSO and

CLPSO, comparing them against Genocop II, an evolutionary optimization pack-

age [Michalewicz 1996]. These benchmarks are also commonly used to test uncon-

strained optimization algorithms:

Sphere(x) =
D∑

i=1

x2
i

Quadratic(x) =
D∑

i=1

D∑

j=1

e−(xi−x j)2xix j +

D∑

i=1

xi

Rastrigin(x) =
D∑

i=1

x2
i + 10 − 10 cos(2πxi)

Rosenbrock(x) =
D−1∑

i=1

100(xi+1 − x2
i )2+(xi − 1)2

Griewank(x) =
1

4000

D∑

i=1

x2
i −

D∏

i=1

cos
( xi√

i

)
+ 1 .
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Here they are subject to the following linear equality constraints

[Paquet and Engelbrecht 2003a]:

A =




0 −3 −1 0 0 2 −6 0 −4 −2

−1 −3 −1 0 0 0 −5 −1 −7 −2

0 0 1 0 0 1 3 0 −2 2

2 6 2 2 0 0 4 6 16 4

−1 −6 −1 −2 −2 3 −6 −5 −13 −4




(3.12)

b =
(
3 0 9 −16 30

)>
. (3.13)

Using the mapping produced by HHM, results were obtained by apply-

ing the following unconstrained implementations of PSO to the resulting lower-

dimensional problems:

Constricted:

vt+1 = χ
(
vt + φ1U1t⊗(p − xt) + φ2U2t⊗(g − xt)

)
(3.14)

BareBones:

xt+1 = G
(1
2

(p + g), I
∥∥∥p − g

∥∥∥2

2

)
(3.15)

PSOGauss:

vt+1 = χ
(
vt +G

(
p − xt,

1
4

I
∥∥∥p − xt

∥∥∥2

2

)
+ G

(
g − xt,

1
4

I
∥∥∥g − xt

∥∥∥2

2

))
(3.16)

Constricted PSO [Clerc and Kennedy 2002] used φ1 = φ2 = 2.05 with φ = φ1 + φ2

and χ = 2/|2 − φ −
√
φ2 − 4φ|. BareBones [Kennedy 2003] is a simple parameter-

free algorithm proposed by Kennedy, and PSOGauss is a version of Constricted

PSO with Gaussian noise as proposed by Clerc in his TRIBES paper [2003]. In

43



Table 3.1: Sphere performance after 250 generations
10 Particles 20 Particles

µ σ Min Max µ σ Min Max
GC II 304.884 387.746 37.612 1680 54.846 16.939 32.544 107.584
LPSO 445.316 803.006 32.137 4505 32.137 7 × 10−12 32.137 32.137

CLPSO 32.139 0.007 32.137 32.183 32.137 3 × 10−6 32.137 32.137
Constricted 32.137 2 × 10−10 32.137 32.137 32.137 1 × 10−14 32.137 32.137
BareBones 32.137 1 × 10−14 32.137 32.137 32.137 1 × 10−14 32.137 32.137
PSOGauss 32.137 1 × 10−14 32.137 32.137 32.137 1 × 10−14 32.137 32.137

Table 3.2: Quadratic performance after 1000 generations
10 Particles 20 Particles

µ σ Min Max µ σ Min Max
GC II 49.945 10.996 35.393 82.221 39.5 9.785 35.41 56.613
LPSO 758.525 1496 35.4 11230 59.762 39.831 35.377 246.905

CLPSO 68.57 53.865 35.377 196.067 39.832 10.887 35.377 71.38
Constricted 36.165 3.117 35.377 55.538 35.783 2.394 35.377 55.538
BareBones 40.019 9.609 35.377 75.147 37.079 5.332 35.377 55.538
PSOGauss 38.998 8.59 35.377 72.482 35.589 0.528 35.377 36.892

the definitions of both BareBones and PSOGauss, G(·, ·) produces a draw from a

multivariate Gaussian distribution with the supplied mean and covariance. In all

unconstrained algorithms, a star sociometry is used.

3.4.2 Results

Tables 3.1–3.5 duplicate Paquet and Engelbrecht’s results using Genocop II, LPSO,

and CLPSO [Paquet and Engelbrecht 2003a]. The tables also provide the results

of applying HHM to the three unconstrained algorithms above. Except on the

Rastrigin function, the use of the HHM allows all of the unconstrained algorithms

to outperform not only LPSO and CLPSO, but Genocop II as well. Genocop

II has better worst-case performance on Rastrigin but only has better average

performance when employing 20 particles.

On every benchmark, including Rastrigin, the unconstrained algorithms

find minima that are at least as good as those found by the constrained algorithms.

Notably, every unconstrained algorithm has better best and worst-case behavior

than the constrained algorithms on Griewank.
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Table 3.3: Rastrigin performance after 1000 generations
10 Particles 20 Particles

µ σ Min Max µ σ Min Max
GC II 52.379 7.498 37.116 67.564 43.059 6.142 37.011 59.959
LPSO 76.487 30.699 36.975 232.979 75.011 27.719 38.965 184.226

CLPSO 69.039 21.591 36.975 154.379 76.896 27.304 36.975 151.394
Constricted 50.431 12.314 36.975 85.728 46.199 7.477 36.975 76.736
BareBones 55.921 16.06 36.975 119.556 49.238 10.191 36.975 76.774
PSOGauss 55.622 14.826 36.975 119.094 47.11 8.136 36.975 68.802

Table 3.4: Rosenbrock performance after 2000 generations
10 Particles 20 Particles

µ σ Min Max µ σ Min Max
GC II 21630 154.443 21490.8 22031 21485.7 0.4 21485.4 21486.6
LPSO 4 × 106 2 × 107 21554.2 2 × 108 126000 1 × 106 21485.9 1 × 107

CLPSO 744600 7 × 106 21485.3 7 × 107 21485.3 9 × 10−8 21485.3 21485.3
Constricted 21485.3 6 × 10−11 21485.3 21485.3 21485.3 6 × 10−11 21485.3 21485.3
BareBones 21485.3 6 × 10−11 21485.3 21485.3 21485.3 6 × 10−11 21485.3 21485.3
PSOGauss 21485.3 6 × 10−11 21485.3 21485.3 21485.3 6 × 10−11 21485.3 21485.3

Table 3.5: Griewank performance after 1000 generations
10 Particles 20 Particles

µ σ Min Max µ σ Min Max
GC II 0.702 0.187 0.417 0.971 0.584 0.131 0.201 0.843
LPSO 2.997 2.945 0.387 15.805 1.695 1.921 0.338 14.401

CLPSO 3.049 2.101 0.236 16.427 1.9 2.379 0.236 17.259
Constricted 0.488 0.168 0.151 0.83 0.413 0.145 0.151 0.792
BareBones 0.523 0.181 0.203 0.912 0.444 0.158 0.151 0.83
PSOGauss 0.53 0.168 0.151 0.958 0.454 0.174 0.151 0.83
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Figure 3.5: Average fitness over time for unconstrained optimizers with HHM and
10 particles
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In addition to these results, Figure 3.5 shows the average fitness obtained

by the swarm over time. The average is computed over 100 runs using 10 par-

ticles. These graphs show that every unconstrained algorithm (using HHM) on

every benchmark has converged to good values by the time 100 generations have

completed. Time did not allow for the creation of similar experiments with LPSO,

CLPSO, and Genocop II (this should be done in the future), but it is useful to know

that good values may be obtained earlier from the HHM method than the tabulated

data suggest.

3.5 Conclusions

The homomorphous mapping is a useful and effective alternative to feasibility

preservation when dealing with linear equality constraints in PSO. The particular

mapping developed here, the HHM, is simple to implement, does not suffer from

the numeric problems inherent in using Gaussian Elimination, and allows the

application of any unconstrained optimization algorithm to a problem of reduced

dimensionality. The performance of the unconstrained PSO algorithms chosen

here is not only better than that of both LPSO and CLPSO in many instances, it also

compares favorably with or outperforms Genocop II.

The ability to apply any unconstrained optimization algorithm to functions

with linear equality constraints is a benefit by itself, since there are many more

effective unconstrained optimization algorithms than those that handle constraints

directly, many of which have been well tuned. Reducing the problem dimension-

ality provides further benefits that cannot be ignored.

The HHM approach described here may also be useful when working with

linear inequality constraints; it is possible that it could form the basis for a truly

general method of linear constraint handling. Work is ongoing in this area and will

be addressed more completely in the future.
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It remains to be seen how this approach will fare in real world applications

like the training of SVMs, a potentially interesting direction for future research.
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Chapter 4

Adaptive Diversity in PSO

To Appear in Proceedings of GECCO 2006

Abstract

Spatial Extension PSO (SEPSO) and Attractive-Repulsive PSO (ARPSO) are meth-

ods for artificial injection of diversity into particle swarm optimizers that are in-

tended to encourage converged swarms to engage in exploration. While simple to

implement, effective when tuned correctly, and benefiting from intuitive appeal,

SEPSO behavior can be improved by adapting its radius and bounce parameters

in response to collisions. In fact, adaptation can allow SEPSO to compete with

and outperform ARPSO. The adaptation strategies presented here are simple to

implement, easy to tune, and retain SEPSO’s intuitive appeal.
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4.1 Introduction

Particle Swarm Optimization (PSO) is a social or evolutionary optimization al-

gorithm that was discovered during experiments with simulated bird flocking

[Kennedy and Eberhart 1995]. Its discovery has led to an algorithm which has

gained popularity in recent years for its simplicity, relatively small number of

tuning parameters, and surprising effectiveness on a large class of functions.

Classical PSO begins by scattering particles in the function domain space,

often by means of a uniform distribution bounded by a function-specific region of

feasibility. Each particle is a data structure that maintains its current position x and

its current velocity ẋ. Additionally, each particle remembers the most fit position

it has obtained in the past, denoted p for “personal best”. The most fit p among all

particles is written g for “global best”.

A valuable variant on classical approaches is constricted PSO, where each

particle updates its state using the following equations (written in a slightly non-

traditional way to accentuate the role of acceleration):

ẍt+1 = φ1 U() ⊗ (p − xt) + φ2 U() ⊗ (g − xt) (4.1)

ẋt+1 = χ (ẋt + ẍt+1) (4.2)

xt+1 = xt + ẋt+1 (4.3)

where φ1 = φ2 = 2.05, U() is a vector whose elements are drawn from a standard

uniform distribution, and ⊗ represents element-wise multiplication. The constric-

tion coefficient χ is in this case defined to be

χ =
2κ

|2 − φ −
√
φ2 − 4φ|

(4.4)

where κ = 1.0 and φ = φ1 + φ2 [Clerc and Kennedy 2002].
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Figure 4.1: Spatial Extension PSO (SEPSO) with multiple radius settings

Though effective, PSO sometimes suffers from premature convergence on

problems with many local minima. Convergence is in general a desirable property,

allowing the swarm to search regions near the global minimum at increasing levels

of detail as time progresses. Unfortunately, in the context of many local minima,

the convergence property may cause a swarm to become trapped in one of them

and fail to explore more promising neighboring minima.

Designers of optimization algorithms therefore face a fundamental trade-

off: search the current local minimum in detail through quick convergence, or

consume resources exploring other areas of the domain [Riget and Vesterstrøm

2002]. In an effort to handle this tradeoff more explicitly in PSO, some notable

diversity-increasing approaches have been proposed. One such approach, the

Spatial Extension PSO (SEPSO), involves endowing each particle with a radius,

then causing particles to bounce off of one another [Krink et al. 2002]. A related ap-

proach, called Attractive-Repulsive PSO (ARPSO), measures the global diversity of

the swarm, triggering modes of global attraction or repulsion when it crosses prede-

fined thresholds [Riget and Vesterstrøm 2002]. Though effective when well-tuned,

finding good function-specific tuning parameters for these methods is non-trivial.
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The tuning parameters in SEPSO and ARPSO alike represent a threshold

that dictates when diversity will be artificially added to either a single particle or to

the swarm as a whole, respectively. Especially in the case of SEPSO, the threshold is

easier to tune and the algorithm’s performance improves when a simple adaptation

strategy is applied.

We begin by describing SEPSO and demonstrating the issues implicit in set-

ting its radius parameter. We then describe the proposed adaptation methodology

used to improve robustness of parameters and performance on multimodal func-

tions. We then briefly describe ARPSO, a successor to SEPSO that is less amenable

to improvements using our adaptation strategy and that rarely outperforms the

easily implemented SEPSO extensions presented here.

4.2 Spatial Extension PSO

The Spatial Extension PSO (SEPSO) is a simple method of artificially injecting di-

versity into a swarm. While in classical PSO, particles are conceptually volumeless

and therefore never collide with one another, the basic premise of SEPSO is that

particles have a spherical volume that is defined by a radius r. Two particles i and j

collide when

‖xi − x j‖2 ≤ 2r . (4.5)

In the event of a collision, the involved particles “bounce” backwards, effectively

moving to a point that is formed by reflecting the intended current position about

the previous position, optionally reversing the velocity as well to create a post-
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bounce position x′t+1 and velocity ẋ′t+1:

ẋ′t+1 = −ẋt+1 (4.6)

x′t+1 = xt − (xt+1 − xt) . (4.7)

This approach is simple to implement and has intuitive appeal: if a particle

is very close to its neighbors, it is likely to be duplicating work by exploring regions

that are covered by other particles and should therefore move away from them.

The combination of a radius with associated notions of collisions and bouncing is

an effective and intuitive way to accomplish this goal.

This method of increasing diversity is also appealing because it can be

applied to nearly any variant of PSO, including those that do not have an explicit

notion of velocity (e.g. Bare Bones PSO [Kennedy 2003]): the new location is

calculated according to the specified PSO algorithm, then tested against all other

new locations; if a collision occurs, that location is reflected before the particle’s

state changes. Again, velocity may optionally be reversed when present.

The choice of radius r, though not addressed in the original SEPSO work

[Krink et al. 2002], is critical to the performance of the algorithm. Consider Fig-

ure 4.1, which illustrates the relative performance of different radius settings. The

radius is set to a constant fraction of the length L of the longest diagonal of the

feasible regions for Sphere and Rastrigin (defined in Table 4.1). Unless otherwise

stated, all figures are generated by averaging 30 runs with constricted PSO as

the baseline motion, D = 30 dimensions, a fully-connected swarm of size 20, and

velocity reversal in the event of SEPSO collisions.

The figure matches intuition. On the simple unimodal function Sphere,

for which PSO is already an efficient optimizer, bouncing can only slow down

desirable convergence, thereby hurting performance. As the collision radius is
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Figure 4.2: Contracting Radius SEPSO (CRS) with fixed and adaptive(?) radius
settings

decreased, performance gets closer to that achieved by the baseline motion. On

the highly multimodal Rastrigin, however, bouncing can be helpful, avoiding the

stagnation to which PSO is generally prone for such functions. In this case, a

setting of r = .01L represents an improvement over baseline PSO, and the trend

that is evident in the radius setting seems to indicate that a smaller radius would

provide even better performance. This trend cannot continue indefinitely, however,

as setting the radius to 0 simply reproduces the behavior of classical PSO. Finding

a good setting for the radius is therefore a problem-dependent exercise; multiple

runs may be required to obtain a useful value.

4.2.1 Adaptive Radius

Convergence, as previously discussed, is a desirable property for PSO, since par-

ticles will tend to explore small regions in greater detail as they begin to move

more slowly and to converge on a single point in space. This detailed exploration

can be important since the scale of the global minimum may not be known before
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PSO is applied. SEPSO, unfortunately, frequently prevents not only premature

convergence but useful and appropriate convergence as well.

This is entirely due to the fact that the radius is fixed: whatever else the

particles may be doing, they always bounce when within a predefined distance

(2r) of one another, effectively limiting the scale of the space that may be searched:

if they are trying to explore a detailed region of space but are thwarted by collisions,

that region will remain unexplored unless a fortunate accident occurs.

Both problems are addressed by giving each particle an individual, adapt-

able radius. In this case, the detection of a collision causes particles to bounce as

before, but the radius of colliding particles is also decreased to make bouncing less

likely in the future. This allows particles to escape local minima into which they

may become trapped while admitting exploration at increasing levels of detail as

time progresses. This idea can be implemented by defining a global adaptation

constant γ ∈ [0, 1] and an individual bounce count b for each particle. Each par-

ticle’s bounce count is initialized to 0 and is incremented whenever the particle is

involved in a collision. Collision between particles i and j occurs when

‖xi − x j‖ ≤ (γbi + γb j)r . (4.8)

No change is made to (4.6) or (4.7), leaving bouncing mechanics intact and in-

troducing negligible computational overhead. Adapting the radius in this way

results in a new algorithm: the “Contracting Radius SEPSO” (CRS). Results of this

approach with γ = 0.8 and various radius settings are demonstrated in Figure 4.2,

and more will be given later. The superscript ? indicates an adaptive result.

Note that when applied to Sphere, CRS performs more closely to the baseline

(r = 0), which is not unexpected. The radius decreases every time a particle

bounces, making it less likely to collide with other particles as time progresses. As
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Figure 4.3: Contracting Radius, Increasing Bounce SEPSO (CRIBS) with adaptive
radius(?) and distance(??)

a result, the swarm regains the ability to converge, though it does so more slowly

than before. Notice also that on Rastrigin the adaptive versions all perform better

than the baseline and are clustered more closely (note especially the log scale)

around lower values than their non-adaptive counterparts.

Unfortunately, the adaptive version still suffers from premature convergence

on Rastrigin. Standard SEPSO with r = 0.01L not only eventually overtakes all of

the adaptive versions, it also continues on a downward trend.

4.2.2 Adaptive Distance

CRS’s observed premature convergence behavior is present in other multimodal

functions, prompting an additional extension to CRS: the “Contracting Radius,

Increasing Bounce SEPSO” (CRIBS), where individual bounce distance is also

adapted. Although various bounce distances have been attempted by the SEPSO

authors without noticeable improvement [Krink et al. 2002], individually increas-

ing particle bounce distance while decreasing collision radius has merit; as particles

converge, their diversity decreases and the locations to which they bounce will tend

58



to be in the same local minimum. Therefore, as the adaptive radius decreases, a good

indicator for convergence, the bounce distance should increase to make the act of

bouncing more effective. This is accomplished through a simple change to (4.7):

x′t+1 = xt − γ−b(xt+1 − xt) (4.9)

In other words, while the radius is decreased via multiplication by γb, the distance

is similarly increased by γ−b. Employing a bounce distance that is inversely pro-

portional to collision radius may be expected to hurt performance on unimodal

functions by wasting function evaluations on distant points; however, it should

be expected to improve performance on multimodal functions by increasing each

particle’s odds of escaping a local minimum. These predictions are verified in

Figure 4.3 where it is shown that performance suffers for Sphere while significantly

improving for Rastrigin.

It should be noted that while only one radius setting is shown for CRIBS to

avoid clutter, far more data were collected than can be presented in this setting.

Those data make it clear that the initial radius becomes less important when adap-

tation is present; on Rastrigin, for example, CRIBS always outperformed CRS by a

large margin.

4.2.3 Remarks and Additional Results

The robustness of the initial parameter settings is affected by adapting those pa-

rameters over time. In the case of SEPSO, the radius setting has a dramatic impact

on the performance of the algorithm, and it is clear in Figure 4.1 that the parameters

selected for the experiment are not low enough for Sphere but are beginning to ap-

proach appropriate values for Rastrigin. Adaptation, however, makes the choice of

initial radius far less important, as illustrated in Figure 4.2. In each case, adapting
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Figure 4.4: Additional results for CRIBS
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the radius evens out the differences between the initial parameter settings, allowing

them all to perform reasonably well.

In the case of multimodal functions, adapting the distance is productive be-

cause it allows a slow-moving, nearly-converged particle to jump out of its current

local minimum, facilitating search in other areas of the domain. Significantly, even

CRIBS retains the ability to converge, but does so more slowly than CRS or baseline

PSO.

Results for the benchmarks defined in Table 4.1 are found in Figure 4.4.

DeJongF4, like Sphere, is smooth and unimodal. Griewank, while multimodal,

begins to appear unimodal as the dimensionality increases. Ackley, SchafferF6,

and SchafferF7 are highly multimodal and symmetric like Rastrigin; Rosenbrock is

multimodal and asymmetric but appears unimodal when not in the region of the

global minimum.

As expected, CRS and CRIBS are less effective on unimodal functions than

baseline PSO. The Griewank function is interesting because it is unimodal until the

proper level of detail is achieved, a fact that is evident in the slow initial drop but

eventual good performance of CRIBS. With the possible exception of Rosenbrock,

CRIBS works best on multimodal functions, and even on Rosenbrock it remains

competitive.

Clearly, if it is known that the target function is smooth and unimodal,

any kind of bouncing is a bad idea. When working with multimodal functions,

however, using bouncing with both adaptive collision radius and bounce distance

serves to improve performance while retaining reasonable convergence properties.

4.3 Attractive-Repulsive PSO

SEPSO is one of many diversity-increasing methods for PSO. The same authors

later introduced the “Attractive and Repulsive PSO” (ARPSO), which uses a global
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Table 4.1: Common benchmark functions

Ackley: (−32.768, 32.768)

f (x) = 20 + e − 20 exp
(
−‖x‖2
5
√

D

)
− exp




1
D

D∑

i=1

cos 2πxi




DeJongF4: (−20, 20)

f (x) =
D∑

i=1

ix4
i

Griewank: (−600, 600)

f (x) =
1

4000

D∑

i=1

x2
i −

D∏

i=1

cos
( xi√

i

)
+ 1

Rastrigin: (−5.12, 5.12)

f (x) = ‖x‖22 + 10
D∑

i=1

1 − cos(2πxi)

Rosenbrock: (−100, 100)

f (x) =
D−1∑

i=1

100
(
xi+1 − x2

i

)2
+ (xi − 1)2

SchafferF6: (−100, 100)

f (x) =
1
2
+

sin2 ‖x‖2 − 1
2(

1 + 1
1000‖x‖22

)2

SchafferF7: (−100, 100)

f (x) =
√
‖x‖2

(
1 + sin2 50 5

√
‖x‖2

)

Sphere: (−50, 50)

f (x) = ‖x‖22
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diversity metric to guide a swarm’s exploratory behavior [Riget and Vesterstrøm

2002]. The diversity of a swarm S is

diversity(S) =
1
|S|L

|S|∑

i=1

‖xi − x̄‖2 (4.10)

which is essentially a measure of the average Euclidean distance of each particle

from the center of mass:

x̄ =
1
|S|

|S|∑

i=1

xi . (4.11)

Diversity is scaled by L, the length of the longest diagonal in the feasible region.

The metric1 is calculated globally at each iteration of PSO and is used to artificially

inject diversity when needed, via “repulsion”.

When the diversity falls below η−, particles switch into repulsion mode;

this is intended to make them fly away from each other, increasing diversity and

allowing them to escape local minima. When the diversity has exceeded η+, the

particles are switched back to their normal behavior of attraction and the swarm

begins once again to converge.

Attraction is the default behavior of PSO, so repulsion is achieved by adding

a sign coefficient to the acceleration term in (4.2):

ẋt+1 = χ (ẋt + sẍt+1) . (4.12)

1The published definition uses p instead of x in (4.10) and (4.11), but this is unlikely to be correct:
in order for diversity to increase, at least one particle must quickly find a better p while accelerating
away from g, a highly unlikely event; implemented this way, ARPSO behavior is equivalent to that
of standard PSO until entering repulsion mode, where it remains indefinitely without re-entering
attraction mode or improving further over time.
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Figure 4.5: ARPSO compared with other techniques

Letting s = −1 switches the swarm into repulsion mode while s = 1 restores normal

attraction behavior. Note that repulsion generally only has an effect on moving

(less converged) particles.

Because ARPSO attempts to quantify the amount of clustering of the swarm

in order to detect appropriate times to inject diversity, the use of Euclidean distance

as the core of the diversity measure is not, in general, appropriate [Aggarwal et al.

2001]. This issue is less of a concern with SEPSO because it makes local decisions

rather than detecting global clustering, but it nevertheless merits future study.
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Figure 4.5 shows a direct comparison with the published ARPSO results

for several 50-dimensional problems, averaged over 50 runs. The underlying

algorithm for CRIBS is constricted PSO with default constriction parameters as de-

scribed in the introduction, effectively eliminating problem-dependent parameter

tuning. The initial radius and adaptation factor are in all cases set conservatively

at r = 0.5L and γ = 0.9, respectively. All other results are reproduced directly from

the ARPSO paper, including the use of a linear scale instead of the log scale ubiqui-

tously employed in this work; all that is known about the published ARPSO results

is that a variant of constricted PSO was used as the underlying motion methodology,

and problem-dependent parameters such as swarm size, and maximum velocity,

and inertia weights were carefully tuned for each function [Riget and Vesterstrøm

2002].

The initial radius r and adaptation constant γ for the ARPSO comparisons

in Figure 4.5 are intentionally different than those reported elsewhere in this work;

the way that they were determined illustrates an important point: they were set

conservatively (huge r, large γ, and standard constricted PSO) with no exploratory

tuning. It was assumed that adaptation would adjust for any problems with

the initial parameter settings, and it did. This characteristic of CRIBS makes its

successful application to problems easy because it is robust to various parameter

settings.

Even though ARPSO is reported to be using optimized parameter settings for

each experiment, the untuned CRIBS performed at least as well on all problems but

Rosenbrock, and on that benchmark CRIBS exhibits the same behavior that makes

ARPSO itself attractive: it is avoiding premature convergence and is continuing on

a downward trend.

