

CRANFIELD UNIVERSITY

J M ROGERO

A GENETIC ALGORITHMS BASED OPTIMISATION TOOL
FOR THE PRELIMINARY DESIGN OF GAS TURBINE COMBUSTORS

SCHOOL OF ENGINEERING

PhD THESIS

CRANFIELD UNIVERSITY

SCHOOL OF MECHANICAL ENGINEERING

PhD THESIS

Academic Year 2002-2003

J M ROGERO

A Genetic Algorithms Based Optimisation Tool
for the Preliminary Design of Gas Turbine Combustors

Supervisor: P A RUBINI

November 2002

This thesis is submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy

© Cranfield University 2000. All rights reserved. No part of this publication may be
reproduced without the written permission of the copyright owner.

2

Abstract

The aim of this research is to develop an optimisation tool to support the
preliminary design of gas turbine combustors by providing a partial automa-
tion of the design process. This tool is to enable better design to be obtained
faster, providing a reduction in the development costs and time to market of
new engines.
The �rst phase of this work involved the analysis of the combustor design
process with the aim of identifying the critical tasks that are suitable for being
automated and most importantly identifying the key parameters describing
the performance of a combustor.
During the second phase of this work an adequate design methodology for this
problem was de�ned. This led to the development of a design optimisation
Toolbox based on genetic algorithms, containing the tools required for it's
proper integration into the combustor preliminary design environment. For
the development of this Toolbox, extensive work was performed on genetic
algorithms and derived techniques in order to provide the most e�cient and
robust optimisation method possible.
The optimisation capability of the Toolbox was �rst validated and metered
on analytical problems of known solution, where it demonstrated excellent
optimisation performance especially for higher-dimensional problems. In a
second step of the testing and validation process the combustor design capa-
bility of the Toolbox was demonstrated by applying it to diverse combustor

3

design test cases. There the Toolbox demonstrated its capacity to achieve
the required performance targets and to successfully optimise some key com-
bustor parameters such as liner wall cooling �ow and NOx emissions. In ad-
dition, the Toolbox demonstrated its ability to be applied to di�erent types
of engineering problems such as wing pro�le optimisation.

4

Acknowledgements

I wish to specially thank my supervisor, Dr Philip Rubini for his helpful
advice and direction throughout the entire work.
I am grateful to the Defense Evaluation and Research Agency (DERA now
QinetiQ) and Rolls-Royce for the funding and the support provided. I would
like to thank particularly Dave Lowe, Robert Hicks and Chris Wilson for
their valuable technical input.
I wish to express my gratitude to my parents and family, which have been
understanding and supportive, contributing through their encouragement to
the completion of the work.
Finally I would like to thank all the friends that I met in Cran�eld and in
the Salsa club for providing a much needed distraction and support; I think,
it wouldn't have been possible to stay in Cran�eld that long without them.

5

6

Contents

1 Introduction 29

1.1 Design Environment . 30
1.2 The Emergence of Optimisation Techniques 32
1.3 Aim of the Present Work . 34
1.4 Outline of the Thesis . 35

2 Combustor Preliminary Design 37

2.1 Introduction . 37
2.2 Background on Gas Turbine Combustor 40

2.2.1 Performance Requirements 45
2.2.2 Constraints from the Gas Turbine 48

2.3 Combustor Preliminary Design Process 50
2.3.1 Combustor Architecture 52
2.3.2 Selection of the Combustor Features 53

2.3.2.1 Fuel Injection system selection 53
2.3.2.2 Liner Cooling Technologies 55

2.3.3 Tuning of the Combustor Features 59

7

2.4 Combustor Performance Parameters 60
2.4.1 The Performance Parameters of a Combustor 60

2.4.1.1 Average Zone Air Fuel Ratio 61
2.4.1.2 Mixing Quality 61
2.4.1.3 Pressure Drop 61
2.4.1.4 Cross-Flow Mach Number Ratio 62
2.4.1.5 Recirculating Flow 63
2.4.1.6 Overall Loading 63
2.4.1.7 Relight Loading 64
2.4.1.8 Cooling Mass Flow Ratio 64
2.4.1.9 NOx Emissions 65
2.4.1.10 CO emissions 65
2.4.1.11 Soot Emission 66
2.4.1.12 Combustion Instabilities 66
2.4.1.13 Pattern Factor 67
2.4.1.14 Wall Temperature 67

2.5 Conclusion . 68

3 Design Optimisation 69

3.1 Introduction . 69
3.2 Introduction to Design Optimisation 70
3.3 Concept of Design Optimisation 72

3.3.1 The Quality of a Design 74
3.3.2 The design Variables 77

8

3.4 Application of Design Optimisation 77
3.4.1 Design Optimisation as applied In Industry 77
3.4.2 The Requirements for a Gas Turbine Preliminary De-

sign Optimisation Method 79
3.4.3 De�nition of the Gas Turbine Design Optimisation Prob-

lem Features . 80
3.5 Review of the Available Optimisation Algorithms 81

3.5.1 Analytically based algorithms 81
3.5.2 Heuristic Search . 82
3.5.3 Design Of Experiment 83
3.5.4 Evolutionary algorithms 84

3.5.4.1 Selection of the optimisation technique 85
3.6 An Optimisation Toolbox for Gas-Turbine Preliminary Design 85

3.6.1 Aim of the Optimisation Toolbox 85
3.6.2 Architecture of the Toolbox 86
3.6.3 Description of the toolbox Modules 87

3.6.3.1 The Optimisation Toolbox Main Module . . . 87
3.6.3.2 The Optimisation Modules 88
3.6.3.3 The Interfacing Modules 88
3.6.3.4 The Evaluation Modules 90
3.6.3.5 The GUI Module 91

3.7 Conclusions . 92

9

4 Simulation Tools 95

4.1 Introduction . 95
4.2 Selection of the simulation tool 95

4.2.1 Empirical Correlations 97
4.2.2 Semi Empirical Code 97
4.2.3 CFD Simulations . 98
4.2.4 Conclusion on the Simulation Technique 98

4.3 Background on Flownet . 99
4.4 NOx Model . 100

4.4.1 Empirical NOx Correlations 100
4.4.2 Introduction to the Simple NOx Model 101

4.4.2.1 Model Approach 102
4.4.2.2 Perfectly Stirred Reactor Calculations 102
4.4.2.3 Oxides of Nitrogen Mechanism 102
4.4.2.4 Limitations and Assumptions 105
4.4.2.5 Validation of the emission model 106

4.5 Conclusion . 106

5 Genetic Algorithms 109

5.1 Introduction . 109
5.2 Evolutionary Optimisation Method Background 110

5.2.1 The Idea Behind Evolutionary Optimisation 110
5.2.2 Basic Principle . 111

5.3 Example Of Uses . 112

10

5.3.1 General Engineering Examples 113
5.3.2 Aerospace Applications 114
5.3.3 Gas turbine and Combustor Applications 114

5.4 Principle of the Conventional Genetic Algorithms 115
5.4.1 Genetic Algorithms Process 116
5.4.2 Problem Encoding and Initial population 116
5.4.3 Recombination (Crossover) 119
5.4.4 Mutation . 120
5.4.5 Selection and Replacement Mechanism 121
5.4.6 Theoretical Background of Simple Genetic Algorithms. 123
5.4.7 Shortcomings of the Simple Genetic Algorithm 125

5.5 Conclusions . 126

6 Implementation of the Optimisation Module 127

6.1 Introduction . 127
6.2 The SGA Library . 128
6.3 Objective and Constraints Handling 129

6.3.1 Objective and Constraints for Engineering Design . . . 130
6.3.2 Review Of the Available Constrains Handling Techniques131
6.3.3 The Special Case of Explicit Constraints 132
6.3.4 The Death Penalty Approach 133
6.3.5 The Fixed Penalty Approach 133
6.3.6 The Penalty Function Approach 134
6.3.7 The Variable Penalty Function Approach 134

11

6.3.8 The Feasible / Infeasible Approach 135
6.3.9 Exotic Constraint Handling Approaches 136
6.3.10 Single / Multi Objective Optimisation 137

6.4 Target Optimisation . 138
6.4.1 Target Representation 139
6.4.2 Range Error, Target Achievement and Optimisation

Factors . 139
6.4.3 Handling of the Range Constraints. 140
6.4.4 Implementation . 141

6.5 Performance improvement . 143
6.6 Technique Improvement . 143

6.6.1 Elitism . 143
6.6.2 Steady State Replacement 144
6.6.3 Fitness Scaling . 144
6.6.4 Random Number Generator 146

6.7 Adaptation to the domain . 147
6.7.1 Real Coding . 147
6.7.2 History of all the Created Chromosomes 149
6.7.3 Duplicate Prevention 150
6.7.4 Parameters Adaptation 151

6.8 Operators Improvements . 151
6.8.1 Mutation Operators 152

6.8.1.1 Creep Mutation 152
6.8.1.2 Creep Mutation With decay 153

12

6.8.1.3 Dynamic Vectored Mutation (DVM) 154
6.8.2 Crossover Operators 162

6.8.2.1 Consanguinity Prevention 163
6.8.2.2 Weighted Averaging Crossover 163
6.8.2.3 Blend Crossover BLX-α 164
6.8.2.4 Simulated Binary Crossover SBX 165

6.8.3 Selection Operators . 167
6.8.3.1 Modi�ed Roulette Wheel Selection 167
6.8.3.2 Stochastic Universal Sampling SUS 167

6.8.4 Replacement Operators 168
6.9 Hybridation with other optimisation techniques 169

6.9.1 Random Search Phase 169
6.9.2 Hill Climbing . 169

6.10 Multi Processing . 170
6.10.1 Parallel Processing . 170
6.10.2 Heterogenous Distributed Processing 170

6.11 Reduction of the Number of Exact Evaluation 171
6.11.1 Screening . 172
6.11.2 Neural Network Evaluation 172

6.12 Conclusions . 173

7 Testing of the Optimisation Technique 175

7.1 Introduction . 175
7.2 Mutation Operators analysis 175

13

7.2.1 Creep Mutate With Decay 176
7.2.2 Dynamic Vector Mutate 178

7.3 Optimisation of a Simple Function 183
7.3.1 De�nition of the optimum control parameters 184
7.3.2 Test of di�erent operators 191
7.3.3 Dimensionality e�ects 194

7.4 Optimisation with Local Optima 196
7.5 Constrained Problems . 198
7.6 Conclusion . 202

8 Combustor Design Optimisation 203

8.1 Introduction . 203
8.2 The Design Problem . 203

8.2.1 Selection of the Design Variables 204
8.2.2 De�nition of the Objectives 206

8.3 Test Cases . 207
8.3.1 Achievement of a set of design targets 207

8.3.1.1 Setting of the optimisation 207
8.3.1.2 The Optimisation Process 208
8.3.1.3 The Designed Combustor 210

8.3.2 Minimization of the Wall Cooling Flow 213
8.3.2.1 Setting of the Optimisation 213
8.3.2.2 The Optimisation Process 213
8.3.2.3 The Designed Combustor 214

14

8.3.3 Minimisation of the NOx Emissions 217
8.3.3.1 Setting of the Optimisation 217
8.3.3.2 The Optimisation Process 219
8.3.3.3 The Designed Combustor 220

8.4 Other applications . 226
8.4.1 Biomass Gasi�er . 226
8.4.2 Airfoil design . 226

8.5 Conclusion . 227

9 Conclusion and Future Work 229

9.1 Conclusion . 229
9.2 Recommendations for future work 232

9.2.1 Simulation Capability Extension 232
9.2.2 Optimisation Capability Development 234
9.2.3 Extension of the optimisation process. 235

A Documentation of the JGA Toolbox V1.0 259

15

16

List of Figures

2.1 Design Cycle . 38
2.2 Derivation of the conventional combustor con�guration (Lefeb-

vre [95]) . 41
2.3 Air Blast Atomizer (Malecki [102]) 43
2.4 A typical Combustor Con�guration (PW4098 Malecki [102]) . 43
2.5 Dual Annular Combustor (Lefebvre [95]) 44
2.6 Staged Combustor ([73]) . 44
2.7 Annular GE Combustor (Mongia [113]) 45
2.8 Reverse Flow Combustor (Lefebvre [95]) 46
2.9 Preliminary Design Flow Chart 51
2.10 Schema of an Airblast Atomizer (Malecki [102]) 54
2.11 Film Cooling Devices 1: (a) wiggle-strip, (b) stacked ring, (c)

splash-Cooling, (d) machined ring. (Lefebvre [95]) 56
2.12 Film Cooling Devices 2: (a) rolled ring, (b) double-pass ring,

(c) Z-ring. (Lefebvre [95]) . 57
2.13 Augmented Convection Film Cooling Devices : (a) combine

convection and �lm cooling, (b) combined impingement and
�lm cooling, (c) transpiration cooling, (d) e�usion cooling, (e)
combined �lm and e�usion cooling. (Lefebvre [95]) 58

17

3.1 The basic design cycle, from Roozenburg and Eekels [154] . . . 73
3.2 The basic optimisation cycle 74
3.3 The Design Optimisation Cycle 75
3.4 Modular Organization . 88
3.5 Distributed evaluation of objects. 91
3.6 Distributed evaluation performance on a problem with short

evaluation time (0.5s). 92
3.7 Screen-shot of the graphical interface output. 93

5.1 Genetic algorithm �owchart process. 117
5.2 Encoding of the problem into chromosomes. 119
5.3 Recombination of two chromosomes to form two o�springs. . 120
5.4 Bit mutation in a Chromosome. 121
5.5 Roulette wheel selection process. 122
5.6 Planes on a three-dimensional cube. 124

6.1 E�ect of the Creep Mutation operator on a two dimensional
chromosome . 153

6.2 E�ect of the Creep Mutation With Decay operator on a two
dimensional chromosome . 154

6.3 Plot of δ against the number of generations for γ = 0.05 . . . 155
6.4 Unreachable zones with the traditional mutation operators . . 156
6.5 E�ect of the Vector Mutation in two dimensions 156
6.6 Vector Mutation in two dimensions using the maximum dis-

tance towards the boundary 157

18

6.7 Hard to reach zones using the maximum distance towards the
boundary . 158

6.8 Plot of δ against r and η for γ = 0.8 159
6.9 Vector Mutation in two dimensions using a probability based

on boundaries distance . 159
6.10 Plot of β against r and η for x = 1, γ = 0.5, a = 1. 161
6.11 Plot of β against r and x for η = 0.3, γ = 0.5, a = 1. 161
6.12 E�ect Of the Dynamic Vector Mutation using a probability of

creation depending of the magnitude m of the mutation vector,
bounded by the gene boundaries 162

6.13 Stochastic Universal Sampling Wheel 168

7.1 Operator: Creep Mutate With Decay, (Creep Size = 30) . . . 176
7.2 Operator: Creep Mutate With Decay, (Creep Size = 10) . . . 177
7.3 Operator: Creep Mutate With Decay, (Creep Size = 1) 177
7.4 Operator: Dynamic Vector Mutate (Progress Ratio = 0.0) . . 179
7.5 Operator: Dynamic Vector Mutate (Progress Ratio = 0.5) . . 179
7.6 Operator: Dynamic Vector Mutate (Progress Ratio = 0.8) . . 180
7.7 Operator: Dynamic Vector Mutate (Progress Ratio = 0.98) . . 180
7.8 Operator: Dynamic Vector Mutate close to a boundary (Progress

Ratio = 0.0) . 181
7.9 Operator: Dynamic Vector Mutate close to a boundary (Progress

Ratio = 0.5) . 182
7.10 Operator: Dynamic Vector Mutate close to a boundary (Progress

Ratio = 0.8) . 182
7.11 Simple Function in 2-dimensions 183

19

7.12 E�ect of the Initial Distribution Factor (IDF0) 186
7.13 E�ect of the Iteration Dependency Factor (IDF1) 187
7.14 E�ect of the Crossover probability (CP) 188
7.15 E�ect of the Mutation Probability (MP) 189
7.16 E�ect of the Mutation Probability (MP) in the low Values

Range . 190
7.17 E�ect of the Selection Pressure (SP) 191
7.18 E�ect of the Population Size (PS) 192
7.19 E�ect of the initial Population Ratio 193
7.20 Dimensionality e�ect on the required number of evaluations . 195
7.21 Hedgehog function in two dimensions with δ = 5, α = 6, and

s = 0.07 . 197
7.22 Dimensionality e�ect on oh the required number of evaluations

for the Hedgehog function and comparison with the simple
function . 199

7.23 Optimal zone of fw (−→x)in the dimensions h and t 201

8.1 A Network Model of the Generic-Combustor-01 208
8.2 Evolution Of the required time in function of the number of

evaluations . 209
8.3 Evolution of the �tness as a function of the number of evalu-

ations . 210
8.4 Evolution of the pressure drop as a function of the number of

evaluations . 211
8.5 Evolution of Mach ratio as a function of the number of evalu-

ations . 212

20

8.6 Evolution of the �tness as a function of the number of evalu-
ations . 214

8.7 Evolution of the �ame tube cooling �ow as a function of the
number of evaluations . 216

8.8 Evolution of the cooling �ow entering the �ametube outer wall
along the combustor . 217

8.9 Evolution of the cooling �ow entering the �ametube inner wall
along the combustor . 218

8.10 Evolution of the �ametube outer wall temperature along the
combustor . 218

8.11 Evolution of the �ametube Inner 219
8.12 Evolution of the �tness as a function of the number of evalu-

ations . 220
8.13 Evolution of the predicted NOx emissions as a function of the

number of evaluations . 222
8.14 Evolution of the Relight Loading factor as a function of the

number of evaluations . 223
8.15 Evolution of the AFR along the �ametube 223
8.16 Evolution of the AFR di�erence along the �ametube 224
8.17 Evolution of the Injector AFR as a function of the number of

the evaluations . 224
8.18 Evolution of the zone 1 AFR as a function of the number of

evaluations. 225
8.19 Evolution of the zone 2 AFR as a function of the number of

evaluations. 225

21

22

List of Tables

7.1 Final setting of the optimiser for the optimisation of the Simple
Function in 5 Dimensions . 190

7.2 Performance of the di�erent Crossover operators 192
7.3 Performance of the di�erent Crossover operators 193
7.4 Scaling of the optimisation technique depending of the dimen-

sionality of the problem . 195
7.5 Scaling of the optimisation technique depending of the dimen-

sionality of the problem . 198

8.1 Achievement of a set of 22 design parameters targets 212
8.2 Achievement of a set of 22 design parameters targets 215
8.3 Achievement of a set of 22 design parameters targets 221

23

24

Nomenclature

Letters

a Constant

b Constant
−→
bl Set of variable lower boundary
−→
bu Set of variable upper boundary

c Constant

[A] Molar concentration of spices A (kmol/m3)

F Feasible search space

f Fitness

g Generation number

i Index

k Formation rate

l Length of a bit string encoding a gene

LB Lower bound of a variable

25

M Mach number or Molecular weight (kg/kmol)

m Number of bits encoding a chromosome

ṁ Mass �ow (kg/s)

n Number

O Optimisation factor

o Order of a schemata
−→o Set of objectives

P Pressure (kPa)

Pv Problem input variable

Po Performance objective

Pp Problem performance parameter
−→p Set of performance parameters

R Speci�c Gas Constant (kJ ∗ kg−1 ∗K−1)

R0 Universal Gas Constant R0 = 8.314 (kJ ∗ kmol−1 ∗K−1))

Re Range error

r Random number

S Search space

S Set or vector of parameters

Sp Selection Pressure

T Temperature (K)

26

Ta Target achievement factor

t Time (s)

−→
ta Set of performance targets
−→
t Set of �nite performance targets

U Cooling mass-�ow ratio

UB Upper bound of a variable

V Volume (m3)

V̇ Volume �ow (m3/s)

−→
V c Vector of a chromosome
−→
V d Displacement vector
−→
V r Resulting vector

v Variable parameter
−→v Set of variables

Greek Symbols

∆ Magnitude range

Λ Loading Parameter

γ Decay rate

δ Magnitude range ratio

η E�ciency

27

µ Precision
ς Schemata
χ Relight Loading Parameter

Subscripts

3 Compressor Delivery Conditions (combustor related)

4 Turbine Entry Conditions (combustor related)

an Annulus

b Bit or binary

bp Base plate

c Combustion (combustor related) / Cumulative (optimisation re-
lated)

e Evaporation

iw Inner wall

ow Outer wall

po Port

pz Primary zone

R Relight Conditions
r Recirculating (combustor related) / Relative (optimisation re-

lated)

st Stoichiometric Conditions

28

Chapter 1

Introduction

Since the deregulation of the US airline market in 1978, which then propa-
gated to the international airline markets [160], the pressure on the airframe
and engine manufacturers to produce more e�cient, low cost aircraft has
increased dramatically. The increased competition forced the airline compa-
nies to reduce their commitment as launch customers for new airframe and
engines, generating �nancial uncertainty for these new projects and in turn
increasing competition among the manufacturers [118]. In addition, environ-
mental concerns pushed for more stringent legislation on pollutant emissions
and noise. The standard regulating NOx emissions of aero-engines [74] was
�rst adopted in 1981, then was made more stringent in 1993 with a reduction
of the permitted levels by 20 per cent. It was followed in 1999 by a further
reduction of the standard by about 16 per cent on average for engines to be
certi�ed from the 31 December 2003.
The �nancial uncertainties pushed manufacturers to reduce their time to
market from 5 years to 39 months for the Trent series [150]. In addition Rolls-
Royce now plans to reduce its engine development time scale by a further
30% [2]. The increased competition in conjunction with the environmental
concerns changed the market drivers which could be classi�ed as follows [106]:

29

✾ Life cycle cost: acquisition, fuel burn, maintenance.