It is natural to ask whether it is useful to adapt η− and η+ in the same way

that r is adapted in CRS and CRIBS. While our efforts in this regard did result in
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some improvement, results were not consistent and even the improved versions of

ARPSO failed to reliably outperform CRIBS.

4.4 Conclusions

Artificial diversity injection for a convergent algorithm like PSO is an interesting

idea, but can require the manipulation of parameters that are nontrivial to tune. In

addition, care must be taken to avoid eliminating desirable convergence that allows

a swarm to explore the domain at decreasing scales, thereby gaining increasingly

detailed information about a local minimum over time.

These issues are simultaneously addressed by allowing diversity to be in-

jected less frequently as time progresses. In SEPSO, this is achieved by reducing

the radius after every collision (CRS). The algorithm has the advantage of being

simple to implement and more effective than its non-adaptive counterparts early

in a run, especially on unimodal functions. Adapting the bounce distance (CRIBS)

improves performance on multimodal functions while continuing to ensure even-

tual convergence. ARPSO does not appear to benefit from adaptation in the same

way, and initial results suggest that CRIBS is a more robust approach in any case.

Other diversity injection approaches (e.g. charged swarms [Blackwell and Bentley

2002]) may benefit from adaptation, an interesting topic for future research.

The adaptation of diversity parameters is simple to implement and has in-

tuitive appeal, providing an effective way of increasing the exploration capabilities

of PSO while retaining its desirable convergence properties.
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Part II

Bayesian Modeling for

Particle Swarm Optimization

Part II of this work consists of papers that consider PSO motion within a

Bayesian framework. The paper in Chapter 5 introduces the use of the Kalman

Filter as a means of determining an appropriate particle state for the next time

step. This idea is important because it recasts the optimization problem as one of

filtering and prediction; particle attractors form a trajectory as they move through

the function domain, and the goal of the swarm becomes one of estimating and

predicting the next step of that trajectory in order to find a new set of attractors.

Changing the problem in this way allows PSO to be thought of as a funda-

mentally Bayesian process: the Kalman Filter implies a Linear Dynamic System.

The formulas involved have striking similarity to traditional PSO variants, sug-

gesting a connection between the Kalman approach and more commonly used

PSO methods. This connection is made evident in (though not directly established

by) Chapter 6, which produces an algorithm similar to standard PSO by approxi-

mating the Kalman Filter.
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This similarity, while not receiving much attention in the original paper, is

explored in greater detail in Chapter 7. It begins by establishing the need for a

more motivated approach to PSO algorithm design, and suggests that the need

may be filled by starting with a model of the information relationships in swarm

optimization. When solved using a Kalman Filter, one such model produces the

algorithm in Chapter 5. Through a series of approximations the connection to

traditional PSO becomes clear, providing new insights into why PSO works and

how improvements may be made in a directed manner.

The last paper is important because it establishes the usefulness and signif-

icance of model-based algorithm design for swarm optimization; the model not

only makes predictions about algorithm behavior, it also suggests places in which

the algorithm may be improved. Because a model is used, the goals of optimiza-

tion are clearly stated in the form of information relationships, and this explicit

definition of intent is critical to a principled perspective on algorithm behavior.

The ideas in Chapter 7 prompted further thinking about Bayesian models

for more general continuous optimization settings, providing the initial ideas for

the final contribution of this work.

70



Chapter 5

The Kalman Swarm:

A New Approach to Particle Motion in Swarm Optimization

Published in Proceedings of GECCO 2004, Volume 1, pages 140–150

Abstract

Particle Swarm Optimization is gaining momentum as a simple and effective opti-

mization technique. We present a new approach to PSO that significantly reduces

the number of iterations required to reach good solutions. In contrast with much

recent research, the focus of this work is on fundamental particle motion, making

use of the Kalman Filter to update particle positions. This enhances exploration

without hurting the ability to converge rapidly to good solutions.
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5.1 Introduction

Particle Swarm Optimization (PSO) is an optimization technique inspired by so-

cial behavior observable in nature, such as flocks of birds and schools of fish

[Kennedy and Eberhart 1995]. It is essentially a nonlinear programming technique

suitable for optimizing functions with continuous domains (though some work

has been done in discrete domains [Kennedy and Eberhart 1997]), and has a num-

ber of desirable properties, including simplicity of implementation, scalability in

dimension, and good empirical performance. It has been compared to evolu-

tionary algorithms such as GAs (both in methodology and performance) and has

performed favorably [Kennedy and Spears 1998; Riget and Vesterstrøm 2002].

As an algorithm, it is an attractive choice for nonlinear programming be-

cause of the characteristics mentioned above. Even so, it is not without prob-

lems. PSO suffers from premature convergence, tending to get stuck in local

minima [Riget and Vesterstrøm 2002; Løvbjerg 2002; Richards and Ventura 2003;

Vesterstrøm et al. 2002]. We have also found that it suffers from an ineffective ex-

ploration strategy, especially around local minima, and thus does not find good

solutions as quickly as it could. Moreover, adjusting the tunable parameters of

PSO to obtain good performance can be a difficult task [Vesterstrøm et al. 2002;

Shi and Eberhart 1998b].

Research addressing the shortcomings of PSO is ongoing and includes

such changes as dynamic or exotic sociometries [Richards and Ventura 2003;

Kennedy and Mendes 2002, 2003; Kennedy 1999; Mendes et al. 2003], spatially

extended particles that bounce [Krink et al. 2002], increased particle diversity

[Riget and Vesterstrøm 2002; Løvbjerg 2002], evolutionary selection mechanisms

[Angeline 1998], and of course tunable parameters in the velocity update equations

[Vesterstrøm et al. 2002; Shi and Eberhart 1998b; Clerc and Kennedy 2002]. Some
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work has been done that alters basic particle motion with some success, but the

possibility for improvement in this area is still open [Kennedy 2003].

This paper presents an approach to particle motion that significantly speeds

the search for optima while simultaneously improving on the premature conver-

gence problems that often plague PSO. The algorithm presented here, KSwarm,

bases its particle motion on Kalman filtering and prediction.

We compare the performance of KSwarm to that of the basic PSO model.

In the next section, the basic PSO algorithm is reviewed, along with an instructive

alternative formulation of PSO and a discussion of some of its shortcomings. Unless

otherwise specified, “PSO” refers to the basic algorithm as presented in that section.

Section 5.3 briefly describes Kalman Filters, and Section 5.4 describes KSwarm

in detail. Experiments and their results are contained in Section 5.5. Finally,

conclusions and future research are addressed in Section 5.6.

5.2 The Basic PSO Algorithm

PSO is an optimization strategy generally employed to find a global minimum. The

basic PSO algorithm begins by scattering a number of “particles” in the function

domain space. Each particle is essentially a data structure that keeps track of its

current position ~x and its current velocity ~v. Additionally, each particle remembers

the “best” (lowest valued) position it has obtained in the past, denoted ~p. The

best of these values among all particles (the global best remembered position) is

denoted ~g.
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At each time step, a particle updates its position and velocity by the following

equations:

~vt+1 = χ
(
~vt + φ1(~p − ~x) + φ2(~g − ~x)

)
(5.1)

~xt+1 = ~xt + ~vt+1 . (5.2)

The constriction coefficient χ = 0.729844 is due to Clerc and Kennedy

[Clerc and Kennedy 2002] and serves to keep velocities from exploding. The

stochastic scalars φ1 and φ2 are drawn from a uniform distribution over [0, 2.05)

at each time step. Though other coefficients have been proposed in an effort to

improve the algorithm [Vesterstrøm et al. 2002; Shi and Eberhart 1998b], they will

not be discussed here in detail.

5.2.1 An Alternative Motivation

Although the PSO update model initially evolved from simulated flocking and

other natural social behaviors, it is instructive to consider an alternative motivation

based on a randomized hill climbing search. A naive implementation may place

a single particle in the function domain, then scatter a number of random sample

points in the neighborhood, moving toward the best sample point at each new time

step: ~xt+1 = ~gt.

If the particle takes this step by first calculating a velocity, the position is still

given by (5.2) and the velocity update is given by

~vt+1 = ~gt − ~xt . (5.3)

As this type of search rapidly becomes trapped in local minima, it is useful

to randomly overshoot or undershoot the actual new location in order to do some

directed exploration (after all, the value of the new location is already known).
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For similar reasons, it may be desirable to add momentum to the system, allowing

particles to “roll out” of local minima. Choosing a suitable random scalar φ, this

yields

~vt+1 = ~vt + φ(~gt − ~xt) . (5.4)

The equation (5.4) is strikingly similar to (5.1). In fact, it is trivial to reformu-

late the PSO update equation to be of the same form as (5.1) [Clerc and Kennedy

2002; Mendes et al. 2003].

The fundamental difference between this approach and PSO is the way that

~g is calculated. In PSO, ~g is taken from other particles already in the system. In the

approach described in this section, ~g is taken from disposable samples scattered in

the neighborhood of a single particle.

This suggests that the basic PSO is a hill climber that uses existing informa-

tion to reduce function evaluations. It is set apart more by its social aspects than

by its motion characteristics, an insight supported by Kennedy but for different

reasons [Kennedy 2003].

5.2.2 Particle Motion Issues

Given that PSO is closely related to an approach as simple as randomized hill

climbing, it is no surprise that attempts to improve the velocity update equation

with various scaling terms have met with marginal success. Instead, more funda-

mental changes such as increased swarm diversity, selection, and collision avoiding

particles have shown the greatest promise [Riget and Vesterstrøm 2002; Løvbjerg

2002; Angeline 1998].

Unfortunately these methods are not without problems either, as they gen-

erally fail to reduce the iterations required to reach suitable minima. They focus

primarily on eliminating stagnation, eventually finding better answers than the

basic PSO without finding them any faster.

75



It has been pointed out that nonlinear programming is subject

to a fundamental tradeoff between convergence speed and final fitness

[Riget and Vesterstrøm 2002], suggesting that it is not generally possible to im-

prove one without hurting the other. Fortunately, this tradeoff point has not yet

been reached in the context of particle swarm optimization, as it is still possible to

find good solutions more quickly without damaging final solution fitness.

For example, the development of a PSO visualization tool served to expose

a particularly interesting inefficiency in the basic PSO algorithm. As the particles

close in on ~g they tend to lose their lateral momentum very quickly, each settling into

a simple periodic linear motion as they repeatedly overshoot (and undershoot) the

target. This exploration strategy around local minima is very inefficient, suggesting

that a change to particle motion may speed the search by improving exploration.

Such a change should ideally preserve the existing desirable characteristics

of the algorithm. PSO is essentially a social algorithm, which gives it useful emer-

gent behavior. Additionally, PSO motion is stochastic, allowing for randomized

exploration. Particles also have momentum, adding direction to the random search.

The constriction coefficient indicates a need for stability. Alterations to particle

motion should presumably maintain these properties, making the Kalman Filter a

suitable choice.

5.3 The Kalman Filter

Kalman filters involve taking noisy observations over time and using model in-

formation to estimate the true state of the environment [Kalman 1960]. Kalman

filtering is generally applied to motion tracking problems. It may also be used for

prediction by applying the system transition model to the filtered estimate.

The Kalman Filter is limited to normal noise distributions and linear tran-

sition and sensor functions and is therefore completely described by several con-
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stant matrices and vectors. Specifically, given an observation column vector zt+1,

the Kalman Filter is used to generate a normal distribution over a belief about

the true state. The parameters mt+1 and Vt+1 of this multivariate distribution are

determined by the following equations [Russel and Norvig 2003]:

mt+1 = Fmt +Kt+1(zt+1 −HFmt) (5.5)

Vt+1 = (I −Kt+1H)(FVtF> +Vx) (5.6)

Kt+1 = (FVtF> +Vx)H>
(
H(FVtF> +Vx)H> +Vz

)−1
. (5.7)

In these equations, F and Vx describe the system transition model while H and Vz

describe the sensor model. The equations require a starting point for the filtered

belief, represented by a normal distribution with parameters m0 and V0, which

must be provided.

The filtered or “true” state is then represented by a distribution:

xt ∼ Normal(mt,Vt) . (5.8)

This distribution may be used in more than one way. In some applications, the

mean mt is assumed to be the true value. In others, the distribution is sampled

once to obtain the value. In this work, the latter is done.

The above describes how to do Kalman filtering, yielding mt from an obser-

vation zt. A simple form of prediction involves applying the transition model to

obtain a belief about the next state m′
t+1:

m′t+1 = Fmt . (5.9)

There are other forms of prediction, but this simple approach is sufficient for the

introduction of the algorithm in the next section, and for its use in particle swarms.
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5.4 The Kalman Swarm (KSwarm)

KSwarm defines particle motion entirely from Kalman prediction. Each particle

keeps track of its own mt, Vt, and Kt. The particle then generates an observation

for the Kalman filter with the following formulae:

~zv = φ(~g − ~x) (5.10)

~zp = ~x + ~zv . (5.11)

Similar to PSO,φ is drawn uniformly from [0, 2), and the results are row vectors. The

full observation vector is given by making a column vector out of the concatenated

position and velocity row vectors: z = (~zp,~zv)>. This observation is then used to

generate mt+1 and Vt+1 using (5.5), (5.6), and (5.7)

Once the filtered value is obtained, a prediction m′
t+2 is generated using (5.9).

Together, m′
t+2 and Vt+1 parameterize a normal distribution. We say, then, that

xt+1 ∼ Normal(m′
t+2,Vt+1) . (5.12)

The new state of the particle is obtained by sampling once from this distribution.

The position of the particle may be obtained from the first half of x>t+1, and the

velocity (found in the remaining half) is unused.

This method for generating new particle positions has at least one imme-

diately obvious advantage over the original approach: there is no need for a

constriction coefficient. Particle momentum comes from the state maintained by

the Kalman Filter rather than from the transition model. In our experiments, this

eliminated the need for any explicit consideration of velocity explosion.
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Table 5.1: Domains of Test Functions

Function Domain
Sphere (−50, 50)d

DeJongF4 (−20, 20)d

Rosenbrock (−100, 100)d

Griewank (−600, 600)d

Rastrigin (−5.12, 5.12)d

5.5 Experiments

KSwarm was compared to PSO in five common test functions: Sphere, DejongF4,

Rosenbrock, Griewank, and Rastrigin. The first three are unimodal while the last

two are multimodal. In all experiments, the dimensionality d = 30. The definitions

of the five functions are given here:

Sphere(~x) =
d∑

i=1

x2
i (5.13)

DeJongF4(~x) =
d∑

i=1

ix4
i (5.14)

Rosenbrock(~x) =
d−1∑

i=1

100(xi+1 − x2
i )2 + (xi − 1)2 (5.15)

Rastrigin(~x) =
d∑

i=1

x2
i + 10 − 10 cos(2πxi) (5.16)

Griewank(~x) =
1

4000

d∑

i=1

x2
i −

d∏

i=1

cos
( xi√

i

)
+ 1 . (5.17)

The domains of these functions are given in Table 5.1.

5.5.1 Experimental Parameters

In all experiments, a swarm size of 20 was used. Though various sociometries

are available, the star (or gbest [Kennedy and Eberhart 1995]) sociometry was used

almost exclusively in the experiments because it allows for maximum information
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flow [Krink et al. 2002]. Each experiment was run 50 times for 1000 iterations, and

the results were averaged to account for stochastic differences. The parameters

to (5.5), (5.6), and (5.7) are given below, and are dependent on the domain size

of the function. The vector containing the size of the domain in each dimension

is denoted ~w. The column vector w = (~w, ~w)> is formed from two concatenated

copies of ~w. In the following equations, In is an identity matrix with n rows.

m0 = 0 V0 = θdiag(w) (5.18)

H = I2d Vz = θdiag(w) (5.19)

F =



Id Id

0 Id


 Vx = θdiag(w) . (5.20)

The initial mean m0 is a column vector of 2d zeros. The scalar θ indicates how large

the variance should be in each dimension, and was set to 0.0001 for all experiments,

as this produced a variance that seemed reasonable. The transition function simply

increments position by velocity while leaving the velocity untouched.

All of the vectors used in the Kalman equations are of length 2d and all

matrices are square and of size 2d. This is the case because the model makes use

of velocity as well as position, so extra dimensions are needed to maintain and

calculate the velocity as part of the state. This implies that the sample obtained

from (5.12) is also a vector of length 2d, the first half of which contains position

information. That position information is used to set the new position of the

particle and the velocity information is unused except for the next iteration of the

Kalman update equations.
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Table 5.2: PSO vs. KSwarm Final Values

Function PSO KSwarm
Sphere 370.041 4.723

DejongF4 4346.714 4.609
Rosenbrock 2.61e7 3.28e3
Griewank 13.865 0.996
Rastrigin 106.550 53.293

5.5.2 Results

Table 5.2 shows the final values reached by each algorithm after 1000 iterations

were performed. It is clear from the table that the KSwarm obtains values that are

often several orders of magnitude better than the original PSO algorithm.

In addition to obtaining better values, the KSwarm tends to find good solu-

tions in fewer iterations than the PSO, as evidenced by Figs. 5.1, 5.2, 5.3, 5.4, and

5.5. Note that each figure has a different scale.

Because the results obtained using the star sociometry were so striking, this

experiment was also run using a sociometry where each particle had 5 neighbors.

The corresponding results were so similar as to not warrant inclusion in this work.

These results represent a clear and substantial improvement over the basic

PSO, not only in the final solutions, but in the speed with which they are found.

It should be noted that much research has been done to improve PSO in other

ways and that KSwarm performance in comparison to these methods has not been

fully explored. The purpose of this work is to demonstrate a novel approach to

particle motion that substantially improves the basic algorithm. The comparison

and potential combination of KSwarm with other PSO improvements is part of

ongoing research and will be a subject of future work.
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Figure 5.2: DeJongF4
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Figure 5.3: Rosenbrock
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Figure 5.4: Griewank
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5.5.3 Notes on Complexity

It is worth noting that the Kalman motion update equations require more computa-

tional resources than the original particle motion equations. In fact, because of the

matrix operations, the complexity is O(d3) in the number of dimensions (d = 30 in

our experiments). The importance of this increased complexity, however, appears

to diminish when compared to the apparent exponential improvement in the num-

ber of iterations required by the algorithm. Additionally, the complexity can be

drastically reduced by using matrices that are mostly diagonal or by approximating

the essential characteristics of Kalman behavior in a simpler way.

5.6 Conclusions and Future Work

It remains to be seen how KSwarm performs against diversity-increasing ap-

proaches, but preliminary work indicates that it will do well in that arena, especially
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with regard to convergence speed. Since many methods which increase diversity

do not fundamentally change particle motion update equations, combining this

approach with those methods is simple. It can allow KSwarm to not only find

solutions faster, but also to avoid the stagnation to which it is still prone.

Work remains to be done on alternative system transition matrices. The

transition model chosen for the motion presented in this work is not the only

possible model; other models may produce useful behaviors. Additionally, the

complexity of the algorithm should be addressed. It is likely to be easy to improve

by simple optimization of matrix manipulation, taking advantage of the simplicity

of the model. More work remains to be done in this area.

KSwarm fundamentally changes particle motion as outlined in PSO while

retaining its key properties of sociality, momentum, exploration, and stability. It

represents a substantial improvement over the basic algorithm not only in the

resulting solutions, but also in the speed with which they are found.
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Chapter 6

Improving on the Kalman Swarm:

Extracting Its Essential Characteristics

Published in Proceedings of GECCO 2004, Late-Breaking Papers

Abstract

The Kalman Swarm (KSwarm) is a new approach to particle motion in PSO that

reduces the number of iterations required to reach good solutions. Unfortunately,

it has much higher computational complexity than basic PSO. This paper addresses

the runtime of KSwarm in a new algorithm called “Linear Kalman Swarm” (Link-

Swarm) which has linear complexity and performs even better than KSwarm. Some

possible reasons for the success of KSwarm are also explored.
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6.1 Introduction

The Kalman Swarm (KSwarm) [Monson and Seppi 2004] is an adaptation of stan-

dard PSO [Kennedy 1999] that uses the Kalman Filter [Kalman 1960] to calculate the

next position of each particle. The best location in its neighborhood (which always

includes the particle itself) is used as an observation at each time step, producing a

new location through prediction. This approach has been shown to produce better

solutions in fewer iterations than standard PSO in a variety of test functions.

KSwarm, however, is not without liabilities. The dimensional complexity

of running the algorithm is O(d3), which is much higher than the O(d) complexity

of basic PSO. Furthermore, KSwarm has a number of input parameters that are

difficult to tune.

This paper presents the new algorithm “Linear Kalman Swarm” (Link-

Swarm), which is an approximation to KSwarm with linear complexity that ob-

tains better performance. The algorithm is developed by analyzing and extracting

the essential characteristics of KSwarm. Through its development, some ideas are

generated that may help explain the good performance of KSwarm. Results that

compare the performance of the two algorithms are given on various test functions.

6.2 KSwarm Speed

Although KSwarm can often get better results in fewer iterations than basic PSO,

each iteration is far more expensive. Because the complexity of KSwarm is O(d3),

this significantly increases the running time of the algorithm and is especially a

problem when optimizing high-dimensional functions.

We will therefore attempt to extract the essential characteristics of the

KSwarm algorithm in order to provide a fast approximation. The Kalman Fil-

ter is the basis for the update equations, and these will be analyzed first. Recall
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that F and H are the transition and sensor characteristic matrices with Vx and Vz

as their respective covariance matrices, mt and Vt are the mean and covariance

parameters of the filtered state at time t, and Kt is the “Kalman Gain” at time t.

These parameters and the following update equations comprise the multivariate

Kalman Filter:

mt+1 = Fmt +Kt+1(zt+1 −HFmt) (6.1)

Vt+1 = (I −Kt+1H)(FVtF> +Vx) (6.2)

Kt+1 = (FVtF> +Vx)H>
(
H(FVtF> +Vx)H> +Vz

)−1
. (6.3)

The complexity of KSwarm is due almost entirely to complex matrix oper-

ations, like multiplication and inversion. This complexity is present in the update

equations above and in sampling from a multivariate Normal distribution. Any

approximation intended to speed up the algorithm should address these two key

areas.

6.2.1 Weighted Vectors

Because each particle knows with certainty where its neighbors are, we may assume

that the system has perfect sensors (H = I), and may rearrange (6.1) thus:

mt+1 = Fmt +Kt+1(zt+1 − Fmt)

= Fmt +Kt+1zt+1 −Kt+1Fmt

= (I −Kt+1)Fmt +Kt+1zt+1 .

(6.4)

This makes the filtered state look like a convex combination (assuming, of course,

that Kt+1 has the appropriate properties) of the predicted next state Fmt and the

observed state zt+1. It seems reasonable to assume that this is an essential charac-

teristic of the Kalman Filter: it balances observations and myopic predictions. If
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Figure 6.1: Weighting two vectors to generate a third

this is indeed a governing principle of a Kalman Filter, then it should be possible

to construct a useful approximation of that behavior.

Since the Kalman Filter is basically balancing between myopic predictions

and neighborhood observations using the linear operator K, we may view this as

generating a vector through rotation and scaling of one of the two other vectors.

This operation may be done by rotating one of the vectors by a specified angle

through the plane defined by both vectors (a matrix operation that we would

like to avoid), or it may be approximated by taking a weighted average of the

normalized vectors and performing some post scaling. The two approaches are

depicted in Figure 6.1.

As the weighted average is a much cheaper computation than rotation, this is

what is done. Though it does not produce precisely the same results when the new

vector is very close to one of the original vectors, it does provide a fast and useful

approximation. To make the weighted average work correctly, we first normalize

the original vectors, take a weighted sum to generate a new vector, normalize it,

and then scale it so that its length is a weighted sum of the original lengths.
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More formally, if we have a weight scalar α ∈ [0, 1] and vectors u1 and u2,

we may generate a new vector v thus:

v̂ = α
u1

‖u1‖
+ (1 − α)

u2

‖u2‖
(6.5)

v =
v̂
‖̂v‖ (α‖u1‖ + (1 − α)‖u2‖) . (6.6)

Care must be taken when u1 and u2 point in opposite directions. In this case

we have two options: point the new vector in some direction orthogonal to one of

the vectors (of which there are two if d = 2 and infinite if d > 2) or pick some other

direction. In practice this is solved by simply picking one of the original vectors as

the new vector, usually that which has a better associated value. This case is easily

detected by calculating v̂ using (6.5) and then noting that ‖̂v‖ is extremely small.

The behavior of KSwarm is approximated using this approach to calculate

a new velocity for a particle. The particle’s current velocity is balanced against

the relative best position from its neighborhood. The new velocity is some vector

between the two, based on α.

We were previously using mt as the current position and velocity of the

particle, but now we compute only the velocity using the approximation outlined

above. We add the velocity to our current position to get a new position. Therefore,

there is no longer any need to compute mt nor is there any use for F, as the prediction

of our next position is trivially calculated using the current velocity. It is worth

noting that though this is beginning to sound like the original PSO algorithm, it is

not (see Section 6.2.4).

6.2.2 Sampling From the Normal

So far, the approximation contains no randomness at all, effectively removing

the complexity introduced from generating samples from a multivariate Normal.

91



Randomness, however, is an essential part of the original algorithm, so some

sampling should be done to determine the final velocity of the particle.

KSwarm particles each sampled their final state from a multivariate Normal

with parameters Fmt and Vt. They were provided with diagonal matrices for Vt=0,

Vx, and Vz. If Vt were to remain diagonal, we could optimize the multivariate

sample (which involves matrix operations) with d univariate samples.

Therefore, instead of a covariance matrix, we select a variance vector σ2 for

our approximate algorithm. We further assume that this vector is constant (unlike

Vt in the Kalman Filter). Had Vt been constant in the Kalman Filter, the gain Kt

would have also been constant, as Vt was the only time-dependent portion of (6.3).

This assumption of a constant σ2 allows us to further assume that α is constant.

To generate randomness, the approximate algorithm uses each component

of the normalized final velocity vector v̂
‖̂v‖ as the mean of a distribution. The

variance is given by the corresponding component of σ2. Since we are dealing

with a normalized mean, it is not unreasonable to assume that σ2 = σ2e, where

σ2 is a constant scalar (and e is a vector of all ones). This effectively reduces the

number of tunable parameters and simplifies the algorithm even further.

6.2.3 Linear Kalman Swarm (LinkSwarm)

The two fundamental approximations above complete the development of Link-

Swarm, an approximation to KSwarm. The full LinkSwarm algorithm for particle

motion is summarized in Algorithm 2.

The performance and runtimes of LinkSwarm and KSwarm are shown in

Figure 6.2. For all experiments, d = 30, σ2 = 0.6, α = 0.45, the sociometry is “star”,

and 20 particles are used. Also, KSwarm uses a prior based on initial particle

positions.
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Algorithm 2 LinkSwarm
Given a particle’s current velocity vt and the relative posi-
tion of the neighborhood best vbest (the particle is always
part of its own neighborhood in LinkSwarm), generate a
new normal velocity vector v′ as follows (norm generates a
normalized vector):

v′ = norm
(
α

vt

‖vt‖
+ (1 − α)

vbest

‖vbest‖

)
. (6.7)

For each coordinate v′i of v′, generate v̂ by drawing samples
from a Normal distribution:

v̂i ∼ Normal(v′i , σ
2) . (6.8)

Normalize v̂ and scale to a weighted sum of the lengths of
vt and vbest to create vt+1:

vt+1 = (α‖vt‖ + (1 − α)‖vbest‖) norm(v̂) . (6.9)

Add this velocity to the current position xt to get xt+1.

It is interesting that LinkSwarm, which runs roughly 10 times faster than

the original KSwarm in 30 dimensions, also performs better on every test function.

Figure 6.2(f) also shows that the approximate algorithm is only very slightly slower

than basic PSO (because of magnitude calculations and multiple Normal samples)

but, in contrast with KSwarm, has the same O(d) computational complexity.

It appears that we have not only maintained the essential characteristics of

KSwarm, but that we have improved on it in the process.

6.2.4 LinkSwarm vs. PSO

With all of the approximations made, the algorithm has been reduced to (roughly)

a weighted sum of two vectors. Arguably, PSO does the same thing. The question

arises, then, as to whether we really do anything different from basic PSO, besides

sampling from a Normal distribution to get the final result. The answer is “yes”.
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Figure 6.2: Performance of LinkSwarm as compared with original KSwarm
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Basic PSO and many of its variants also take a “weighted sum” of two vectors

in order to generate a new velocity. There are two very important differences,

however, between LinkSwarm and basic PSO: the vectors involved in the weighting

operation are different, and the velocity is set to a new value, not augmented by it.

In other words, LinkSwarm generates a velocity, not an acceleration.

The fact that LinkSwarm sets rather than augments its current velocity neatly

sidesteps the issue of velocity explosion. Of more interest, however, is the fact that it

uses different vectors in its decision process. In basic PSO, the two vectors involved

in the weighting operation are the relative position of the particle’s personal best

and the relative position of the neighborhood best. LinkSwarm uses a particle’s

current velocity (which may also be viewed as the relative predicted position at the

next time step) instead of the relative position of its personal best. It only uses its

personal best in the context of its neighborhood.

This basic difference between KSwarm and PSO is explored further in Sec-

tion 6.4 as part of the explanation for its success.

6.3 KSwarm Deficiencies

When compared with the basic PSO algorithm, KSwarm performs very well, re-

ducing the number of iterations required to reach good solutions and improving on

the overall solutions on a number of test functions. This is an interesting result, as

it does so by altering the motion characteristics of particles. Fundamental changes

in motion have not received much attention in recent research because motion

has been considered to be less important than the social and diversity aspects of

the algorithm [Kennedy 2003; Kennedy and Mendes 2002; Riget and Vesterstrøm

2002; Richards and Ventura 2003; Mendes et al. 2003; Kennedy and Mendes 2003;

Angeline 1998; Kennedy 1999, 2000; Vesterstrøm et al. 2002; Shi and Eberhart 1999;

95



Krink et al. 2002; Shi and Eberhart 1998b]. KSwarm represents a possible coun-

terexample to that often implicit assumption.

One may ask why Kalman Filter motion works well in this context. There

is one rather unflattering reason that it works especially well on the test functions:

the original KSwarm is subtly origin-seeking. The Kalman Filter requires a prior

distribution on the particle’s state. Recall that the state of a particle has been defined

to be the position and velocity of that particle [Monson and Seppi 2004]. Absent a

reasonable prior, this was always set to 0, indicating that the particle began its life

with the assumption that it was at the origin and that it was not moving. In other

words, it assumed it was already at the optimum, a deficiency addressed here.

A change was made to KSwarm, setting the prior of each particle to its initial

position instead of 0. The graphs in Figure 6.3 compare the two approaches. It is

clear that especially for strongly multi-modal functions like Rastrigin, the prior has

a significant impact on the algorithm’s behavior.

While this change significantly degrades the performance of KSwarm on

Rastrigin, it leaves it practically unchanged on the other test functions, most of

which are unimodal. Griewank is of particular interest because it is multimodal

but the performance did not degrade for that function. Some attempt to explain

this behavior is given in the next section.

6.4 Why It Works

It is first important to acknowledge that the basic PSO algorithm has had many

changes applied in recent years that substantially improve its performance. These

methods are not considered here due to space and time constraints, but it is worth

noting that LinkSwarm outperforms many of them where KSwarm did not. The

results of those experiments are reserved for a later, more complete paper.
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Figure 6.3: Results of KSwarm with a zero prior and with a more reasonable prior
based on initial particle positions
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The development of LinkSwarm served to expose some interesting char-

acteristics of the original KSwarm. The most striking of these has already been

mentioned, and is best understood in contrast to basic PSO: the vectors involved in

the decision process are different. While basic PSO particles use personal and neigh-

borhood bests to make their decisions, LinkSwarm particles throw their personal

best in with their neighbors and decide between the neighborhood best and their

current trajectory. This difference represents an interesting and useful assumption:

a particle’s current direction is probably pretty good.

The validity of this assumption depends on the kinds of functions that

are being optimized. It is motivated by the fact that the particle was already

approaching a good area to begin with, so there is no reason that it should have to

stop and turn around just because one of its neighbors wants it to see something;

it may be onto something good already.

This assumption works especially well with functions that, though poten-

tially multimodal, have an overall trend. Functions like Rastrigin and Griewank fit

this criterion quite nicely. Though they have many local minima, they each exhibit

an overall downward trend toward the global minimum. A particle that is able to

filter out the “noise” of the local minima in favor of discovering the overall trend

is in general going to do well with these types of functions. The Kalman Filter

was designed to do precisely that. These particles are expected to do very well on

functions where sufficient “blurring” will produce a unimodal function.

6.5 Conclusions and Future Research

An enormous number of things have yet to be tried. Currently the weight param-

eter α is constant, but it could be changed dynamically, perhaps based on some

confidence parameter that is learned over time. This needs to be explored more
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fully. The effect of the various parameters in general is not currently known, and

that is also begging for more exploration.

These algorithms need to be tested against the state of the art. The basic PSO

algorithm is known to be naive and suboptimal, and much research has been done

to improve it. In order to be truly interesting, LinkSwarm and its variants must be

compared with the best PSO algorithms known to date. Preliminary experiments

show that it compares very favorably with recent PSO improvements.

Surprisingly, the approximate algorithm performed better than the original.

The reasons for this are unknown, though we have some preliminary ideas. The

parameters used to initialize KSwarm might not have been optimal, causing it to

perform somewhat more poorly than it might otherwise have done. While this

could potentially be explored to good effect, there are simply too many parameters

to make such exploration feasible. The number of tunable parameters in KSwarm

was one of its major shortcomings. The LinkSwarm algorithm not only has fewer

and more intuitive parameters, but it is faster and works better.

LinkSwarm is a major improvement over KSwarm, not only in computa-

tional complexity, but also in the results obtained. It represents the elimination

of numerous tunable parameters and is much simpler to code and to understand.

Along with its improved speed and simplicity, preliminary work suggests that it

does better than many recent improvements to PSO, potentially making it a strong

contender in the field of swarm optimization.

99



100



Chapter 7

Bayesian Optimization Models for Particle Swarms

Published in Proceedings of GECCO 2005, Volume 1, pages 193–200

Abstract

We explore the use of information models as a guide for the development of single

objective optimization algorithms, giving particular attention to the use of Bayesian

models in a PSO context. The use of an explicit information model as the basis

for particle motion provides tools for designing successful algorithms. One such

algorithm is developed and shown empirically to be effective. Its relationship to

other popular PSO algorithms is explored and arguments are presented that those

algorithms may be developed from the same model, potentially providing new

tools for their analysis and tuning.
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7.1 Introduction

Particle Swarm Optimization (PSO) is a social or evolutionary optimization al-

gorithm that was discovered during experiments with simulated bird flocking

[Kennedy and Eberhart 1995]. The discovery was valuable, as it has proven to be

a good approach to the optimization of a useful class of functions. It has the addi-

tional benefit that it is easy to implement and has relatively few tunable parameters.

As the reader is assumed to have some familiarity with PSO, the explana-

tion that follows will be brief. Classical PSO begins by scattering particles in the

function domain space, often by means of a uniform distribution. Each particle

is a data structure that maintains its current position x̂ and its current velocity ̂̇x.

Additionally, each particle remembers the most fit position it has obtained in the

past, denoted p for “personal best”. The most fit p among all particles is written g

for “global best”.

Each particle updates its location over time using

̂̇xt+1 = ̂̇xt + φ1 U()(p − x̂t) + φ2 U()(g − x̂t) (7.1)

x̂t+1 = x̂t +̂̇xt+1 (7.2)

where usually φ1 = φ2 = 2, U() is drawn from a standard uniform distribution

(either a scalar or a vector of random values to be applied to each element),

and velocities are constrained to be smaller than some Vmax. Two simple and

popular improvements to the technique are the use of a constriction coefficient χ

[Clerc and Kennedy 2002] and an inertia weight ω [Shi and Eberhart 1998a], respec-
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tively:

̂̇xt+1 = χ
(̂
ẋt + φ1 U()(p − x̂t) + φ2 U()(g − x̂t)

)
(7.3)

̂̇xt+1 = ω̂ẋt + φ1 U()(p − x̂t) + φ2 U()(g − x̂t) . (7.4)

When using (7.3), definitions of φ1 and φ2 are different from above, and they are

used to calculate χ.

Though improvements have been made on nearly all aspects of PSO, the

basic structure of the motion equations has remained largely uncontested, limiting

most motion improvements to the addition or tuning of equation coefficients.

While some have deviated significantly from classical motion with good success

[Clerc 2003; Kennedy 2003], few have attempted such a departure. Indeed, it seems

that variants on classical motion are hard to beat, but in spite of much analysis of

convergence and other motion characteristics [Clerc 1999; Clerc and Kennedy 2002;

Ozcan and Mohan 1999; Eberhart and Shi 2000], as well as some valuable intuition

[Kennedy and Eberhart 2001; Mendes et al. 2003], little is known as to why this is

true.

In a way, the serendipitous origins of classical PSO have never been fully

overcome, leaving room for a more principled and high-level perspective for PSO

motion. This paper presents and motivates a model-oriented approach to particle

motion algorithms, providing tools for the creation of such algorithms that also

aid in their analysis. This approach makes explicit the information relationships

and optimization assumptions that go into the design of a swarm optimization

algorithm.

One class of optimization models based on Bayesian influence networks is

presented first. An algorithm is then produced by solving one such model. This

algorithm has some deficiencies, which are addressed by making better use of
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available information and applying approximations to its most complex features.

The approximate algorithm is shown to perform well against some recent and

successful PSO techniques. Finally, the ramifications of the new algorithm and the

process by which it was created are explored.

7.2 Bayesian Optimization Models

Even though “No Free Lunch” (NFL) theorems dictate that no single algorithm

can be used to efficiently optimize every class of functions [Wolpert and Macready

1997], any optimization problem can be modeled. The purpose of such a model

is to sort out all of the information available during the optimization process and

to make use of that information in a principled way. That it is always possible to

apply a model neither ignores nor negates NFL, but rather indicates that the model

must somehow explicitly specify the class of functions that are interesting.

Many such optimization models are possible, but this paper will define and

restrict itself to a limited class of these models, hereafter referred to as Bayesian

Optimization Models (BOMs). In a BOM, the optimization problem is framed as

inference in a Dynamic Bayesian Network (DBN) where information relationships

are characterized as conditional probability distributions [Russel and Norvig 2003].

While no assertion is made that DBNs are the only appropriate modeling tool for

PSO, some class of models must be chosen, and DBNs have some particularly

convenient properties.

The use of DBNs instead of a more general class of models represents an

approximation that is open to debate. It is a fact, however, that an approximation

of some kind must be made, since a fully expressive model of every detail of

all possible information relationships would not be tractable for descriptive or

computational purposes. Throughout this paper many choices will be made for

the sake of approximation, and all of them will be explicit. In the interest of coherent
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Figure 7.1: Raw information available to swarm optimization

exposition, however, a detailed discussion of those choices will be deferred until

Section 7.6.

DBNs are frequently used to characterize time-sensitive relationships be-

tween observable (ξ) and hidden (θ) variables or states. Usually the hidden vari-

ables represent desired information and are considered to cause or influence the

state of the observable variables. For example, determining the location of an air-

plane given a blip on a radar screen fits this model: the true location of the plane

is unknown or hidden, it causes an observable blip, and the data is time-sensitive.

Provided that a useful observation model is available to characterize the noise and

other behavior of the radar, the true state can be inferred with some accuracy from

a series of observed blips.

In swarm optimization, each particle may observe g and p. In the context of

a BOM, these observations are influenced by some state θ encoding desirable but

hidden information, in this case instructions as to what the particle should do to

get to a place of even better fitness g?.

Ignoring p for the time being, Figure 7.1 illustrates the use of hidden states

and the raw information available to a swarm optimization algorithm. At each

time step, a particle has a current estimate θ̂ of its hidden state θ. Since the particle

is trying to track the trajectory toward g?, this estimate is encoded in the actual
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position and velocity of the particle and is gleaned from data available in the form

of g. The hidden state θ represents where the particle ideally should have been (x)

and the direction in which it should be going (ẋ) to get directly to a place of even

better fitness g?.

Just as a radar’s observation model is required in order to estimate a plane’s

true location given a blip, the relationship between θ and ξ must be specified for

a particle to effectively estimate a trajectory toward g?. Figure 7.2 illustrates one

of the simplest possible models for the various relationships in this system. In this

case what is depicted is actually an instance of a Hidden Markov Model (HMM)

where the hidden stateθ influences the observable state ξusing a known observation

modelH and changes over time according to some transition model F .

In the radar example, F might be a model of how a plane is expected to

move. Large planes do not change speed or direction very quickly and therefore

might use a constant velocity transition model, treating deviations from constant

velocity as admissible noise. In the context of PSO, the transition model describes

the way that g is expected to move over time. It also describes, however, the way

that particles prefer to move, since they will make use of F as they attempt to track

the trajectory of g over time. TheF chosen will therefore depend on the best swarm

behavior for the class of functions subject to optimization. In this paper, we will
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focus on a constant velocity F for the sake of simplicity and for historical reasons,

though other relationships are certainly possible.

The model also indicates that g? influences the observed g since hidden state

influences observations. This influence is inherently noisy because it is unreason-

able to believe with absolute certainty that the observation of g precisely pinpoints

g?. Noise is thus used as a model of subjective uncertainty about the usefulness or

accuracy of an observation. In a function with local smoothness, a Gaussian distri-

bution is a good model of uncertainty. For example, a high-variance Gaussian with

mean g indicates that g is a useful indicator of g?, but that our belief or confidence

in that result is not very strong. Similarly, a low variance would indicate greater

confidence that g is a likely place to look for g?.

Regardless of the particular distribution chosen to represent belief, the use

of a BOM defines the goal of optimization as the inference of a belief distribution

over θ. Ideally, that distribution will converge over time to a delta function (or

in the Gaussian case, a distribution with variance approaching zero) centered at

the global minimum, but the amount of information available does not often allow

for so much precision or certainty. The goal becomes one of finding a distribution

that gets as close as possible to the truth and that represents as much confidence

as possible in that estimate. This clarifies the role of the network in Figure 7.2: if

the influences shown can be characterized, noise and all, then standard approaches

to solving HMMs may be used to estimate a distribution over θ (the best action a

particle can take) at each time step.

Every choice made in the creation of this particular BOM, and even the

use of a BOM in the first place, represents some assumptions about the class of

functions to be optimized. Sometimes the connection is readily evident and other

times it is more subtle. The choice of a constant velocity model, for example,

indicates that velocity contains information. A consequence of this is that fitness
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and distance from the global minimum should be correlated; if velocity contains

information then in some sense distance must as well. Also, a Gaussian noise

model introduces the assumption of some local smoothness in the function, since

the belief distribution assigns similar weight to nearby regions.

Whatever the specific details, an optimization model will encompass raw

information and intuition as illustrated in Figure 7.1 as well as explicit information

relationships as illustrated in Figure 7.2. Together, these give an algorithm designer

an opportunity to be explicit about not only the available information and what

it means, but about the relationships that exist within it. The choice of BOMs

in particular allows designers of swarm optimization algorithms to leverage the

considerable body of existing knowledge about DBNs and HMMs to generate

particle motion.

It should be reiterated that although this paper focuses almost exclusively

on HMMs as models of swarm optimization, this restriction is not a requirement.

Much richer models, probabilistic or otherwise, may also be applied.

7.3 A BOM Motion Algorithm

Solution methodologies for HMMs are plentiful, but perhaps none is so easily

applied as the Kalman Filter. The Kalman Filter is directly applicable to the solution

of an HMM like that in Figure 7.2, imposing the additional constraints of linear

relationships and additive Gaussian noise [Kalman 1960; Russel and Norvig 2003;

Leondes 1970]. This restricted subclass of HMMs is commonly known as Linear

Dynamic Systems (LDSs).

This suggests that the Kalman Filter might be applied to PSO as a means

of moving particles around, an idea that was introduced earlier in the KSwarm

algorithm [Monson and Seppi 2004]. Its original presentation was unmotivated,

however, making it difficult to determine whether and in what situations it may
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be sensibly applied. The BOM developed thus far supplies the needed motivation,

since the application of a Kalman Filter to the model produces an algorithm very

much like KSwarm. To assist in further development of this idea, the basics of the

original KSwarm will be presented briefly.

The purpose of the Kalman Filter is to estimate a mean θ̄t and covariance Σt

for the hidden state of an HMM given a series of observations ξt, which in this case

correspond to measurements of g. The mean may be viewed as the estimate of the

hidden state and the covariance as a measure of confidence in that estimate. This

estimate can be obtained through recursive application of the following equations,

which find themselves at the heart of KSwarm:

Kt = (FΣt−1F>+ Σθ)H>
(
H(FΣt−1F>+ Σθ)H>+ Σξ

)−1
(7.5)

θ̄t = Fθ̄t−1 +Kt(ξt −HFθ̄t−1) (7.6)

Σt = (I −KtH)(FΣt−1F> + Σθ) . (7.7)

A single sample from the distribution over a prediction provides the new

state of a particle, comprising a position and velocity:

θ̂t+1 =



x̂t+1

̂̇xt+1


 ∼ Normal(Fθ̄t,Σt) . (7.8)

The value of ξ is obtained from observations, but several other values must

be specified before the algorithm can proceed. For example, a transition matrix

F and observation matrix H must be specified, as well as a prior mean θ̄0. A

constant velocity transition model makes the assumption that the trajectory traced

by successive values of g will tend to take a straight line path toward the global

minimum, and a skew-free observation model is used because it is unreasonable

to assume that g is not a good estimate of g? in the absence of more information.
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Additonally, the priors are taken directly from the initial location and velocity of

the particle. These specifications are given together here:

F =



I I

0 I


 (7.9)

H =
(
I 0

)
(7.10)

θ̄0 =



x̂0

̂̇x0


 . (7.11)

Each of these values carries with it a corresponding covariance matrix, denoted Σθ,

Σξ, and Σ0, respectively. Given a vector w of side lengths of the “feasible rectangle”

(usually provided with the target function) and a small constant ε (≈ 0.001), the

original KSwarm attempts to simplify the creation of useful covariances by defining

diagonal matrices for these values, thus:

Σθ = εdiag



w

w


 (7.12)

Σξ = εdiag(w) (7.13)

Σ0 = εdiag



w

w


 . (7.14)

Though KSwarm’s published implementation outperforms one version of

constricted PSO on a number of common benchmark functions, it has not been

shown to be competitive with more recent or well-tuned PSO algorithms.
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7.4 Taking the Next Step

KSwarm was produced from a BOM, making available a large number of ex-

isting tools for its analysis. It is, however, not perfect, and several improve-

ments immediately suggest themselves. First, KSwarm ignores the existence of

p, which is commonly considered to be an important piece of information in PSO

[Kennedy and Eberhart 2001; Kennedy 2003]. Second, the computational complex-

ity of KSwarm isO(D3) while other popular algorithms areO(D). Unfortunately, its

performance does not warrant this increase in complexity. This section addresses

both of these problems.

7.4.1 Incorporating Personal Best

There are several ways to introduce p into the HMM previously outlined. Perhaps

the simplest is to combine p and g into a single observation before applying the

Kalman Filter. Thus, ξt = C(g,p), where C is some function that combines the two

pieces of information in a useful way.

If p is considered to be dependent on g, the new network is represented in

Figure 7.3. Combining g and p into a single observation is equivalent to letting
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p temper the perception of g, which is accomplished by finding the posterior

distribution G′(g|p) by application of Bayes’ Law:

C(g,p) ∼ G′(g|p) =
P′(p|g)G(g)

P(p)
(7.15)

where G and G′ are the prior and posterior distributions over g, and P and P′ are the

marginal and conditional distributions over p. When using multivariate Gaussian

distributions, G′(g|p) is parameterized by mean b̄ and covariance Σb, the values of

which are well known:

W = Σp(Σp + Σg)−1 (7.16)

b̄ = (I −W)p +Wg (7.17)

Σb = (I −W)Σp (7.18)

where Σp and Σg represent uncertainty about the utility of p and g as estimates of

g?, respectively.

Substituting b̄ and Σb for ξt and Σξ in (7.5), (7.6), and (7.7) yields these

equations for the “p-augmented KSwarm”:

Kt = (FΣt−1F>+Σθ)H>
(
H(FΣt−1F>+Σθ)H>+Σb

)−1
(7.19)

θ̄t = Fθ̄t−1 +Kt

(
(I −W)p +Wg −HFθ̄t−1

)
(7.20)

Σt = (I −KtH)(FΣt−1F> + Σθ) . (7.21)

The equations do not change the order of polynomial complexity of the original

KSwarm, but they do require the specification of yet another covariance matrix.
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7.4.2 The Necessity of Approximations

The use of the Kalman Filter incurs some costs. It was mentioned briefly that

although it tests well against a version of constricted PSO, it does not test as well

against more recent improvements. This may be due to the difficulty inherent

in tuning an algorithm whose parameters are all large matrices. In fact, even

though some intuition may be applied to the specification of covariance matrices,

the dimensionality of the parameter space far exceeds the dimensionality of the

function to be optimized!

In addition, the increased computational complexity must be addressed.

Fortunately, it is possible to address both issues simultaneously by crafting an

approximation to the p-augmented KSwarm algorithm. Of particular interest is

(7.20) which can be rewritten as follows:

θ̄t = (I −KtH)Fθ̄t−1 +Kt(I −W)p +KtWg . (7.22)

To simplify things further, it may be assumed that H = I and that observation

vectors are appropriately augmented with a velocity estimate:

(
x̄t ¯̇xt

)
= (I − Kt)F

(
x̄t−1 ¯̇xt−1

)
+ Kt(I − W)

(
pp − x̂t−1

)
+ KtW

(
gg − x̂t−1

)
. (7.23)

Because a new position may be trivially computed given the previous posi-

tion and a new velocity, (7.23) may be further simplified by dropping all portions of

the equation that directly calculate a position. Recalling from (7.9) that F preserves

velocity allows it to be dropped entirely from the calculation of the mean filtered

velocity ¯̇xt:

¯̇xt = (I − Kt,v) ¯̇xt−1 + Kt,v(I − Wv)(p − x̂t−1) + Kt,vWv(g − x̂t−1) . (7.24)
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Thus, ¯̇xt looks like a convex combination of ¯̇xt−1, g, and p. Even more simplification

is possible if the gains K and W are assumed to be the constant scalars a and b

instead of dynamic matrices:

¯̇xt = (1 − a)̂ẋt−1 + ab(p − x̂t−1) + a(1 − b)(g − x̂t−1) (7.25)

where ¯̇xt−1 is approximated by ̂̇xt−1. This bears some resemblance to (7.4), the

equation for inertia-weighted PSO.