✾ Environmental impact: pollutants emissions, noise.

✾ Performance: thrust, weight, speci�c fuel consumption.

These drivers generated unprecedented pressures on engine design and in turn
on combustor design to achieve higher targets in terms of design cycle time,
performance, emissions and costs. It is therefore necessary to search means
for making these targets easier to achieve.

1.1 Design Environment

During the last thirty years, the gradual shift of design methods from manual
methods to methods based on analysis and simulation tools has allowed a
dramatic reduction in development time and costs by giving more con�dence
in the quality of the design and therefore reducing testing requirements. The
increasing complexity and performance requirements of engineering products
necessitate more collaboration between the di�erent departments, and more
time for organisational and environmental tasks, which has a detrimental
e�ect on the technical tasks [48]. This means that designers are faced with
more technical decisions in the design phase than ever before, the number
and complexity of these decision is growing rapidly while the time available
to make them is decreasing. This increased complexity in conjunction with
the ever reducing design cycle is a challenging task for the designer which
would require means of automating part of the design process.
This is particularly true for gas turbine combustor design which involves a
large number of inter-related complex phenomena, such as unsteady three
dimensional �ow, transport and evaporation of liquid droplets, gas phase
mixing, complex chemistry, heat transfer and radiation. The complexity

30

of these inter-linked processes makes the derivation of any direct analytical
design techniques extremely di�cult.
Until the 1970s combustor design was considered more of an art rather than a
science. It was mostly based on the �cut-and try� method where the approach
was to repetitively test di�erent variants of the combustor until a suitable
arrangement could be found. It made use of a few empirically based design
rules and relied on repeated testing to achieve a correct design. A study
concerning gas turbine design costs in the 1970s highlighted that some 75%
of all hardware costs were spent on those �cut-and-try� design feedback cycles
[118].
Recent experimental and theoretical research on gas turbine combustors has
resulted in better understanding of the physical processes taking place inside
the combustor. This better understanding in conjunction with the powerful
computational hardware made possible the development of numerical tech-
niques capable of simulating, with a relatively high accuracy, most of the
phenomena encountered inside a combustor. Based on these simulation tools,
design techniques have been made more systematic and e�cient.
The use of simulation tools, even though these are not perfect and still have
serious de�ciencies [2], resulted in a giant leap in terms of design capacity,
costs and lead time. Martin Jones et all [83] reported more than 60% re-
duction of the direct operating costs, 70% increase in thrust to weight ratio,
90% reduction in soot, smoke, UHC, and CO, and 40% reduction of the NOx
emissions due to the engineering advances in the last �fty years. In addi-
tion there was an amazing increase in reliability from more than 1 in 1,000
in-�ight shut-down to 1 in 1,000,000 [83].
The aim is now to perform the redesign feedback loop on a numerical model
of the combustor with testing only required to verify the design during the
�nal steps of the design process. This was experimented with the Adour 915
design (Hawk retro�t program) where the combustor design was performed
in a short time scale using numerical methods for the design and only 5 tests

31

were required compared to 40-50 for previous programs [2].
The simulation tools only give information on the particular design being
simulated, but don't give any indication about the best design. It is up to
the designer to perform the redesign cycle by manually modifying the design
to �nd the best design point, using his past experience and trial and error.
This type of performance tuning is still more of an art than a science and
the optimisation levels highly depend on the designer skills and are inversely
proportional to the complexity and the number of variable parameters of the
design.
The di�culty of the optimisation task delays the progress in combustor de-
sign and hinders the achievement of the maximum performance point for a
given technology and increases the time and cost to achieve a desired set
performance target. It would be useful to automate the tuning of the design
variables using optimisation techniques in order to support the designer in
his task. However, the application of the traditional optimisation techniques
is made practically impossible for this type of problems due to the large
number of strongly correlated design variables with complex (non-derivable)
relationships to a large number of con�icting performance targets.
However some unconventional optimisation techniques seems to be able to
overcome the drawbacks of the traditional techniques. These techniques such
as genetic algorithms or more generally evolutionary based techniques can
accommodate the complex relationships between the design variables and
are suitable for scaling up the number of variables.

1.2 The Emergence of Optimisation Techniques

During the early seventies optimisation techniques based on the theory of
evolution were proposed. Those methods have the characteristic of being
extremely robust and the ability to �nd global optima for a wide range of

32

problems without requiring any special knowledge of the actual problem.
For this type of optimisation technique the problem is considered to be a
black box, that is, these techniques do not require any information about the
problem [69] unlike the analytical techniques which would usually require a
known function that links the input parameters to performance parameters
[86], in addition this function is usually required to be continuous and smooth
[131]. The global optimisation capability of the evolutionary optimisation
algorithms allows them to perform even in the presence of local optima where
non global optimisation techniques would be trapped. Those two factors give
a strong potential for those techniques to be applied to the optimisation of
combustor design [36]. The fact that the problem is seen as a black box
gives the possibility to use any simulation tool in conjunction with these
optimisation techniques.
However the main drawback of these techniques lies in their relative compu-
tational ine�ciency compared to analytical techniques. The lack of available
computing power during the 70's meant that these methods had a limited
applicability range. Recently, the advances in computing hardware combined
with the development of more e�cient genetic algorithms operators and tech-
niques has allowed these techniques to reach maturity and to provide a wider
range of applicability. Since then a number of successful applications of these
techniques were demonstrated on hard engineering design problems such as
aircraft wing pro�le optimisation [127], rotor systems [24], and many other
problems [122, 167, 17].
The advances in these techniques allowed a good optimisation capacity to be
demonstrated for high dimensional engineering optimisation problems [153,
152].
These advances combined with constraint handling techniques capable of
tackling a large number of parameters allows the application of genetic algo-
rithms based optimisation techniques to complex problems such as combustor
design.

33

1.3 Aim of the Present Work

The use of optimisation techniques for combustor preliminary design could
ease the pressure on the combustor designer by automating the optimisation
of some performance parameters of the combustor, giving more time to the
designer to concentrate on the technical tasks rather than tuning of the de-
sign. This will result in shorter design times and more re�ned optimisation at
a reduced cost. The proof of concept for the application of optimisation algo-
rithms to combustor design was discussed by Despierre, Stuttaford & Rubini
[36]. This work provided the motivation and con�dence to develop a com-
plete approach to automated preliminary design tuning through evolutionary
optimisation techniques.
The aim of this project is to propose and develop a design optimisation tool
which will allow a novel approach to design and to apply it to the preliminary
design of gas turbine combustors. This technique represents the �rst step
towards autonomous engineering design with user-speci�ed characteristics
and objectives through the use of performance targets and constraints.
The proposed method consists of creating a modular 'toolbox', which regroup
the necessary features to perform gas turbine preliminary design optimisation.
These features are as follow:

✾ Ease of interfacing di�erent analysis codes.
✾ Ability to deal with performance targets and constraints.
✾ Robust, non problem speci�c optimisation algorithms.
✾ Adaptation of these algorithms to engineering design.
✾ Tackle the computational cost of problem simulation.

The implementation of the tool box consisted in the development of a group
of elements providing the functionalities previously cited, where the main

34

task was to create an e�cient optimisation library capable of tackling a large
number of target design parameters and constraints. This was achieved by
implementing the state of the art techniques in the domain of genetic algo-
rithms and developing some new ones such as a speci�c constraint handling
method based on targets and the dynamic vectored mutation. Additionally,
a simple NOx emission model was developed in order to complement the
emissions simulation capability.

1.4 Outline of the Thesis

Firstly a detailed description of the gas turbine combustor preliminary design
phase is presented in order to highlight its speci�c steps and and challenges.
This is followed by a description of the available design methods and the
design of the optimisation toolbox. Since the toolbox is based on genetic al-
gorithms, basic theory behind the genetic algorithm optimisation technique
will be presented in its traditional form. This will be followed by a descrip-
tion of the improvements made to the genetic algorithm library in order to
increase its e�ciency and adapt it as an engineering design tool. The results
will be presented in two parts, the demonstration of the performance of the
optimisation toolbox, and its application to combustor design optimisation.
Finally proposals for future work will be presented and conclusions will be
drawn from the present work.

35

36

Chapter 2

Combustor Preliminary Design

2.1 Introduction

It is important to have a clear idea of the combustor design process and of the
details of preliminary design in order to be able to devise the best strategy
to improve this design phase. In addition, since optimisation techniques are
to be applied to the combustor design method, it is crucial to de�ne a set
of performance parameters that allows the performance of a combustor de-
sign to be measured. Therefore this chapter aims to describe the combustor
preliminary design process and its integration within the complete combustor
design process. As well, during this chapter, the di�erent parameters control-
ling the design of a combustor will be identi�ed and an attempt will be made
to describe the relative importance of each parameter towards the quality of
the combustor design.
During the previous chapter it has been highlighted that the technological
drivers have changed in the recent years [106] and environmental issues have
grown in importance up to a point where reducing pollutant emissions has
become one of the main reason for technological change in combustion sys-
tems due to stricter legislation [74, 82]. In addition, the drive to reduce cost

37

has evolved from achieving low acquisition cost to the new goal of achieving
low life-cycle cost [83]. These drivers in conjunction with the strong pres-
sure to reduce development time have a�ected the design process [113], thus
encouraging the development of accurate and more sophisticated simulation
tools and radically changing the way combustors are designed.
In order to identify the key factors that can allow the improvement of the
design process to achieve new levels of requirement, it is imperative to analyze
di�erent design phases of a gas turbine development project.
A combustor process is usually composed of four phases where the level of
con�dence in the design as well as its re�nements increase as the design phases
are completed. The costs will also increase steeply as the phases becomes
more and more advanced being maximal for the testing and certi�cation
phase. These phases which follows a similar principle as the gas turbine design
cycle [182] can be classi�ed as follows: the conceptual study, the preliminary
design, the detail design and �nally the testing and certi�cation, as in the
sequence shown in Figure 2.1.

Project

New

Design

Conceptual

Design Design

Preliminary Detail
&

Tests

Validation

New
Combustor

Figure 2.1: Design Cycle

✾ The conceptual study: This is the phase where the environment of the
combustor is de�ned as well as the desired performance characteristics.
Those are de�ned subjected to the turbine design, the customer require-
ments and legislative constraints. During this phase the design targets
are identi�ed, a combustor architecture is selected and the necessary
R&D activities to achieve the targets are identi�ed.

38

✾ The preliminary design: This Phase mainly consists of two tasks, the
�rst one is to de�ne the basic features of the combustor, and the second
consists of tuning these features to achieve the desired combustor per-
formance. After this phase variations in combustor requirements will
not be permitted, the number of options selected during the concep-
tual study is reduced and critically analyzed in order to perform a �rst
comparison between achievements and targets.

✾ The detailed design: This phase takes place once the combustor has
been given its �nal shape and has been tuned during the preliminary
design process. Its purpose is to use tools such as detailed CFD sim-
ulations to re�ne the points that can not be precisely designed due to
the limitations of the preliminary design tools, to �ne-tune some of the
combustor features, and �nally to highlight some potential problems.
In addition to these thermo-�uid tasks it is also the place where the
manufacturing objectives, tolerances, and local stress relieve features
are fully de�ned. This phase gives an opportunity to solve some of
the problems prior to the testing phase, thus reducing the duration of
testing and the associated costs.

✾ The testing and certi�cation: This is the validation phase of the com-
bustor design, by verifying its performance. Since combustor design
involves many phenomena which are not fully understood and that
simulation tools are unable to predict correctly, some performances dis-
crepancies exists between testing and simulation results. Therefore the
testing phase often highlights some unexpected problems of the com-
bustor design which were not apparent during simulation, thus requir-
ing some modi�cations to the combustor. This is a costly phase and
therefore every e�ort is made to limit the number of tests required by
improving the simulation capabilities of the previous phases [2].

39

2.2 Background on Gas Turbine Combustor

The combustor is the component in the gas turbine where fuel is added to
the air�ow and subsequently burnt. In order to de�ne the necessary features
of combustors one has to look at a combustion chamber in its simplest form
and then gradually increase its complexity.
The simplest combustor could be seen as a straight duct linking the com-
pressor exit to the turbine entry, where fuel is injected as in �gure 2.2a. This
con�guration is impractical because two problems arise due to the fact that
compressor outlet velocities are relatively high (around 150 m/s). Firstly, the
�ow velocity is considerably above the �ame speed of air-hydrocarbon �ames.
In addition the combustion induced pressure drop, which is proportional to
the square of the air velocity in this con�guration, would be unacceptable
even if a �ame could be sustained at these speed [95].
In order to reduce these problems it is possible to �t a di�user between the
compressor exit and the start of the combustion section to reduce the air-
stream velocity as in �gure 2.2b. This allows the air velocity to be reduced
by a factor of about 2 to 3, thus reducing the combustion induced pressure
drop to acceptable limits. However it would still be di�cult to maintain an
attached �ame in these conditions.
As a simple modi�cation a ba�e can be added creating a �ow reversal which
will generate a low velocity region where the �ame can stay attached as in
�gure 2.2c. This con�guration would allow the �ame to stay attached and
prevent it from being blown away. Con�guration 2.2c is acceptable as a
viable system and is used for re-heat systems in military engines. But as
a gas turbine combustor, further improvements are required before it can
be put into practice. Since in this con�guration all the air arriving at the
combustor takes part in the combustion process, a large amount of fuel would
be required to maintain the mixture within its �amability limit, this would
then result in high combustor exit temperature much higher than what is

40

Figure 2.2: Derivation of the conventional combustor con�guration (Lefebvre
[95])

41

acceptable for the turbine.
This problem can be solved by using a perforated liner which allows the air
to be added gradually as in �gure 2.2d. This con�guration allows the air
/ fuel ratio (AFR) to be controlled precisely in the �ame region, called the
primary zone. The remaining air can then be added after this zone to dilute
the combustion gases and reduce the temperature to acceptable levels for
the turbine. Furthermore adding air after the primary zone strengthen the
recirculation which helps to anchor the �ame. This delayed air addition can
be further bene�cial because it can be used to control the pollutant emission
by choosing the air fuel ratio in di�erent zones of the combustor. In practice
smaller perforations are added to the liner to provide cooling of the liner walls.
This con�guration can be regarded as a basic combustor con�guration.
In addition to this basic con�guration some devices can be added to improve
the performance of the combustor; an air swirler is often added to create a
strong vortex motion to have a �xed recirculation zone detached from the
ba�e. Fuel is usually injected not as a simple spray but through an air
blast atomizer which integrate the swirler in the atomizer thus forming �ner
droplets for better combustion e�ciency as in �gure 2.3. This results in the
typical combustor con�guration as observed in �gure 2.4.
For a better control of pollutant formation, some alternative con�gurations
are thought to have better performance over the whole operating range of
the combustor. One such technique is to separate the �ame region for the
low power conditions and the high power conditions. This can be achieved
either by selecting the double annular con�guration shown in �gure 2.5 or
the staged combustion con�guration represented in �gure 2.6. These con�g-
urations permits stable operation of a rich pilot zone which maintains the
combustion during idle and low power conditions and an e�cient lean main
zone reducing NOx emissions during high power conditions.
Aero gas turbines are usually �tted with straight �ow combustors with an
annular con�guration as in �gure 2.7. Other variants have also been used in

42

Figure 2.3: Air Blast Atomizer (Malecki [102])

Figure 2.4: A typical Combustor Con�guration (PW4098 Malecki [102])

43

Figure 2.5: Dual Annular Combustor (Lefebvre [95])

Figure 2.6: Staged Combustor ([73])

44

Figure 2.7: Annular GE Combustor (Mongia [113])

the past namely tubular or tuboannular but have mostly been abandoned due
to their weight and pressure drop penalty. In some cases, when the distance
between the compressor exit and the turbine entry is small it is necessary to
use reverse �ow combustor con�guration as shown in �gure 2.8.

2.2.1 Performance Requirements

A combustor must satisfy a wide range of requirements whose relative impor-
tance may vary depending on the engine type and speci�c application. The
basic performances requirements are stated below:

✾ Pollutant Emissions: The pollutant emissions of a combustor should be
minimal, where pollutant can be either particulates, NOx, CO, UHC,
Soot, Smoke or SOx, generated by the combustion process. Emission
of those products are legally limited for civil aero-engines by the ICAO
regulations [74] which are becoming stricter. In addition some countries
such as Switzerland and Sweden now impose emissions related landing

45

Figure 2.8: Reverse Flow Combustor (Lefebvre [95])

charges [187, 82]. These regulations and penalties provide additional
incentive for gas turbine manufacturers to achieve signi�cantly lower
emissions than the legal limit to increase the competitiveness of their
engines [147, 83, 63, 14, 176]. The problem is similar for industrial
gas turbines where pollutant emissions regulations in some part of the
world are even stricter. For military engines the problem is centered on
particulate emissions such as soot or smoke which are detrimental to the
low observability requirements of modern military aircraft. There NOx
emissions will be of lesser importance, however these might become an
issue if oxidised to NO2 which is visible.

✾ Pressure Drop: The pressure drop within the combustor should be min-
imal to allow maximum performance of the gas turbine. However some
pressure drop is required to obtain proper mixing of the burning gases
within the combustor and to drive the cooling �ow of the nozzle guide
vanes. A compromise has to be made between an acceptable pressure
drop level and an acceptable combustion performance and NGV cool-
ing.

46

✾ Wall Cooling Flow: The wall cooling �ow is taken from the liner �ow.
Reducing it would be bene�cial because it leaves extra dilution air that
can be used either to operate leaner or to generate better exit tem-
perature pro�le. Reducing the wall cooling �ow may also reduce the
pollutant formation zones due to quenching in the regions where cooling
�ow is added [106]. However the reduction of the wall cooling �ow may
have an adverse e�ect by increasing the likelihood of combustion insta-
bilities. The numerous holes used to distribute the cooling �ow act as
a very e�cient damper of pressure pulsations. As the cooling require-
ments of combustors reduces due to improved materials and cooling
techniques the damping e�ect of the cooling ori�ces is reduced [173].
Thus making the combustor more susceptible to combustion instability
problems.

✾ Re-light: The combustor should be able to re-light reliably at a given
altitude. The de�nition of the relight envelope is negotiated between
the airframe manufacturer and the gas-turbine manufacturer and leg-
islation demands the veri�cation of this relight envelope [25]. Engine
manufacturers generally aim to achieve a relatively large altitude-relight
envelope to have a competitive advantage.

✾ Fluctuation: The combustor should be free of pressure pulsations and
combustion instabilities. Existence of these will generate cyclic loading
on the critical combustor and turbine components reducing their life
through fatigue. In addition the noise generated can also be a source
of nuisance to pilots and passengers.

✾ E�ciency: The combustion e�ciency should be maximal so that all the
chemical energy is converted into heat. This factor is important in
order to minimize the speci�c fuel consumption of the engine.

✾ Stability Limits: The combustor should be able to operate within a wide
range of pressure, AFR, velocities, which covers the whole operating

47

range of the gas turbine including windmilling and relight.
✾ Cost: The costs for the design, manufacturing, and maintenance of the

combustor should be minimal. Additionally manufacturers are under
pressure from customers who are expecting a low-cost of ownership of
the engine. The cost of ownership is linked to the manufacturing costs,
e�ciency, maintenance, durability and pollutant emissions in the case
where emission based landing fees are applied.

✾ Durability: The life of the combustor should be compatible with the
mission of the engine and the intervals between necessary repairs on
the combustor should be maximal, combustor should not be the life
limiting component requiring overhaul. Civil applications usually re-
quire a very high durability with minimal maintenance while military
applications favor a tradeo� more biased towards performance rather
than durability.

2.2.2 Constraints from the Gas Turbine

The gas turbine, due to its size, shape, technology and operating conditions,
does impose constraints on the combustor.
The constraints are in terms of:

✾ Mass Flow: The operating conditions of a gas turbine covers a wide
range of mass-�ow rates. The combustor should be designed to work
e�ciently throughout the whole mass-�ow range.