The variance vector is all that remains to be determined to make the algo-

rithm concrete. A fairly common trick when adding noise at the end of a PSO

calculation is to let the variance be a scalar based on the magnitude of the mean

velocity [Clerc 2003; Kennedy 2003]. Without further motivation, a similar trick is

applied here:

̂̇xt ∼ Normal
(
¯̇xt, ψ
‖ ¯̇xt‖2

D
I
)

(7.26)

where ψ scales the calculated variance by some fixed amount, usually a small

number like 0.05. The dimensional scaling attempts to counter an explosion of the

Gaussian support volume as dimensionality increases.

Given the mean as defined in (7.25) and variance from (7.26), a new velocity

may be created by sampling once from a Gaussian distribution. This approach is

the basis of the “p Approximate Kalman Swarm” (PAKS) algorithm, which restores

O(D) complexity and substantially reduces the size of the parameter space.

The performance of this algorithm is compared with some popular PSO

enhancements on several benchmark functions in Figure 7.4. The benchmarks are

defined in Table 7.1. The results were obtained for minimization in 30 dimensions,

α = 0.45, β = 0.5,ψ = 0.05, and a non-reflexive “star” topology (fully connected but

without self links) with 20 particles where applicable. TRIBES began with a single
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Table 7.1: Common benchmark functions

Sphere(x) =
D∑

i=1

x2
i

Griewank(x) =
1

4000

D∑

i=1

x2
i −

D∏

i=1

cos
( xi√

i

)
+ 1

Rosenbrock(x) =
D−1∑

i=1

100(xi+1 − x2
i )2+(xi − 1)2

DeJongF4(x) =
D∑

i=1

ix4
i

Rastrigin(x) =
D∑

i=1

x2
i + 10 − 10 cos(2πxi)

particle. In the case of TRIBES, the x-axis represents the best value after every 20

function evaluations to make the results directly comparable. As can be seen, PAKS

either outperforms or remains competitive with TRIBES and BareBones. Although

it is only an approximation, it always outperforms KSwarm, presumably because

it is much easier to tune.

Although PAKS does require more tuning than TRIBES or BareBones, even

the most naive parameter settings produced good behavior. Setting β = 0.5 naively

assumes that g and p are equally reliable sources of information. This was also

tried as the value of α, but velocity explosion required it to be lowered slightly.

The only parameter that really required any significant attention was ψ, which was

reasonably robust once the right range was found.

More significant than the naive and simplistic nature of the tuning is the

fact that it could easily have been more principled. The use of a BOM as the basis

for PAKS provides a clear and explicit path from a statistical model to a concrete

algorithm. That it has roots in a model allows better tuning to occur before the
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algorithm has ever been executed. The coefficients, for example, are rooted in

subjective variance, which was never overtly used. It is conceivable that some

experiments could shed light on appropriate variances and thus on appropriate

choices of coefficients, something that would not be possible without the use of the

model as a starting point. Even without such analysis, it is significant that a simple

algorithm using a topology not noted for its exploration capabilities can perform

so favorably.

7.5 Applications of a BOM

BOMs are useful tools for specifying motion algorithms, but they represent just

one possible class of models. Perhaps even more interesting than the presented

BOM is the accompanying process that was used to generate useful particle swarm

motion; the model is the starting point, the solution methodology creates a real

algorithm, and the final approximation makes that algorithm tractable. Together

these ideas represent a unified framework for function optimization that provides

insights into how to tune the new algorithm and why it behaves the way that it

does. All of the behavior of the algorithm may be traced back to one or more of the

choices made during this process, all of which are explicit, allowing any desired

change to be affected by revisiting those choices.

The full impact of this idea becomes evident when working backwards from

existing motion methodologies to find appropriate models. In many cases, the very

same BOM may be obtained in this manner. Consider, for example, the similarities

between PAKS and other popular techniques for computing a new particle velocity:
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Constricted [Clerc and Kennedy 2002]:

χ
(̂
ẋt + φ1 U()(p − x̂t) + φ2 U()(g − x̂t)

)

Inertia-weighted [Shi and Eberhart 1998a]:

ω̂ẋt + φ1 U()(p − x̂t) + φ2 U()(g − x̂t)

Noisy Classical [Clerc 2003]:

χ
(̂
ẋt +G(p − x̂t, I

‖p − x̂t‖2
4

) +G(g − x̂t, I
‖g − x̂t‖2

4
)
)

PAKS (mean velocity):

(1 − a)̂ẋt + ab(p − x̂t) + a(1 − b)(g − x̂t)

(G(·, ·) produces a sample from a Gaussian with the supplied mean vector and

covariance matrix).

The similarity of the algorithms is striking, as each performs a noisy and

linear combination of the same information. In the case of PAKS, it is clear why

this is the case: Bayesian reasoning, linearity, and Gaussian noise were elective

constraints during the design process. That it is similar to other popular PSO

algorithms implies similarity in their underlying model and solution methodol-

ogy. Consequently, all of these algorithms are describable as approximations of

p-augmented KSwarm. The differences are limited to tuning or noise insertion and

are generally superficial.

Knowing the model that can produce these algorithms makes available a

wealth of information about them that was not as easily accessible before. Consider,
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for example, the problem of a varying inertia coefficient (ω) for inertia-weighted

PSO. If we view inertia-weighted PSO as an approximation to KSwarm, some

interesting things can be said about ω, which corresponds directly to the I−K term

in the Kalman Filter equations. Because Σt converges over time to a fixed point,

a large Σ0, corresponding to low confidence in the initial estimate, will cause Σt

to decrease over time. This decreasing variance corresponds to an asymptotically

increasing inertia weight, unlike the linearly decreasing values so commonly used.

While this violates some popular intuition, the superiority of an increasing inertia

weight has already been empirically observed [Zheng et al. 2003].

That the noise models are not precisely equivalent is no barrier to forging

a connection between existing algorithms and PAKS, especially in consideration

of the Central Limit Theorem. Some of them use uniform distributions on the

coefficients themselves, but a sum of uniform random variables is Gaussian in

the limit, a notion verified empirically in other works [Kennedy 2003; Clerc 2003].

Additionally, a sum of Gaussian variables produces a new Gaussian variable, so

taking a single sample at the end is not fundamentally different from taking samples

on each coefficient. Perhaps the most compelling reason to suggest that all of these

algorithms use a Gaussian noise model is the fact that they all combine information

linearly, a consequence of the closure of Gaussians under Bayes’ Law. Any other

noise model would produce a more complex combination of information.

The use of BOMs also applies to motion that does not share as much in

common with PAKS as the above algorithms. For example, BareBones, which

performs a simple position computation based on p and g [Kennedy 2003], may

be produced from the model shown in Figure 7.3 by removing the time-sensitive

links and dropping velocity from the approximation rather than position. Similar

modifications are possible for other algorithms not discussed here.
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7.6 Modeling and Approximations

While progressing from an optimization model to a concrete PSO algorithm, several

modeling decisions and approximations were made along the way. Every one of

these decisions was explicit, which is one of the more important benefits of using

the design framework outlined here: explicit decisions are easy to analyze and

adjust. In spite of the clarity resulting from this process, however, some of the

specific decisions and approximations made here have subtle consequences and

merit further discussion.

7.6.1 Bayesian Modeling

Although DBNs do not represent the only class of models that can be used to de-

scribe information relationships, it has been made clear that simplicity and tractabil-

ity were the reasons behind using that class of models. What is perhaps not as clear

is the intuitive meaning of the hidden processes in Figures 7.1 and 7.2 and the

approximations made in ignoring some of the possible information relationships.

Because PSO is a known and concrete algorithm, the only truly hidden pro-

cess is the target function itself. The HMM presented here approximates all of

the hidden characteristics of the target function as a sequence of trajectories. Intu-

itively, this means that the features of the target function deemed most important

by the model are described by paths of improving fitness from each point in space,

making a particle’s goal one of finding the next step along such a path from its

current location. Inherent in this is the assumption that greedy improvements to

g form a noisy trajectory that will eventually lead to the global optimum. This

assumption provides a partial specification of the class of functions for which this

PSO algorithm is expected to be effective: it will work well on functions that can
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be described as unimodal with noise, an idea born out in the results for Sphere,

DeJongF4, and Griewank.

In addition to approximating a hidden process, the proposed HMM ignores

a number of possible information relationships. While adding more information

links is certainly possible, limiting them to a select few is common when dealing

with Bayesian networks since specifying all possible relationships is not often

tractable. The underlying assumption is that noise is an adequate substitute for

some of the less consequential relationships.

7.6.2 Adding New Information

The question naturally arises as to whether the approach to adding new information

detailed in Section 7.4.1 is truly representative of what the information means. Is,

for example, p really dependent upon g? One could certainly argue that it is not,

since no such dependency is built into PSO or into optimization in general. In fact,

it is much easier to argue that such a relationship would work the other way, since

g is actually the p of some particle.

This is readily addressed by looking at the model as a description of observed

behavior rather than of a known process. While g does not cause the observation

of p, it can be observed that p tends to be close to g during a run of PSO.

The dependency of p on g can also be viewed as a specification of behavior.

This observation of correlation or clustering among p and g is, in a sense, a self-

fulfilling prophecy: the model says that clustering occurs, the same model drives

the motion of particles, and therefore clustering is observed.

This brings up an interesting side point. Many choices were made in this

paper not only because they were simple and convenient, but because they led to an

algorithm that was similar to existing PSO algorithms. This allowed the framework

to be developed in a familiar context and provided a means of rethinking popular
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motion algorithms in terms of a useful model. Remarkably little foresight was

required to do this since some of the approximations made were rather obvious

and naive. For these reasons, the seemingly counterintuitive dependency of p on

g is actually not at all unreasonable; it is descriptive, prescriptive, and effectively

models the behavior of existing algorithms.

7.6.3 Other Approximations

Other notable approximations in Section 7.4.2 include dropping position instead

of velocity and ignoring the Kalman variance calculation in (7.21).

Position was dropped instead of velocity to better facilitate the connection

between PAKS and other algorithms, especially inertia-weighted PSO. It would

definitely be possible to drop velocity instead, producing something more like

BareBones, as previously discussed.

As for PAKS variance, the corresponding Kalman equations were ignored

for simplicity and space. This amounted to replacing useful information with a trick

adapted from the literature, highlighting the fact that significant approximations

are often made while building a PSO algorithm. In the case of PAKS, it was clear

that the correct variance calculation was ignored, but it was only obvious because

the underlying model was already known. Many PSO algorithms, on the other

hand, commonly make equally sweeping assumptions without any context for

their objective evaluation. Indeed, it is difficult if not impossible to provide such

context without the use of a model.

7.7 Conclusions and Future Work

The single-objective optimization problem is one of using available information

to find the global minimum. In order to do this, it is useful to specify in explicit
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terms what that information is and the relationships between various pieces of the

available information. Bayesian Optimization Models are a class of models that

make this specification systematic and principled, simultaneously lending valuable

intuition to the process.

That this approach can serve as the foundation of a number of PSO motion

algorithms, including those developed here, makes it useful as a tool for high

level analysis of both new and existing PSO algorithms. It would be interesting to

apply in greater detail the model and approximation techniques presented here to

existing PSO algorithms. This could provide more insights into their differences in

behavior on various functions.

Other DBN models may be used besides the HMM suggested here, and

other solution methodologies, such as particle filters, may be applied. More in-

formation than g and p could also be made available to any chosen model, and

methods of combining information should be explored more fully. Additionally,

the approximation process outlined for PAKS could be changed to make better use

of the model to make coefficient tuning more principled.

In this work, the application of a BOM has only affected each particle in-

dividually, but it is possible to create a richer model that includes the notion of

sociometry and the information flow between particles in the swarm. Though

complex, the study of such influences is at least possible using a model, and its use

may provide new topological insights.

The algorithm design framework developed around BOMs actually exists

independently of them, suggesting that any model, Bayesian or otherwise, may be

used in the framework. The only requirement is that such a model make informa-

tion relationships explicit and provide a means for inferring desired information

from available information. The exploration of alternative models would be an

interesting pursuit.

123



The introduction of a BOM and its success in creating a competitive PSO

algorithm highlights the utility of the associated algorithm design framework. The

framework is not only valuable as a tool for the synthesis of PSO algorithms, but

also for their analysis. This work has presented the framework and model-based

approach as a way of thinking about optimization and this perspective suggests

new ways of approaching the problem.
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Part III

Bayesian Frameworks for

Utility-Based Optimization

The core contribution of this work is contained in Part III. While previous

chapters focused on improving PSO and modeling optimization within that con-

text, the chapters comprising Part III represent a departure from the consideration

of any one evolutionary optimization approach. The lessons learned in previous

chapters are applied: NFL and the associated function class are important enough

to receive explicit attention in any optimization process, information models are

useful tools in algorithm design, and the true goals of optimization must be directly

considered to produce an algorithm that makes rational use of information.

The paper in Chapter 8 introduces a statistical perspective on optimization

by modeling the function sampling process and its inherent goals. The result is

a static Bayesian network in which inference can be performed to provide infor-

mation about the location of the global optimum. Extending this network to the

dynamic case seems trivial on the surface, but some of the new dynamic connec-

tions are in fact difficult to motivate.

127



This difficulty is addressed by the paper in Chapter 9. The problem with the

dynamic relationships in the previous paper is addressed by incorporating explicit

definitions of utility and cost into the optimization model. This critical extension to

the idea finally allows the real goal of optimization to be expressed: obtaining infor-

mation about the global optimum through careful sampling of the target function.

The resulting algorithm is simple, general, and powerful: given specifications of the

desired function class, output utility, and sample cost, it rationally dictates where

the function should be sampled so that maximal information is obtained and prop-

erly utilized. Furthermore, the algorithm knows when exploration should cease

and exploitation begin, a fundamental issue in any optimization setting.

Following these papers is a chapter that concludes the work, summarizing

its key contributions and suggesting interesting avenues for future research.
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Chapter 8

The Evolutionary Optimization DBN

In Review for the Evolutionary Computation Journal

Abstract

We present a statistical model of empirical optimization that admits the creation of

algorithms with explicit and intuitively defined desiderata. Because No Free Lunch

theorems dictate that no optimization algorithm can be considered more efficient

than any other when considering all possible functions, the desired function class

plays a prominent role in the model. In particular, this provides a tractable way

to answer the traditionally difficult question of what algorithm is best matched to

a particular class of functions. Among the benefits of the model are the ability to

specify the function class in a straightforward manner, a natural way to specify

noisy or dynamic functions, and a new source of insight into No Free Lunch

theorems for optimization.
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8.1 Introduction

Empirical function optimization, as addressed in this work, is the process of sam-

pling a continuous cost function at discrete locations to search for a vector that

produces the global minimum. In recent years, evolutionary algorithms have

become a popular and powerful tool in both discrete and continuous settings, in-

cluding such approaches as Genetic Algorithms (GAs) [Holland 1975; Goldberg

1989], Particle Swarm Optimization (PSO) [Kennedy and Eberhart 1995], Estima-

tion of Distribution Algorithms (EDAs) [Larrañaga and Lozano 2001], and others.

This work will focus on and assume the continuous case, although application to

discrete problems is supported.

While evolutionary algorithms generally attempt to be good black-box func-

tion optimizers, No Free Lunch (NFL) theorems indicate that no single algorithm

can efficiently optimize the set of all possible functions [Macready and Wolpert

1996; Wolpert and Macready 1997]. While these theorems were developed and

proven for discrete problems, it is widely believed that they also apply to continu-

ous applications. This poses an interesting problem for researchers and algorithm

designers: any given approach to optimization is known a priori to be ineffective

on a large class of functions. This lends significance to an interesting and often

elusive question: on which class of functions will a given algorithm perform well?

Ideally, it will work well on a useful class of functions, generally meaning that it is

readily and efficiently applied to some set of important real-world problems; any

problem not in the class is of no interest.

Finding such an algorithm–class pairing is usually a difficult task, leaving

researchers few options but to gather empirical evidence to support or refute a pair-

ing hypothesis. Such evidence is generally collected by applying the algorithm to a

set of standard benchmarks, commonly chosen so that various high-level function

characteristics are represented in the tests: continuity, deceptiveness, smoothness,
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symmetry, etc. This approach, while properly recognizing the need to establish

algorithm–class pairings, does not necessarily achieve its goal [Whitley and Watson

2006].

At least partly to blame for the inherent difficulty of establishing good

pairings is the fact that evolutionary algorithms are traditionally motivated by

intuition or biological processes; while often useful, such motivation differs enough

from the question of algorithm–class pairing that it sheds little light upon it: the

algorithm’s design desiderata, e.g. “a good hill climber” or “able to jump over local

minima”, do not directly reflect its corresponding performance desiderata, e.g., “an

efficient optimizer of noisy bowl-shaped functions” or more generally “tuned to

function class F ”. Because of No Free Lunch, any algorithm designed with the

goal of outperforming random search must encode the function class for which it

is expected to do so; unfortunately, that specification is often hidden within the

machinery of the algorithm; the function class is precisely but blindly designed

into the method.

While recent approaches like EDAs suffer less from this dis-

connect than more traditional evolutionary algorithms [Syswerda 1993;

Baluja 1994; Baluja and Caruana 1995; de Bonet et al. 1997; Pelikan et al. 1999;

Pelikan and Goldberg 2000a,b; Pelikan et al. 2002], the distinction between design

and performance desiderata remains. EDAs, which are motivated by assumptions

of statistical closeness of good locations, continue to leave the true function class

definition implied.

We propose an evolutionary optimization algorithm that, like EDAs, gathers

and exploits statistical information obtained during the sampling process. The

algorithm is based on statistical inference in a Dynamic Bayesian Network (DBN),

and is called the Evolutionary Optimization DBN (EO-DBN). While this model

uses population information to generate distributions from which new populations
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are sampled, it differs from traditional EDAs in that it both admits and requires an

explicit and direct specification of the function class for its operation, thus elegantly

unifying design and performance desiderata. In fact, the specification of function

class represents nearly all of the prior information needed for the algorithm’s

operation.

We begin by describing simple static Bayesian networks that model func-

tion sampling and optimization, with more particular attention given to the latter.

Several examples are then given which illustrate the process of inference and the

significance of various aspects of the model. Finally, the full EO-DBN is created by

introducing evolution into the optimization network, and its behavior is demon-

strated and discussed.

8.2 Bayesian Models of Sampling and Optimization

The basic goal of using a Bayesian network to describe and facilitate optimization

is the unification of design and performance desiderata in the resulting algorithm.

More particularly, it is to give the desired efficiently-optimizable function class

a prominent role in the process of algorithm design, not merely in post-design

performance analysis.
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To accomplish this goal, one must first consider the process at the heart of

empirical optimization: function sampling. This process consists of three essential

components:

• f : the function itself,

• x: a location to be sampled, and

• y: all information obtained at that location.

The relationship between these elements is depicted in Figure 8.1(a), which shows

that f and x influence y. When obtaining deterministic value samples, the nature

of that influence is unambiguously defined as y = f (x), but the network also allows

for more general relationships. A great deal of flexibility is also allowed in the

contents of y (e.g., a value, a gradient, or both), but in this work it will generally be

assumed that y is a singleton consisting only of the value at x.

The network displays the function as an unshaded node, indicating that it is a

variable whose value is hidden. Even though it must be available for sampling, it is

considered “hidden” because a complete description of the characteristics of interest

(such as the location of its global minimum) is not available. This is even true in

many cases where an analytical form of the function is known; if the characteristics

of interest are hidden, so is the function in the model.

When supplied with definitions of the various information relationships,

Bayesian inference may be applied to the network to calculate distributions over

any of its unknowns. It is possible, for example, to use the model to compute

ρ(y | f , x), a distribution describing the likelihood of various outputs given a func-

tion and a point at which it should be sampled. More interesting, however, is

the ability to infer ρ( f | x, y), a distribution over the functions that are consistent

with an observed sample. This latter distribution encapsulates the goal of function

approximation, e.g., learning a distribution over the weights of an artificial neural

network [De Freitas et al. 2000].
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Function approximation is interesting, but optimization does not require

that the complete function be learned, limiting its goals instead to discovery of the

global minimum located at x?. The expanded network shown in Figure 8.1(b) is

therefore more suitable for this purpose, including the goal of optimization directly

into the network and clarifying its relationship to the other elements there: x? is

defined or influenced by f . As long as a distribution describing this relationship is

known, the network may be queried to determine ρ(x? | x, y), which is the essence of

empirical optimization: obtaining information about x? given one or more discrete

samples.

While such a relationship between the true function and its global minimum

is not generally known (else why optimize?), the relationship certainly exists and is

therefore an essential part of the optimization model. Exactly how that relationship

may be specified and used in practice will be discussed in detail later.

Finally, one more extension is present in Figure 8.1(b). Instead of merely

representing the sampling of a single value y at a single location x, the network

describes the process of sampling multiple locations simultaneously, replacing x

and y with the matrices X and Y, respectively. This model will be referred to as the

Bayesian Optimization Network (BON) for the remainder of this work.

8.3 Inference in the Bayesian Optimization Network

Optimization in the BON is achieved by inferring ρ(x? |X,Y), a distribution over

likely locations for the global minimum conditioned on information obtained from

sampling. Inference of ρ(x? |X,Y) in the Bayesian optimization model is accom-

plished using the Chain Rule and Bayes’ Law [Russel and Norvig 2003]:

ρ(x? |X,Y) =
∫
ρ(x? | f )ρ( f |X,Y) df ∝

∫
ρ(x? | f )ρ(Y | f ,X)ρ( f ) df . (8.1)
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This definition makes it clear that before inference can proceed, the function prior

ρ( f ), optimization distribution ρ(x? | f ), and sampling distribution ρ(Y | f ,X) must be

specified. Insofar as these specifications are representative of the intended function

class and useful samples X and Y are obtained, ρ(x? |X,Y) will be a good indicator

for x?, and sampling from it should produce fit locations, suggesting a way in

which new populations might be generated.

Optimization researchers familiar with EDAs will note their similarity to

this approach: a distribution over points likely to contain the global minimum

is sampled to produce each new population. They will also, however, note the

striking differences in the way that this distribution is obtained: an EDA creates

its distribution from select members of a population by applying a predetermined

distribution representation and acquisition methodology, while the Bayesian op-

timization model makes use of a function class definition as encoded in several

distributions. EDAs rely on an implicit choice of function class, encoded in the

distribution representation and the algorithm used to obtain it; and the Bayesian

optimization model relies on an explicit choice of function class, encoded in the

various distributions that describe the network. This distinction will be justified

and discussed in greater detail throughout this work.

8.3.1 Practical Inference

It is not immediately clear how to specify a parametric prior over the space of all

continuous functions that is both simple and useful, ruling out many analytical

methods of inference, e.g., methods requiring Gaussian distributions. Numerical

inference methods such Markov Chain Monte Carlo simulation or Particle Filtering

(or Likelihood Weighting in static networks, though the distinction is not critical

here) must be used instead [Russel and Norvig 2003]. Though based on discrete

samples, particle filters are simple to implement and describe and are reasonably
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tractable with today’s computing capabilities, making them the method of choice

for this work’s pedagogical purposes.

Particle filters sample “particles” from all prior distributions, then push the

particles forward through related conditional distributions until encountering an

observed variable. At that point, the likelihood of the observation is calculated with

respect to each particle, providing a discrete estimate of the posterior distribution.

This process consists roughly of the following steps, described in greater detail in

Algorithm 3:

• Select candidate solutions X,

• Evaluate the true function f? at each position, producing a matrix of cost

values Y,

• Create a set of particles, each of which represents a function, and

• Calculate the likelihood of each particle (function) with respect to X and Y.

Algorithm 3 Particle filter for one time step in the EO-DBN
1: # Create a population of NX candidate locations and obtain values
2: X = (x1 . . . xNX ), with xi ∼ ρ(x? | fi) and fi ∼ ρ( f )
3: Y = (y1 . . .yNX )>, with yi = f?(xi)
4: # Create NP particles and calculate the normalized likelihood for each
5: P = ( f1 . . . fNX )>, with fi ∼ ρ( f )

6: L=
(
L( f1 |X,Y) . . .L( fNP |X,Y)

)>
/
∑NP

i=1L( fi |X,Y) withL( fi |X,Y)=
∏NX

j=1 ρ(y j | fi, x j)
7: # We now have a discrete representation of the function posterior that may be sampled:
8: ρ( f |X,Y) B P,L

The distinction between the true function ( f ?) and the function variable in

the network ( f ) is subtle but important when describing the algorithm. The true

function f? is the real-world function that is the target of optimization; sampling it

represents (potentially costly) function evaluations. In contrast, the variable f rep-

resents the algorithm’s internal representation of its knowledge and assumptions

about the true function. Ideally, sampling from a distribution over f will provide

a good approximation to f?.
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The issues of choosing a suitable prior ρ( f ), a meaningful sampling distri-

bution ρ(Y | f ,X), and an appropriate optimization distribution ρ(x? | f ) are most

easily addressed and understood by example. The next several sections will there-

fore be devoted to concrete demonstrations of how distributions are specified and

what such specifications mean, beginning with toy examples and moving toward

more practical and interesting ideas.