✾ Length: The maximum length available between the compressor exit
and the turbine entry is imposed by the shaft design to limit the e�ect
of shaft torsion and vibrations. This length constraint will have an
important e�ect on the shaping of the combustor. If the available length
is large there is space to �t a good aerodynamic di�user. Unfortunately

48

in most of the cases the space is limited forcing the designer to use
the shorter dump di�user and very short combustion zones. On the
very small engines where the available space is even smaller it becomes
necessary to use reverse �ow combustors.

✾ Turbine Entry Temperature T4: The Turbine Entry Temperature (TET)
is �xed by the cycle requirement and is limited by the turbine design
(blade cooling technique, material used). The gases exiting the com-
bustor are directly fed to the turbine therefore the temperature of those
gases must meet the required turbine entry temperature.

✾ Exit Temperature Traverse: To guarantee its expected life, the turbine
needs to be given a de�ned temperature traverse. The temperature
traverse or temperature pro�le is generated within the combustor by
the non-perfect mixing of the cold cooling port �ow with the hot core
�ow. The combustor temperature traverse should be as close as possible
to the optimal temperature traverse (de�ned by the turbine cooling
capability and stress pro�le) to achieve maximum turbine life.

✾ Operating Pressure P3: As well as for the mass-�ow the engine experi-
ence a very wide range of operating pressure. The combustor should be
designed to work e�ciently within this whole range of pressure, specif-
ically for re-light conditions where the pressure is at its lowest and
ignition becomes di�cult.

✾ Inlet Temperature T3: The combustor inlet temperature is directly de-
�ned by the engine pressure ratio of the compressor and inlet air tem-
perature. It will vary with the operating pressure, at the highest pres-
sure ratio the inlet temperature will be at its maximum. It will have
an e�ect on the maximum fuel burn and since it is the inlet air (com-
pressor delivery air) that is used as cooling �ow, an increase of inlet
temperature will have a signi�cant e�ect on the cooling performance
and pollutant emissions.

49

2.3 Combustor Preliminary Design Process

This section aims to brie�y describe the preliminary design phase of a com-
bustor. The preliminary design consists in �nalizing the shape and tuning
the basic features of the combustor to suit the gas turbine constraints and the
performance requirements. It is where the combustor takes its �nal shape,
and its main features, which are then tuned to achieve the required perfor-
mance. The combustor preliminary design is currently performed using low
dimensional empirical or semi-empirical tools. This implies that the prelim-
inary design tools should be capable of modeling the global parameters of
the combustor. However these tools do not have the capacity to pick-up the
e�ects of local details.
The combustor preliminary design is originated from the combustor require-
ments which were de�ned during the conceptual phase; these requirements
dictate the technology used for the design of the combustor and the selection
of its main features. The preliminary design could be sub-divided in to four
phases as follows:

✾ Phase 1: Freezing of the combustor architecture.

✾ Phase 2: Design of the di�user.

✾ Phase 3: Selection of the Combustor Features.

✾ Phase 4: Tuning of the combustor Feature.

Those four phases can are algorithmically presented in �gure 2.9, which shows
a typical preliminary design cycle. Those phases will be described in more
detail in the following sections. It is a design feed back process, with a strong
feed back loop over the fourth phase, the design processes might in some
cases loop back to the third phase and more rarely to the �rst phase.

50

Selection of the type of combustor

Sizing of the difuser

Selection of the difuser

Definition of the zone geometry

Selection of the fuel injector type

Definition of all the cooling ports type

sizing of the dilution ports and injector

Sizing of the cooling orifices

no

yes

targets achieved

Phase 3

Phase 4

Phase 2

Phase 1

Are all performance

Start of Preliminary Design

Completion of Preliminary Design

Figure 2.9: Preliminary Design Flow Chart

51

2.3.1 Combustor Architecture

The architecture of the combustor is selected according to the requirements
described in section 2.2.2and 2.2.1. Usually the combustor preliminary design
does not start from a blank sheet of paper, but from an existing combustor
design that needs to be sized and shaped to suit its new application. Therefore
the selection of the combustor architecture often means adapting an existing
design for a new gas turbine design, with some modi�cations to improve its
performance.

✾ The engine envelope constraints, the choice of the combustor and the
di�user type, (for the combustor: straight or reverse �ow and for the
di�user: aerodynamic, dump or vortex controlled di�user).

✾ The relight capability requirements will constrain the minimum volume
of the primary zone.

✾ The cooling capacity of the air used for cooling is proportional to the
compressor delivery temperature (T3). Therefore it a�ects the selection
of the combustor wall material and cooling techniques together with the
balance of life/cost/weight.

✾ The emission constraints can lead to di�erent combustor geometries
such as double annular combustor with a pilot and a main combustion
zone and di�erent types of combustion (premixed or di�usion).

Once these considerations have been taken into account, the basic geometry
is frozen and the combustion zones are de�ned, �xing the location of the
dilution ports. After the de�nition of the combustion zones, the cooling
ori�ces can be selected and positioned.

52

2.3.2 Selection of the Combustor Features

This section describes the selection of the main features of the combustor
that have to be de�ned during the preliminary design. Since this work con-
centrates on the tuning of the combustor parameters, the features will be
selected prior to the use of the optimisation tool, however it is important to
have an overview of the di�erent technologies available.

2.3.2.1 Fuel Injection system selection

The choice of the fuel injection system has major implications for the com-
bustor design and especially the emissions. These could be classi�ed into
three groups:

✾ Pressure Atomizer: These injectors rely on the injection of fuel at high
pressure to generate a �ne droplet spray. The simplest type corresponds
to a simple ori�ce. Fuel is atomized by passing through a small circular
hole, but the most common is the dual ori�ce atomizer. It is con-
structed by stacking two swirl atomizers; a smaller primary atomizer is
�tted inside the main atomizer allowing good atomization over a wide
range of fuel �ows. However, these type of injectors require high fuel
pressure and tend to create a high quantity of soot during high pressure
operation.

✾ Twin Fluid Atomizer: These injectors rely on the use of high pressure
air to improve the atomization process. High pressure ratio engines
tend to use pre�lming airblast injectors where the fuel is �rst spread
onto a continuous sheet and then subjected to the atomizing action of
high velocity high swirl air as in �gure 2.10. These injectors exhibit a
very high atomization quality, a low soot formation and do not require
the high fuel pressures of the pressure atomizers. However they can
su�er from a narrow burning range and a poor atomization quality at

53

Figure 2.10: Schema of an Airblast Atomizer (Malecki [102])

low air velocities, for example at startup. In addition, since the fuel
is fed at a low pressure this allows the potential for acoustic feedback
through fuel �owrate variations, making the combustor more subject
to combustion instabilities.

✾ Vaporizer: The aim of the vaporizer is to heat the fuel above the boil-
ing point of its heaviest hydrocarbon ingredient. The simplest method
consists of injecting the fuel with some air in a tube immersed in the
�ame. These are low cost injection systems, allowing low soot forma-
tion. However, they require special starting systems and su�er from
the risk of thermal damage making them mechanically suspect. In ad-
dition these dose not guaranty a fully vaporized �ow. The system that
seems the most promising for low pollutant emission is the lean premix
prevaporize system (LPP) which provides the combustion zone with a
homogeneous fuel air mixture. They exhibit very low NOx, Soot or
smoke and generate a constant pattern factor. However these are sus-
ceptible to �ashback or auto-ignition. In addition since they operate
close to the lean blowout limit they have a narrow stability region and
hence are especially prone to combustion instabilities.

54

2.3.2.2 Liner Cooling Technologies

The combustor liner is subjected to high thermal loads and cooling is usually
necessary to guarantee the required operating life. There are several options
to maintain the temperature of the liner wall, which could be classi�ed in
three types as follows:

✾ Film Cooling: These cooling devices create a thin �lm of cold air on
the �ame side of the combustor wall, preventing the hot air from the
combustion to be in direct contact with the wall. There are a wide va-
riety of these cooling devices as show in �gure 2.11 and 2.12. Although
it is a relatively simple and cheap cooling method, it requires a large
amount of cooling air and it is not capable of maintaining an uniform
wall temperature.

✾ Augmented Convection Film Cooling: The cooling requirements can be
reduced by augmenting the convection cooling of the walls. Figure 2.13
shows di�erent methods for improving the cooling of the liner wall using
convective e�ects. The most interesting of these techniques for practi-
cal purpose might be e�usion cooling (�gure2.13d) which exhibits high
cooling e�ciency especially when using angled holes. Laser drilling has
allowed relatively cheap manufacturing of the e�usion holes. However
this arrangement requires thicker walls and there are some issues with
regard to repairability.

✾ Thermal Protection: An e�ective solution to reduce wall temperature
is to reduce the heat transmission to the wall, either through an in-
terposition of refractory tiles, or through the use of a thin layer of
low emissivity, low thermal conductivity refractory material. The �rst
method provide an excellent protection of the liner wall, however it
contributes to a substantial increase in weight. The second method
can re�ect a large part of the incident gas the radiation and allows a

55

Figure 2.11: Film Cooling Devices 1: (a) wiggle-strip, (b) stacked ring, (c)
splash-Cooling, (d) machined ring. (Lefebvre [95])

56

Figure 2.12: Film Cooling Devices 2: (a) rolled ring, (b) double-pass ring,
(c) Z-ring. (Lefebvre [95])

57

Figure 2.13: Augmented Convection Film Cooling Devices : (a) combine
convection and �lm cooling, (b) combined impingement and �lm cooling, (c)
transpiration cooling, (d) e�usion cooling, (e) combined �lm and e�usion
cooling. (Lefebvre [95])

58

reduction of wall temperature of 40 to 70K. Thermal barrier coatings
allow to dramatically reduce the cooling requirement, however it does
not suppress it. Usually it is used in conjunction with e�usion cooling
patches or external convection cooling patches.

2.3.3 Tuning of the Combustor Features

Now that a rough picture of the combustor has been sketched, the features of
the combustor are then optimised to achieve the performance requirements.

✾ The swirler strength and the primary port size are varied to achieve the
desired recirculation �ow in the primary zone.

✾ The dilution ports are varied to achieve the desired zone AFR to limit
the emissions level, proper mixing of the the port �ows with the com-
bustion zone, and the desired outlet temperature pro�le.

✾ The cooling ori�ces are positioned and sized to minimize the amount
of cooling �ow while keeping the combustor liner below its maximum
allowable temperature and avoiding hot spots.

It is important to note that theses parameters are closely linked and interact
among each other. These choices are made using empirical rules and past
experience. A set of fast simulation tools and correlations are used to assess
the performance of the design. These tools are usually based on 1D semi-
empirical codes.
This process of varying the features of the combustor and simulating its
performance is repeated many times until the desired performance is achieved.
During the preliminary design phase, only a limited use of CFD is made due
to its computational cost compared to empirical codes.
During this phase of the design it is sometimes necessary to go back and
modify some basic features of the combustor and then restart the process.

59

Once all the performance targets are met and all the constraints satis�ed the
preliminary design phase is completed. It is followed by the detailed design
phase were the design is �nalized using re�ned CFD simulations and testing
to validate the design.

This preliminary design process was greatly improved along the years due to
a better understanding of combustion processes and more accurate simulation
tools. However it is still a long and costly process. It takes between 3 to 6
month for a team of combustion engineers to complete the preliminary design
of a combustor. During this time other components of the engine may also
be evolving and the combustor requirements may change as a result.

2.4 Combustor Performance Parameters

The design of the combustor is performed in order to satisfy the constraints
imposed by the gas turbine 2.2.2 and the performance requirements of the
combustor 2.2.1. Those constraints and requirement can be expressed in
terms of performance parameters 2.4.1 that will de�ne the quality of the
combustor design.

2.4.1 The Performance Parameters of a Combustor

This section describe the various performance parameters used to de�ne the
quality of a combustor design. Some of the parameters describing the perfor-
mance requirements, as described in section 2.2.1, may be di�cult to quantify
or may not be available at all during the preliminary design. Therefore use
is made of a number of alternate performance parameters to constrain or
approximate the ones that can not be calculated directly.

60

2.4.1.1 Average Zone Air Fuel Ratio

The average zone AFR corresponds to the ratio of total air Mass �ow to fuel
Mass �ow in the given zone (equation 2.1). It is one of the crucial param-
eters controlling the combustion. The combustion temperature and hence
pollutant emissions is strongly dependent on the AFR, therefore it should
be controlled precisely throughout the whole combustion zone. However this
zone averaged AFR does not constrain local AFR values. The local AFR dis-
tribution depends largely on the mixing. Therefore constraining the mixing
will put a constraint on local AFR distribution.

AFRavg =
ṁair

ṁfuel

(2.1)

2.4.1.2 Mixing Quality

The mixing quality de�nes how air, fuel and combustion products are in-
termixed, and in�uences the local �ame temperature. It is an important
parameter governing the pollutant emissions as well as the combustor exit
temperature traverse. The mixing should be constrained, however it is not
possible to quantify the quality of the mixing with the preliminary design
tools. Therefore alternative parameters that control the mixing have to be
used. For this purpose, the following three parameters could be used; the
pressure drop, the cross �ow Mach number ratio which constrains the pene-
tration of the port �ow, and the amount of recirculating �ow which constrains
the primary zone mixing.

2.4.1.3 Pressure Drop

During the design of a combustor four di�erent ratios of pressure drop are
taken into consideration:

61

The overall pressure drop, expressed in 2.2, which de�nes the total pressure
drop between the compressor delivery and the turbine entry. its value is
usually �xed during the de�nition of the engine cycle.

∆Poverall =
P3 − P4

P3

(2.2)

The di�user Pressure Drop expressed in 2.3 measures the pressure loss during
pressure recovery process, it is a pure loss and therefore should be minimized.

∆Pdiffuser =
P3 − Pdiffuser outlet

P3

(2.3)

The �ame tube pressure drops de�ned in 2.4 and in 2.5 for the outer and inner
walls. They represent the pressure di�erence between the liner �ow and the
�ame-tube �ow, and a�ects the energy in the port and cooling �ows. The
value of �ame-tube pressure drop will a�ect the mixing in the �ame-tube.

∆Pow =
Pow − P4

Pow

(2.4)

∆Piw =
Piw − P4

Piw

(2.5)

2.4.1.4 Cross-Flow Mach Number Ratio

The cross-�ow Mach number ratio is de�ned as the ratio between the Mach
number of the port �ow at the location of the hole and the Mach number of
the annulus �ow, and is given in equation 2.6. The Cross-�ow Mach ratio
value is de�ned for the inner and outer primary and secondary ports. These
parameters control the mixing and the temperature traverse.

Mach Ratio =
Mpo

Man

(2.6)

62

2.4.1.5 Recirculating Flow

The amount of recirculating �ow in the primary zone de�nes the quality of the
mixing in the primary zone and in�uences the relight loading. The amount
of recirculating �ow can be estimated using the following rule of thumb:

ṁr =
∑

ṁbp +
1

2

∑
ṁpo +

1

3

∑
ṁcool (2.7)

Even-though this representation is over simplistic and not representative for
modern combustor with a strong swirl it is often used in the preliminary
stage.

2.4.1.6 Overall Loading

The overall loading parameter is a measure of the e�ciency of the combustor.
Lefebvre in [90] expressed the combustion e�ciency:

ηc = f (Air flow)−1

(
1

Evaporation rate
+

1

Mixing rate
+

1

Reaction rate

)−1

(2.8)
In practical situations, equation 2.8 will be governed by either the evapora-
tion, mixing, or the reaction rate. this led Greenhough and Lefebvre [57] to
the de�nition of the θ parameter which can be expressed in the form 2.9.

ηθ = f(θ) = f

[
(P 1.75

3 Vc) e(T3/300)

ṁA

]
(2.9)

Note: Of the three terms controlling 2.8 only the reaction rate is directly
dependent of the combustion volume leading to 2.9 being used to de�ne the
required combustion volume for a high enough e�ciency for the engine to
pull away after relight.
The overall loading 2.10 can be de�ned as function of the inverse of 2.9, and
is usually expressed in the form given in 2.11 [98]. Where a,b, and c are

63

proprietary constants.
ΛSI = f

(
1

ηθ

)
(2.10)

ΛSI =
ṁ3 ∗ a(

P
b

3Vc

)
e

T3/c
(2.11)

2.4.1.7 Relight Loading

The relight loading parameter controls to the capability of the combustor
to relight at a given altitude and �ight condition. It is a function of the
amount of recirculating �ow and primary zone volume. The relight loading
is expressed in equation 2.12 [99]. Here a,b, and c are proprietary constants,
and P3Rand T3R are P3and T3 at relight conditions.

χSI =
ṁr ∗ a(

P b
3RVpz

)
eT3R/c

(2.12)

It is interesting to note that the relight and the si loading are of the same
form except that for the relight loading only the recirculating �ow and the
primary zone volume are considered.

2.4.1.8 Cooling Mass Flow Ratio

The ratio of cooling mass �ow de�nes the quantity of the combustor �ow
used for cooling the wall of the combustor over the total air mass �ow of the
combustor. It is of the form given in equation 2.13. The cooling �ow should
be minimized. leaving more �ow to improve the AFR and exit temperature
pro�le. In addition, the cold zones created by the cooling �ow are strong pol-
lutant formation zones through quenching and therefore reducing the coolant
mass �ow allows to decrease the pollutants formation zone [106].

U =

∑
ṁcooling

ṁ4 − ṁfuel

(2.13)

64

2.4.1.9 NOx Emissions

It is relatively di�cult to describe the formation of pollutant emissions with
out a detailed analysis, the process is complex and strongly dependent on
local conditions. However within a family of designs these local condition
will all be correlated together hence allowing simple correlations to be used,
the reliability of which vary depending on the di�erence between the current
design and combustors used to create the correlations. These will give a good
indication of the level of emissions but more advanced emissions calculation
techniques should be used as a predictive tool.
There is a wide range of correlations for combustor NOx emissions predic-
tions [95, 92, 149, 10]. The correlations usually share some common basis,
but depend upon di�erent physical parameters. The Lefebvre [92] NOx cor-
relation is not one of the most recent but has been well tested on a wide
range of combustor applications.

NOxEI =
ANOxP

1.25
3 Vce

(0.01Tst)

ṁATpz

(g/kg) (2.14)

It is interesting to note as well the correlation proposed by Rizk and Mongia
[149] which has the particularity to take into account the quality of the mixing
through the presence of the ∆P term and the evaporation time te.

NOxEI = 15 ∗ 1014 (t− 0.5te) e(71,100/Tst)P−0.05
3

(
∆P

P3

)−0.5

(g/kg) (2.15)

2.4.1.10 CO emissions

The same comments can be made for the CO correlation as for the NOx
emissions. However CO formation follows a di�erent process. In a �rst step
high quantities of CO are formed extremely rapidly in the burning zone. In

65

a second step Most of this CO will be later destroyed if enough oxygen and
time are available.

The destruction of CO happens at a relatively longer time scale, therefore
the relevant temperature is not the peak temperature as for NOx formation,
but the average zone temperature. Rizk and Mongia [149] developed the
following correlation.

COEI = 0.18 ∗ 109 e(7800/Tpz)

P 2 (t− 0.4te)
(

∆P
P

)0.5 (g/kg) (2.16)

2.4.1.11 Soot Emission

Some correlations do exist for the prediction of soot but do not seem to
provide reliable results as those for NOx or CO. This is because soot is
produced in large quantities, 99.9% of which is oxidised by the exit in a
well designed combustor, so the resulting emissions are a balance between
two big numbers (formation - oxidation) .

2.4.1.12 Combustion Instabilities

Combustion instabilities originate due to cyclic variation of heat release re-
sulting from the excitation of the combustor natural frequencies by the com-
bustion noise. This is a di�cult problem for combustor design, since there
are no simple models to predict the occurrence of combustion instabilities.
It can be said that combustors equipped with low pressure injection systems
tends to su�er more from instabilities. In addition, the reduction of the
sources of damping, such as cooling ori�ces tend to increase the likelihood of
instabilities [173].

66

2.4.1.13 Pattern Factor

In order to control the temperature traverse, the pattern factor can be used.
The pattern factor is de�ned as the ratio of the maximum recorded tem-
perature over the turbine entry temperature T4. It is de�ned in equation
2.17.

Tmax − T4

T4 − T3

(2.17)

Lefebvre in [95] proposed a correlation for the pattern factor of annular com-
bustors.

Tmax − T4

T4 − T3

= 1− exp

(
−0.050

LL

DL

∆PL

qref

)−1

(2.18)

Due to it's simplicity this expression is not universally applicable and is
limited to the estimation of Tmax. However it shows that for a �xed geometry
2.18 is only dependent of ∆PL. It can therefore be deducted that controlling
∆PL will contribute to control the pattern factor which may not be known
during the preliminary design phase.
Since during the tuning phase of the combustor the liner length LL and the
liner height DL are be �xed as well as qref , the pattern factor solely depend
of the liner pressure drop ∆PL. Therefore the Liner pressure drop can be
used to control the pattern factor.