8.4 Example: Simple Parametric Priors

Distribution specification begins with a definition of the function class. Suppose,

for example, that the function subject to optimization is known to be “similar to a

cone”. The prior ρ( f ) provides the specification of “a cone”, the sampling distri-

bution ρ(Y | f ,X) provides a precise meaning for “similar to”, and the optimization

distribution ρ(x? | f ) dictates how to extract the location of the global minimum

from “a cone” as described in the prior. Consider, for example, the following

distributions:

ρ( f ) =



ρ(c) if f ∈ {λx.g(x, c) | ∀x ∈ RD.g(x, c) = ‖x − c‖2}

0 otherwise
(8.2)

ρ(c) = N(0,Σc) (8.3)

ρ(y | f , x) = N( f (x), σy) (8.4)

ρ(x? | f ) = δ(x? − c) . (8.5)

The prior ρ( f ) uses lambda calculus to state that only cones of the form ‖x− c‖2 will

initially receive any density. It does so by defining an auxiliary prior distribution

over the cone’s parameters, ρ(c), which is in this case normal. In other words, ρ( f )

favors cones which are centered near the origin and gives no weight to functions
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which are not cones. While only one of the possible definitions of “a cone”, this

definition is precise.

The sampling distribution ρ(Y | f ,X) also plays a significant role in the spec-

ification of the function class, providing a way of blurring the line between “cone”

and “non-cone” by precisely defining the meaning of “similar to”. In this particular

instance, the distribution assumes that all true values are within a Gaussian sample

of a cone’s corresponding values. Interestingly, when coupled with the prior, this

results in every possible function receiving at least some likelihood, since all values

at all positions receive at least a small amount of nonzero density in the network.

Finally, the optimization distribution ρ(x? | f ) defines the goals or intent of

the search process. Because of the way that “a cone” is defined, any particular cone

sampled from the prior will have a minimum located at c. The delta distribution is

therefore used to indicate that the critical relationship is x? = c.

Together, these distributions represent an almost complete specification of

optimization in the Bayesian model. All that remains is to choose a number of real

function samples NX and, because a particle filter will be employed, the number

of particles NP. Of course, the various distributional parameters must also be

specified. To lend concreteness to the discussion, consider the following settings:

D = 1 f?(x) = ‖x − 50‖2

NP = 5000 Σc =

(
(50/3)2

)

NX = 1 σy = 1 .

In other words, 5000 particles will be used, a single sample taken, and the true

function will be a one-dimensional cone centered at x? = 50.

Following the steps of Algorithm 3, line 2 dictates that samples be taken from

the function prior, then from the conditional optimization distribution, producing a
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Figure 8.2: Cone prior with a true cone function

population of candidate solutions. In this example, exactly one sample is produced

since NX = 1. Let the result of sampling from ρ(c) be c = 25; sampling from the

trivial ρ(x? | f ) therefore produces the (singleton) population of candidate solutions

X = (25).

Line 3 of the algorithm describes the process of evaluating the true function

f? at all candidate locations, which in this case produces Y = ( f ?(25)) = (25). With

a population of candidate solutions and their corresponding true values, it is now

possible to perform inference; the observable variables are now assigned, so the

particle filter may be applied. Line 5 describes the process of obtaining particles,

producing a vector P of 5000 cones, each centered at a location drawn from ρ(c).

Finally, line 6 gives a formula for calculating the normalized likelihood of each

particle from ρ(Y | f ,X), producing an empirical approximation to the posterior

ρ(x? |X,Y) as shown in Figure 8.2(a).

With exactly one sample at the location 25, the two cones centered at 0

and 50 are maximally consistent with the data, as shown in Figure 8.2(b). The

peak in Figure 8.2(a) corresponding to the true function’s minimum at 50 is more
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sparsely represented than the wrong peak at 0 because ρ(c) favors the origin, but

the posterior ρ(x? |X,Y) still provides good likelihoods for the correct minimum.

It is worth noting that had ρ(Y | f ,X) not allowed for uncertainty or noise

in its specification, it would have been practically impossible to obtain a useful

distribution over x?. In a continuous setting such as this, the likelihood of sampling

the exact set of parameters which will produce perfectly consistent results is zero,

and therefore some amount of uncertainty must be encoded in ρ(Y | f ,X): a delta

distribution does not provide sufficient approximate information.

Had the population of samples contained 2 locations with unique values,

there would have been exactly one peak in the graph, since an additional evaluation

would serve to differentiate between the two peaks. Significantly, even though the

sample point is nowhere near the actual global minimum, it provides enough

information to indicate where the minimum is. This is one important consequence

of including a specification of the function class in the Bayesian optimization model;

minima may be discovered without ever being members of the population of

candidate solutions. The minima may be represented among the population of

particles, but particle creation and evaluation do not rely on the direct evaluation of

the true function f?; it is possible to discover the minimum without ever sampling

it.

8.4.1 Problem Complexity in the Sampling Model

This example provides a good context for a discussion of the role of representation

in problem complexity. Temporarily ignoring the complexity of particle filtering (it

is an implementation detail independent of the target function), there are two major

sources of problem complexity in the model: sample complexity and computational

complexity.
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Sample complexity is a notion researched extensively in the machine learn-

ing community, describing the number of samples of f ? required to obtain a good

approximation to it. This is relevant in the context of the Bayesian optimization

model because it casts part of the optimization problem as a learning problem,

specifically the problem of taking sufficient samples of f ? so that a good approxi-

mation may be obtained; the approximation need not be perfect everywhere, but

should be correct enough that accurate optimization may be performed. In this

particular example, the space of learning hypotheses is the set of all possible centers

for the cone defined in (8.2).

This example’s representation is admittedly simplistic and limited, as well

as being only one-dimensional. It is therefore easy to see that two unique sam-

ples are sufficient to determine the center of the true cone. One sample nar-

rowed it down to basically two possible parameter vectors, and one more would

narrow it further. In general, establishing bounds on the sample complexity of

a particular representation is part of a large body of existing and ongoing ma-

chine learning research, but when an appropriate representation is used, upper

and lower bounds on the number of required samples can be obtained [Mitchell

1997; Christianini and Shawe-Taylor 2000]. Specifically, if the representation’s “Fat-

Shattering Dimension” is discoverable and finite, its sample complexity may be

bounded [Valiant 1984; Bartlett et al. 1996; Kearns and Schapire 1994], providing

a natural worst-case stopping criterion for an evolutionary optimization algorithm.

Although both upper and lower bounds are often available, the lower bound is not

likely to be correct in the Bayesian optimization model because only enough of f ?

to facilitate optimization must be approximated.

The computational complexity of a problem is evident in the definition of

ρ(x? | f ), a distribution which provides a statistical mapping between a function

drawn from the prior and the location of its global minimum. In this example, it is
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computationally trivial to draw samples from ρ(x? | f ) because it simply states that

x? = c. Such simplicity is not the rule in general, however, and the complexity of

sampling from that distribution is in many cases significantly higher. Consider, for

example, the prior

ρ( f ) =



ρ(c) if f ∈ {λx.g(x, c) | ∀x ∈ R.g(x, c) = ANN1(x, c)}

0 otherwise
(8.6)

where ANN1 is a multilayer feed-forward artificial neural network with some

predefined structure. The parameter vector c in this case represents the weights on

the network edges. If the network is large enough, it may be capable of immense

flexibility. Even if it has a relatively low fat-shattering dimension and therefore has

low sample complexity, there is another source of complexity in this representation:

ρ(x? | f ).

Artificial neural networks, for all of their strengths, do not easily lend them-

selves to output minimization. Therefore, ρ(x? | f ) may actually hide another opti-

mization problem with its own associated complexity! While in many cases this is

unacceptable and a representation more amenable to minimum discovery should

be used, in other cases it represents a reasonable tradeoff; in many real-world sce-

narios, e.g., tuning the parameters of an oil refinery to produce maximum output,

computer time is extremely cheap compared to function evaluations, so offline

optimization of an ANN is acceptable.

That the complexity of the problem is inherently tied to the flexibility of

the representation of the prior serves to clarify part of No Free Lunch, especially

the proof that problem difficulties cannot be ranked in the absence of a specific

algorithm [Macready and Wolpert 1996]: it is not, in fact, the choice of algorithm

that makes ranking possible among problems, but the choice of representation.
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Additionally, the Bayesian optimization model provides a means by which the

problem complexity can be quantified: it consists of an upper bound on the number

of required function evaluations combined with the computational complexity of

sampling from ρ(x? | f ). That this complexity can be obtained at all is a strength of

the model.

8.4.2 Wrong Priors

No Free Lunch dictates that any algorithm may be deceived, a difficulty to which

the inference algorithm is not immune. Suppose, for example, that the true function

is not a cone, but a parabola centered at the origin: f ?(x) = ‖x‖22. With all other

details unchanged from the example, the new posterior distribution is shown in

Figure 8.3(a) and is anything but reasonable. The actual location of the minimum

does not receive the lowest likelihood, but it certainly does not receive the highest.

Oddly enough, the likelihood is lowest at the sampled location and increases when

moving away from it.

This behavior is explained by Figure 8.3(b), which shows that moving away

from the sample, at least until a function is found which crosses through (x, y),

causes the likelihood to increase. In this particular case, even adding more sample

points fails to correct the distribution unless those points are generated very near

the origin. Without the aid of the graphs, it may seem somewhat surprising that

a conic prior does not allow the inference algorithm to perform well when given

a parabolic function, but in reality parabolas receive vanishingly small likelihoods

in the defined class. The class is “similar to a cone”, and the definition of “similar

to” is “within a Gaussian sample of”, which a parabola clearly violates over most

of its extent. Another, more useful definition of “similar to” will be given later that

does admit the optimization of a parabola given a conic prior, but this particular

definition of ρ(Y | f ,X) does not.
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Figure 8.3: Conic prior with a parabolic f?

It is of course, possible to slightly extend ρ( f ) so that it at least does some-

thing reasonable in a bounded region. One may, for example, add a scale parameter

that allows the cone to become steep or shallow, allowing it to fit the area around

the parabola’s global minimum well enough to indicate its location. This approach,

while useful, is a slippery slope: if an asymmetric function is targeted, should yet

another parameter be added? What about bumpy functions? Each new parameter

increases the sample complexity, often significantly, and such extensions warrant

careful consideration.
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8.5 Example: Discrete Priors

Perhaps the simplest way to specify ρ( f ) is as a discrete set of functions with

associated fixed probabilities:

ρ( f ) =



p1 if f = λx. f1(x)

p2 if f = λx. f2(x)

...

pN if f = λx. fN(x)

p0 otherwise

. (8.7)

So long as ∀i.pi ≥ 0 and
∑N

i=0 pi = 1, any set of probabilities and any number or

variety of functions may be specified. Once again, sampling from ρ( f ) produces

a function rather than a scalar, the notation of lambda calculus is employed in the

specification.

In this case, the prior makes the function class of interest very clear: the true

function is assumed to be one of those listed. Whether this prior is reasonable or

not depends on what an optimization practitioner knows about his problem; if he

knows that he is optimizing one of the listed functions, it is a useful prior that will

provide good information, otherwise it is not.

One can conceive of a situation in which a conference deadline is approach-

ing and an algorithm which performs well on a number of benchmarks is needed.
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In this case, the prior distribution might be defined as

ρ( f ) =



1
3 if f = λx. f1(x) where f1(x) = ‖x‖22
1
3 if f = λx. f2(x) where f2(x) = ‖x‖22 + 10

∑D
i=1 1 − cos(2πxi)

1
3 if f = λx. f3(x) where f3(x) = 20+e−20 exp

(−‖x‖2
5
√

D

)
−exp

(
1
D
∑D

i=1 cos 2πxi

)

0 otherwise

(8.8)

where D is the dimensionality (which in this section will be assumed to be 1)

and the functions are the well-known Sphere, Rastrigin, and Ackley, respectively.

Because the minimum of each of these functions is at the origin, the optimization

distribution is

ρ(x? | f ) = δ(x?) . (8.9)

Additionally, the sampling distribution can dictate that values must precisely match

function output

ρ(Y | f ,X) =
∏

i

δ(yi − f (xi)) (8.10)

making the function class “precisely one of the listed benchmarks”.

It is relatively easy to see that Algorithm 3 will only generate candidate solu-

tions at the origin, since all functions sampled from ρ( f ) have their minimum there.

Because of this, the algorithm will fail to distinguish between functions, but will

still readily find the global minimum when presented with a function represented

in the prior. In fact no function evaluations are needed to find a correct posterior,

since the distribution ρ(x? | f ) as defined in (8.9) is not actually conditioned on the
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function! The posterior will immediately put all weight on the location 0, which is,

in fact, the global minimum for all functions in this class.

What happens if the true function is not listed in the discrete prior? Unless

the true function either has its global minimum at the origin like those listed or the

unknown case is assigned non-zero probability, the likelihood normalization step

of the algorithm will divide by zero and fail. This is reasonable behavior because

the specification is too limited; the algorithm simply performs as instructed, and

fails to provide any information at all if none can be obtained from the given

specifications.

8.5.1 No Free Lunch

It is true that this example is trivial, not likely to happen in the real world, and even

somewhat silly. It serves, however, to illustrate an important point: the inference

algorithm will take advantage of all of the information available to it. If it is, in

fact, known that f? is one of several that can be finitely listed, then the algorithm

will select among them as quickly as their similarities will allow, thus efficiently

providing the location of the global minimum. If, however, a far more flexible

representation is needed and the function class is greatly expanded, it is possible

that many samples will be required to find the global minimum.

One can think of the extreme case where the class of all possible functions

is (more or less) equally represented in the distribution specifications. Because

arbitrary point-value pairs are allowed in such a class, it must have an uncountable

representation: a single function is an uncountable list of such pairs, and there are

uncountably many such functions.

Even if it were possible to assign equal non-zero weight to an uncountable

number of functions, which it is not, no amount of sampling would serve to distin-

guish between them or to give any inclination as to where the global minimum is
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located; sampling a single point produces a single value, but even points arbitrar-

ily close to the recent sample remain unknown. The situation only worsens in the

presence of noise.

In other words, there is no algorithm that can perform better than ran-

dom search in consideration of the class of all functions. This result is sim-

ply a restatement of the well-known No Free Lunch theorem for optimization

[Wolpert and Macready 1997]. While the theorem was proved for discrete prob-

lems, the Bayesian optimization model makes it obvious in the context of contin-

uous problems as well; any prior that represents all possible functions equally (if

such a prior could even be defined in a continuous setting) cannot allow any infor-

mation to be gained through sampling, and therefore no algorithm will do better

than random search.

The solution is to specify a more limited class than that containing all possible

functions, one that is useful for the problem at hand. In this toy example, the problem

is to do well on one of several benchmark functions; the class is extremely limited

and arguably not at all useful in real-world settings, but it performs perfectly in

the given situation. In fact, compared to any other algorithm, it is by far the best

performer on the three listed benchmarks, since it requires absolutely no function

evaluations to do its job. When compared to other algorithms on functions whose

global minimum is not precisely at the origin, however, it will clearly be a very

poor performer.

Because No Free Lunch is a well-known concept, researchers are increasingly

interested in finding function classes that are well matched to their algorithms. The

determination of an algorithm–class pairing is generally approximated by testing

the algorithm on one of a number of benchmark functions, then generalizing the

results by distilling various defining characteristics of those benchmarks. It has

been argued that this is a somewhat fruitless enterprise because it actually fails
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to answer the pairing question [Whitley and Watson 2006], but it has been the

only generally-applicable approach available. The Bayesian optimization model

and this last example serve to clarify the reasons for this: every algorithm uses

some amount of domain knowledge, and the amount of knowledge incorporated

is generally hidden within the machinery of the algorithm. It is rarely clear exactly

what function class assumptions are encoded in algorithms such as PSO, GAs,

EDAs, etc., but such assumptions are undeniably present, else No Free Lunch

demands that the algorithms do no better than random search.

The need to answer the algorithm–class pairing question is therefore at the

heart of the consequences of No Free Lunch; nothing can do better on average

than random search when considering all functions, but most algorithms are well-

suited for at least a useful subset of those functions. Optimization methods should

therefore be designed for a particular function class, not merely studied to discover

that class after their creation.

8.6 Example: More General Priors

Prevalent in optimization algorithms is the assumption that hill-climbing is a useful

behavior. This assumes, in essence, that the portion of the function which contains

the global minimum is “similar to a bowl”. In fact, this assumption is buried in a

number of evolutionary optimization algorithms, many of which tend to be good

hill-climbers.

Particles in PSO, for example, take their current velocity into account when

moving, indicating a preference for continuing in what was previously a good

direction. This greedy behavior, while balanced by new information, is an attempt

at hill-climbing, as is the fact that only the best solutions in a neighborhood are

considered. GAs and EDAs alike perform selection before producing new candi-

date solutions, effectively treating poor performers in the population as less useful
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than other members; the minimum is assumed to be near other locations of low

value and evolutionary operators push a population toward those values. These

assumptions of self-similarity and hill-climbing generally point to a function that

is, at least at some scale or in the region of interest, “similar to a bowl”.

There is nothing wrong with these assumptions, provided that they repre-

sent a desirable class of functions. The problem lies in the way that “similar to

a bowl” is traditionally defined: implicitly and as part of the subtle machinery

of the algorithm. The Bayesian optimization model admits more direct encoding

of phrases such as “similar to a bowl”, and the example that follows provides a

definition that captures the essence of that description. As previously seen, the

combination of ρ( f ) and ρ(Y | f ,X) can specify the function class in an intuitive

way.

Many functions fit a human definition of “bowl-shaped”, including parabo-

las, cones, and functions describing distinctly non-parabolic, real-world dinner-

ware. What, then, is the essence of the definition? Consider the following distri-

butions:

ρ( f ) =



ρ(c) if f ∈ {λx.g(x, c) | ∀x ∈ RD.g(x, c) = ‖x − c‖2}

0 otherwise
(8.11)

ρ(c) = N(0,Σc) (8.12)

ρ(Y | f ,X) ∝
∏

i< j

p(yi, y j | f , xi, x j) (8.13)

p(y1, y2 | f , x1, x2) =



1 − α if sign(y1 − y2) = sign( f (x1) − f (x2))

α ∈ (0, 1) otherwise
(8.14)

ρ(x? | f ) = δ(x? − c) . (8.15)
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The function prior, defined in (8.11) and (8.12), is the familiar conic prior from

Section 8.4, and the optimization distribution ρ(x? | f ) is also familiar. These defi-

nitions therefore indicate that “a bowl” is defined to be “a cone” as specified in a

previous example.

The distribution that sets this example apart from the others is ρ(Y | f ,X),

defined in (8.13) and (8.14). Its definition captures the meaning of “similar to”,

a significant part of the specification of the function class. In previous examples,

this distribution was based on the notion that y = f (x), sometimes with added

white noise. In this example, the distribution is defined based on the pairwise

relationships between values, not the values themselves; the probability of observing

a particular value relationship is higher with a consistent “bowl” than with one

whose corresponding pairwise relationship is inconsistent. In all examples that

follow, α = 0.475, effectively assigning a generous amount of probability to bowls

as defined in (8.11) that are inconsistent with a particular observed value pair. A

value so close to 0.5 indicates that a great deal of noise will be tolerated in the

function: so long as the majority of pairs point toward the global minimum, the

majority need not be a large one.

The definition of bowl-shaped using these distributions is actually quite

intuitive: given two points, the point with the lower value will tend to be closest

to the minimum. Any function which, like a cone, exhibits a general trend toward

the global minimum is a member of this class. Even very noisy functions can be

members of the class, provided that random sample pairs that point toward the

global minimum tend to outnumber those that do not. Thus, “similar to” means

“having the same basic trend, as manifested by random sample pairs”, and captures

the essence of a human definition of a bowl far more adequately than the example

in Section 8.4.
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Obviously, this function class definition requires that NX ≥ 2. The applica-

tion of this class definition is no different than for any of the previous examples;

Algorithm 3 still applies directly. The results of its application to several com-

mon benchmark functions in 1 dimension are shown in Figure 8.4. The following

parameters were used to generate the graphs: NX = 10, and NP = 5000.

The behavior of this algorithm given the bowl-shaped prior defined above

is notable: it not only behaves rationally for DeJongF4, which while being bowl-

shaped is very different from a cone, but also for bumpy functions such as

Griewank, Ackley, and Rastrigin, verifying the claim that even noisy functions

can be part of the class, provided that they display a general trend toward the

global minimum.

8.6.1 The Burden of Specification

Let us take a short digression and consider Particle Swarm Optimization. The

motivation behind the algorithm was a simulation of natural flocking behavior,

and by paring down the math, PSO was born [Kennedy and Eberhart 1995]. This

discovery was somewhat serendipitous and accidental, but it has proven to be

a fruitful area of research since its discovery. In the design of PSO, with the

exception of some discussion about specific functions, no direct consideration was

made of the class of functions on which it may be expected to work well. In

fact, much of the research following its discovery has been focused on evaluating

its performance in various applications, such as the training of artificial neural

networks and support vector machines [Eberhart and Shi 2001; Mendes et al. 2002;

Paquet and Engelbrecht 2003b].

While the pursuit of interesting applications of PSO is valid and useful,

it is also telling; here is an algorithm that appears to have promise, but exactly

what kind of promise it has is unclear. Researchers must simply test it in various
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settings and report their findings. To be fair, PSO is not at all unique in this sense;

establishing an algorithm–class pairing is approached in this manner for practically

every evolutionary optimization algorithm.

In contrast, the Bayesian optimization model does not admit such serendip-

itous algorithm design; it requires a complete, a priori specification of the class of

functions on which it is expected to work, and on that class it will work as effi-

ciently as it can; anything less will not produce a working algorithm. While this

appears to be a solution to the algorithm–class pairing problem, it may seem as

though a greater burden has been placed on the algorithm designer or optimization

practitioner: one of complete and precise specification of intent.

This is indeed a tradeoff, but it is well worth the cost. Rather than producing

an algorithm based heavily on inspiration or intuition, one may now take control

of how optimization will proceed based on actual available domain knowledge.

When such knowledge is present, it may (indeed, it must) be incorporated directly

into the specification of the algorithm, which then makes effective use of all of the

information it receives. This approach to algorithm design is certainly no worse

than that traditionally used, and is in fact a good deal better.

A somewhat more compelling argument against the Bayesian optimization

model can be made when little or no domain knowledge is available. In these

settings, practitioners commonly employ several of the algorithms at their disposal

simultaneously in an attempt to find one that works well. That the inference

algorithm requires explicit a priori specification of intent appears to make it a poor

choice in these situations because the real intent is not known. This is, however,

not the case.

In light of No Free Lunch, a choice between available optimization algo-

rithms (e.g., PSO, GAs, Simulated Annealing, Amoeba Search, etc.) is really just a

choice between predefined function classes. The Bayesian optimization model does
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not take that choice away, it simply makes it clear. In fact, the Bayesian optimization

model’s inference algorithm has the potential to simplify the process of finding the

right algorithm for the job: the algorithm itself (inference) remains fixed, but one

may explore the nature of the application at hand by observing the performance

of various function class definitions; instead of choosing among several opaque

algorithms, one may select transparent specifications whose application serves to

narrow down the true function class.

Therefore, while it is true that a greater burden of explicit specification has

been placed on the practitioner than exists in more traditional contexts, the equally

heavy burden of blindly searching for the right tool has been lifted.

8.7 Introducing Evolution: The Evolutionary Optimization DBN

The discussion has been focused thus far on a static Bayesian optimization model

that makes use of a single population of samples. The success of evolutionary

optimization methods suggests that something may be gained by using multiple

generations of samples over time, and the incorporation of that idea produces

a more complete model of optimization based on Dynamic Bayesian Networks

(DBNs): the Evolutionary Optimization DBN (EO-DBN).

The dynamic model that incorporates evolution is shown in Figure 8.5 and

is inspired by EDAs. The figure displays the distributions instead of the variables,

but the meaning should be clear: the variable over which a distribution is defined

is the variable belonging in the node, and all conditional variables are parents of
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that node. The inference algorithm’s task is to obtain and use the distributions

shown.

This perspective introduces the distributions ρ( ft | ft−1) and ρ(xt | x?t−1). The

former defines a way in which functions may change over time, and the latter

defines how each new population is generated from the last. A closely related

distribution, ρ(x), is used for generating the initial population. Though the previous

examples have used ρ( f ) and ρ(x? | f ) to generate the initial population, this is not

required in general and the greater flexibility of a separate ρ(x) can be useful.

There are two basic types of evolution introduced by this model, and both

will be addressed here. The first is population evolution, which is what is normally

considered to be the meaning of the term “evolution” in evolutionary algorithms.

The second is artificial evolution, which is an interesting statistical trick (with an

unfortunately overloaded name) used to introduce needed diversity into empirical

distributions produced by numerical inference methods such as particle filters.

8.7.1 Population Evolution

Population evolution is widely considered to be the key element of evolutionary

algorithms. It is the process of generating a population using information gained

from evaluating a previous population. In a more general sense, it is actually better

described as “population replacement”, since the current members of a population

need not have a direct relationship to members of the previous population, as is

the case with EDAs.

An important motivation for the introduction of population evolution into

the Bayesian optimization model is the ability to work with functions at varying

levels of detail. Consider Rastrigin, which at very low or “blurry” levels of detail

looks smooth and bowl-shaped, but at higher levels of detail appears very bumpy.

A posterior created by sampling from a low-confidence (high variance) function
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prior may point out roughly where the global minimum is located, but in reality the

neighborhood given high likelihood in the posterior needs to be searched in greater

detail to find the true minimum. Once all samples begin to fall within the same

local minimum, that area of the function is again smooth and bowl-shaped and can

be explored in greater detail. Of course, in any continuous setting the goal is not to

find the minimum, but to close in on it, since the probability of actually sampling

the global minimum is zero; there are simply too many neighboring points that

may be arbitrarily close in value or position.

This reduction in scale frequently cannot occur if all of the information

gained about the function is used all of the time, since previous information about

the larger function may naturally include other local minima and will therefore

have the potential to deceive the algorithm while it explores the current area of

interest. Thus, selectively discarding or discounting information within members

of the previous population allows more efficient exploration to occur in the future,

providing a strong argument in favor of population evolution.

Additionally, population evolution causes inferred posterior distributions

to become increasingly narrow, providing a natural stopping criterion based on the

desired level of detail: stop when the high-likelihood values cover a sufficiently

small area.

The exact nature of population evolution is defined in ρ(xt | x?t−1), a distribu-

tion that provides another opportunity to specify an algorithm designer’s intent

and thus the class of functions for which the algorithm is well-suited. The kind of

population evolution described above assumes something that may or may not be

true: that past information provides indicators for how to productively narrow the

search. The purpose of this discussion is not so much to indicate how population

evolution should occur, but rather that it is directly specified in the model. This

is in keeping with the theme of this entire work: decisions must undoubtedly be
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made during the specification of an optimization algorithm; the key is to make

those decisions clear and explicit.

8.7.2 Artificial Evolution

“Artificial evolution” was actually produced in the context of dynamic Bayesian

networks, and not in the context of traditional evolutionary algorithms. It refers

to a statistical trick that allows smoothing of the posterior distribution to occur via

artificially noisy transitions [Liu and West 2001].

While ρ( ft | ft−1) can obviously be used to model a truly dynamic target

function, it can also be used to model changing uncertainty about a static function. It

can, of course, combine the two and model both at once. For truly static functions,

however, it is tempting to define the distribution thus:

ρ( ft | ft−1) =



1 if ft−1 = ft

0 otherwise
(8.16)

Given that the EO-DBN generally requires a numerical method of inference, this

distribution is not likely to be very useful. Consider that the estimate of the

distribution over functions at time t− 1 is actually the posterior ρt−1( f |X,Y), which

is represented by a discrete set of particles and associated likelihoods. Sampling

from such a discrete distribution is a solved problem [Liu and West 2001], but

over time the number of unique samples will decrease, since (8.16) displays no

uncertainty whatsoever that what it sees is still correct; no noise is introduced that

would allow other “nearby” particles to be generated.

A common solution for this problem is to make use of “artificial evolution”,

which basically changes ρ( ft | ft−1) to introduce noise (often additive Gaussian) into

the system, allowing particles to be created that have not been sampled previously.
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As mentioned before, this approach is equivalent to the more principled idea of

applying kernel smoothing to the posterior before resampling [Liu and West 2001],

but is more popular because it is simpler to implement. The same argument applies

to ρ(x? |X,Y), since it is also a discrete approximation of a continuous distribution.

The definition of ρ( ft | ft−1), because it allows for the optimization of dynamic

functions, obviously represents an important part of the function class specifica-

tion. What is perhaps not as obvious is that introducing artificial evolution to

that distribution also subtly affects the class specification. For example, if Gaussian

noise is employed, there is an implicit assumption of locality. Care should therefore

be taken that any noise added to either ρ( ft | ft−1) or ρ(xt | x?t−1) is consistent with the

specified function class. In the examples that follow, the locality assumption is as-

sumed to be valid and ρ( ft | ft−1) and ρ(xt | x?t−1) are assumed to be delta distributions

with additive Gaussian noise.

Once it is established that Gaussian locality is reasonable in these distribu-

tions, it is not clear exactly what variance the noise should have. One sensible

approach is to let the variance for each particle be dependent upon the Euclidean

distance to its nearest neighbor. This approach is employed in several tests of the

evolutionary algorithm, specifically with the standard deviation in each dimen-

sion equal to twice the distance to the nearest neighbor. Results of applying this

technique to the “bowl-shaped” class with NX = 20 and NP = 1000 are shown in

Figure 8.6.

The distributions should be read from left to right, top to bottom, with each

new distribution representing one completed generation. As expected, the variance

is fairly high early in the run, then (taking note of the scales on the graphs) it settles

down into a high-resolution area of the function’s domain. While the graphs shown

are for one-dimensional functions, it has been verified that this method behaves

similarly in spaces of higher dimensionality.
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Figure 8.6: March of posteriors over x? for one-dimensional functions in the EO-
DBN
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The graphs have some interesting characteristics that are worthy of mention.

In Figure 8.6(c), the fourth generation exhibits some strange behavior: the distri-

bution has a high, flat plateau on one side. This occurs with the “bowl-shaped”

specification when all or most of the function evaluations are on one side of the

minimum. In that context, all pairs point in the same direction, and therefore the

minimum may be anywhere on one side. This does not happen often, but when

it does, the behavior is that depicted. Similar but less striking examples of this

behavior appear in Figures 8.6(a) and 8.6(b), as well. Of additional interest are

the early generations for Rastrigin, where the multimodality of the function is in

evidenced in the distributions.

8.7.3 The Curse of Dimensionality

EO-DBN does not claim to produce a free lunch, nor does it claim to overcome the

curse of dimensionality; as the dimensionality of a problem increases, so does the

size of the search space, independent of the applied optimization method.

Algorithms that address the curse of dimensionality generally do so by

employing heuristics that artificially limit the search space, focusing attention on

regions that are the most promising, contain the most information, or conform

to other such metrics of usefulness. Some limit the space by discovering low-

dimensional manifolds [Saul and Roweis 2003] while others make use of problem

constraints, but in the end all of them are using some amount of domain knowledge

to limit the scope of their efforts. In the presence of a multidimensional uncountable

space, indeed nothing else can be done.

The EO-DBN, while not claiming to overcome this curse of dimensionality,

does allow domain knowledge to be incorporated in a principled way and reduces

the search space over time by focusing its attention on the most promising areas

of the space, where “promising” is defined by the function class specification, the

161



declaration of search intent, the definition of population evolution, and the target

function itself. It may be viewed as an adaptive approach to space reduction that,

while not overcoming the curse of dimensionality, employs all domain information

available to limit the scope of search as efficiently as it can.

Nowhere is the curse of dimensionality more evident in the EO-DBN than in

the use of the particle filter as a means of approximating the posterior distributions,

although it is also present in the sample complexity. The particle filter, while easy

to implement and straightforward to explain, is not necessarily the best choice in

these situations because it can require a large number of particles to provide a good

approximation, especially as dimensionality increases. It is true that these particles

do not represent function evaluations and may therefore incur negligible cost in

some optimization problems, but in many cases the problem is entirely contained

in simulation (e.g., computer vision problems) and every sample costs roughly the

same amount, be it a sample of the target function or a sample from a prior.

This brings up two interesting points. First, other numerical inference meth-

ods exist and may be more efficient than particle filters for a given situation. For

example, Markov Chain Monte Carlo simulation can be effective in some situations

[Russel and Norvig 2003], an interesting avenue for future research.

Second, if the bottleneck of running the EO-DBN algorithm is in the numer-

ical inference method, it is likely that either the representation of the prior is overly

complex or that function evaluations are very inexpensive. If the prior admits

only an overly complex ρ(x? | f ) that cannot reasonably be made simpler, or if ρ( f )

encodes a very large function class for which there is not sufficient information to

reduce it, then the optimization practitioner has run headlong into No Free Lunch;

either more information is needed to reduce the class size or the problem at hand

(e.g., needle-in-a-haystack) is inherently difficult.
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On the other hand, if function evaluations are cheap then it may make sense

to work with larger populations of candidate solutions and smaller populations of

particles. Inexpensive function evaluations translate to inexpensive information;

in order to gain more from less frequent inference, information should be gath-

ered more abundantly. Similarly, if more information is available, less statistical

inference may be needed to obtain useful distributions in the first place. A tradeoff

certainly exists in these situations, and a decision must be made by the optimization

practitioner.

This again illustrates the fundamental purpose of the EO-DBN: to provide

expressive decision-making power to the practitioner so that optimization can be as

well-informed as possible. That these kinds of issues can be discussed and debated

at all is largely due to the fact that the EO-DBN serves to clarify and expose them.

8.8 Discussion

Throughout this work and in the context of each example, several concepts have

been discussed. These included the role and definition of problem complexity, the

full expression of No Free Lunch and its consequences, the nature of the burden

placed on the optimization practitioner, and the curse of dimensionality. This

section is devoted to insights and observations that either have not been discussed

previously or have not yet received sufficient attention.

8.8.1 Post-Design Empiricism

It should be now clear that empirical results showing how EO-DBN compares with

other continuous optimization algorithms are absent from this work. This is not

an oversight, but a purposeful omission.
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There are basically two common reasons behind performing comparative

experiments and using them to draw conclusions at the end of a work on optimiza-

tion:

• To discover the function class to which the proposed algorithm is well-tuned,

and

• To advocate the use of the algorithm on a (hopefully related) set of problems.

The first is easily addressed because the function class is specified in the EO-DBN

rather than merely analyzed; it is a fundamental requirement of the algorithm.

The second point is more interesting because it is addressed by the overarch-

ing purpose of this work. The EO-DBN is a useful and instructive way of thinking

about the problem of optimization, one consequence of which is an inference-based

algorithm which makes the best use it can of the information it has been given.

Especially in Section 8.5, where a discrete prior was described, two informa-

tional extremes were explored. The first represents an enormous amount of domain

knowledge, straightforwardly encoded in the prior and sampling distributions. In

that case, not one function evaluation was required to obtain the global minimum:

it was known to be at the origin through simple analysis of ρ(x? | f ). The other

extreme case was discussed in the same section in the context of No Free Lunch;

when no information whatsoever is available, the algorithm never gains any more

information from sampling: not even countably infinite function evaluations can help

to find the global minimum.

The EO-DBN will therefore make use of all of the information at its disposal.

This is true of more traditional approaches such as PSO and GAs, but in those cases

the meaning and amount of embedded domain knowledge (encoded indirectly

within the machinery of the algorithm) is unclear. In order to fairly compare

the EO-DBN against any other algorithm, a fundamental question must first be

answered: with how much and what kind of information should the EO-DBN be

164



provided? If a large amount of information is made available (e.g., the discrete

prior in Section 8.5), the algorithm will do very well, and if very little is provided,

it will perform in precisely the manner that No Free Lunch dictates: no better than

random search. In fact, the algorithm gracefully and automatically degrades to

random search as information becomes more scarce.

Most black-box evolutionary optimization algorithms fall somewhere be-

tween these two extremes, and we have provided a description of bowl-shaped

function class which is also somewhere in the middle. Other such descriptions are

certain to exist and may be the subject of interesting future research. In the end,

the EO-DBN not only provides a new way of thinking about algorithm design, it

suggests a different perspective on the problem of optimization itself.

8.8.2 Model Expressiveness

After tackling static, noise-free, single-objective optimization, evolutionary algo-

rithms are often retro-fitted to handle dynamic, noisy, and/or multi-objective opti-

mization problems. Some solutions are more elegant than others, but it is frequently

the case that they are applied after the fact.

In the case of the EO-DBN, however, the situation is different. Because it

provides a statistical model of the sampling process and clear connections between

function definitions that may change over time, the inclusion of sample noise and

dynamic functions is straightforward. In addition, because the relationship of

f to x? is a statistical distribution, such a distribution can easily be multimodal,

allowing multiple minima to be tracked simultaneously1.

1Note that this does not imply that all meanings of multi-objective can be easily incorporated.
In particular, social welfare problems continue to be difficult regardless of the applied algorithm
because of the fundamental impossibility of fairly assigning global utility given multiple individual
utilities [Arrow 1950]. In these cases algorithms are often adapted to search for the Pareto Front,
which is itself a problem of tracking infinitely many minima simultaneously.
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8.8.3 Prior Information

The EO-DBN algorithm is fixed: statistical inference. The application of that

algorithm to a particular problem therefore chiefly requires a specification of prac-

titioner intent, which is encoded in various probability distributions in a clear and

direct manner. The distributions ρ( f ), ρ(Y | f ,X), and ρ( ft | ft−1) define the function

class (the latter may be used to indicate a dynamic function or to incorporate artifi-

cial evolution); ρ(x? | f ) defines the overall goal of search (which may not actually

be optimization, but something different or more general); and ρ(xt | x?t−1) defines

the way that evolution should operate.

The distribution ρ(xt | x?t−1) and its companion prior ρ(x) are somewhat prob-

lematic. While the other distributions have demonstrably clear meanings, the

significance of these two distributions and the consequences of their specification

are less clear; they represent such indirect and fuzzy notions as “scale reduction”

or “algorithm greediness”. These ideas are interesting, and some useful things can

be said about them, but their meaning is not as directly nor clearly expressed as

the others.

The reason for this relative lack of clarity in the presence of evolution is

simple: while there are good reasons for introducing evolutionary techniques into

the algorithm (besides dynamic functions), none of these reasons is explicitly stated

in the definition of ρ(xt | x?t−1) and ρ(x). Why, for example, must ρ(xt | x?t−1) exist in

the first place? Could not some other relationship be used, perhaps one that does

not assume that all of the useful information for one population comes from a

distribution over the global minimum? The choice made here is essentially greedy,

indicating that points likely to be near the global minimum have the most value

in the optimization process. In other words, those points are implicitly assigned a

higher utility by this choice of distribution.
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The spirit of the EO-DBN is one of taking implicit things and making them

explicit. This has been a successful venture except in this instance, where utility

is implied by part of the network structure and its corresponding distribution

definitions. The introduction of explicit notions of utility can allow for a more

direct specification of the intent of the evolutionary process and is the subject of

ongoing and future research.

8.9 Conclusions

The EO-DBN and the static Bayesian optimization model within it are useful ways

of approaching the problem of continuous optimization. They provide a clear and

direct means by which the function class of interest may be specified, they help to

clarify the role of NFL in continuous problem complexity, and (with the exception

of particle filter parameters and the choice of population size) the corresponding

inference algorithm requires only a specific distribution-based declaration of intent

for its operation.

While useful on these merits alone, the EO-DBN also points to some interest-

ing avenues for future research, including a more thorough treatment of problem

complexity (particularly sample complexity), the creation of a toolbox of useful

function class definitions, the study of natural stopping criteria, and the addition

of explicit utility specifications to allow for more principled evolution. Addition-

ally, recent work in PSO suggests that connecting a Bayesian model of optimization

to existing techniques may serve to clarify their intent and to strengthen their per-

formance [Monson and Seppi 2005], something that should be pursued for EDAs

and other evolutionary algorithms.
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Chapter 9

Utile Function Optimization

To be Submitted to the Evolutionary Computation Journal

Abstract

The Evolutionary Optimization DBN (EO-DBN)—a dynamic Bayesian model of

optimization—provides a unique opportunity to create an algorithm that more

directly addresses the goal of optimization: to carefully select function samples

so as to obtain information about the location of its global optimum. As thus

described, optimization is fundamentally a decision process and will therefore be

addressed using the language and tools of decision theory. Having once cast the

problem as a probabilistic network (the EO-DBN), it is possible to create a decision-

making agent that uses explicit definitions of utility and cost to rationally select

sample locations that maximize information. This work presents and develops

this idea, producing a model of optimization and a corresponding algorithm that

is optimal with respect to well-stated optimization goals. The algorithm uses

naturally expressed domain knowledge to determine where a function should be

sampled and when the sampling process should stop, displaying sophisticated

behavior when provided with simple specifications.
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9.1 Introduction

Recent work in evolutionary computation has produced the Evolutionary Opti-

mization DBN (EO-DBN), a Dynamic Bayesian Network (DBN) that expresses the

information relationships present in all optimization problems. The model uses

function samples to infer a distribution over likely locations for the global optimum,

then generates new candidate locations by sampling from it [Monson and Seppi

2006]. In that sense it is similar in spirit to Estimation of Distribution Algorithms

(EDAs) [Larrañaga et al. 1999; Larrañaga and Lozano 2001; Pelikan et al. 2002], but

differs significantly in the way that the distribution is obtained: through a natural

and explicit expression of the function class of interest.

That the function class is important is a necessary consequence of No Free

Lunch (NFL) theorems for optimization, which state that any optimization algo-

rithm that outperforms random search must do so on a limited subset or class of

all possible functions [Macready and Wolpert 1996; Wolpert and Macready 1997;

Whitley and Watson 2006; Igel and Toussaint 2004; Christensen and Oppacher

2001]. The EO-DBN gives expression to that class, taking a critical step towards

a more complete understanding of the optimization problem and more principled

approaches to the design of algorithms intended to solve it. For example, instead

of developing behavioral heuristics to approach optimization, a researcher may

produce a working algorithm by defining the function class; the EO-DBN then

makes effective use of that information to infer the location of the optimum. In fact,

because it relies on Bayesian inference, the distributions produced by the EO-DBN

are optimal with respect to the function class specification and all acquired function

samples [DeGroot 1970].

This inherited optimality is an important feature of the EO-DBN, but is con-

ditioned upon the function samples actually taken; it says nothing about whether

the samples themselves are usefully selected. In fact, although the EO-DBN’s
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method of selecting new sample locations is sensible on the surface (exploring re-

gions likely to contain the global optimum), there is no guarantee that its strategy

adequately addresses the true goal of optimization: deciding where to sample so

as to provide information about the location of the global optimum, not necessarily

to directly observe it.

Optimization, therefore, is fundamentally a decision process, and a rational

decision-making agent must operate in the presence of well-defined utilities and

costs; without them, it is impossible to rank potential choices [DeGroot 1970].

Making effective use of such utilities to perform optimization is the focus of this

work, which transforms the purely statistical EO-DBN into an decision-theoretic

process with explicit utilities and costs: a Utile Function Optimizer (UFO).

The UFO shares its core model structure with the EO-DBN, a static Bayesian

model called the Bayesian Optimization Network (BON). This critical component

is reviewed first, and the problems with its placement in the EO-DBN are discussed.

Utility is then introduced into the model, transforming it into a simple decision

process. With utility defined, the obvious but often-abused decision methodology

of Maximum Expected Utility (MEU) is explored and its connection to the EO-DBN

established. In order to facilitate better use of exploratory samples, a brief tutorial

of the Expected Value of Sample Information (EVSI) is given, after which it is

used within the UFO, contrasting its effectiveness with the sub-optimal EO-DBN.

Finally, a definition of sampling cost is introduced into the UFO, illustrating its

flexibility and expressive power. This simple and straightforward addition serves

as a catalyst for sophisticated algorithm behavior and provides the UFO with a

natural stopping criterion.
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Figure 9.1: The Bayesian Optimization Network (shaded variables are observable)

9.2 The Bayesian Optimization Network

The BON, shown in Figure 9.1, is a graphical model that describes the relationships

between variables that are present during the optimization process: a target func-

tion f , a vector of sample locations X, and a corresponding vector of sample results

Y. As shown in the figure, f and X define or influence Y, the individual elements of

which may be scalar function outputs, gradient vectors, or any other information

obtainable by querying f at each location in X (though this work will uniformly

assume that only scalar values are obtained). All relationships are defined in terms

of conditional probability distributions.

Because the goal of optimization is to find the location of the global optimum

(generally assumed to be the maximum herein), that location is also a variable in the

model, denoted x?. This location is fixed and is one of the essential characteristics

of the target function; the relationship between them is depicted as a link between

f and x?1. Shading in the figure is a mark of observability: X and Y are directly

observable while f and x? are hidden. Note that even when a complete parametric

definition of f is available, the node remains hidden because some of its essential
1While it is noteworthy that this link may describe a relationship between f and any specified

region of interest (not merely the optimum), making use of that flexibility is more appropriately the
subject of future work and will not be directly addressed here.
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Algorithm 4 Particle filter for the BON
1: # Given a candidate population X, sample the true function f ? to obtain results
2: Y = (y1 . . .yNX )>, with yi = f?(xi) for xi ∈ X
3: # Create a number of particles and calculate the normalized likelihood for each
4: F = ( f1 . . . fNX )>, with fi ∼ ρ ft

(
ft
)

5: Λ =
(
λ f1 |X,Y . . . λ fNF |X,Y

)>
/
∑NF

i=1 λ fi |X,Y with λ fi |X,Y =
∏NX

j=1 ρyt | ft,xt

(
y j | fi, x j

)

6: # The result is a discrete representation of the function posterior that may be sampled:
7: ρ f |X,Y

(
f |X,Y)

B F,Λ

characteristics may be difficult or impossible to obtain from the definition, e.g., the

location of x?.

Optimization is accomplished by inferring the distribution ρx? |X,Y . Inas-

much as that distribution is accurate, its highest mode represents the location of

x?. The distribution is obtained by performing Bayesian inference in the BON:

ρx? |X,Y
(
x? |X,Y)

=

∫
ρx? | f

(
x? | f)ρ f |X,Y

(
f |X,Y)

d f (9.1)

where (by Bayes’ Law)

ρ f |X,Y
(

f |X,Y) ∝ ρY | f,X
(
Y | f,X)

ρ f
(

f
)
. (9.2)

As these distributions are not likely to be Gaussian or in any other way convenient,

the application of a numerical inference method such as likelihood weighting

is employed to obtain an approximation of ρx? |X,Y . Algorithm 4 details how this

distribution is obtained in this and previous work [Monson and Seppi 2006]. Given

a reasonable approximation, ρx? |X,Y represents as much knowledge about x? as

can be obtained from the observed data X,Y. In this sense, inference is optimal

with respect to the amount of information gained about x? from the observations

[DeGroot 1970].
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Figure 9.2: The Evolutionary Optimization DBN (EO-DBN)

Regardless of the applied method, (9.1), (9.2), and Algorithm 4 indicate

that successful inference in the BON requires that the following distributions be

specified:

• ρ f : a prior distribution over all possible functions,

• ρY | f,X : the sampling distribution describing how values are obtained, and

• ρx? | f : the goal distribution relating functions in ρ f to their global optima.

As detailed in previous work, the first two distributions define a function class.

For example, a practitioner may be interested in optimizing any function that is

“similar to a bowl”. Such a subjective definition can be made precise by specifying

the definition of “a bowl” in ρ f and “similar to” in ρY | f,X . The third distribution

ρx? | f describes the intent of search, be it finding an optimum or some other area

of interest; it simply defines the relationship between the supplied definition of “a

bowl” (not the target function itself) and an important region in that bowl. This

approach to defining the core elements of optimization is straightforward, precise,

and clear [Monson and Seppi 2006].

Having obtained information from one population of samples, it is often

desirable to select a new population, using the information obtained to refine

ρx? |X,Y ; this gives the model an essentially evolutionary characteristic. The EO-

DBN, which consists of several BONs replicated over time, is one such evolutionary

174



model and is depicted in Figure 9.2. The horizontal link between function variables

can be used to specify a function with dynamic properties through the use of an

additional distribution ρ ft | ft−1 , generating a model that is strictly more expressive

than the BON.

In contrast, the link between x?t−1 and Xt adds no expressive power to the

model, but defines a population creation strategy where new candidates are sam-

pled from ρx? |X,Y . This distribution acts as a simple decision-making agent, select-

ing new sample points based on the likelihood that they produce optimal function

output. While all other variables and relationships in the EO-DBN are clearly mo-

tivated and explicitly defined, this particular relationship is much less so; on the

surface it seems sensible to explore the target domain in regions that are likely to

contain the global maximum, but there is no guarantee that the values at these

locations will provide useful information.

Decision-making agents can only act rationally in the presence of well-

defined utilities, making it impossible to support or refute any claims about the

strategy employed by the EO-DBN without first isolating those utilities on which its

decisions are based. In this instance, it assigns higher utility to sample locations that

are likely to be statistically near the global optimum, an approach that is reasonable

if the goal of optimization is to produce high output with every possible sample.

Unfortunately, this last statement is nonsense. The goal of exploitation is to

produce high output with every sample. The goal of optimization, on the other

hand, is to discover sample locations that produce maximal output; if the global

optimum is never sampled, but its location becomes clear, then optimization is

successful. Optimization is essentially a directed information-gathering process,

a process described by other communities as active sampling, active learning, active

selection, or experimental design [Blum and Langley 1997; Fedorov 1972].
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Figure 9.3: Utile Function Optimizer (UFO)

This work addresses the question of how to assign and rationally employ

utilities so that an agent can achieve the fundamental goal of empirical optimiza-

tion: discovering the optimum as quickly and accurately as possible through ju-

dicious sampling. In other words, it provides instructions on how to achieve

an “optimal allocation of trials” for continuous optimization [Holland 1973]. It

does so by first defining a simple and easily motivated utility function for use in

conjunction with the BON.

9.3 The Utile Function Optimizer

Because it is senseless to introduce utility into a model that leaves no room for

decisions, it is necessary to replace the link between x?t−1 and Xt with a decision-

making agent that can make use of utility. This basic transformation results in

the Utile Function Optimizer (UFO) depicted in Figure 9.32. The agent nodes

in the figure can represent any decision-maker, including existing evolutionary

algorithms or a human. This work will primarily be concerned with creating an
2The network has a structure similar to a Partially Observable Markov Decision Process

(POMDP), but is fundamentally continuous, has non-stationary transitions, and is utilized quite
differently than a traditional POMDP. Therefore, while noting the similarities, this work will not
generally refer to the network as a POMDP.
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agent that behaves rationally, i.e., an agent that makes its decisions based on the

maximization of utility.