2.4.1.14 Wall Temperature

The temperature of the combustor liner walls will a�ect their installed life
therefore it needs to be controlled. In terms of maximum average temperature
for problems of cycling fatigue. In terms of maximum local temperature and
maximum thermal gradients for problems of thermal stress.

67

2.5 Conclusion

During this chapter the combustor preliminary design process was presented.
First some background is given on gas-turbine combustor describing the basic
design principle of a combustor and its requirements. Then a brief discussion
is provided on the selection of the architecture and the features. Finally the
emphasis is put on the identi�cation of the key parameters which de�ne the
performance of a combustor. These parameters will be critical to drive the
optimisation process described in the following chapters.

68

Chapter 3

Design Optimisation

3.1 Introduction

This Chapter is oriented towards design optimisation techniques and their
implementation. The �rst section, aims to introduce the reader to the con-
cepts of design optimisation, the means of determining the quality of the
design and the means of modifying a design. This will be followed by a
presentation of the application of design optimisation in industry and the de-
scription of the speci�c aspects regarding application of design optimisation
to gas turbine preliminary design, which highlights the needs for an e�cient
optimisation algorithm and for a complete set of tools that allows integration
of the design optimisation in the design process. Therefore possible optimisa-
tion techniques will be presented and their relative strength and weaknesses
will be discussed. Finally the conception of the optimisation Toolbox will be
described. The optimisation Toolbox was designed to allow the integration
of the optimisation algorithms into the combustor design process and it is
still �exible enough to allow its use on other design processes.

69

3.2 Introduction to Design Optimisation

As it has been highlighted in the previous chapter, during the preliminary
design phase of a combustor the goal of a designer can be de�ned as the
achievement of a set of performance targets and constraints. In order to
successfully achieve this set of targets the designer has to de�ne the shape
of the combustor, select its features, and tune all the parameters controlling
the performance of the combustor. The tuning phase is relatively time con-
suming and mostly involves trial and error methods to de�ne the combustor
con�guration that o�ers the best performance parameters, and satis�es the
design constraints.
In order to relieve some of the work load from the designer, three options can
be suggested to improve the design process:

✾ Simplify the design process by developing reliable design rules that al-
low the de�nition of the optimum parameters of the combustor. This
route has been attempted since the birth of combustor design, leading
to a number of empirical design rules. One example could be the work
done by Murthy [115] who attempted to regroup a set of empirical de-
sign methods with some analytical techniques. However these design
rules are derived from experimental data and are only valid for designs
similar to the one used to derive them. In addition, the inherent com-
plexity of combustor design makes the creation of a general set of design
rules extremely di�cult.

✾ Regroup all the correlations and empirical design rules and their known
limitations in a expert system which would be a support tool for the
designer. This tool will then be capable of suggesting the applicable
design rules depending on the speci�c case. Although this tool might
help to simplify the designer's work, it does not provide any help for
novel design, and even for traditional designs, the set of existing design

70

rules supports the design process but does not give the the complete
set of optimum design parameters required for a combustor design.
Therefore the designer would still have to resort to trial and error to
tune the design.

✾ Use an optimisation technique to automate the trial and error process
by automatically searching for the optimum design parameters of the
combustor. This process is usually referred as the design optimisation
technique. This method allows the tuning of the numerous design vari-
ables until the the required performance parameters are obtained, thus
releasing the designer from this painstaking task. The main drawback
of this method is the selection of a suitable optimisation technique ca-
pable of dealing with multi dimensional, nonlinear, complex problems.
In addition the selection of the criteria de�ning the quality of a pro-
posed design (and hence it's �tness) is very delicate and crucial for the
optimisation process.

Of these three options, the most promising technique seems to be the automa-
tion of the parameter tuning by making use of design optimisation techniques.
The selection of a suitable optimisation algorithm, which is robust and ef-
�cient, is a di�cult task. This route, however, provides many advantages,
and has the potential to be used as a completely automated design method
with user speci�ed constraints and targets. In addition, the fact that the
optimiser is free of any empirical design rules might allow the new design
to be free of the �combustor family e�ect� that can be observed in current
designs. Freeing the designs from the family e�ect will give the opportunity
to search for the overall best design and not for the family's best.
The following sections present the concept of design optimisation (DO), a
review of the potential optimisation techniques, and �nally a description of
the Optimisation Toolbox which represent the framework of the proposed
combustor preliminary design method, and its design methodology.

71

3.3 Concept of Design Optimisation

From the early days of engineering, the goal has been to improve designs
in order to generate the best possible solution with the available means.
Engineering design could be viewed as a process which aims the optimisation
of an existing design. A close inspection of the combustor design cycle (�gure
2.1), shows that each phase of the design can be sub-dived to an iterative
design cycle as presented by Roozenburg and Eekels [154] in �gure 3.1. Every
time new design proposals are generated, their properties are compared with
the desired design criteria. If the properties meet the criteria then the design
is accepted. Otherwise, the design is modi�ed and reevaluated. This iterative
process will be continued until the generation of a design that meets all the
speci�ed criteria not only in terms of performance but as well in terms of
cost, manufacturability, and life. In practice several candidate designs will
be generated and evaluated in parallel. This provides competition between
the di�erent designs.
Design optimisation allows to reformulate the design problem into an op-
timisation problem [166]. This process (�gure 3.1) closely resembles to an
optimisation process, as shown in �gure 3.2, and reformulation of the design
problem into a design optimisation process (�gure 3.3) is therefore reasonably
straight forward. However two important design aspects need to be formally
de�ned:

✾ The quality of the design which is a measure of how good the design is
and how well it satis�es the design criteria (cf. section 3.3.1).

✾ The design variables which are the parameters that allow the modi�ca-
tion of the design (cf. section 3.3.2).

Once these two aspects have been carefully de�ned, it is possible to use an
optimisation method that modify the design variables in the aim of creating a

72

Figure 3.1: The basic design cycle, from Roozenburg and Eekels [154]

73

Evaluation of the

Solution

Goals achieved

?
No

Yes

Modification of the
Parametters

Problem

Solution Quality

Provisional Solution

Figure 3.2: The basic optimisation cycle

design of optimum quality. The optimisation method can be manual as it has
been the case since the early days of engineering or fully automated thanks
to computational optimisation techniques. Di�erent optimisation techniques
will be discussed later in section 3.5.

3.3.1 The Quality of a Design

From the point of view of a company the ultimate aim of a design is to
generate maximum pro�t, therefore this is the single objective de�ning the
quality of the design. However in most cases it is impossible to predict reliably
the pro�t that a particular design will generate. Di�erent objectives, which
are perceived to be able to maximize the potential pro�t, have to be used in
order to measure the quality of a given design. These objectives can be of
two types, performance objectives, and manufacturing objectives.

✾ The performance objectives describe targets and constraints for the

74

Design Parameters
Definition of the

Design Objectives
Design Variables

Modification of the
Design Variables

Simulation Of the
Provisional Desing

Design Quality
Evaluation of the

Goals achieved

?
No

Yes

Approved Design

Provisional Design

Design Parameters

Design Quality

Problem

Figure 3.3: The Design Optimisation Cycle

75

performance parameters of the design, its capacity to achieve certain
functions including reliability and durability [4]. The performance pa-
rameters of a speci�c design are generally de�ned through analysis or
simulation of that design.

✾ The manufacturing objectives describe the aspects of the manufactur-
ing of the design, mainly cost, time, investment, manufacturability, and
factory workload. The relative lack of formal and reliable tools to de-
�ne how a speci�c design achieve its manufacturing objectives means
that these objectives are often overlooked. However, the development of
costing methods and software [143, 75] capable of predicting the manu-
facturing cost of a design along with techniques capable of dealing with
qualitative issues such as manufacturability [153] would allow a better
account of these objectives. Some of these techniques are emerging,
however at the present time they are not very well developed.

The choice of the method to determine the quality of the design is crucial
for the design as the selection of di�erent objectives may lead the project
towards di�erent horizons. In addition optimisation techniques in general
can deal easily with one objective, but experience di�culties in the presence
of multiple objectives. Up to the point where optimisation becomes highly
di�cult when a large number of objectives are required.
De�ning the quality of a particular combustor preliminary design is not a
simple task, since the performance of a combustor is described by nine key
parameters which have been introduced in section 2.2.2. Preliminary design
tools do not provide su�cient information to de�ne all those performance pa-
rameters. Therefore it becomes necessary to use between 15 to 40 additional
performance parameters to constrain the key ones that can not be calculated.
As a �rst approach, the manufacturing objectives will be ignored, however to
bene�t from the maximum potential of design optimisation those objectives
should also be included in future applications.

76

3.3.2 The design Variables

The design variables are the parameters that the designer may adjust with
the aim to improve the quality of the optimised design. These variables
represent the di�erent components of the design that can be modi�ed such
as, geometry, size, materials, features, volume, and con�guration. Those
variables can be grouped into the following three categories:

✾ Binary: A binary variable usually refers to a component which can be
either present or absent in the design.

✾ Integer: An integer variable refers to a feature that can have a number of
discrete con�gurations, for example the number of holes on an e�usion
patch.

✾ Real Number: A real numbered variable refers to a feature that has
a continuous range of possible value, for example the length or the
diameter of dilution ports.

3.4 Application of Design Optimisation

3.4.1 Design Optimisation as applied In Industry

Currently, the most common optimisation technique used in industry is to
manually optimise the design. Manual design and optimisation typically con-
sists, in taking an existing design, and adapting it to new requirements by
appropriate scaling and slight modi�cations. Optimisation is achieved us-
ing mostly past experience (rule of thumb) and trial and error, optionally
employing user driven computational analysis programs recursively until a
suitable solution is found. This is particularly the case for gas turbine com-
bustor preliminary design where new designs are mostly based upon previous
designs, the experience of the engineer and trial and error.

77

The application of manual design techniques on complicated design problems
results either, in a lengthy and costly design phase, or in poor optimisation
if time and resources are limited. The use of optimisation algorithms has
the potential to tackle these issues by reducing the amount of manual work
required to obtain an optimised design [39].
The Microprocessor industry was among the �rst to start the transition to-
wards automation of the design process [81]. Design optimisation techniques
are beginning be used in the aerospace design process [167, 127], but at
present time their use has mainly been limited to the areas of airfoil design
and structure.
However in general industry continue to trail behind in this domain, even
though design optimisation techniques seems to have reached their maturity
[122, 17]. This result in a loss of opportunity for obtaining better designs
with reduced costs and design cycle times. A survey of British industries
[157] highlighted this fact. In addition several factors inhibiting their use
were identi�ed:

✾ Lack of integration of existing optimisation tools.

✾ Limited optimisation skills among design engineers.

✾ The computational cost of simulations.

✾ The control needs of designers over the design process.

✾ The complexity of real life optimisation problems.

These inhibitors need to be overcome by the chosen design optimisation
method for it to be accepted and e�ectively used in an industrial environment.

78

3.4.2 The Requirements for a Gas Turbine Preliminary

Design Optimisation Method

The design optimisation method developed for this project, is aimed at pro-
viding support for a new preliminary design methodology for gas turbine
combustors. its requirements will therefore be based on overcoming the fac-
tors inhibiting the use of design optimisation techniques described in the
previous section. The requirements for the design optimisation method can
be reformulated as follows:

✾ The chosen optimisation technique should be robust enough to support
the complexity of combustor design.

✾ The optimisation technique should be as e�cient as possible in order
to achieve its goal within a reasonable amount of time.

✾ In order to be useful and �exible, the design optimisation method should
be easily integrated with a wide range of simulation software.

✾ It should be simple to use and have a generic set of input parameters
capable of dealing with di�erent types of combustors designs.

✾ A tradeo� should be found between the designer's need of control and
the simplicity of use.

✾ The designer should be able to use the outcome of the optimisation to
better understand the design space.

These requirements lead to the design of a Toolbox implementing this frame-
work of design optimisation method and promoted the search of a suitable
optimisation technique.

79

3.4.3 De�nition of the Gas Turbine Design Optimisation

Problem Features

In order to better de�ne the optimisation problem it is important to de�ne
the classi�cation of optimisation problems. This one has been proposed by
Roy and Tiwary [156] it allows to de�ne the type and features of the problem
posed by the design optimisation of gas turbine combustor preliminary design.
It results in the following classi�cation :

✾ Number Of Parameters: Combustor preliminary design is clearly clas-
si�ed as a multi dimensional problem since it involves 20 to 50 param-
eters.

✾ Existence of Constraints: The range of some performance parameters
are constrained, therefore it can be classi�ed as a constrained problem.

✾ Number of Objectives: The large number of performance parameters,
20-30, clearly shows that it belongs to the class of multi objective prob-
lems.

✾ Nature of the Search Space: The search space is unknown and is likely
to be multi-modal.

✾ Nature of the Objectives: The objectives are quantitative since these
concerns values of performance parameters.

✾ Nature of the Equations: The equations de�ning the relation between
the input variable to the performance parameters are not available due
to the use of a large quantity of tabulated data. however the problem
is presumed to be non-linear, non-smooth and non-di�erentiable.

✾ Separability of the functions: The functions relating the input variables
to the performance parameters are not separable.

80

✾ Nature of the Design Variables: The design variables are static (ie. it
is not a dynamic problem).

✾ Nature Of the Variable Values: The search space is continuous, most
of the design variables are real valued, however some integer variables
may be present such as the number of holes of a cooling patch.

3.5 Review of the Available Optimisation Algo-

rithms

This section brie�y reviews the main types of optimisation techniques that
could be used for the optimisation Toolbox.

3.5.1 Analytically based algorithms

The most common algorithm used for minimization is be the Newton-Raphson
algorithm [131]. It is a Newton root �nding method which uses the �rst few
terms of the Taylor series of a function in the vicinity of a suspected root in
order to zero in on the root.
It consists of guessing a starting point close to a suspected root, then geo-
metrically extending the tangent of this point until it crosses zero and then
setting the new point at the abscissa of this intersection with zero. This tech-
nique can be applied for multi dimensional problems, and provides quadratic
convergence. However it requires the evaluation of the derivate of the func-
tion. In addition, it requires a relatively good guess for the position of the
root and it is not stable
and diverges in some situations, failing to converge or converging to a local
minimum.

81

Conjugate gradient methods such as the Fletcher-Reeves algorithm, and the
Quasi Newton techniques, requires the computation of the function gradients
or �rst partial derivate at arbitrary points to provide an approximation of
the Hessian matrix.
These methods require a good knowledge of the function and of the search
space to be able to guess the position of the likely optimum. It is not possible
to apply these techniques to nonlinear constrained problems. In addition dif-
�culties may arise when optimising non smooth functions or high dimensional
problems.

3.5.2 Heuristic Search

Hill Climbing (HC) [158] is a robust optimisation technique capable of �nd-
ing a local minimum for any black box problem, no prior knowledge about
the problem's function is required. The idea behind hill climbing can be
summarized as follow:

1. Pick a point in the search space.
2. Consider all the neighbors of the current state.
3. Choose the neighbor with the best quality and move to that state.
4. Repeat 2 thru 4 until all the neighboring states are of lower quality.

This technique is extremely simple and does not involve any assumptions
about the shape of the �tness function or require the computation of any
derivate, and is able to cope with constraints. However this technique re-
quires more function evaluations than the analytically based algorithms and
converges towards the �rst local optimum encountered.
The capacity to �nd a global optimum can be improved by using Simulated
Annealing (SA) [84] techniques which behaves like a hill climbing method

82

but with the possibility in some conditions to �go downhill� to avoid being
trapped at local optima. It was originally inspired by the formation process
of crystals in solids during slow cooling, where the system moves randomly,
but its probability to stay in a particular con�guration depends directly on
the energy of the system and on its temperature which is reduced slowly.

3.5.3 Design Of Experiment

Design of Experiments (DOE) is a technique based on the systematic vari-
ation of all the independent variables values. By applying statistics to the
experimental process, the interactions among the di�erent variables can be
studied, and the optimal set of variables can be chosen. These techniques
are very e�cient for optimisation of a small number of design variables. For
high dimensional problems the number of points (evaluations) increase expo-
nentially. A full factorial experimental design requires 3n points n being the
number of variables. Therefore, it becomes very di�cult to use these tech-
niques for more than 6 variables, even with a reduced set such as D-optimal
experimental design which requires 2n + 2n + 1 design points it is di�cult to
design for more than 10 variables.
The DOE is often coupled to regression techniques, and analysis of variance
(ANOVA) to form a more e�cient design methodology referred as response
surface. The response surface methodology allows to improve the under-
standing of the search space and it is an extremely e�cient design method
for problems with limited number of variables. However it does not reduce
the di�culties posed by high dimensional problems.
The Taguchi method, can be viewed as a standardized and simpli�ed method
of experimental design. Here orthogonal arrays are used to de�ne the design
points that needs to be evaluated and statistical analysis is used to analyze
the results and to de�ne the optimal parameters. This technique permits the
use of a high number of variables. However the interpretation of the data

83

becomes di�cult for high dimensional problems, especially in the cases where
the di�erent parameters are highly coupled or skewed. In addition it is more
suited to discrete variables problems.

3.5.4 Evolutionary algorithms

These techniques are inspired by the evolution that can be observed in natural
environments. The evolutionary algorithms are characterized by the fact that
they use a population of design points which compete to survive. These
techniques are global and extremely robust, and can be applied on a large
number of problems. For small number of variables (<5), the cost in terms
of number of evaluations is relatively large, higher than that for analytical
methods, or for DOE. However, for problems with a large number of variables
the tendency is inverted and for problems with more than 10-15 variables
evolutionary algorithms becomes one of the most e�cient technique. Three
major variants of these techniques can be found in literature:

✾ Genetic Algorithms, are based on the evolution of problem parameters
to maximize a goal [69].

✾ Evolution Strategies, are similar to genetic algorithms but uses di�erent
operators to generate new solutions [164].

✾ Genetic Programming, is based on the evolution of program trees to
maximize a goal [88].

The extreme robustness of these techniques makes them well suited for the
optimisation of problems where the functions relating the inputs to the out-
puts is not known and may have unexpected behavior. In addition, presence
of non-smooth functions do not cause speci�c di�culties. The handling of
constraints and multiple objective is also possible [112]. More details con-
cerning these techniques are given in chapter 4.

84

3.5.4.1 Selection of the optimisation technique

Of the four type of optimisation methods reviewed here, the evolutionary
algorithms seems to be the most suitable candidate for combustor preliminary
design optimisation. This is due to their robustness and the possibility to
handle constraints and multiple objectives.
Out of the three main evolutionary algorithms presented genetic program-
ming seems to be the most suited to optimise the con�guration of a com-
bustor. However for the optimisation of parameters, genetic algorithms and
evolution strategies are best suited and should provide similar performances.
Genetic algorithms were chosen over evolution strategies due to their large
number of previous successful applications. It is still necessary to modify the
genetic algorithms to adapt them to engineering design problems in order to
maximize the performance of the optimiser.

3.6 An Optimisation Toolbox for Gas-Turbine

Preliminary Design

In order to integrate design optimisation methods within the preliminary
design phase of a gas turbine, it is necessary to design a toolbox which pro-
vides the designer with a set of methods and tools that allows the partial-
automation of the design process. This leaves the possibility for the designer
to optimise numerous parameters of a complex problem using his traditional
simulation software for the evaluation of the solutions.

3.6.1 Aim of the Optimisation Toolbox

The aim of this toolbox is to provide a design optimisation method that
supports the designer during the preliminary design phase of a combustor, or

85

for similar design tasks. It needs to be capable of overcoming the inhibitors
highlighted in section 3.4.1 and to satisfy the requirements given in 3.4.2.
To be useful it has to be as e�cient as possible and generate optimised
design in a reasonable amount of time. It also needs to be �exible and
versatile to permit improvements of existing methods and the addition of
new tools. Finally to be used in real life it needs to be user friendly and
should allow interaction between the designer and the optimisation process
without requiring extensive training in the optimisation techniques.

3.6.2 Architecture of the Toolbox

In order to achieve objectives outlined in the previous sections it is use-
ful to employ a modular, object oriented architecture that permits tools to
be added, when available, thereby enhancing the versatility and the perfor-
mance.
A high degree of modularity is required in order to achieve the desired aims
of versatility and expendability of the tool box. This was obtained by using
Java as the main programming language, being object oriented it readily
allows development of this type of modular architecture. Also its platform
independence avoids the burden of porting the code on di�erent architectures
and eases the problems associated with working on heterogenous network
of computers. Another useful feature of Java is its advanced support for
networking and graphics. However this language su�ers from being relatively
slow compared to C/C++ as well as not being memory e�cient. The tool box
is to be used for engineering design where simulation is performed by external
analysis codes typically written in C or Fortran. Since the simulation process
takes a large proportion of the computational time, the relative slowness of
Java is not perceived as a handicap. In addition, the capacity of modern
computer systems do not put heavy constraints on memory usage.
The object oriented design allows modules to be loaded at runtime depending

86

on the toolbox requirements, it even permits new modules to be added with-
out recompilation of the code. These modular tools are organized around the
implementation of three key functionalities :

✾ Interfacing: The interfacing module, allows the communication with
any third-party software that use text �les for input/output. This gives
the designer the possibility to use his traditional analysis software to
evaluate the quality of a design.

✾ Evaluation: The di�erent evaluation modules reduce the computational
overhead of simulation by giving the possibility to distribute the evalu-
ation of the di�erent designs over a network of heterogenous computers.

✾ Optimisation: The di�erent optimisation modules are themselves com-
posed of interchangeable sub-modules. This provides �exibility on the
choice of operators and speci�c methods.

Figure 3.4 shows a representation of the Toolbox modular organization.

3.6.3 Description of the toolbox Modules

Once the Architecture has been de�ned, the details of the di�erent modules of
the Toolbox can be described. This section only present a brief description
of the modules. A more detailed description at the user and code level is
provided in the documentation of the code, which can be found in appendix
A of this thesis.

3.6.3.1 The Optimisation Toolbox Main Module

This is the main module of the toolbox where all the di�erent modules are
connected. It is the module that controls all the non optimisation related
tasks.

87

Module
Crossover

Module

Mutation

Module

Selection

GA optimisation Module

Distributed Evaluation

Module

In
te

rf
ac

in
g

M
od

ul
e

GUI Module
Optimisation ToolBox

Designer

Analysis

Program A

Client

CClient

B

Client

A

Program B

Analysis

Figure 3.4: Modular Organization

3.6.3.2 The Optimisation Modules

The optimisation modules implements the optimisation techniques. Three
di�erent optimisation modules have been coded to implement random opti-
misation, genetic algorithms based optimisation, or hybrid optimisation. The
Genetic algorithms optimisation module will be described in detail in chap-
ters 4 and 5. The hybrid algorithm is in fact a genetic algorithm optimisation
technique coupled with a hill climbing type technique.

3.6.3.3 The Interfacing Modules

One of the main requirements of the Toolbox concerns its capacity to be
interfaced with a variety of existing simulation software, in order to allow
the application of the toolbox to a range of di�erent problems. Another
requirement is, the ease of use, thus not requiring the user to program a
speci�c interface to its analysis code.

88

A common feature of a majority of simulation codes, comes from their ability
to communicate through text �les. It was decided to take advantage of this
feature and perform communication with these codes through text �les. In
order to generically access any type of text �le a method had to be devised
to locate and write or extract the relevant informations. The most robust
way to arbitrarily locate data within an I/O text �le was found to be the use
of regular expressions [86] combined with the tokenisation of the �le. This
technique is based on searching data from a keyword within the �le or from
its position (line /column) or any combination of the two. This makes it a
very robust way to access data for read or write.
The text �le to read or modify is �rst entirely loaded into the memory it is
then �Tokenised�. A Token is de�ned as a string of characters between spaces
or end of line characters. These Tokens are ordered in a matrix form, the
spaces being used as columns separators, and the end of line characters being
used as line separators.
This matrix resembles closely resembles closely to a spread sheet which can
be assessed by line and columns number. This representation already allows
to assess any part of the �le if the line and columns numbers are known.
However it is not a very robust approach since any change in the �le format
will a�ect the position of the accessed data and will require to setup new
lines and columns numbers.
In order to improve the robustness of this �le interface, a regular expression
search technique has been implemented. This technique allows to search and
locate keywords in the matrix.
The use of this search method allows to isolate the couple keyword / data from
the rest of the �le, improving dramatically the robustness of the interface. Ie:
the �le format can be modi�ed as long as the relative position of the couple
data keyword is not altered.
The user is only required to provide the key words and the relative position
of the data in the con�guration �le as described in the code documentation

89

added in Appendix A.

3.6.3.4 The Evaluation Modules

A very e�cient way to reduce the computational overhead of recurrent use
of CPU intensive simulation software is to perform the execution of these
application using Heterogeneous Distributed Computing [171]. It consists of
distributing the execution of processes over a network of computers which
might not all be of the same speci�cations or architecture.
In the case of the distribution of multiple evaluation of the �tness function
through the execution of a sequential analysis code, communications only take
place between the Toolbox and the analysis software. This communication
is performed through text �les thus alleviating the need for inter-process
communication software (MPI or PVM libraries).
The organization of the distribution of the evaluation tasks is shown in �gure
3.5. It consists of placing the objects to be evaluated in a stack. The content
of this stack is then distributed to remote clients as these request new objects
for evaluation. A client picks an object to be evaluated, evaluates it by
running the required analysis code(s), and �nally returns it to the Toolbox
server and request another object. In order to increase the robustness of the
process, the objects that were not yet returned when the stack gets empty
are resent to free clients. This avoids waiting inde�nitely for an object if it
has been sent to a particularly slow client or if it has been damaged through
a network error.
The server and the clients are Java modules which use sockets to exchange
data. These are therefore una�ected by the heterogeneity of computer archi-
tecture across a network. However di�culties may arise from the simulation
codes which are usually not platform independent. Obviously these needs to
be available on all the architectures present on the network and a method is
needed to call the appropriate executable. This problem was tackled through

90

Client

A

B

Client

Client

C

To Evaluate
Stack Of Object

In Evaluation
Stack Of Objects

Distributed Evaluation Server

Object

Network Connection

Object
Remouve

Add

Figure 3.5: Distributed evaluation of objects.

the use of scripting.
This distribution technique of work load allows a linear scaling of the perfor-
mances with the number of client used for the evaluation of problems with
a computational requirement greater than one minute. The object transfer
and distribution overhead starts to a�ect the scaling for problems requiring
less than ten seconds in evaluation time. This phenomenon is demonstrated
in �gure 3.6 for a problem requiring an average of 0.5 seconds for the evalu-
ation. This type of distribution technique was used on a network composed
of a mix of architecture and operating systems.

3.6.3.5 The GUI Module

The last part of the tool box concerns the program / user interaction. The
addition of a user friendly graphical interface where the designer can follow

91

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14 16

C
lie

nt
 E

ffe
ci

en
cy

Number of Clients

Figure 3.6: Distributed evaluation performance on a problem with short eval-
uation time (0.5s).

the evolution of all the problem parameters during the optimisation allows
the user to get a 'feeling' of the optimisation process without requiring an
in-depth knowledge of optimisation procedure. Figure 3.7 shows a typical
output of the graphical user interface.

3.7 Conclusions

This chapter has presented design optimisation methods that can be applied
to combustor preliminary design. Of the di�erent optimisation techniques
presented, a potential candidate for combustor design optimisation has been
identi�ed. Genetic algorithms were found to be the most suitable method.
The design optimisation method was implemented in the form of a Toolbox
that regroup a set of tools in an object oriented architecture. This optimisa-
tion toolbox of which the code size is 26500 lines has been coded from scratch
and is operational.

92

Figure 3.7: Screen-shot of the graphical interface output.

The Toolbox in it's present form the capabilities of the toolbox are the fol-
lowing :

✾ It is capable to be interfaced with any simulation tools communicating
through text �les such as the ones described in chapter 4.

✾ It's optimisation module has been developed around geneticassessed
algorithms based techniques genetic(Chapter 5) which have been up-
graded to suit the requirement for engineering design (Chapter 6)

✾ The quality of the proposed designs is assessed using a novel method
proposed in Chapter 6.

✾ It has the capability to optimise problems with a large number of vari-
ables (genes) as it has been tested in Chapter 7.

93

✾ It has been designed for the optimisation of combustor design but can
be applied to other engineering design problems as described in Chapter
8.

The following chapter will present the tools normally used for the preliminary
design phase of a combustor and describe the selection of the tools interfaced
with the Toolbox.

94

Chapter 4

Simulation Tools

4.1 Introduction

The aim of this chapter is to describe the simulation aspect of the design
optimisation process. The �rst aspect covered in this chapter concerns the
selection of an adequate simulation tool for a joint use with the optimisation
Toolbox. For this purpose the requirements for the simulation tool will be
identi�ed and the di�erent categories of simulation tool will be described.
This will be followed by the description of the semi-empirical simulation
package that will be used evaluate the candidates designs. This package
is named �Flownet�, and it is a proprietary code from Rolls Royce plc.
The following step consisted in increasing the simulation capabilities of the
simulation tool by implementing a simple NOx emission prediction model,
di�erent modeling techniques have been tested to perform this task.

4.2 Selection of the simulation tool

The Optimisation relies entirely on the simulation capabilities to evaluate the
quality of the proposed designs. The simulation tools are therefore crucial for

95

the performance of the optimisation process. The quality of the optimised
design directly depends on the simulation tools.
Three main properties of the simulation tools will a�ect the optimisation
process:

✾ The speed of the simulation: This a�ects the time to perform the opti-
misation.

✾ The �delity level or the quality of the simulation: A good prediction
of trends is crucial and is more important than prediction of exact
values. The optimisation relies more on qualitative rather than quan-
titative simulation. The variation of a performance parameter is more
important than its actual value. Since it allows to �nd the design with
minimal emissions, more accurate calculations of emissions will be made
in more advanced phases of the design.

✾ The level of multi-disciplinarity of the simulation tools: This is crucial
to have a view of the design as complete as possible in order to in-
tegrate all the performance parameters. Performance parameters that
can not be deduced by the output of the simulation tools will have to
be �xed by imposing some speci�c constraints on the design reducing
the optimisation potential.

These three factors were used to asses the di�erent simulation techniques in
order to de�ne which is the most suitable. The three main approaches are as
follow:

✾ Empirical models (correlations)
✾ Semi empirical models (1D)
✾ Numerical Model (CFD Simulation)

All these simulation approaches have the potential to be used in conjunction
with the optimisation Toolbox and will be discussed in the following sections.

96

4.2.1 Empirical Correlations

The processes taking place in a combustor being di�cult to model, combustor
design has been relying heavily on empirical correlations. These correlations
are usually accurate within a given design family. Since their physical repre-
sentation is poor, the accuracy of the correlations decreases rapidly when the
combustor diverges from the original design family. Furthermore, although
their quantitative accuracy is relatively good for the type of combustor these
have been designed for, their qualitative accuracy highly depends on the
variables used for the correlation.
These are the simplest and fastest method to calculate the performance of a
combustor. Empirical correlations are usually used for the fast evaluation of
di�erent combustor performance parameters like:

✾ Pollutant emissions (Lefebvre, Rizk, Odgers[92, 148, 180])

✾ Combustor Sizing (Lefebvre, Murthy [95, 115])

✾ Combustion E�ciency (Lefebvre, Odgers[93, 179])

✾ Relight performance (Lefebvre [93])

✾ Ports discharge coe�cients (Lefebvre, Adkins [95, 1])

✾ Cooling performance (Lefebvre, Stollery, Ballal [95, 168, 7])

✾ Drop size relationships (Lefebvre, Radcli�e, Jasuja[94, 133, 78])

4.2.2 Semi Empirical Code

These codes are the result of the use of physical simulation in conjunction
with empirical relationships and correlations. These methods allow a more
re�ned simulation of the combustor to be achieved in conjunction with a good

97

physical representation. However they are not able to capture the e�ect of
small geometrical details. They are less anchored to the design family and
provide an adequate compromise between simulation speed and accuracy,
which makes them a widely used method for the preliminary design.

✾ Pollutant emissions (Fletcher, Tonouchi[43, 177])
✾ Simulation of �ow within the combustor (Murthy, Stuttaford[115, 170,

169])

4.2.3 CFD Simulations

Computational Fluid Dynamics (CFD) consists in the simulation of the phys-
ical processes within the �ow �eld. It can give a very detailed picture of the
�ow, allowing to appreciate visually the e�ect of small changes in the design.
its 2D or 3D visualisation allow to get a better understanding of the di�erent
processes taking place within the combustor. Its �ow �eld de�nition is very
high, however its accuracy in the prediction of quantitative values, such as,
the pressure drop and the pollutant emissions is much lower [146], unless it
has been tuned to a particular geometry. This problem can be partially alle-
viated by using Anchored CFD methodologies [113] making in a very e�cient
tool for combustor design. However its use for preliminary design is still lim-
ited due to the high computational cost. The constant increase in computer
performance should allow in the future an increased usage of simple CFD
model during the preliminary design phase.

4.2.4 Conclusion on the Simulation Technique

Out of the three simulation techniques that have been presented, Numerical
simulation seems to be capable of providing the most informations about the
design with the capability of obtaining a good accuracy if anchored design

98

methods are used. However, the computational cost of full CFD simulations
is so prohibitive that this solution could not be considered.
The selection of the simulation technique was oriented towards semi-empirical
models rather than fully empirical model due to their better physical repre-
sentation and good accuracy. Semi empirical tools are usually proprietary
and are not freely available. The tool used here is Flownet a simulation tool
developed in Cran�eld for Rolls-Royce [170].

4.3 Background on Flownet

Flownet is a combustor preliminary design simulation tool, it can be described
as a geometry-independent, semi-empirical, network model.
The aim of Flownet is to provide information for any operating conditions
on:

✾ Mass�ow splits

✾ Pressure drop

✾ Heat release

✾ Liner wall temperatures

Flownet is based on a pipe network solver [62] which has been adapted to
combustor analysis though the addition of �ow and heat transfer analysis
capability.
The combustor is modeled by overlaying a network on the system geometry.
This network is composed by a set of elements and nodes. The elements
represent the domain physical features, such as liner holes, ducts, while the
nodes are used to join the elements to one another.

99

The �ow is governed by the satisfaction of the continuity equations and of
the pressure drop/�ow-rate relationships, which are speci�c for each type of
element. The heat release is calculated through a constrained equilibrium
combustion model. Mixing Calculations are performed through a basic mix-
ing model in order to describe the rate of combination of �ows. Liner wall
temperature are estimated through the use of a conjugate heat transfer model
and a discrete radiation model.
While lacking the resolution of three-dimensional models, it is able to provide
rapidly reasonably accurate results about the key parameters of a combustor
design. The usefulness of Flownet as a design tool has been demonstrated
through its industrial user base.

4.4 NOx Model

In order to provide more precise informations in order to assess the combustor
design it is important to provide informations on the pollutants emissions
generated by the evaluated design and in particular informations about NOx
emissions. The model quantitative accuracy in the prediction of pollutant
emissions is not vital for the optimisation process. However the model is
required to provide reliable information about trends.
As a �rst approach empirical correlations have been used however their per-
formance was found not to be satisfying. Therefore a simple NOx model was
developed to provide a model with a more physical representation.

4.4.1 Empirical NOx Correlations

Two Empirical NOx Correlations were tested for optimisation purpose, The
Lefebvre 1983 correlation equation 4.1[91] and the Lefebvre 1984 correlation

100

equation 4.2 [92].

(NOx) =
ANOxP

1.2
3 e(0.009Tpz)

ṁATpz

(
∆P
P

)0.5 (ppmv) (4.1)

(NOxEI) =
ANOxP

1.25
3 Vce

(0.01Tst)

ṁATpz

(g/kg) (4.2)

The use of these correlation provided surprising results. The Lefebvre 1983
correlation gave increasing NOx emissions values as Tpz increased and the
1984 correlation exhibited the opposite e�ect. This can easily be explained
by observing the two equations, it can be seen that in equation 4.1 Tpz is
present both in the numerator and the denominator and that in equation 4.2
in the exponential section Tpz has been replaced by Tst which is a constant
therefore explaining the change in behavior.

Equation 4.1 seems to behave in a way that is more physical (it increase
with Tpz and it takes account of ∆P

P
) than equation 4.2. However correla-

tions are generated using a large amount of historical data that will have
inbeadedinclude the e�ects of many variables which are not represented in
these equations, such as: droplet evaporation, geometry e�ects, swirl, and in
general technology improvements.

4.4.2 Introduction to the Simple NOx Model

The aim of this program is to predict the trends in NOx emissions generated
by a combustor. Since this program is to be used for optimisation, emphasis
has been put in designing a simple code to predict correctly the trends in
emissions and in keeping calculation time short, giving a lower importance
to the accurate quantitative prediction of the emissions value.

101

4.4.2.1 Model Approach

The model represents the �ametube element of the Flownet network as per-
fectly stirred reactors, linked together to form a reactor network. Flownet
is used to calculate the mass �ow of mixed air and fuel, the average tem-
perature, the mixture fraction of the gases, and the average residence time
for each element of the emission network. This provides all the necessary
information for the initialization of the reactors.

4.4.2.2 Perfectly Stirred Reactor Calculations

The combustion calculations are based on equilibrium calculations and the
NO emission calculations are based on the simpli�ed Zeldovich mechanism.
The equilibrium calculations are performed by extracting the di�erent com-
ponent molar fractions and the product temperature from three dimensional
tables storing the properties of the products for di�erent condition of stoi-
chiometry, temperature and pressure of reactants.
The three dimensional tables are externally generated. For the tables supplied
with this code the program GasEq V0.71 from Chris Morley[49] was used to
generate the equilibrium tables.

4.4.2.3 Oxides of Nitrogen Mechanism

Gas turbine combustor generated oxides of nitrogen (NOx) involve the com-
bined concentration of nitric oxide (NO), nitrogen dioxide (NO2) and nitrous
oxide (N2O). Of these emissions, NO generally represents more than 90% of
the NOx. We will therefore concentrate on the production of NO.
There are three main ways of NO formations in combustion:

✾ The thermal NO also called Zeldovich Mechanism [192] which consists
in the oxidation of molecular Nitrogen in the hot post �ame region

102

✾ The prompt NO [41] which comes the formation of NO in the �ame
zone.

✾ The fuel-bound NO [15] In this case NO is produced from fuel bound
N ; this is a problem of fuel quality.

The fuel-bound NO is not of a high interest for our model since it is mainly
dependent of the fuel quality. The amount of NO produced via this route
will be very small since aero-engines fuels are re�ned to minimize fuel bound
N and will be nearly una�ected by the combustor design and therefore will
not a�ect the trends in NO emission.
The prompt NO consist in [135] (a) the rapid formation of NO in the �ame
region due to the reaction of hydrocarbon radicals in the reaction zone N2 +

CH
 HCN + N . The HCN then evolves following the path HCN ⇒
CN ⇒ NCO ⇒ NO as described by Nicol [117], (b) the accelerated rate of
thermal NO due to super-equilibrium concentration of N and OH, (c) the
production of NO by reaction of O atoms with N2. Prompt NO is delicate to
model since its mechanisms happens in, or near, the �ame region. Therefore
a detailed chemistry and �ow analysis is required to de�ne the �ame region
and its local conditions. An analysis of this type is computationally intensive
and would not be appropriate for optimisation calculations. The contribution
from prompt NO can usually be neglected for traditional combustors. It is
only for low emission cases like lean premixed combustors that the prompt

NO route becomes of importance.
TheNO is calculated using the thermal NO (extended Zeldovich) Mechanism[12]
described in 4.3.

N2 + O
 NO + N

N + O2
 NO + O (4.3)

103

N + OH
 NO + H

This mechanism can be simpli�ed to equation 4.4where [] denotes the mo-
lar concentration and k1(T) is given by equation 4.5This simpli�cation is
described in more detail in [67].

d [NO]

dt
∼= 2k1 [N2] [O] (4.4)

k1 = 1.4 ∗ 10
11 ∗ exp

(
−37947

T

) (
m

3

kmol
−1

s
−1

)
(4.5)

If one assumes that [N2] and [O] are in equilibrium and that the mixture
fraction is constant over time (which is not) equation 4.4 can be simply
integrated to equation 4.6

[NO] = 2k1 (T) [N2]eq [O]eq

∫ tres

0

dt (4.6)

Equation 4.6 can be expressed in terms of molar fractions see equation 4.7.

nNO

nt

= 2k1 (T)

(
nN2

nt

) (
nO

nt

) (nt

V

)
tres (4.7)

PV = ntR0T therefore
nt

V
=

p

R0T
(4.8)

From the equation of state the expression 4.8 can be deduced and replaced
in equation 4.7 to express it as a function of T and P instead of V . Finally
equation 4.9 and 4.5 will be used for the NO calculations.

nNO

nt

= 2k1 (T)

(
nN2

nt

) (
nO

nt

) (
p

R0T

)
tres (4.9)

104

Since for a given combustor operating condition nt, nN2 and p will stay fairly
constant we can see that the NO production will be dependent on T and the
amount of O atoms, the number of O atoms also being highly dependent of
T . Equation 4.9 will be extremely dependent on temperature.