Utility functions can be rather arbitrary, ranging anywhere from simple and

uncontroversial to complex harbingers of contention. The following utility function

favors simplicity and generality:

u ft,xt

(
ft, xt

)
= ft(xt) . (9.3)

Simply put, this function assigns greater value to locations that produce larger

outputs in the function; maximizing it will also maximize the function, achiev-

ing optimization. Although on the surface this definition is pedestrian and even

redundant, it has been carefully defined and is sufficient to produce surprisingly

sophisticated behavior when combined with the information inferred from the

UFO model.

This simple utility definition will be used as the basis for decisions through-

out the rest of this work. Its first use will be direct, maximizing its expected value.

This greedy approach is intended to illustrate the underlying meaning of the EO-

DBN’s strategy and the reasons that it is a poor choice as a means of accomplishing

the fundamentally exploratory goal of optimization.

9.4 Maximum Expected Utility

Given a queryable function f , the utility function in (9.3) provides an approach to

determining the intrinsic value of a sample location x. Therefore, if f is known, it

can be used to make a rational decision, e.g., one that selects the x that maximizes

utility. In practice, however, this is impossible because the true value of the variable

f is hidden. The BON provides a way around this issue because it can be used to

obtain a distribution over f (either a prior or a posterior). With that distribution
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it is possible to compute the expected value of the utility for a particular location x,

and that expectation can be used by a rational agent.

We write the expected value of a function using the notation of expectation,

where any variable not appearing in the subscript is integrated away, e.g.,

Ey | x
[
g(y, z)

]
=

∫
g(y, z)ρZ |X (z | x) dz .

It should be noted that at least two popular and diametrically opposed notations are

used in practice, and that we have selected one that is consistent with the notations

for probability and utility employed in this work. The reader who has prior

experience with the opposing notation (where subscripts are integrated out) should

therefore take care to perform the necessary mental reversals when examining the

formulas that follow.

The agent described in this section is denoted MEU because it maximizes

the Expected Utility (EU). If exploitation is desired (sampling so that high function

output is actually observed and not merely inferred), then this is rational agent

behavior; MEU produces a fundamentally exploitative agent. In order to make

decisions, this agent must therefore compute the location that maximizes expected

utility:

Ext |Xt−1,Yt−1

[
u ft,xt

(
ft, xt

)]
=

∫
u ft,xt

(
ft, xt

)
ρ ft |Xt−1,Yt−1

(
ft |Xt−1,Yt−1

)
d ft . (9.4)

The details of this approach and its impact on the optimization process are illus-

trated in the following example.
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9.4.1 MEU Example: Cone Class

This example uses a maximizing version of the intentionally simplistic function

class “similar to a cone” [Monson and Seppi 2006]:

ρ f
(

f
)
=



ρc (c) if f ∈ {λx.g(x, c) | ∀x ∈ RD. g(x, c) = − ‖x − c‖2}

0 otherwise
(9.5)

ρc (c) = N(0,Σc) (9.6)

ρy | f,x
(
y | f , x) = N( f (x), σy) (9.7)

ρx? | f
(
x? | f) = δ(x? − c) . (9.8)

The prior defined in (9.5) and (9.6) indicates that the desired function class con-

tains only symmetric cones of a particular kind, favoring those whose centers are

obtainable by sampling a Normal distribution about the origin. The sampling

distribution in (9.7) admits functions whose values are within a Gaussian draw of

the value of a cone, and the goal distribution in (9.8) points to the maximum of a

given cone. The omission of time subscripts indicates that these distributions are

the same for all values of t.

Let the true function be part of the described class: a noise-free, one-

dimensional cone centered at x = 5, with additional class parameters specified

as follows:

f?(x) = − ‖x − 5‖2 Σc = 102I σy = 1 . (9.9)

At t = 0, the distribution ρ ft required by (9.4) is simply the prior from (9.5) and (9.6).

The corresponding distribution over maxima (ρx?t ) and the expected utility curve

(Ext[u ft,xt

(
ft, xt

)
]) are shown together in Figure 9.4(a). Similar graphs at t = 1 are

shown in Figure 9.4(b), obtained after observing X0 and Y0.
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Figure 9.4: Distribution over x? (left axis) and expected utility (right axis)

The graphs highlight some important concepts. First, the introduction of

data represents information that changes the distribution over possible maxima:

the first is due entirely to the prior and is broad and wrongly positioned; the second

is narrow and centered on the correct optimum. Second, in both cases the peak of

ρx? coincides directly with the peak of the expected utility function.

This last point is potentially significant for the EO-DBN and other existing

evolutionary algorithms: these algorithms employ some amount of greedy selec-

tion, e.g., the EO-DBN selects points that are already most likely to be correct, PSO

particles oscillate around attractors that represent the best locations seen so far,

Genetic Algorithms (GAs) prune their populations using fitness-based selection

before employing recombination, EDAs use the fittest members for distribution

estimation, simulated annealing only selects worse locations with decreasing prob-

ability, and amoeba search often relocates its worst point while leaving the others

stationary. In short, the idea of pursuing samples based on greedy heuristics is per-

vasive in evolutionary optimization. That MEU is similarly greedy is no surprise;

it is, after all, maximizing its expected utility and was known to be exploitative

before being applied. Because it assumes a function class that is monotonic away
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from the optimum, a trait shared with the posterior ρx? |X,Y (x? |X,Y), it is also not

surprising that it selects precisely the same sample points as the EO-DBN.

This may shed light on some of the hidden assumptions in existing evolu-

tionary algorithms, especially those that make use of an explicit notion of fitness

(utility). These approaches assume not only that better values have more intrinsic

worth when sampled (fitness maximization), but that those values will tend to

be close to one another, indicating that the function class of interest is likely to

be shaped, for lack of a better description, like a cone. When this assumption is

violated, it is only natural that the algorithms fail, giving rise to research on the

significance and difficulty of “deceptive functions”, functions with gradients that

often point away from the goal. That “deception” has long been considered to be a

leading cause in the failure of evolutionary algorithms (subject, of course, to debate

[Grefenstette 1993; Horn 1985]) is supported by these results.

The connection between expected utility in (9.3) and ρxt | x?t−1
is now clear:

provided a function class that is not “deceptive” and a straightforward fitness-based

utility, sampling from ρxt | x?t−1
is more or less the same as selecting locations via MEU.

Provided that attempting to obtain high-fitness samples from the function is the

goal of the agent, this is perfectly rational agent behavior. As discussed previously,

however, the goal of optimization is not necessarily to produce good values; that is

the goal of exploitation once the location of the optimum is known. Instead, the

goal of optimization is to discover the location that will produce maximal utility so

that it may be obtained when exploitation is performed in the future.

While MEU fails to accomplish that goal, the tools to do so are now available;

armed with an explicit definition of exploitative utility, the inherently greedy MEU

can be replaced with something that favors information over value: The Expected

Value of Sample Information. A brief tutorial of this useful concept follows.
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9.5 A Brief EVSI Tutorial

There are many ways of using utility to ensure that maximization of some utility-

related quantity corresponds to maximization of information gain. Perhaps the

most straightforward approach is to directly redefine u ft,xt such that higher value

is assigned to points with higher information content. While useful, this partic-

ular approach requires the definition and application of an additional information

measure, typically related to Shannon Entropy [Fedorov 1972; MacKay 1992a,b].

There is a way of accomplishing the same end, however, without introducing any

new measures or inventing special-purpose non-exploitative utility functions: by

calculating the Expected Value of Sample Information (EVSI)3 [Lindley 1985].

The environment in which EVSI operates is essentially a Bayesian network

like that shown in Figure 9.5. The network may consist of arbitrary connections

and nodes provided that some minimal concepts are represented: a requisite query

variable Q, an optional set of evidence variables E, and test variables T. Note that

whatever the position of these variables in the original network, Bayesian reasoning

always admits transformations such that the general structure is that shown.

The query variable Q represents information that is desired but hidden,

requiring inference to obtain a distribution over its possible values. The evidence

variables E are observable and the values of the test variables T represent results
3EVSI is sometimes referred to as the Expected Value of Partial Information, as is the case in this

reference.
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that are obtainable but not yet known. These results may be selectively acquired

(or sampled) by performing one or more of the tests.

The variables in the network represent information used in a decision pro-

cess; the purpose of evaluating Q is to determine the appropriate value for a

decision variable D. In order to accomplish this, a utility must be available that is

defined on these two variables uD,Q. Given the conditional and prior probabilities

that make up the network’s definition, the utility function uD,Q, evidence E, and

tests T, it is possible to calculate the expected value of performing a particular test

Test:

EVSITest | e = E | e
[
max

d
Ed | e,t

[
uQ,D

(
q, d

)]] −max
d

Ed | e
[
uQ,D

(
q, d

)]
(9.10)

where

Ed | e
[
uQ,D

(
q, d

)]
=

∫
uQ,D

(
q, d

)
ρQ |E

(
q | e) dq (9.11)

Ed | e,t
[
uQ,D

(
q, d

)]
=

∫
uQ,D

(
q, d

)
ρQ |E,Test

(
q | e, t) dq . (9.12)

The first term of (9.10) is an expectation over the MEU for all test outcomes and the

second is the MEU in the absence of test information.

The idea behind EVSI is that the maximum expected utility increases in

the presence of information; EVSI is simply a principled way of quantifying the

increase. Consider for a moment what this means: given the opportunity to gather

information, EVSI indicates what that information is likely to be worth in the units

of specified utility. When multiple kinds of information can be gathered, EVSI can

be used to determine what information will yield the greatest potential benefit.

Additionally, if the information has some associated cost, this method indicates

whether new information should be gathered at all: if the expected improvement
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in utility does not exceed the cost of sampling, then sampling should not be done.

This concept is perhaps best understood by way of a simple example.

9.5.1 EVSI Example: Drilling For Oil

Consider an oil drilling company that has an opportunity to purchase and drill a

plot of land for $1 million. The site may or may not contain oil, but if it does, the

oil is worth about $10 million. Given this information, a utility function may be

defined in terms of the query variable Oil and the decision variable Drill:

uDrill,Oil (T,T) = $9 million uDrill,Oil (T, F) = −$1 million (9.13)

uDrill,Oil (F,T) = $0 uDrill,Oil (F, F) = $0 . (9.14)

If the site’s potential for containing oil is known in terms of the prior probabili-

ties, e.g., PrOil (T) = 0.6, then the most rational action can be calculated using the

expected utility of drilling (d = T) and not drilling (d = F):

Ed
[
uDrill,Oil (d, o)

]
=

∑

o∈{T,F}
uDrill,Oil (d, o) PrOil (o) =



$5 million if d = T

$0 if d = F
. (9.15)

On average, drilling a plot like this one will produce a profit of $5 million, so

the correct choice is to purchase the plot. This result, however, does not say much

about whether this specific plot of land should be drilled; it only indicates that if a

large set of similar plots is available, then purchasing and drilling them is a good

idea on average. Given a single plot, it is unlikely that a company would purchase it

based on such a result: it would instead perform some kind of test before making

a purchase decision.

Having more information will clearly improve the company’s chances of

making a fruitful purchase decision, so the availability of the test transforms the
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problem from one of deciding whether to purchase the plot into one of whether

to incur the cost of a test before making a decision; this is what EVSI computes.

Suppose, then, that the test costs $0.1 million and has the following accuracy:

PrTest |Oil (T |T) = 0.95 PrTest |Oil (T | F) = 0.20 . (9.16)

The test is not as accurate as may be desired, but nonetheless provides useful

information. Because the outcome of the test may change the company’s decision,

the new expected utility of drilling is conditioned upon it:

Ed | t
[
uDrill,Oil (d, o)

]
=

∑

o∈{T,F}
uDrill,Oil (d, o) PrOil |Test (o | t) (9.17)

where PrOil |Test (o | t) is the Bayesian posterior

PrOil |Test (o | t) = PrTest |Oil (t | o) PrOil (o)
PrTest (t)

(9.18)

PrTest (t) =
∑

o∈{T,F}
PrTest |Oil (t | o) PrOil (o) = 0.65 (9.19)

giving that

PrOil |Test (T |T) ≈ 0.88 PrOil |Test (F |T) ≈ 0.12 (9.20)

PrOil |Test (T | F) ≈ 0.09 PrOil |Test (F | F) ≈ 0.91 (9.21)

and finally

Ed | t
[
uDrill,Oil (d, o)

]
=



$7.8 million if t = T, d = T

−$0.1 million if t = F, d = T

$0 if d = F

. (9.22)
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As expected, more information increases the expected utility of drilling. If the test

outcome is negative, it also changes the decision; drilling should be avoided.

Having knowledge of the test’s outcome is desirable; it guides the decision-

making process such that maximum expected utility can be increased. The test itself

costs $0.1 million, however, so it is useful to know what the expected improvement in

maximum utility will be given the test’s outcome before it is performed. EVSI is the

right way to calculate this while taking the accuracy of the test into account:

EVSITest = E
[
max

d
Ed | t

[
uOil,Drill (o, d)

]] −max
d

Ed
[
uOil,Drill (o, d)

]
(9.23)

= E






$7.8 million if t = T

$0 if t = F



− $5 million (9.24)

= (($7.8 million) PrTest (T) + ($0) PrTest (F)) − $5 million (9.25)

= $0.07 million (9.26)

Obtaining test results is therefore worth about $0.07 million on average, but the

test is not cost-effective because it costs $0.1 million. Were the test more accurate,

the expected value improvement would increase and it would perhaps be worth

its price; as it is, a lower price should be negotiated or a more accurate test should

be performed.

9.6 EVSI in the UFO

EVSI is both powerful and simple, answering the question of whether new infor-

mation is expected to be worth its cost. In the process it also answers a question

that is of supreme importance in function optimization: “How will immediate

exploration affect future exploitation?” Optimization is fundamentally concerned

with finding a location that, if exploited, will produce a good value, not necessarily
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with sampling that value immediately. The application of EVSI to optimization

is a principled and meaningful way to accomplish that goal: active sampling for

maximization of information about the global minimum.

The application of EVSI to the UFO can answer the fundamental question

of empirical optimization: “What sample locations will provide the most informa-

tion about the location of the global optimum?” Unlike the oil drilling example,

however, it is easy to confound tests with decisions when performing optimization,

requiring careful development of the approach in this context.

In the previous example, the decision is to drill or not to drill. The test, on

the other hand, is separate from that decision (e.g., a geological survey) and has its

own associated costs. It is conceivable, however, that the test could actually consist

of drilling the land; after all, that would be an excellent (but costly) indicator of

the presence or absence of oil. Empirical function optimization is similar to that

situation; an infinity of tests are available in the form of potential sample locations,

and the outcome of those tests will affect knowledge of x?: the place that would be

sampled during exploitation (MEU).

In other words, the distinction between tests and decisions is the same as

the distinction between exploration and exploitation: the test is performed in the

hopes of obtaining more information, and the decision is made in order to obtain

actual value. EVSI indicates the value of an exploratory test, and EU computes the

value of an exploitative decision. That they operate in the same domain is perfectly

acceptable, but care must be taken with the notation.

When using the UFO, a test variable and its outcome will be distinguished

by a superscript ?: the candidate population X?
t represents one possible test, and

its outcome is denoted Y?
t . The decision, on the other hand, is also a population of

locations Xt, locations that would be given high value by EU. The test is concrete,

representing real samples, and the decision is hypothetical in the calculation of
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EVSI (as evidenced by the fact that decisions only appear in the context of max

operator). The query variable, representing desired information, must be one of

the utility function parameters and is in this case ft, from which the truly important

information x?t may be obtained.

Assuming a candidate population of size 1, EVSI in the presence of the UFO

model is given to be

EVSIx?
t | et
= E | et,x?

t

[
max

xt
Ext | et,x?

t ,y
?
t

[
uxt, ft

(
xt, ft

)]] −max
xt

Ext | et

[
uxt, ft

(
xt, ft

)]
. (9.27)

Unlike the oil drilling example, here EVSI makes use of evidence et = (Xt−1,Yt−1).

Splitting the calculations so that the required distributions are evident yields the

following:

Ext | et,x?
t ,y

?
t

[
uxt, ft

(
xt, ft

)]
=

∫
uxt, ft

(
xt, ft

)
ρ ft | et,x?

t ,y
?
t

(
ft | et, x?

t , y
?
t

)
d ft (9.28)

Ext | et

[
uxt, ft

(
xt, ft

)]
=

∫
uxt, ft

(
xt, ft

)
ρ ft | et

(
ft | et

)
d ft . (9.29)

Additionally, computation of the outer expectation in the first term of (9.27) requires

the distribution ρy?
t |Xt−1,Yt−1,x?

t
. All necessary distributions may be obtained from the

network using empirical methods such as particle filters, the method of choice for

this work. The computation of the posterior ρ f |X,Y is performed as before with

Algorithm 4, and the method for computing EVSI in this context is supplied as

Algorithm 5.

Applying this algorithm provides the optimization practitioner with impor-

tant information: where next to sample f ? so that maximal information may be

obtained about x?. Specific examples that demonstrate this predictable behavior

are given next.
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Algorithm 5 EVSIx? |Xt−1,Yt−1 in the UFO using a particle filter
1: # Create several empirical distributions as bags of values (chain rule)
2: F = ( f1 . . . fNF )>, where fi ∼ ρ ft | et (· |Xt−1,Yt−1)
3: X = (x1 . . . xNF ), where xi ∼ ρx?t | ft

(· | fi
)

for fi ∈ F
4: Y? =

(
y?

1 . . .y
?
NF

)
, where y?

i ∼ ρyt | ft,xt

(
· | fi, x?

)
for fi ∈ F

5: # Calculate EVSI
6: T = 1

NF

∑
y?∈Y? maxx∈X

∑
f∈F ux, f

(
x, f

)
ρyt | ft,xt

(
y? | f , x?

)

7: M = maxx∈X
∑

f∈F ux, f
(
x, f

)
ρ ft |Xt−1,Yt−1

(
f |Xt−1,Yt−1

)
8: EVSIx? |Xt−1 ,Yt−1 = T −M
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9.6.1 EVSI Example: Cone Class

Consider again the conic function class as described in (9.5)–(9.8) and the one-

dimensional true function f?(xt) = ‖xt − 5‖2. Even in the absence of evidence, EVSI

may be applied to the network to determine where f ? should first be sampled

to provide maximal information. The results of that application are shown in

Figure 9.6(a). Note that the prior ρx?0 and EU alike indicate that the origin is a likely

candidate for x? but that EVSIx?
0

suggests precisely the opposite: points near the

origin are the least informative.

This result is instructive because, while initially counterintuitive, it is also

perfectly reasonable. Points sampled near (but not at) the origin have values

which are consistent with basically two cones in a function class that favors the
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origin, whereas points further away tend to be consistent with only one cone as

illustrated in Figure 9.6(b). EVSI is correct in suggesting that distant points have

more discriminating power.

That points selected according to MEU provide less information than those

indicated by maximizing EVSI is illustrated forcefully in Figure 9.7, which shows

the difference between resulting posteriors when selecting maximum value samples

according to EU and EVSI. When sampling near the origin as MEU dictates, the

posterior is that shown in Figure 9.7(a), which has two peaks as predicted. When

sampling away from the origin as dictated by maximizing EVSI, the posterior
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distribution shown in Figure 9.7(b) has only one peak, again as predicted. EVSI

has simply indicated more informative sample points than EU.

Figure 9.8 shows the difference between EU and EVSI at t = 1 when some

evidence is present. The same reasoning applies to this graph as applies to the first:

sampling away from locations of maximum expected utility (and also ρx?0 |X0,Y0 in

this case) provides more information about x? than otherwise.

The point of this example is to demonstrate that EVSI suggests rational

sample locations that provide needed information for optimization. While results

of its application are initially counterintuitive, upon closer inspection they are

reasonable and correct. Because it produces simple and predictable results, it is

tempting to develop a heuristic, apply it to an existing algorithm, and declare

victory. This approach may work well on the cone class, but as soon as the function

class changes it will fail. Part of the contribution of the UFO is the ability to apply

EVSI to the optimization regardless of the specific function class; the algorithm is

fixed, automatically adapting to the specified intent of the practitioner. Without

the perspective on optimization provided by the UFO, this would simply not be

possible.

To emphasize the fact that a different function class yields different results,

another example follows.

9.6.2 EVSI Example: Bowl Class

Application to the more general “bowl-shaped” class [Monson and Seppi 2006]

serves to shed more light on EVSI’s behavior. That class, adapted for maximization

and for use with EVSI, is reproduced here (showing only those distributions that
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Algorithm 6 EVSIx?
1,x

?
2 |Xt−1 ,Yt−1

in the UFO for the “bowl” class
1: # Create several empirical distributions as bags of values (chain rule)
2: F = ( f1 . . . fNF )>, where fi ∼ ρ ft |Xt−1,Yt−1 (· |Xt−1,Yt−1)
3: X = (x1 . . . xNF ), where xi ∼ ρx?t | ft

(· | fi
)

for fi ∈ Ft

4: r?
y =

(
r?

1 . . . r
?
NF

)
, where r?

i ∼ Prry | r f

(
· | sign

(
fi(x?

1) − fi(x?
2)
))

for fi ∈ Ft
5: # Calculate EVSI
6: T = 1

NF

∑
r?∈r?

y
maxx∈X

∑
f∈F ux, f

(
x, f

)
Prry | r f

(
r? | sign

(
f (x?

1) − f (x?
2)
))

7: M = maxx∈X
∑

f∈F ux, f
(
x, f

)
ρ ft |Xt−1,Yt−1

(
f |Xt−1,Yt−1

)
8: EVSIx?

1,x
?
2 |Xt−1,Yt−1

= T −M

differ from the cone class):

ρYt | ft,Xt

(
Yt | ft,Xt

)
= ρrYt | r ft ,Xt

(
rYt | r ft,Xt

)
(9.30)

ρrYt | r ft ,Xt

(
rYt | r ft,Xt

)
=

∏

i< j

Prry | r f

(
sign

(
yi − y j

)
| sign

(
ft(xi) − ft(x j)

))
(9.31)

where Prry | r f

(
ri | r j

)
is a discrete distribution defined thus with α ∈ ( 1

2 , 1):

r j, ri −1 0 1

−1 α (1 − α)/2 (1 − α)/2

0 (1 − α)/2 α (1 − α)/2

1 (1 − α)/2 (1 − α)/2 α

Note that sampling from ρrYt | r ft ,Xt
in (9.31) produces a vector of relationships,

not locations. The use of a product in (9.31) implies mutual independence between

elements in rYt , so sampling a vector of such relationships is trivially accomplished

by taking multiple independent samples from Prry | r f . Details are given in Algo-

rithm 6, a straightforward adaptation of Algorithm 5 for the bowl-shaped class.

Because this class operates on pairs of samples, EVSI is also defined over test

pairs: EVSIx?
1,x

?
2 |Xt−1 ,Yt−1

. The resulting graph is therefore three-dimensional and the

comparision between EVSI and EU functions is no longer perfectly direct because

EU is not concerned with exploratory tests (pairs) but with exploitative decisions
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Figure 9.9: EVSIx?
1,x

?
2

on the bowl class at t = 0

(singletons); it is clear, however, that MEU will dictate that sampling occur near the

assumed location of x?. In a pair-wise test scenario such as this, MEU will therefore

generally choose to sample the same point twice without the artificial introduction

of noise.

The result of running EVSI on this bowl-shaped class at t = 0 is shown

in Figure 9.9. The true function is again a one-dimensional cone centered at 5.

Figure 9.9(a) shows a viewpoint of the EVSIx?
1,x

?
2

function that emphasizes its ridge.

The location and orientation of the ridge is interesting, indicating that points located

on opposite sides of the assumed location of the global maximum (as dictated by

the prior) are favored over points found on the same side of it.

The rotated viewpoint in Figure 9.9(b) highlights a canyon that cuts through

the middle of the EVSI plot. This valley of low EVSI values occurs when the pair

consists of two copies of the same location, a test that will not provide useful infor-

mation for this class. That the results are so sensible is significant: EVSI discovered

this pattern without any more information than a straightforward declaration of

the function class and the basic definition of exploitative utility in (9.3).
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Figure 9.10: EVSIx?
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on the bowl class at t = 1

Again, MEU indicates that the opposite should be done: sample near the

maximum and never deviate from it. EVSI not only corrects that problem, but also

maximizes the benefit of sample points by ensuring that they occur on opposite

sides of the maximum, thus helping to differentiate between functions more ef-

fectively; points on the same side of the maximum merely indicate that the true

maximum is somewhere to the right or left of them, where points on opposite sides

can narrow the search space substantially.

At t = 1, EVSI has some evidence available for its calculations, and the result

of its application is shown in Figure 9.10. The canyon is again evident: composing

a pair of points by copying a single location fails to provide any information in this

relationship-oriented class. Predictably, the ridge has shifted from its location at

t = 0, indicating that the true global maximum is better known with the availability

of additional data and that samples should still fall on either side of it. Observe

also that the absolute magnitude of EVSI has decreased in the presence of evidence,

essentially indicating that less value improvement is expected with every new piece

of information: when more knowledge is acquired, additional knowledge is less

valuable.
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It is important to emphasize that the basic EVSI algorithm is unchanged. The

only difference between this and the previous example is the function class. Similar

to the previous example, it would be possible to develop a reasonable heuristic for

this class that obviates the need for EVSI, but two things are important to mention

in this regard: first, without the use of EVSI the nature of an appropriate heuristic

would be unclear; and second, EVSI adapts rationally to the specified function

class, whatever it may be.