4.4.2.4 Limitations and Assumptions

Since this is a very simple emission model the reader needs to be aware of
the limitations and the assumptions made for this code. The reader should
as well keep in mind that this code is aimed at predicting trends in pollutant
emissions and it is not aimed at predicting accurately the exact amount of
emission. For accurate predictions of the pollutant emission a much more
complex and detailed model would be required which would be outside the
scope of gas turbine design optimisation.

✾ Perfect mixing is assumed for combustion. This is simplifying a lot
the combustion process, giving only an average AFR and therefore an
average temperature for a whole element given the exponential depen-
dency of NO emission to temperature, this assumption clearly a�ect
the quantitative accuracy of the results. A better but more complex
approach would be to use PDF (probability density functions) for the
mixing, which would allow to have temperature distributions and a
more accurate prediction of the emissions.

✾ The residence time calculation is performed using the average residence
time, however in reality there will be a distribution of residence time
and like for mixing using a PDF approach and tacking account of the
variations of mixture fraction over time, would be closer to reality.

✾ The combustion calculations assume that equilibrium is reached at the
exit of each combustion element. A chemical kinetics scheme would be
more accurate and allow to provide informations on CO emissions.

105

✾ Jet-A is used as a fuel and Jet-A formulation has been simpli�ed to
C12H23.

✾ No account is taken of fuel droplets evaporation time for non premix
combustion.

✾ No account is taken of ignition delay.

✾ Only thermal NO emission created via the Zeldovich Mechanism are
considered, neglecting the contribution from prompt NO and fuel-bound

NO. This is a correct assumption for traditional combustors using fuel
atomization. In very low NO conditions, such as for lean premixed pre-
vaporised combustors, prompt NO becomes a signi�cant proportion of
the total NO produced.

4.4.2.5 Validation of the emission model

Since the aim of this model is to provide trends rather than accurate quanti-
tative prediction of emissions, the validation work concerned more the qual-
itative aspect of the NO prediction. Some veri�cations were performed on
the model to con�rm that the predicted trend followed a logical behavior,
dependence on the temperature and therefore on the AFR. In [73] a much
more complete validation work is presented for an autonomous emission code
using the same modeling technique [134].

4.5 Conclusion

During this chapter the modeling aspect of the work has been reviewed,
through the presentation of the existing simulation techniques and the de-
scription of the selected simulation technique. In addition the capacity of
the simulation tools has been increased by the addition of a model to predict

106

NOx emission trends. The combination of Flownet and the NOx model, pro-
vides enough informations to give a fairly accurate de�nition of the quality
of the design. The de�nition of the design quality could further improved
through the addition of other models such as CO prediction or pattern factor
estimations.

107

108

Chapter 5

Genetic Algorithms

5.1 Introduction

This chapter aims to describe the genetic algorithm based techniques de-
signed for the optimisation Toolbox. These techniques are based on the
simple genetic algorithms that have been modi�ed in order to adapt them to
engineering design problems.
Firstly some background on genetic algorithms will be given for the reader
who is not familiar with this techniques. The idea behind genetic algorithms
will be described and some application examples will be presented for diverse
engineering domains with a closer look at some applications in the aerospace
and gas turbine domains.
In the second section of this chapter the principle behind the conventional
genetic algorithms sometimes called simple genetic algorithms (SGA) will be
explained, and some theoretical explanation will be given on the e�ectiveness
of those algorithms. In addition, some of the advantages and shortcomings
of the SGA will be highlighted.
The third section of this chapter will be concerned with modi�cations made
to the genetic algorithms in order to improve their performance, adapt them

109

to the design of engineering systems and overcome the inconveniences of
conventional genetic algorithms.
Finally, the fourth section of this chapter will deal with the important issue
in engineering design optimisation of handling constraints and optimisation
for di�erent objectives.

5.2 Evolutionary Optimisation Method Back-

ground

This section aims to describe the general idea and basic principles common
to the di�erent evolutionary optimisation methods.

5.2.1 The Idea Behind Evolutionary Optimisation

Genetic algorithms belong to the more general classi�cation of evolutionary
optimisation techniques or evolutionary programs as Michalewicz [109] clas-
si�es them. Those techniques are derived from observations of the natural
evolution process.
The di�erent life-forms present on the earth demonstrate an amazing capacity
to adapt to the environment as diverse as it can be. Life is even able to adapt
to the di�erent changes in this environment. A sudden change will wipe out a
few animal species which will soon be replaced by some others newly adapted
to the resulting environment as narrated by Pratchet [130].
This extraordinary capacity of evolution possessed by all life-forms has in-
spired the development of computer-based evolution techniques, which adapt
a population of solutions to a particular problem.
All the evolutionary optimisation techniques share the common concept of
a population of individual solutions that have been evolved using various

110

techniques to adapt themselves such as they become the optimum solution
of a given problem. The most famous of these techniques are, Evolutionary
Strategies [164], Genetic Algorithms [69], and Genetic Programming [88].

5.2.2 Basic Principle

The �rst question that comes to mind when thinking about the natural evo-
lution process, is how do all the species manage to adapt themselves to all the
di�erent types of environment. In order to answer this question it is best to
quote a paragraph from Pratchet [130] which explains the natural evolution
in a clear and simple way.

Imagine a lot of creatures of the same species. they are in
competition for resources such as food - competing with each
other, and with animals of other species. Now suppose that by
random chance, one or more of these animals has o�spring that
are better at winning the competition. then those animals are
more likely to survive long enough to produce the next generation,
and the next generation is also better at wining. In contrast, if
one or more of the of these animals has o�spring that are worse

at winning the competition, then those animals are less likely
to produce a succeeding generation - and even if they somehow
do, that next generation is still worse at wining. Clearly even a
tiny advantage will, over many generations, lead to a population
composed almost entirely of the new high-powered winners. In
fact, the e�ect of any advantage grows like compound interest, so
it doesn't take all that long.

This is the mechanism as Michalewicz [109] puts it that will give an advantage
towards the faster running rabbits over the slower running rabbits, especially

111

when they are chased by a fox. This competition among rabbits lead to
rabbits being quite fast running animals.
This natural strife for survival is at the basis of the evolution forces that allows
the species to adapt to their environment [172]. This natural and biological
anchorage of the evolutionary optimisation techniques will be described in
5.4 and is widely described in literature [69, 103, 27].
This idea of species evolving to become more adapted to their environment to
win the competition and survive, was used as the basis of the the evolution-
ary programs. Those programs encode the parameter of the problems into a
data structure called a chromosome. A population of these chromosomes is
generated, a bit like the population of the rabbits. The quality of the solution
encoded in each of the chromosomes is evaluated. Some of the chromosomes
that are the most adapted to the problem are selected for the recombination
process which uses a number of parents usually two and combine their prop-
erties to create o�springs. O�springs from parents which are well adapted
to their environment will have a high probability to have a similar or even
a better adaptation to their environment. This process is repeated in cycles
until a suitable solution is found.

5.3 Example Of Uses

Before going into the details of Genetic Algorithms and their derivations,
let's have a look at some applications in order to get a better understanding
about the possibilities o�ered by those optimisation techniques. Although
evolutionary programs have a very wide range of applications, the application
presented here will be centered towards the engineering domain and more
speci�cally the aerospace and gas turbines domain.
From the start genetic algorithms were viewed as a promising tool for engi-
neering, however the computational power available in the late sixties limited

112

their use. It is only during the late eighties and nineties when the computing
power of desktop computers became signi�cant that these techniques started
to be applied to a wide range of engineering problems. Thanks to the work of
some researchers in the domain, engineers are becoming more and more aware
of the evolutionary based optimisation techniques and apply these techniques
to solve various problems. The evolutionary computation techniques are now
facing a transition. They have been successfully used as research tools, they
now need to be integrated in the engineer's design environment do become
an everyday tool as it has been the case for CFD and FEM.

5.3.1 General Engineering Examples

One of the �rst Genetic algorithm applications consisted of the control op-
timisation of gas pipeline systems [52]. Evolutionary based algorithms have
also been applied to diverse domains such as the traveling salesman problem
[46], and the evolution of computer programs [88], a technique that would
become known as genetic programming. Schwefel developed Evolutionary
Strategies to optimise the parameters of computer models [164]. Deb has
been working on the application of Genetic algorithms to engineering de-
sign problems [28, 34]. Parmee has been working on the use of evolutionary
computation as an engineering design tool rather than just a function opti-
misation technique [123, 9]. A limiting factor on the application of evolution
programs is the handling of constraints . It is not simple to implement meth-
ods for handling the constraints required by most of the engineering design
problems. Some Basic Constraints handling techniques have been proposed
[145, 27] however these techniques reduce the e�ciency of the optimisation al-
gorithms especially in the case of highly constrained design where the feasible
design space is small compared to the infeasible design space. Michalewicz
[110], and Deb [30], have developed better constraints handling techniques
that ease the engineering applications.

113

5.3.2 Aerospace Applications

In the aerospace domain, until recently, there have been only a few appli-
cations of evolutionary computation techniques. However there is a strong
interest for optimisation in general and genetic algorithms have been con-
sidered at [89]. In addition the number of publications mentioning their use
is growing rapidly. Early applications consisted of conceptual phase design,
such as optimisation of the parametric design of an aircraft for a given �ight
mission [16], or the stage optimisation of a rocket in order to maximise the
payload ratio [178]. For Aerospace design work, similarly to a large num-
ber of engineering domains the limiting factor in the use of evolutionary
optimisation techniques is the computational expense of the evaluation of
the quality of the solution. This limits the use of optimisation to the con-
ceptual phase or the preliminary design phase where the tools used for the
evaluation of the solution are either analytical or empirical with low com-
putational requirements[3, 24, 13]. Since the end of the nineties massively
parallel computers have become more widely available as well as highly dis-
tributed computing over a network of desktop computers. It has now become
feasible to use evolutionary optimisation for more computationally intensive
tasks such as propulsive nozzle optimisation [151] or wing design using CFD
[37, 132, 121].

5.3.3 Gas turbine and Combustor Applications

There has been a few applications to the gas turbine domain such as sensor
diagnostics [191], compressor preliminary design [23], turbine nozzle design
[51], axial compressor airfoil design [181], or the performance domain were
various studies made use of genetic algorithm to optimise the performance
of aero gas turbine [185, 186, 116, 71]. On the thermal side some work has
been carried out on blade cooling [155].
Unfortunately there does not seems to be much work done on the application

114

of genetic algorithms to the design of combustors, although Genetic algo-
rithms have been used for other combustion systems such as adaptive control
of a boiler burner [183, 44], the evolution of chemical kinetic schemes, and a
simple optimisation of NOx emissions of a burner [8].
From those applications it can be seen that evolutionary optimisation tech-
niques have the potential to solve a lot of engineering optimisation problems.
These techniques have been successfully applied to many aspects of engineer-
ing design. However from these examples two limiting factors emerges. One
is the problem of the computational cost of the evaluation of engineering so-
lution which makes the application of evolutionary optimisation techniques
more suitable for conceptual / preliminary design than for detailed design
where CPU intensive simulation tools are generally used such as CFD or
FEM. The other limiting factor concerns the handling of the constraints.
Engineering design usually requires a large number of constraints which need
to be satis�ed in order to generate a good feasible design. Some work will be
required to develop e�cient and �exible constraint handling techniques.

5.4 Principle of the Conventional Genetic Al-

gorithms

This section will describe the operating principle of the conventional genetic
algorithms by going through the algorithm process and the genetic opera-
tors. In addition some highlights will be given of the theoretical foundations
of conventional genetic algorithms and some of their main advantages and
disadvantages will be described.
Conventional genetic algorithms, often referred to as the simple genetic algo-
rithm (SGA) �rst proposed by John Holland [69] and further developed by
Goldberg [54]. The SGA follows the general principle explained in 5.2.2. The
genetic algorithm process is very closely inspired by the natural evolution

115

process [172], it uses a population of individuals whose features are encoded
in a way resembling the DNA coding. It uses genetic operators closely cou-
pled to the natural evolution process such as, recombination of two parents
to generate o�spring, random mutation in the chromosome to generate new
genetic material, and a selection mechanism that is biased towards the best
members of the population.

5.4.1 Genetic Algorithms Process

The SGA can be seen as a four step process with a two steps initialisation
which consists �rst in generating a population of chromosomes representing
the potential solution of the problem to be optimised. The second step is
to evaluate the quality of the potential solutions, this allows each member
of the population to be assigned a value of �tness re�ecting the quality of
the solution encoded in its chromosome. The third step consists of selecting
some of the best chromosomes issued from the population. During the fourth
step recombination will be performed on those high performance chromo-
somes to generate o�spring, in addition some of the chromosomes from the
original population are mutated to create a new modi�ed chromosome. A
new population is formed from those newly generated chromosomes and the
process starts again at the second step for the second generation. The steps
two three, and four are repeated until the desired number of generations have
been achieved. Figure 5.1 shows a �owchart representing this process.

5.4.2 Problem Encoding and Initial population

A problem can be described by a set or vector of n parameters 5.1.

Sv = (v1, ..., vn) (5.1)

116

Evaluate The Population

Chromosomes
Select and Recombine

Randomly Mutate
Chromosomes

Chromosomes
Evaluate New

Replace Old Population
By New Chromosomes

The Initial Population
Randomly Generate

No

Yes

Optimisation
Completed

Start

End

Figure 5.1: Genetic algorithm �owchart process.

117

each de�ning a variable of the problem v1to vn. For the SGA the encoding
of the problem parameter is based on a simpli�ed transposition of the coding
of the DNA. The DNA uses nucleotides which can be of four types as the
basic elements of the code. These nucleotides are assembled into triplets to
form a codon. The 64 possibilities of di�erent codons are used to code for
the formation of 20 di�erent amino acids. Finally the genes are formed by a
set of codons with an alphabet size of 20 [159].

The SGA uses a simpli�ed structure, the codon forming the gene has been
given an alphabet size of 2 which is one bit. The value of each gene is
represented as a string of bits, the number of bits used to encode the gene
will depend on the precision required for the encoding of the parameter value.
The precision µ of the binary encoding is de�ned in equation 6.19,

µi =
UB − LB

2l − 1
(5.2)

where UB and LB are the variable upper and lower bounds and l is the length
of the binary string encoding the variable i of the problem. The gene's bit
strings are bound together to form a chromosome represented as 5.3

Sb = (b1, ..., bm) (5.3)

where m is the number of bits used to encode the chromosome m is de�ned
as 5.4.

m =
n∑

i=0

(li) (5.4)

Figure 5.2 shows the encoding process from parameter values to an encoded
chromosomes.

At the beginning of each run, the initial population of the SGA is generated
randomly by generating a random string of bits for each chromosomes.

118

0100

4

Variable 3

6

Variable 2

0110Genes

Problem

Chromosome 101001000110

Variable 1

1010

10

Figure 5.2: Encoding of the problem into chromosomes.

5.4.3 Recombination (Crossover)

The recombination or crossover consists of the combination of the genetic
information of two parent chromosomes to form an o�spring. Here as well the
crossover operator of the SGA is inspired from the biological recombination of
the DNA which consists in strand exchange between two DNA duplex [139].
Similarly the crossover operator of the SGA exchange bit strings between
two parents chromosomes to form two o�spring. The process is performed by
randomly selecting one or more break-points on the chromosome. The pieces
of string in between those break-points are then exchanged between the two
parents to form two o�spring.
In the case of the SGA the Crossover operator consists of selecting a crossover
point at a position i in the two parent's (x and y) chromosome bit strings
5.55.6.

S(x)b = (b(x)1, ..., b(x)i, ..., b(x)m) (5.5)
S(y)b = (b(y)1, ..., b(y)i, ..., b(y)m) (5.6)

Where i is a randomly selected integer within the range [1, m]. The part
of strings from the two parents delimited by the crossover point can be ex-
changed to create two new child chromosomes z1 and z2. 5.7 5.8, as shown

119

Parent 2 1 0 0 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 0 1 0 0 1

Parent 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 1 1 0 1 1 0 0 1 0

1 0 0 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 0Child 2

Child 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 1 1 1 1 0 1 0 0 1

Figure 5.3: Recombination of two chromosomes to form two o�springs.

in �gure.
S(z1)b = (b(x)1, ..., b(x)i−1, b(y)i, ..., b(y)m) (5.7)
S(z2)b = (b(y)1, ..., b(y)i−1, b(x)i, ..., b(x)m) (5.8)

5.4.4 Mutation

The process of mutation in biological systems consists of a blind change in
the coding of the gene, this process happens relatively rarely in nature and
is mostly detrimental to the cell a�ected [139]. However in some rare cases
this mutation can bring an advantage to the cell and natural selection will
favor the organisms which are the most adapted.
In the case of the SGA the mutation operator consist of �icking a bit at a
position i in the chromosome bit string 5.9.

Sb = (b1, ..., bi, ..., bm) (5.9)

Where i is a randomly selected integer within the range [1, m]. a as shown
in �gure 5.4.

120

Original 1 0 0 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 0 1 0 0 1

Mutated 1 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1 1 1 0 1 0 0 1

Figure 5.4: Bit mutation in a Chromosome.

5.4.5 Selection and Replacement Mechanism

The selection process gives a bias towards the members of the population that
are the most adapted to their environment. For example a rabbit that runs
faster than the other rabbits will have an advantage over them and therefore
it will have more chances to survive and do what rabbits do best, reproduce
and forward its good genes to the next generation of rabbits. On the other
hand an unlucky rabbit that would run slower than the other rabbits, will
have a higher probability of being eaten by the fox, thus reducing its chances
of transferring its bad genes to the next generation.
For the SGA the selection process has a similar purpose, its aim is to favor
the dissemination of the good genes in the following generations therefore
the selection is achieved by a random process biased towards the members
of the population that responds the best to the problem ie: that have the
best �tness f(x). The traditional selection operator for the SGA is called
the roulette wheel. The idea behind this operator is that each chromosome
is allocated an area proportional to their �tness on a virtual roulette wheel.
The wheel is spun and the chromosome pointed by the ticker when the wheel
stops is selected as shown in �gure 5.5.
This roulette wheel selection is performed by �rst calculating the �tness f

of all the member of the population xi by evaluating them. Once the �tness
of each member of the population is known the relative �tness fr can be

121

3

4

5 1

2

Rotation

Pointer

Selection

Figure 5.5: Roulette wheel selection process.

calculated, it is de�ned as follows.

fr (xi) =
f (xi)∑n
1 f (x)

(5.10)

The cumulative �tness fc is then calculated.

fc (xi) =
i∑
1

f (x) (5.11)

From 5.11 it can be seen that fc(xn) = 1 where xn is the last element of the
population. Generate a random number r in the range [0 : 1] and return the
�rst chromosome whose cumulative �tness is superior or equal to the random
number r as follows.

fc (xi) ≥ r (5.12)

122

5.4.6 Theoretical Background of Simple Genetic Algo-

rithms.

When John Holland [69] �rst developed the genetic algorithms he laid the
basic of a theory attempting to explain why genetics algorithms work. This
theory is called the schema theory [69] and could be seen as a straight forward
version of Fisher's 'Genetical Theory' [42]. The schema theory was then
further developed by Goldberg [54] and some others researchers of this �eld
[11, 174, 60].
This theory relies on the binary representation of the solution, this represen-
tation allows the use of substrings templates called schema which exploits
the similarities between chromosomes.
Let's consider a problem that can be encoded with three bits. This repre-
sentation could be expressed as the corners of a three dimensional cube of
origin 000 and with each corners labeled with a bit string that di�ers only by
one from the adjacent corners as shown in �gure 5.6. On this representation
of the solution we can introduce the symbol '*' representing a wild card. A
schemata will be a string made of binary values and '*' symbols. It will repre-
sents all chromosome strings that matches all its binary values except the '*'
symbol. For example in the three dimensional cube the schemata '0**' will
represent all chromosomes strings starting with '0' ie: all solution located on
the front plane of the cube. Each schemata refers to an hyper-plane in the
solution space.
It can be shown that a schemata matches exactly 2n strings where n is the
number of don't care symbols '*' in the string, and that each string is matched
by 2m schemata where m is the length of the chromosome string. Since genetic
algorithms are population based, they provide information about numerous
schemata. The intrinsic parallelism in genetic algorithms comes from the
fact that many hyper-planes are sampled when a population of strings are
evaluated. Therefore the schemata representation will vary depending on the

123

000 001

101

100

010
011

110 111

Figure 5.6: Planes on a three-dimensional cube.