Because the algorithm is essentially statistical inference and expectation

calculations, it will perform as well as possible given the supplied information.

If any other algorithm consistently finds information about the global optimum

in fewer function evaluations, it is operating on assumptions that have not been

supplied to the UFO.

The use of EVSI in the UFO is a powerful way of determining how to

optimally allocate trial samples for optimization. As described thus far, however,

it fails to answer an important question for the empirical optimization problem:

when exploration should cease. At some point, the solution provided by any

optimization algorithm must be accepted as “good enough”, but without a notion

of sample cost it is impossible to say when that point is reached with any certainty.

Not surprisingly, EVSI provides the tools to answer this question; the oil drilling

example makes this clear because the end result was an indication that the test was

not cost-effective, knowledge that was obtainable because the cost of the test was

supplied. Defining cost in the optimization setting allows for a similarly principled

halt to exploration.

9.7 Samples Are Not Free

Rational sample locations are computed by EVSI in the UFO, provided accurate

(and intuitive) definitions of the following:
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• The function class,

• The utility of a given output, and

• The cost of a particular test.

The first item received detailed attention in previous work [Monson and Seppi

2006], the second has been emphasized in this work, and the third will be developed

here as part of the larger context of using UFO as a unified system; all specifications

will be outlined for an optimization scenario, showing how a practitioner might

approach it using the UFO while introducing the notion of sampling cost.

Consider a laboratory technician tasked with finding an optimal mixture of

chemicals, where optimality is achieved by maximizing the percentage yield of a

precipitate. For each discovered yield there is a proportional commission, and the

technician must purchase the ingredients for the mixture. In this situation, several

things are immediately apparent:

• The important data in the experiment is relative; proportions are more im-

portant than absolutes.

• Measurement noise is a stark reality in the world of chemical experiments,

present at both the inputs and the outputs of the process.

• The output of the experiment has measurable utility.

• Ingredients that make up the starting solution have known cost.

• Mixing a solution is generally a one-way process; it is not possible to remove

individual chemicals from a mixed solution.

The UFO provides ways in which all of these concepts can be intuitively

described so that experiments are performed rationally. Appropriate application

of EVSI, given the function class of interest and the above information, will ideally

tell a lab technician how to maximize information while minimizing cost. The
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Figure 9.11: The truncated cone function

setup required to incorporate the above information into the UFO so that useful

results are obtained is outlined here.

9.7.1 Step 1: Define the Function Class

Assume that for this problem the function class is very simple: the mixture consists

of exactly two ingredients, and the percentage yield is defined as a truncated cone

in the proportion space (Figure 9.11). While more complex classes are possible and

even desirable, this class is simple enough to serve the purposes of pedagogy while

being difficult enough to illustrate the exploratory behavior of the algorithm. The

class contains the true function by leaving some of its parameters undefined, thus:

f?(x) = max

0,

∥∥∥∥∥∥10
(

x
∑D

i=1 xi
− c

)∥∥∥∥∥∥
2

 (9.32)

where xi, ci > 0 and
∑D

i=1 ci = 1. The true function f? is a member of this class with

c = (0.3, 0.7)>.

The prior is defined similarly to (9.5), using a parameter distribution ρc,

which in this case is uniform in the proportion space. The optimization distribution
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ρx? | f is the same as that in (9.8): a delta function on the parameter vector c. This

means that x? is a proportion vector, and the desired result is a set of proportions,

not absolute amounts of constituent ingredients.

9.7.2 Step 2: Define the Sampling Distribution

The sampling distribution ρY | f,X can be used to indicate the presence of sampling

noise or subjective uncertainty. In the presence of noise, the distribution indicates

that multiple samples at the same location will produce different values over time,

and in the case of subjective uncertainty it is an indicactor of a level of confidence

in the amount of meaning that can be attached to the samples [DeGroot 1970].

Naturally, both may coexist in the same distribution.

Previous definitions of ρY | f,X have incorporated noise as a representation

of uncertainty, but in this example real measurement noise is present, both in

measuring constituents for the solution and in measuring the yield. Noise may

also represent environmental factors that are beyond the control of the technician.

Measurement error, which is assumed to dwarf any other noise in this

setting, is dependent upon the absolute quanitity of both the individual ingredients

and the resulting substance. Because both of these are manifest in output noise, only

output noise will be expressed: as the amount of input substance approaches zero,

the difficulty of measuring proportions accurately increases rapidly. Measurement

noise, therefore, should become greater as quantities become very small.

Equally difficult, however, is accurate measurement of proportions involv-

ing very large quantities: vats, lakes, oceans, or entire planets of ingredients; as

the absolute measurements of consitutent ingredients increases beyond a certain

point, the noise will also increase. A function which suitably describes this sort of

behavior is the scaled and shifted log-gamma function shown in Figure 9.12.
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To be more precise, the sampling distribution is Gaussian with a standard

deviation that is scaled by the scaled and shifted log-gamma function:

ρy | f,x
(
y | f , x) = N


 f (x), σy


1 + Γ




3
2

1
D

D∑

i=1

xi








 . (9.33)

This definition assumes that the units of the ingredients have been scaled so that 1

unit is most accurately measurable. It is also assumed that accuracy is a function

of the average of the constituent quantities.

The details of the Gamma function and the way that noise is added are

shown here to highlight the fact that noise can be expressed as exactly what it is;

there is no need to develop a heuristic that makes an optimization algorithm tend

toward values of high accuracy, since the reasons for that heuristic are actually due

to noise. The UFO allows for expressions of concepts in their natural form, without

an awkward transformation into a heuristic.

9.7.3 Step 3: Define the Utility of Output

Utility, as previously stated, is a simple function of the percentage yield of a given

experiment: the technician receives a commission for the yield discovered by each

199



experiment performed, say $1 ×%Yield:

u ft,xt

(
ft, xt

)
= $ ft(xt) . (9.34)

This system of rewards would not necessarily motivate a lazy technician to find

good values, since it is assumed that payoff occurs at the end of every experiment.

It can easily be extended, however, and will be shown to perform very well despite

its simplicity.

Even though the goal of the technician is to maximize information about

regions of higher payoff, that goal is not directly reflected in the utility function.

Instead, utility is defined in terms of exploitation.

9.7.4 Step 4: Define the Sampling Cost

The final required specification is the sampling cost. Whether the true function is

queried in simulation or in the laboratory, sampling it has an associated cost. In

simulation that cost is often measured in units of time, where in this example it is a

dollar amount related to the cost of the constituent ingredients. Whatever the case,

cost always exists and is often easily quantified.

In this example, an obvious and trivial way to define sampling cost is as the

sum of the prices of the constituent ingredients that go into an experiment:

c =
D∑

i=1

cixi (9.35)

where ci is the cost of a single unit of ingredient i. This is a straightforward

definition of cost from the technician’s perspective, who is required to buy his own

ingredients.

When mixing a solution in order to achieve a precipitate, however, it is often

possible to add ingredients incrementally to adjust the percentage yield, even after
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some amount of precipitate has been previously removed and measured. In other

words, it is possible to perform a new experiment by continuing an old one, giving

rise to a more interesting cost function:

ct =



∑D
i=1 cixt,i if ∃i. xt,i < xt−1,i or xt = xt−1

∑D
i=1 ci

(
xt,i − xt−1,i

)
otherwise

. (9.36)

If the technician desires to reduce an ingredient or to duplicate an experiment, the

cost is calculated by totalling the cost of the constituents; the only way to repeat or

reduce constituent quantities is to begin again. If, on the other hand, he wishes to

adjust the balance by adding a small amount of something, the cost is measured as

the price of the increased ingredients, not the price of the full solution.

This definition of cost describes the nature of the world in a straightforward

way. Again, a heuristic could be developed that encourages an optimization algo-

rithm to move forward in the space of quantities, but the UFO is purely declarative

and does not require such heuristics; it merely wants to be told the truth about

the way that the world behaves, and this cost function is an example of such a

straightforward specification.

9.7.5 Step 5: Profit! (Behavior and Results)

The results of using EVSI for experiment selection in this section assume the fol-

lowing:

• Sampling noise has a base standard deviation of σy = 0.1,

• All ingredients cost $0.10 per unit, and

• The best proportion is c = (0.3, 0.7)>.

Figure 9.13 illustrates the path taken by EVSI through the space of absolute ingre-

dient measurements both with and without consideration of cost: Figure 9.13(a)
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Figure 9.13: Recipe experiments, with and without cost included

shows the path of experiments when EVSI is not aware of the sampling cost, and

Figure 9.13(b) illustrates the path when costs are supplied. In the first case, it con-

tinues experimenting until the maximum number of iterations has been reached

(20 for this example) and does not appear to be following any particular pattern.

In the second, it not only always adds ingredients incrementally to the mixture, it

adds them one at a time and stops after 9 iterations.

This demonstrates that the inclusion of cost not only admits a sane sampling

policy, it also creates a natural stopping criterion: when sampling cost exceeds EVSI,

then sampling ceases. Not only did the UFO dictate when to stop, in this example

it also selected experiments that tended to minimize cost: the technician that did

not provide a cost function to EVSI spent $2.22, while the technician that wisely

included a straightforward cost definition spent only $0.08 on ingredients. Even

if they had both stopped after 9 iterations, the first technician would have spent

$1.17 with negligible difference in estimated proportion quality; after 9 iterations,

both would receive similar commissions by exploiting what they know.

Making EVSI aware of the cost of ingredients causes the UFO to behave

rationally in sophisticated ways. It selects experiments based on a seemingly
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complex mixture of potential utility and sampling cost, and it does so in such

a way that the result is what a human would call rational: it favors incremental

addition of ingredients while avoiding measurements that are too small or too large.

It also defines when exploration should stop and exploitation begin. That it does

so with intuitive declarations about the nature of the environment is compelling.

9.8 When Exploration Precludes Exploitation

Once the chemistry experiments have been completed and a distribution over good

proportions discovered in a laboratory setting, the process is taken to production

level volumes, where higher volumes of ingredients are mixed together to obtain

larger sellable output. In this setting, if changes are made to the production mixer,

they must be made directly to the proportions, assuming that the plant is already

operating at capacity.

Because transfer from the lab to production is never perfect, it is desirable to

continue learning about the optimal point in this higher-volume setting. Changes

in this setting, however, cannot be made with impunity; once the system goes into

production, it starts to produce a reliable, if not optimal, revenue stream. The risks

of causing a drastic short-term drop in production in the quest for slightly better

long-term output are significant.

EVSI can be used to continue the learning process in production while

mitigating this risk. What is needed is a definition of cost that takes into account

lost revenue due to experimentation on the production equipment: opportunity cost.

Intuitively, opportunity cost is simply a measure of the difference between what

revenue might have been achieved through exploitation (MEU) and the revenue
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actually achieved during exploration of the possibly suboptimal parameters x?
t :

c(x?
t ) = max

xt
Ext | et

[
uxt, ft

(
xt, ft

)] − Ex?
t | et

[
uxt, ft

(
x?

t , ft

)]
. (9.37)

This formulation of cost is convenient in many ways, including the fact that its

units are the same as those of EVSI: the difference of two utilities. EVSI measures

the expected improvement in utility given extra information obtained from a test

sample x?
t , and opportunity cost measures the expected loss given that the plant is

not maximizing expected utility for the duration of the experiment.

When the expected gains of exploration fail to outweigh the expected loss

associated with suboptimal operation, the algorithm stops producing new values

for search, indicating that no amount of exploration is appropriate. Application of

opportunity cost to this example results in the selection of a different distribution

of samples than that previously seen, shown in Figure 9.14. The samples were

obtained after running the opportunity cost algorithm 200 times; only 9 of the 200

trials chose to do any sampling at all, and those that did explore did so only once

near the known maximum, making it behave more like MEU while still doing some

exploration.
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Once it is clear that exploration should cease, MEU is an appropriate way

to exploit the information gained earlier. If at any time the cost or utility functions

change, then opportunity cost may be used in the UFO to perform judicious explo-

ration, and the operator is ensured such exploration will be conservative, stopping

when all possible benefits have been exhausted. That this can be done at all is

a testament to the UFO model; without its explicit information relationships, the

application of EVSI and straightforward use of cost would be impossible.

9.9 Conclusions and Future Work

The specifications that the UFO requires, i.e.,

• The class of functions of interest (ρ f and ρ ft | ft−1),

• The nature of sampling noise (ρY | f,X),

• The intent of optimization (ρx? | f),

• The value of results (u ft,xt), and

• The cost of samples (c(x?
t ))

are reasonable requirements. They are all straightforwardly declared and readily

available to an optimization practitioner, with the possible exception of the function

class (addressed elsewhere [Monson and Seppi 2006]). That the specifications are

simply and intuitively specified does not limit the sophistication of the resulting

optimization algorithm. In fact, as illustrated in preceding examples, the behavior

can be very sophisticated indeed, all while the underlying optimization algorithm

remains fixed.

Traditionally such examples would be used to overwhelm the reader with

data, perhaps providing strong empirical evidence that the presented algorithm

is better than another. In this case, however, the examples have been used to
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show that predicted behavior aligns compellingly with observed behavior. The UFO

is significant precisely because it allows accurate predictions to be made (e.g., that

maximizing EVSI tends to produce a more confident and accurate posterior than

MEU); no other method provides a principled way of doing so. Indeed, it can

be mathematically argued that the UFO is an optimal optimizer with respect to

the information it has, a proof that it inherits from its use of Bayesian inference

and information value theory [DeGroot 1970]. If another approach consistently

outperforms the methods outlined here, then it must have more information at its

disposal.

The use of a statistical model as the basis for optimization allows all available

information to be used during the search for a global optimum. This is in contrast

with traditional evolutionary optimization algorithms, where they can either be

applied to a particular problem or not, and tuning is generally not easy to do

in a principled way. The use of such algorithms is often an exercise in costly

guesswork, either in finding the right algorithm for a particular problem or in

discovery of appropriate algorithm parameters. Increasing the sophistication of

such algorithms, e.g., to make them behave rationally in the presence of known

costs, is never a simple exercise and results in human-developed heuristics that

must then be tested to determine whether they exhibit subtle and unexpected

behavior. When additional information is made available, this exercise must be

repeated, often with mixed results.

Additionally, when an existing algorithm is discovered that appears to be

a good match to the problem at hand, it does not yield much new information

about the true nature of the function; all that is known is that it is a better match

than any of the other algorithms tried. In contrast, the use of the UFO enables

true information to be gained about an unknown function. Instead of selecting

from a toolbox of opaque algorithms, it enables selection of transparent function
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class definitions; success using one of these definitions indicates that the function

is likely to be a member of the corresponding class, potentially providing a wealth

of information about its true nature. That information can also be used to compare

function classes in a principled way because of the Bayesian framework in which

optimization is performed [MacKay 1992a,b], an idea that should be pursued in

future work.

The UFO also admits the natural expression of the various stages of real-

world optimization: laboratory experimentation, careful production exploration,

and simple exploitation. The direct determination of whether to explore or exploit

is no longer the question that practitioners face; instead they must simply define

what it costs to sample and what the obtained values are worth. The UFO then

determines not only how to explore, but when to stop exploration and switch to

exploitation.

Several other concepts are expressable in this model that have not been

covered in detail in this work. One may, for example, incorporate a notion of

“risk-seeking” or “risk-averse” behavior into the algorithm by simply employing

standard utility-altering tricks (e.g., squaring or taking the square root of the utility

function). One may also incorporate such notions as the time-value of money,

the fact that an experiment can lose money over time if the difference is made up

over a different period of time, etc. All of these are specifications that find clear

expression within the utility and cost functions, and make interesting avenues for

future study.

The determination of the function class remains the largest hurdle in the

use of the UFO, but many of those issues have been discussed and addressed in

previous work [Monson and Seppi 2006]: determination of an appropriate function

class is in many ways no more taxing than trying to select the right algorithm for
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the job. There is certainly room for more standard function class definitions, a

potentially fruitful area for future research.

The UFO is not, of course, a panacea. There are real computational costs

associated, for example, with EVSI computation. The complexity of EVSI, for ex-

ample, is usually substantially higher in terms of raw CPU cycles than that of many

popular evolutionary algorithms; it is cubic in the number of functions sampled

from ρ f , and that number should generally be fairly high to ensure good cover-

age of the distribution’s support space. As the number of dimensions increases,

that number should increase further, making scalability an issue. It is likely, how-

ever, that mathematical approximations may be applied to alleviate these problems

[Brennan and Kharroubi 2005]. Additionally, only particle filters have been applied

to this model so far, but other empirical inference methodologies exist that may be

more efficient in this setting.

The EVSI calculation returns an answer for a particular test x?
t , which must

be chosen outside of the algorithm. The test that yields the greatest positive EVSI

value is generally the one that is used, suggesting that the algorithm for choosing

a sample point involves choosing a test which maximizes EVSI: an embedded

optimization problem. It is possible that bootstrapping might be applied to make

the choice of candidate tests more principled. This interesting idea is in keeping

with the tradition of Bayesian statistics in general; frequently a good prior is not

available and one must be generated from existing data and a higher-level set

of assumptions. While this can become absurdly recursive, the idea is generally

applied in moderation.

The UFO provides a way of thinking about the problem of optimization that

is both novel and powerful, as well as suggesting an existing and well-studied

set of solution methodologies. The calculations of EVSI and expected utility are

well understood and often applied in other settings. Their use in the context
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of optimization is both natural and significant, providing a set of tools to the

practitioner that not help to achieve the goal of optimization while supplying

information about the nature of the problem.
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Chapter 10

Conclusion

This work has been primarily concerned with the problem of continuous,

unconstrained, single-objective optimization where sparse information about the

target function is obtainable but important information remains unknown. An

understanding of the practical issues presented by No Free Lunch and a statistical

perspective on the mechanics of PSO laid the groundwork for a more general and

principled approach to optimization through the use of Bayesian reasoning. This

approach achieves the goal defined in the thesis statement of this work: to create

a principled decision-theoretic model of optimization that addresses many of the

issues posed by No Free Lunch.

Arriving to the core contribution of this work was a process of learning and

refinement that is evident in the progression of individual papers that comprise

the whole. Each of these constituent papers has drawn adequate conclusions of its

own; those conclusions that are most relevant are collected and summarized here.

10.1 No Free Lunch

All of the papers in this work present concepts that are at least influenced by No

Free Lunch even when not addressing it directly: Part I develops various analytical

or algorithmic domain-specific improvements to PSO, each paper serving as an

example of the need for an explicit definition of the limited function class that
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NFL dictates must be present; Part II applies Bayesian reasoning to PSO motion

then shows that this same reasoning can explain existing behavior, simultaneously

improving understanding of why PSO works and effectively demonstrating how

little is known about the function classes corresponding to the several PSO variants;

and finally, Part III addresses NFL directly, bridging the traditional gap between

design and performance desiderata by making the function class an explicit part

of an algorithm-generating model of optimization. The impact and importance of

No Free Lunch is evident throughout.

Chapter 8 makes it particularly clear that thinking about optimization in

terms of an explicit statistical model not only grants NFL more visibility in the

problem of optimization, but also allows it to be examined more directly in the

continuous context. The proposed Bayesian optimization network establishes and

clarifies the following:

NFL exists: It has been known for some time that all optimization algorithms

are equal when considering all possible functions, but application to the

continuous domain has been awkward. This work, while not supplying

rigorous proofs, provides the tools for such proofs by presenting a model that

makes application of NFL to continuous settings obvious.

Optimization problems have distinct complexities: That optimization problems

can be ranked according to some complexity measure is not new informa-

tion, but the model presented here makes it clear precisely what that measure

should be in the continuous setting. This work suggests that both computa-

tional complexity and sample complexity play a role in the difficulty of a given

optimization problem, and it provides tools for their explicit calculation.

Representation is a key to problem complexity: This concept has been known in

the machine learning community for some time: no learning algorithm’s

performance can be considered without due attention to the features it is
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given and the representation it uses to learn them; some representations are

better than others for the same problem. Current proofs of the existence

of optimization complexity classes take an algorithm as an axiom and then

show that not all problems are equally difficult for it [Macready and Wolpert

1996]. In contrast, this work establishes that it is not the algorithm that allows

problems to be ranked according to complexity, but the problem representation;

that the traditional proof works at all is due entirely to the fact that every

algorithm at least embodies an implicit representation of the problem.

10.2 Bayesian Inference

The Bayesian models of optimization allow for intuitive expression of function

characteristics that have traditionally been difficult to incorporate into existing

algorithms. In particular, they allow for the representation and optimization of

functions that change over time, functions whose outputs are truly nondetermin-

istic, and potentially functions with multiple simultaneous optimization goals.

Functions whose outputs are noisy (i.e., each sample at a single location

yields different results over time, according to some distribution) tend to be difficult

for many optimizers, and are often simply excluded from consideration in the

evolutionary computation community. PSO, for example, has a greedy policy that

creates and maintains particle attractors based on the quality of their corresponding

values in reference to what has been seen in the past; overly optimistic samples

will cause the swarm to be attracted to unproductive locations of the search space.

Most existing evolutionary algorithms have the same problem in various forms,

and noise is typically addressed as an afterthought.

A similar situation exists with dynamic functions, though these have re-

ceived a great deal more attention in the evolutionary computation literature;

they are, after all, easier to attack using heuristic approaches like periodic re-
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randomization. Such strategies can be effective, but display the same weakness as

all evolutionary algorithms: their design is accomplished using heuristics that do

not directly describe the dynamic functions on which they are intended to work.

The Bayesian approaches outlined here, however, take noisy and dynamic

function into account directly and naturally. Because they represent a statistical

view of the optimization problem with explicit inclusion of the function class, noisy

outputs and time-dependent parameters are already part of the model and can be

called upon whenever needed.

Finally, the application of Bayesian reasoning to optimization problems ad-

mits a declaration of subjective human confidence. In return, inference in the

network produces a distribution over possible optima, and the shape of that dis-

tribution may be viewed as an expression of confidence that adapts to acquired

information. While this idea is not new to those conversant with Bayesian reason-

ing, its application to optimization sheds new light on how confident a practitioner

may be that the results obtained from a few samples actually point to the location

of the global optimum.

10.3 Utility

That optimization results can have associated utility is perhaps the most significant

contribution of this work. Not only is NFL clarified and made quantifiable while

allowing all kinds of functions and search goals to be expressed, but all of the

practical information at the disposal of an optimization practitioner can be supplied

in its natural form to a statistical, utility-based algorithm.

People performing real-world optimization generally do so because opti-

mality has a concrete associated benefit, e.g., they are trying to maximize dollars

or minimize accidents. The very goal of optimization, whatever the function, is

214



to learn how to increase benefits without incurring unreasonable costs, and the

Bayesian model presented here acts rationally in the presence of that information.

No other optimization approach incorporates so much information in such a

natural way. It is possible to make use of utilities or costs with existing algorithms,

but again this must typically be done by creating and employing heuristics that

directly affect algorithm behavior, something that cannot be done lightly because

existing algorithms generally confound all aspects of their behavior with their

implicit function class definition. This model not only separates declaration of the

function class from definitions of cost and utility, it allows them to be specified in

their naturally occurring form.

These declarations also provide the means of answering a question that

plagues every optimization researcher: when should sampling stop? The Bayesian

utility model not only acts rationally while sampling the function, it also knows

when it is rational to abandon sampling altogether, providing a much-needed

stopping criterion to empirical optimization while transforming traditional ex-

plore/exploit tradeoff specifications into a simple declaration of utility and cost.

10.4 Directions for Future Research

While the contributions of this work are exciting in their own right, perhaps more

exciting is the fact that it has generated more ideas than can be immediately pur-

sued. Some of these follow.

Connection to existing approaches: The algorithm in Chapter 8 can be connected

to PSO with an appropriate choice of function class and some careful approx-

imations, perhaps indicating that PSO can be viewed as an approximate but

motivated statistical approach. This may apply to other existing algorithms,

providing insights into their behavior and function classes.
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Creation of function class definitions: That the function class must be defined

appears to be the weakest characteristic of the Bayesian approach, requiring

more of practitioners than has apparently been necessary in the past. The

requirements are not, in fact, more difficult, but it is true that they have

changed: instead of creating an algorithm to attack a particular problem, one

must accurately define the problem’s characteristics. At least one interesting

function class has been introduced, showing that it may not be as difficult as

initially thought, but a larger toolbox of such classes is needed.

Choice of approximate inference algorithm: The use of a particle filter as the in-

ference method in the network is not arbitrary, but is not likely to be the most

efficient choice, either. Many such methods exist and should be explored.

EVSI approximations: EVSI calculations are fairly time-consuming when com-

pared to the rest of the methods employed, and research has been

done to attempt to speed them up through approximation [Seppi 1990;

Brennan and Kharroubi 2005]. Such approaches should be tested in the opti-

mization context to assess their behavior and utility.

The model of optimization presented here provides interesting and exciting

new ideas that not only answer some difficult questions, but point the way toward

other questions that may be even more interesting. The questions that the utile

optimization model does address are important and long-standing, e.g., where best

to sample, when to stop, and what to do with the obtained information; it does

this with an explicit, clear, and often intuitive declaration of the nature of the envi-

ronment in which optimization occurs, allowing practitioners to obtain a working,

rational algorithm in return for simply specifying what they know. Much remains

to be studied in this area, and there is great potential for increased understanding

and more principled approaches to the pervasive problem of optimization.
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