�tness of the strings it represents.
There are two parameters that de�ne schemas. The order o(ς) of the schemata
ς represents the number of �xed positions (all non '*' symbols) in the schemata
ς. A schemata with a low order will be very general and a schemata with
a high order will be very speci�c. The length l(ς) of the schemata ς can be
de�ned as the distance between the �rst and the last �xed position of the
schemata.
The theory [69] suggests that selection will increase exponentially the repre-
sentation of an above average schemata in the next generation. However the
crossover and the mutation will disrupt this process favoring the short, low
order schema. The short low-order schemas have been presented as build-
ing blocks by Zbigniew Michalewicz [109] to formulate his building blocks
hypothesis. � Genetic algorithms seek optimal performance through the jux-
taposition of short low-order, high performance schemata called the building
blocks�
This schema theory has provided a greater understanding of the behavior
of genetic algorithms, such as the population size requirement for a given
problem [64] and a better understanding of convergence [141]. As well it

124

highlighted some problems of the genetic algorithms such as the deceptive
e�ects that can be encountered on certain parameter optimisation problems
[53, 60]. However the schemata theory does not completely model genetic
algorithms.
Radcli�e has developed the forma theory [137] which can be seen as a general-
ization of the schemata theory which can be used to analyze the performance
of GA coded with non-binary alphabets. In addition, some e�orts have been
made to try to theorize and model the genetic algorithms using 'Stochastic
Modeling and 'Markov Chains' and others methods[161, 162, 104, 144, 184].
These new theories, although mathematically complex, allow the performance
of genetic algorithms to be predicted for a given application.

5.4.7 Shortcomings of the Simple Genetic Algorithm

The simple genetic algorithms are very successful in parameter optimisation.
However certain problems inherent to their design prohibit their use or reduce
their e�ciency when applying them to the more problems such as engineering
design.

✾ The most obvious di�culty for parameter optimisation using the simple
genetic algorithm is the precision problem. It is inherent to the binary
encoding, the precision will depend on the domain size and of the num-
ber of bits used to encode the gene [77]. A high precision will require
a large number of bits for encoding, increasing the optimisation time.
A low precision encoding will mean losses in the optimisation e�ciency
by looking at discrete points of the solution surface as well as not being
able to resolve the actual optimal point.

✾ The binary encoding of continuous variables creates artifacts known as
Hamming Cli�s which adversely a�ect performance [138].

125

✾ The deceptive e�ects of the simple genetic algorithms will make them
converge to sub optimal solutions missing the global optimum [53].

✾ Genetic algorithms seem to be good at the area of maximum perfor-
mance for a given problem, however they seem to have di�culty to
�ne-tune the solution in this area [26].

✾ The convergence rate of genetic algorithms can be premature leading
to sub optimum solutions [97].

✾ In the simple genetic algorithms there are no methods for constraint
handling. This is a very important drawback for engineering problems
which are usually highly constrained [124].

All these issues needs to be addressed in order to create an e�cient genetic
algorithms design tool for engineering. The improvements to the technique
proposed during the implementation of the optimisation library, next chapter,
have the aim to tackle theses issues, the evaluation of the resulting optimisa-
tion technique will be performed in chapter 7.

5.5 Conclusions

During this chapter the idea behind the genetic algorithms have been pre-
sented with some examples of use in the engineering domain. This was fol-
lowed by a description of the simple genetic algorithm techniques, through a
description of the problem encoding and of the di�erent operators. Finally
some theoretical background about these techniques was provided and the
shortcomings of these techniques were identi�ed.

126

Chapter 6

Implementation of the

Optimisation Module

6.1 Introduction

During the previous chapter the principles and theory of the simple genetic
algorithms (SGA) have been described. The SGA is at the basis of all others
genetic algorithms developments. It has a large potential for engineering op-
timisation [52] . However it su�ers from some shortcomings and ine�ciencies
[27, 109, 124]. These problems need to be addressed in order to create an
e�cient engineering optimisation technique.
This Chapter will relate the work done in order to build and improve an SGA
Library to transform it in to a e�cient engineering optimisation library. First
an SGA library was coded in order to be used as the basis of the optimisation
library. This was then modi�ed and improved in order to be suitable for
engineering design optimisation problems. Such problems typically require
a system capable of handling complex de�nitions of multiples constraints
and objectives in order to precisely de�ne the quality of a given solution.
In addition the performances of the SGA had to be improved in order to

127

tackle complex highly dimensional problems in a reasonable amount of time.
This performance requirement is emphasized in engineering design where the
evaluation of the solution through simulation is generally costly in terms of
computational time.
This chapter is therefore structured in four parts:

1. The selection and implementation of the SGA based optimisation li-
brary.

2. Review of the available constraint handling techniques
3. The development of a novel constraints and objectives handling tech-

nique.
4. The implementation and development of improved techniques and op-

erators for the optimisation library. Including a proposition for a novel
mutation operator.

6.2 The SGA Library

The optimisation library is based on an implementation of the SGA for this
purpose, di�erent libraries were looked at, with the aim of using them as
the basis of the optimisation library. In order to select the right library for
optimization purposes a package requirement was established and the avail-
able GA libraries were tested against these requirements. The requirements
were mostly concerned with the �exibility of the software, its capability to
be expanded easily, and its features such as the support of di�erent type of
genes or the capacity to run in parallel. The following packages were tested:

✾ PGAPack [96]
✾ Genocoop [111]

128

✾ SGA Java [65]
✾ SGA C [52]
✾ SUgal [72]

These trials showed that none of the packages ful�lled all the requirements.
The advanced packages were not very open and would not allow modi�cations
easily, and the simple packages were lacking �exibility and functionalities. It
was therefore decided create a new GA library inspired from the �SGA Java�
package.
The main aim in the design of the SGA library was to achieve a high degree
of modularity in order to be able to easily add new operators or optimiza-
tion strategies. The core of the optimizer was largely inspired by the basic
architecture of a simple (1500 lines of code) but well designed GA library in
Java named �SGA Java V1.03� from Stephen J. Hartley [65]. However it was
recoded in order to achieve the required modularity and �exibility. The op-
timizer library uses modules following its needs. The main module contains
the optimisation algorithm which is in this case the SAG algorithm but this
can be changed to o�er a greater choice of algorithms. The algorithm mod-
ule uses other modules related to GA, such as selection, crossover, mutation,
or replacement modules, and some other are more process oriented such as
the evaluation module to evaluate the quality of the solution. This modu-
lar approach enables new functionalities to be added into the optimisation
library.

6.3 Objective and Constraints Handling

This section will describe the development of the objective and constraints
handling techniques, these techniques are crucial for the optimiser since they
will direct it towards the optimum feasible solution. The description will start

129

by a brief presentation of the problem posed to the optimisation library. Then
the di�erent techniques available concerning the handling of the constraints
and the objectives will be brie�y discussed. Finally a new method devised to
handle constraints and objective will be presented to the reader.

6.3.1 Objective and Constraints for Engineering Design

Gas-turbine combustor design, like as many engineering design problems, is
controlled by three factors, explicit constraints which are constraints on the
problem input parameters, implicit constraints which are constraints on the
performance parameters, and performance parameters that will need to be
maximized or minimized to achieve optimal design. These three factors, and
their combinations, need to be handled by the optimiser which should imple-
ment techniques to control a large number of implicit and explicit constraints
and methods to deal with the di�erent parameters to be optimised. A com-
bustor design optimisation will have around twenty to thirty performance
parameters which will be composed of implicit constraints and performance
objectives.

✾ Explicit constraints, these are constraints on the problem input vari-
ables f(Pvi) > a. They can be calculated directly from the input vari-
ables and do not require the evaluation of the chromosome. For example
for the optimisation of an e�usion patch. Let Pv1 be the diameter of
the hole of the e�usion patch and Pv2 the number of holes for those
patch. If the area covered by this e�usion patch is constant there will be
a limit on the quantity and size of the holes, imposing a constraint on
the problem of the type f(Pv1, Pv2) < Amax where Amax represents the
maximum allowed hole area and where f(Pv1, Pv2) = π(1/2Pv1)

2∗Pv2.

✾ Implicit constraints, these are constraints on the problem performance
parameters f(Ppi) > a. They can not be calculated directly from the

130

input variables and require the evaluation of the chromosome to de-
termine the performance parameter they constrain. For example for
the optimisation of a gas turbine combustor design one might want to
constrain the zone air / fuel ratio (AFR) in order to achieve the desired
combustion conditions. Let Pp1 be the zone AFR then the optimiser
will need to satisfy the following constraint Pp1 = AFRdesired. However
since it is impossible to achieve exactly AFRdesired the equality con-
straint is transformed into two inequality constraints: AFRdesired Min <

Pp1 < AFRdesired Max.
✾ Performance objectives, these are objectives for the problem perfor-

mance parameters max f(Poi). They can not be calculated directly
from the input variables and require the evaluation of the chromosome
to determine the optimised performance parameter. For example for the
optimisation of a gas-turbine combustor design, let Po1 be total NOx
emissions produced by the combustor, the aim of the optimisation will
be to min Po1.

Di�erent techniques need to be implemented in order to allow the optimi-
sation library to deal e�ciently with these three factors. Let's �rst review
the di�erent constraint handling techniques available as well as the di�er-
ent objective optimisation techniques. Then describe the method that was
proposed and implemented to tackle these three control factors.

6.3.2 Review Of the Available Constrains Handling Tech-

niques

Michalewicz in [109] presented formally the problem of constraint handling
as a general non linear programming problem which can be expressed in the
following form:

Find a set of variable−→v which maximise f (−→v) (6.1)

131

subjected to m inequalities and n equalities conditions.

gi (−→v) ≤ 0 i = 1, ...,m (6.2)

gi (−→v) = 0 i = m, ..., n (6.3)
There are di�erent techniques available to handle the di�erent constraints and
direct the optimisation towards a feasible design. This section will brie�y de-
scribe the main available techniques and discuss their di�erent merits. There
are two types of constraints, explicit and implicit constraints as Parmee clas-
si�es them [124]. The explicit ones do not cause an important problem since
in many case these can be alleviated, see section 6.3.3. However the im-
plicit ones are more di�cult to tackle and will a�ect the performance and
the e�ciency of the optimisation see sections 6.3.4 to 6.3.9.

6.3.3 The Special Case of Explicit Constraints

The problem caused by the Explicit constraints, since they are based on
the problem input variables can be relatively easily solved by making sure
the input variables never breach the constraint. This can be achieved either
through a good representation of the problem or through some speci�c op-
erators. In most cases a good representation of the problem can allow the
elimination of these constraints. For example for the case of the holes in
the e�usion patch described in the previous section, the problem could be
represented di�erently. Pv1 would still represent the diameter of the hole of
the e�usion patch, but if Pv2 is used to represent the area of the holes in the
e�usion patch Amax simply becomes the upper boundary of Pv2. Removing
completely the need for the constraints. In the more complex case were it
is not possible to change the problem representation it is possible to design
special mutation and crossover operators that take the explicit constraints
into account and use it to produce only valid chromosomes [112].

132

6.3.4 The Death Penalty Approach

This might be the simplest technique, the individual that violates the con-
straints is simply eliminated, this can be done through setting its �tness
f ′i = 0giving it a null probability of being selected.
This technique can be useful when there is no way to determine how bad
the solution is. For example when the solver evaluating the solution crashes,
failing to return any value there is no other way than to eliminate the member
of the population that caused this crash. This is the traditional method for
evolutionary strategies [164].
However since this technique just eliminates the infeasible solutions, it does
not give any indication to the optimiser to direct it towards feasible regions,
resulting in poor performance when the feasible region represents a small
region of the search space. This problem in emphasized for complex opti-
misation where the feasible region represents an extremely small fraction of
the search space and the initial population is unlikely to contain any feasible
solutions.

6.3.5 The Fixed Penalty Approach

This method consists of imposing the same penalty to each member of the
population failing to satisfy all the constraints f ′i = fi−p. This approach en-
sures that the individuals which breach a constraint become sub optimal, but
without eliminating them completely. Since the �tness value is still present
the optimiser will be guided towards the region of maximum fi and not to-
wards the feasible region. This can be acceptable if the region of maximum
fi is enclosed in the feasibility region however it can be problematic when re-
gion of maximum fi is not enclosed in the feasible region. This problem could
be slightly improved by using s set of discrete values de�ning the amount of
constraint violation [70].

133

6.3.6 The Penalty Function Approach

An improvement on this method is to use a penalty function that de�nes a
penalty proportional either to the magnitude of the constraint violation or
to the number of constraints violated f ′i = fi − P (x). There are di�erent
methods to de�ne P (x), which can be de�ned as:

✾ A function depending of the number of unsatis�ed constraints.
✾ A function proportional to the distance of the constraints.
✾ A function proportional to the cost of repairing the individual.

These techniques when P (x) is de�ned adequately, allows the optimisation
to be directed towards the less infeasible portion of the search space whether
the region of maximum fi is enclosed in the feasibility region or not. They
can therefore be used in the case of di�cult constraint satisfaction problems
where the initial population is unlikely to contain any feasible solutions. In
order to minimize the disturbance of the �tness function the penalty should
be as small as possible [26]. In addition Richardson [145] derived a few
guidelines for the de�nition of the penalty function. However the de�nition
of P (x) is di�cult and problem dependent, inappropriate setting of P (x) can
make the problem become GA-hard [26] and will not lead to the feasibility
region. In addition the de�nition of P (x) might not be suitable during the
whole optimisation process.

6.3.7 The Variable Penalty Function Approach

The idea that invalid solutions can be tolerated during the initial part of the
optimisation but have clearly to be avoided during the later stages of the
optimisation have led researchers to develop variable penalty functions that
dynamically adapt the penalty to the stage of the optimisation. Joines and

134

Houck [80] proposed to have the penalty function a function of the generation
number, Increasing the selective pressure towards feasible individuals as the
number of generations increase. Michalewicz and Attia [110] proposed a
method inspired from simulated annealing techniques.
Those methods are relatively complex and selection of the tuning parameters
they use is critical [21].

6.3.8 The Feasible / Infeasible Approach

For this approach the general idea comes from the assumption that feasible
chromosomes should always be preferred over the infeasible ones as suggested
by [145].
Some researchers have implemented techniques based on this assumption
[129, 30] and derived three precepts.

1. Any feasible solution is preferred to any infeasible solution.

2. Among two feasible solutions, the one having the better objective func-
tion value is preferred.

3. Among two infeasible solutions, the one having smaller constraint vio-
lation is preferred.

These techniques have in common the separation of the optimisation function
for valid and invalid parameters and the use of the worst feasible element
�tness to devise the �tness of the maximum �tness of the infeasible element.
The �tness function proposed by Powel and Skolnick [129] is of the type:

F (−→v) =

{
f (−→v) if−→v ∈ F
f (−→v) + r

∑n
i=1 fi (−→v) + ρ (−→v , t) if−→v ∈ S − F

(6.4)

135

Where S designate the entire search space, and F designate the feasible one,
r is a constant, n represents the number of constraints and ρ (−→v , t) is de�ned
as follows in equation 6.5 and is variable with time since it depends of the
max and the min �tness present in the population.

ρ (−→v , t) = max

{
0, max−→v ∈F

{f (−→v)} − min−→v ∈S−F

{
f (−→v) + r

n∑
i=1

fi (−→v)

}}
(6.5)

Deb [30] proposed a function of the type:

F (−→v) =

{
f (−→v) if−→v ∈ F
min−→v ∈F {f (−→v)}+

∑n
i=1 fi (−→v) if−→v ∈ S − F

(6.6)

Both methods achieved interesting results and seem to be promising. Es-
pecially Deb's Implementation. From this it can be seen that both �tness
de�nitions depend on the minimum feasible �tness present in the population.
The Powel and Skolnick method tends to have di�culties when the ratio of
|F| / |S| is small [108].
Deb's infeasible individuals �tness depends only on the distance towards the
satisfaction of the constraints ∑n

i=1 fi (−→v) since the minimum �tness of the
feasible individual will be a constant during each generation. This allows the
optimisation to be directed towards the feasible region without any pertur-
bation due to the �tness function, which is not the case in the Powel and
Skolnick method. One inconvenience that could be found for this method
is the fact that the �tness of the infeasible individuals is dependent of the
�tness on other members of the population.

6.3.9 Exotic Constraint Handling Approaches

In addition some more exotic approaches can be found in literature and have
been mentioned in [112] or in [21].

136

✾ Handling the constrains in a particular order [165].
✾ Co-evolution of solution and constraints
✾ Computational model of immune system approach

6.3.10 Single / Multi Objective Optimisation

Single objective optimisation consists of the optimisation of a problem in or-
der to maximize / minimize the value of this objective. As it name says it can
only be used to optimize one single objective. However this single objective
can be a function of many di�erent objectives. This particularity has been
commonly used through di�erent techniques such as the simple weighted sum
of the objectives [76], goal attained or target vector optimisation [189]. All
these techniques are able to give a set of optimum parameters but will not be
able to give a tradeo� surface for the di�erent objectives. This is the most
widely used optimisation method amongst GA practitioners.
Multi objective optimisation consists in the simultaneous optimisation of
competing objective functions by making the GA population evolve towards
the optimum tradeo� surface of the di�erent objective. The dominating
approach for these optimisation problems seems to be the Pareto-based tech-
niques.
A individual is said to be Pareto-optimal or non dominated when no other
individual is better in all the objectives [19], it therefore lies on the optimal
tradeo� surface.
The GA implementation consists in giving an equal probability of reproduc-
tion to all the non-dominated individuals [52] and then lower probability for
the dominated one depending on their degree of domination either through
non-dominated sorting [52] or the number of individuals by which it is dom-
inated [47]. Many researchers reported good results of multi objective opti-
misation for di�erent engineering domains [22, 101, 40, 105, 175].

137

When considering the multi-objective techniques as bi-objectives these tech-
niques are extremely interesting and give meaningful result to study the so-
lution space. For example it could be used to study the tradeo� between
cooling �ow and wall temperature, or NOx emissions and relight loading.
However these techniques start to become less interesting as the number of
objective dimensions increase [79]. Multi-objective techniques can still be
exploited reasonably easily for three objective problems, but, they �nd their
limitations for higher dimensional problems. Visualization becomes highly
complex and less meaningful, how can a tradeo� surface can be visualized in
twenty dimensions? It still is possible but it becomes quite di�cult to extract
valuable informations, one can look at a 2D slice of the multi dimensional
space, however the amount of meaningful information decrease rapidly as the
number and the inter-relations of dimensions increase. The second problem
is more critical, it concerns the the resolution of the tradeo� surface. The
dimensional increase of the tradeo� surface will require a larger number of
sample points in order to resolve its shape which means a larger population.
For a resolution r and a number of objectives n the number of sample points
is de�ned as S = rn−1, it can clearly be seen that n will need to be small in
order to have a reasonable number of sample points and n = 20 is clearly out
of question.
To conclude for the Pareto based multi-objective techniques, although theses
techniques are very useful and interesting for engineering design, they can
only be directly used on problem with a low number of objectives. Therefore
there is a need to to reduce the number of objectives for some problems.

6.4 Target Optimisation

The proposed idea to tackle constraint and parameter optimisation for en-
gineering design comes from approaching the optimisation problem through
a di�erent angle. Resulting in the creation of a generic framework suitable

138

for the optimisation of combustor parameters and other engineering design
problems.

6.4.1 Target Representation

Looking at an engineering design problem one might reduce it to the optimisa-
tion of a set of performance parameters satisfying a certain range constraints
on others. Wienke's idea of target vector optimisation [189] and extending it,
this could be expressed as the optimisation of a set of n problem variables −→v
such that the set of m performance parameter −→p approach a set of targets
−→
ta while −→p satis�es the lower and upper boundaries −→bl and −→bu such that
−→
bl ≤ −→p ≤ −→

bu . Therefore the optimisation of each performance parameters
correspond to the achievement of a target. For this technique all the targets
do not need to be �nite values. The targets which are not �nite consist of
maximization or minimization objectives −→o and the �nite targets −→t form a
subset of −→ta such as −→ta = −→o +

−→
t .

6.4.2 Range Error, Target Achievement and Optimisa-

tion Factors

This representation allows three factors to be extracted de�ning the quality
of a given design.
Assume that −→p , −→t , −→bl and −→bu are de�ned such that they are strictly positive.

1. The range error factor Re (−→v)is de�ned as a function of the normalized
distance between −→p and the closest point inside −→bl and −→bu . λi rep-
resenting the normalized distance between pi and point inside bl i and
bu i.

Re (−→v) =

(∑n
i=1 λ2

i

n

) 1
2

(6.7)

139

λi =

{
1 if bl i ≤ pi ≤ bu i

1−max
{

pi−bu i

pi
, bl i−pi

bl i

}
otherwise (6.8)

It can be seen from 6.7 and 6.8 that the target achievement factor range
error factor Re (−→v) will vary between 1 when all range constraints are
satis�ed −→v ∈ F , and tend towards 0 when the performance parameters
are at the extreme of the range −→v ∈ S − F .

2. The target achievement factor Ta (−→v) is a function of the normalized
distance between −→p and −→t . δirepresenting the normalized distance
between pi and ti.

Ta (−→v) =

(∑n
i=1 δ2

i

n

) 1
2

(6.9)

δi =

{
pi−ti

pi
if pi > ti

ti−pi

ti
oderwise (6.10)

It can be seen from 6.9 and 6.10 that the target achievement factor will
be 0 if all targets are achieved exactly and will tend towards 1 when
the performance parameters are well out of range.

3. The optimisation factors Oi (−→v) give an indication of the optimisation
of the optimisation objective oi which represents the direction of the op-
timisation, maximization or minimization . Oi (−→v) needs to be selected
such as poor performance towards the minimization or maximization
of ti, Oi (−→v) will tends towards 1 and a good performance it will tend
towards +∞.

6.4.3 Handling of the Range Constraints.

In section 6.3.2 the di�erent constraint handling techniques have been re-
viewed. The most interesting technique among all those presented seems to
be the feasible / infeasible approach presented in section 6.3.8. The three

140

precepts de�ned by this approach will be used to design the constraint han-
dling technique. However the approach used by [30] or [129] will not be used
since they makes use of the �tness of the worst feasible individual present in
the current population, which further complicates the algorithm and reduces
generality. The constrained �tness will be set as

F (−→v) =

{
f (−→v) if−→v ∈ F
Re (−→v) if−→v ∈ S − F

(6.11)

Since Re (−→v) ∈ [0 : 1] then f (−→v)should be chosen such as f (−→v) ∈ [1 : +∞[

therefore satisfying all three principles of the feasible / infeasible approach
but avoiding the use of the lowest feasible �tness.

6.4.4 Implementation

For combustor design this target representation can be very useful, the de-
signer can be faced with three kinds of problem that require solving in a
generic method:

1. Achieve a design based on a set of m target performance parameters
−→
t satisfying m constraints −→bl and −→bu , there the constraints become
relatively unnecessary since these will be aligned with −→t .

2. Optimise a single optimisation objective then −→o = o1 and a set of
m−1 target performance parameters −→t , while satisfying m constraints
−→
bl and −→bu .

3. Optimise a set of l optimisation objective −→o and a set of m− l target
performance parameters −→t , while satisfying m constraints −→bl and −→bu .

Problems of the type one and two can easily be implemented using single
objective representation.

141

Problems of the type three should be optimised using multi-objective opti-
misation techniques. However the single objective optimisation of a problem
of type three can still be performed using single objective by transforming
the optimisation objectives into targets when the designer has some idea of
the achievable objectives which is usually the case in combustor design where
the designs of new combustors are based on existing designs. In addition, a
problem of type three can also be optimised using a single objective by cre-
ating a global optimisation factor O (−→v) as a function of all the Oi (−→v) even
when the user does not have a good knowledge of the achievable objectives.

For the problems two and three the targets are just there to give a direction
to the optimiser, the optimisation objective should have the priority over
the target. For example when optimising NOx emissions the combustor will
tend to go lean, pushing all targets related to the AFR towards their upper
range. The target optimisation is just used to push using a small pressure
the una�ected performance parameters towards their target value. This is
possible by using to our advantage a drawback of the penalty function, if
Ta (−→v) is treated as a weak penalty function, it will direct the optimisation
towards the target in the absence of −→o , but in the presence of −→o it will just
create a drift towards the targets since O (−→v) � Ta (−→v).

Based on this the single objective �tness function can be de�ned as:

F (−→v) =

{
O (−→v)− Ta (−→v) if−→v ∈ F
Re (−→v) if−→v ∈ S − F

(6.12)

Or for a multi objective �tness function it becomes

F (−→v) =

{
Oi (−→v)− Ta (−→v) if−→v ∈ F
Re (−→v) if−→v ∈ S − F

(6.13)

142

6.5 Performance improvement

Within the domain of evolutionary optimisation techniques one could �nd six
di�erent ways of improving the performance of the optimisation: technique
improvement, adaption to the domain, operators improvement, hybridation
with other optimisation techniques, multi processing, reduction of the number
of exact evaluations. Four of the above come from Ginnakoglou [50], however
he omitted to mention technique improvements and adaption to the domain.
Some of the techniques described in the following sections such as dynamic
vector mutation are novel methods speci�cally developed for this problem
but most were found from the literature. All the techniques described here
were implemented in the optimisation library except the reduction of the
number of exact evaluations section 6.11. This was due to the fact that the
application of this type of performance improvement was not necessary for
the type of problems studied during this work. The following sections will
describe the implementation of the performance improvements techniques
regrouped in the six ways previously cited.

6.6 Technique Improvement

This section regroup the improvement of the genetic algorithm technique.

6.6.1 Elitism

One of the �rst improvements proposed for the SGA technique is called elitism
and was developed by Dejong [35], it is now a classical operator for the
GA. In the traditional SGA the population is not carried through the next
generation and therefore the population at the next generation might have a
best member lower than the previous generation since there is no guarantee

143

that the genetic material of the best member will be carried through to the
next generation.
It is now a common technique to reintroduce the best member of the popula-
tion of generation g into the population of g + 1. This technique guarantees
that the genetic material of the best members is not lost in between genera-
tions.

6.6.2 Steady State Replacement

An observation derived from the idea of elitism highlighted the fact that good
genetic material is destroyed when the population is totally replaced with a
new one �generational replacement�. The idea that was proposed for the
steady state replacement is to only replace a fraction of the newly generated
chromosomes in order to keep a large gene pool and avoid the destruction
of potentially good genetic material [27]. This technique does not replace
the usefulness of elitism due to the stochastic nature of the the replacement
process that can occasionally replace the best solution by a lower quality one.

6.6.3 Fitness Scaling

It has been shown in [188] that the selection pressure Sp = fmax

favg
has a strong

in�uence on the performance of the GA and that it should be controlled
as directly as possible. A selection pressure that would be to high might
bring the optimisation to a premature convergence and Conversely, a selection
pressure that would be to low will not direct the optimisation strongly enough
and genetic drift will appear in the population [54]. Whitley has even stated
in [188]:

It can be argued that there are only two primary factors in ge-
netic search: population diversity and selection pressure. These

144

two factors are inversely related. Increasing selective pressure
results in a faster loss of population diversity. Maintaining pop-
ulation diversity o�sets the e�ect of increasing selective pressure.
In some sense this is just another variation on the idea of ex-
ploration versus exploitation that was discussed by Holland and
others.

For un-scaled �tness the selection pressure depends largely on the shape of
the �tness function which therefore needs to be carefully chosen to provide
the right selection pressure. Another problem comes from the fact that even
with a good �tness function the selection pressure will vary from the start
to the end of the optimisation. At the start the selection pressure will be
quite high with large improvements in the population, it will then weaken
along the optimisation to �nish very low towards the end when only small
improvements are possible.
Fitness scaling consists of techniques to maintain the selection pressure rela-
tively constant [52]. One of the most e�cient and simple techniques is called
�tness scaling or windowing. The �tness of all the chromosomes is scalded
linearly using 6.14.

f ′ = af + b (6.14)
which represents a simple linear scaling where the constants a and b are
calculated at each generation in order to keep the selection pressure Sp con-
stant along the whole optimisation process. Using constant Sp as a control
constant one can de�ne the maximum scaled �tness as 6.15.

f ′max = f ′avg ∗ Sp (6.15)

Taking the minimum scaled �tness constant favg = 1 the coe�cients a and b

can then be calculated using respectively 6.16 and 6.17.

a =
f ′max − f ′avg

fmax − favg

(6.16)

145

b = f ′avg − afavg (6.17)

With linear scaling the �tness average ratio, 6.18, will be kept constant during
the scaling.

fr =
favg − fmin

fmax − fmin

(6.18)

It can then be easily shown that for fmin to be positive it is required that
fr ≤ 1

Sp
, this is a problem since the GA requires positive �tness values. The

traditional approach suggested by Goldberg [52] is to set the invalid �tness
to 0. Setting the scaled �tness of a gene to 0 means to eliminate it from
the reproduction selection by giving it a zero probability of being picked.
However this should only happen for a small number of genes of very bad
quality.

6.6.4 Random Number Generator

During the design of the GA module concerns were raised about the e�ect
of the quality of the pseudo random number generator over the performance
of the optimiser. At a time it was thought to design a high quality random
generator. However a study by Meysenburg and Foster [107] showed that the
quality of the random number generator has hardly any in�uence over the
performance or the e�ciency of the genetic algorithms. A recent experimental
study from Cantu-Paz [18] seems to suggest that a random number generator
of poor quality when used for the initialization can a�ect the performance.
These results are for a random generator with a very small periodicity of
103and therefore does not show the need to change from a reasonable quality
pseudo-random number generator to a more complex high quality generator.
Therefore a relatively simple random number generator was used based on
the Java language random number generator. This employs a 48-bit seed
modi�ed using a linear congruential formula to create numbers formed by
32 pseudo-randomly generated bits [86, 131] modi�ed in order to provide a

146

generator for random numbers of di�erent types with a reliably settable seed.
The user de�ned seeds gives a repeatability capacity for the optimisation
experiments.

6.7 Adaptation to the domain

The SGA optimisation technique is entirely independent from the application
domain and therefore can be applied to an extremely wide range of problems
however this problem independence a�ects the e�ciency of the optimisation
[58]. For the optimisation library developed here the application domain is
engineering design, therefore some modi�cations can be performed in order
to adapt the optimisation technique to the domain. These adaptations will
result in a loss of domain independence but will allow the performance of the
optimisation to be maximized for the engineering domain.

6.7.1 Real Coding

Engineering design parameters are usually expressed as real numbers or in-
tegers, however in the SGA the problem is encoded as binary numbers. This
means that the design space needs to be transposed into binary space to cre-
ate a new problem suitable for the SGA [109] (pp7). Using a binary (discrete)
coding when optimising on a continuous search space can cause a number of
di�culties:

✾ In certain conditions the transition from a gene value to a neighboring
value of the continuous search space will require the modi�cation of a
large number of bits. This problem is referred as the Hamming cli�s
[68].

✾ The transposition increase the complexity of the problem. It requires

147

mapping between the binary solution and the equivalent solution in the
problem domain representation

✾ It create some accuracy losses. The mapping between the real space
and the binary space will reduce the precision of the representation by
increasing µ depending on the length l of the bit string used to encode
the gene i of the problem as stated in equation 6.19.

µi =
UB − LB

2l − 1
(6.19)

where UB and LB are the variable range upper and lower bounds.
From 6.19 it can be seen the number of bits will depend on the range
of the variable to be encoded and of the required accuracy. However
the complexity, the size and the duration of the optimisation depends
on the number of bits to be optimised. Therefore there will have to
be a compromise between the accuracy of the encoding and the time
available for the optimisation.

It was found desirable to avoid this design space transposition which has the
disadvantages previously cited, this would be an unnecessary burden for the
design engineer. The use of real encoded genes allowed this transposition to
be avoided.
The schemata theory [52] seems to suggest that a low cardinality alphabet
will be more e�cient than a higher cardinality one [53]. This would normally
reduce our interest for this kind of encoding. However some studies report
good performance of the real coded GA [77, 190, 26, 38] which seems to
perform similarly or even better than binary coded GA. Until recently there
was no theoretical explanation for such good performance of the real coded
GA. Antonisse [5] showed that the implicit parallelism of GA does not depend
on the use of binary encoding and recently Radcli�e [136] developed the forma
theory which can be seen as a generalization of the schemata theory. This

148

can be used to explain the good performance of real coded GA, in addition
Schmitt [161] developed a comprehensive theory of GA that uses a general-
size alphabet. These attempts could be a start of some �rm theoretical
background for real coded GA.
Practitioners started to use real coded GA [16, 107] despite the lack of
theoretical background, some speci�c operators adapted to the real coded
[77, 190, 38] GA were subsequently designed. Providing further performance
improvement for real coded GA, resulting in a wider use of this encoding
and more development in the domain [32, 140, 85, 31, 66, 119]. This is truly
evolution at work on the evolution algorithms.
The real encoding of the gene was implemented in the GA library in con-
junction with a de�nition of the allowable range for the gene. This encoding
technique subsequently became the main encoding technique .

6.7.2 History of all the Created Chromosomes

Usually the designer has an extremely vague idea of the design space therefore
it can be useful to keep an history of all the created chromosomes. This
history can have many interesting uses, the four most obvious uses will be
described as follow.

✾ It is used to prevent the creation of duplicate chromosomes, see section
6.7.3.

✾ It can be used by the designer to understand better the design space
using multi-dimensional visualization tools. From the visualization of
this set of data the designer will be able to highlight the di�erent per-
formance ranges of the problem variables. For example if a variable has
a narrow performance range or if it has a large performance range or
even if it has two or more discrete performance ranges. In addition the

149

designer will be able to visualize the joint e�ect of the combined prob-
lem variables on the di�erent performance parameter surfaces. However
this visualization becomes complicated for high-dimensional problems.

✾ It can be used to perform screening of the solution, where the nearest
neighbor of the potential solution is found in the database and its �tness
used to make a decision about the interest of this potential solution.
see section 6.11.

✾ Or it can as well be used as sample data to train a neural network
that can be used to perform approximative simulation. Allowing the
optimisation speed to be improved, see section 6.11.

6.7.3 Duplicate Prevention

At the end of an optimisation with the SGA there will be a large proportion
of duplicate chromosomes in the population. This creates two problems,
�rst it reduces the genetic diversity of the population [27] and increases the
premature convergence tendency of the population. In addition Radcli�e's
�rst design principle which was derived from the forma theory [136] states
that:

Ideally, each member of the space being searched should be
represented by only one chromosome.

The second problem is that it requires a large number of redundant evalua-
tions because with SGA each new chromosome will be evaluated even though
a similar copy of it might exist already and has already been evaluated, cre-
ating a loss in performance.
In order to alleviate this performance penalty the duplicate prevention sug-
gested by Davis [27] was implemented. This method will prevent the creation

150

of a chromosome that duplicates one already created. This checks in the his-
tory of all the created chromosomes to try to �nd a copy of this chromosome.
This can be carried out because engineering designs usually are deterministic,
for a set of problem variables there is a single set of problem performance
parameters. Duplicate prevention would need to be switched o� for non
deterministic problems.

6.7.4 Parameters Adaptation

In order to achieve maximum performance not only the most e�cient tech-
niques needs to be used but the parameters controlling these techniques needs
to be set to their optimal values.
However for certain parameters the optimal values vary during optimisation.
For example the mutation operator should operate on a wide range at the
beginning of the optimisation to allow a good exploration of the search space.
This range should reduce as the the optimisation approaches completion (the
exploitation phase) to reduce its disruptivity. Therefore some of the mutation
operators that have been implemented use some techniques to dynamically
control their operating range.
In addition it is possible to implement operators that posses self adaptive be-
havior, this mean that without having to set any parameters for the dynamic
control of their range these will automatically adapt themselves. This is the
case for the SBX operator [33].

6.8 Operators Improvements

The third phase of the performance improvements consisted in the imple-
mentation of more advanced and e�cient operators. Some SGA operators
such as the one point crossover have some de�ciencies as described in [140]

151

(pp296). For constrained optimisation they might be unable to create a valid
child chromosome from two valid parent chromosomes. The SGA operators
are adapted for the binary encoding and might not provide the optimum
performances for real coded genes[77].
The work described in this section includes the implementation of the most
e�cient operators found in literature as well as in designing novel operators
adapted to the type of problem encountered in the optimisation of complex
engineering designs.

6.8.1 Mutation Operators

In addition to the traditional random mutation operator described in section
4.2.4 where a gene is randomly selected and its value is changed to a new
randomly selected value. The following operators have been implemented.

6.8.1.1 Creep Mutation

The traditional SGA mutation operator directly applied to real coded gene
is found to be highly disruptive. The creep mutation described in [27] is an
attempt to reduce the disruptivity of the mutation.
A random gene is selected for mutation at a position x in the chromosome
Sv = (v1, ..., vx, ..., vn). Where x is a randomly selected integer within the
range [1, n]. The mutation of the selected gene is limited to a creep range
centered around the original gene value in order to create a new value v′x as
stated in 6.20.

v′x = vx + (2r − 1) ∗∆max) (6.20)
∆max = δ ∗ (vux − vlx) (6.21)

Where ∆max represents the maximum possible size used for the creep muta-
tion, δ represents the range ratio, vux & vlx represents the upper and lower

152

Gene1 Value

Gene2 Value

Original Chromosome

Possible Mutated Chromosome

Figure 6.1: E�ect of the Creep Mutation operator on a two dimensional
chromosome

bounds of the value coded in the gene x and r is a uniformly distributed
random real number within the range [0, 1].
In this way the disruptivity of the mutation is controlled by the creep size
δ however this creates a tradeo� between the necessity of exploration at the
beginning of the optimisation process which would require large values of δ

and the exploitation phase during the end of the optimisation which would
require small values of δ. Figure 6.1 represents the creep mutation process.

6.8.1.2 Creep Mutation With decay

The creep mutation with decay is an improved version of the creep mutation
where a decay rate inspired from the shrinking window mutation in [140] was
added to allow adaptation capabilities for the mutation operator. It allows a
large value of δ for the beginning of the optimisation during the exploration
phase, the value of δ will be decreased during each generation giving a small
value of δ at the end of the optimisation during the exploitation phase.

153

Gene1 Value

Gene2 Value

Original Chromosome

Possible Mutated Chromosome

Figure 6.2: E�ect of the Creep Mutation With Decay operator on a two
dimensional chromosome

Creep mutation with decay reuses the exact same implementation as the
creep mutation except that the δ value is altered as follow:

δg+1 = δg ∗ (1− γ) (6.22)

where g represents the generation number and γ the creep decay rate. Fig-
ure 6.2 represents the creep mutation process and Figure 6.3 represents the
evolution of the δ value against the number of generations.

6.8.1.3 Dynamic Vectored Mutation (DVM)

All the operators that have been implemented up to now act on a single
gene which means that they have an e�ect in a single dimension of the so-
lution space. However in engineering design the solution space is usually
multi-dimensional and coupled (dimensions are not independent). All the
mutation operators that have been implemented up to now operate in a sin-
gle dimension, which only go along the axis and can not go in a diagonal

154

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

C
re

ep
 S

iz
e

Generation Number n

delta(g)

Figure 6.3: Plot of δ against the number of generations for γ = 0.05

direction, see Figure 6.4, creating unreachable zones, which reduce the GA
capacity to explore the the solution space along the directions that are not
aligned to the search space.
A new mutation operator the 'Dynamic Vectored Mutation' is proposed that
allows mutation in all directions and not only along a dimension axis.
Considering a chromosome containing n genes as an n dimensional vector V c

composed of the n genes. One can create a displacement vector V d of magni-
tude m and random direction. The resulting vector V r of the addition of V c

and V d will point on the surface of the hyper-sphere around the extremity
of V c as shown in Figure 6.5 for a two dimensional case.
In order to calculate the magnitude m of V d a method had to be designed.
The next step consisted in investigating potential methods to calculate m.

1. The �rst idea was to de�ne the minimum distance towards the gene
boundaries as the maximum allowable magnitude. Then the mutation
can be performed with a shrinking magnitude range similar to the creep

155

Gene1 Value

Gene2 Value

Original Chromosome

Possible Mutated Chromosome

Unreachable Zone

Figure 6.4: Unreachable zones with the traditional mutation operators

Original Chromosome

Possible Mutated Chromosome

Gene1 Value

Gene2 Value

Vd

Vc

Vr

Figure 6.5: E�ect of the Vector Mutation in two dimensions

156

Gene1 Value

Gene2 Value

Maximum Zone of
Possible Mutation

Increasing Mutation
Ptobability

Genes Boundaries

Original Chromosome

Figure 6.6: Vector Mutation in two dimensions using the maximum distance
towards the boundary

mutation with decay and then to create a random vector of the chosen
magnitude. This will give a distribution as shown in Figure 6.6. This
method was found not to be adequate because it would make the access
to the boundary of the domain very di�cult. Corners, such as the area
1 in �gure 6.7 will be nearly impossible to access.

2. The second idea consisted in �rst choosing a vector of random direction,
then calculate the maximum magnitude ∆max that would result in a
solution within the boundaries, and then allocate the magnitude m

of V d with a probability inversely proportional to the fraction of the
∆max, with the magnitude m calculated as follows m = δ(η) ∗ ∆max

were δ(η) is inspired from Janikow & Michalewicz dynamic mutation
[77], as de�ned in 6.23.

δ(η) =
(
1− r(1−η)γ

)
(6.23)

η refers to the completion ratio of the optimisation, the γ factor com-

157

Gene1 Value

Gene2 Value

Original Chromosome

Area 1

Figure 6.7: Hard to reach zones using the maximum distance towards the
boundary

mands the dependency on the completion ratio η. r is a uniformly
distributed random number in the range [0 : 1] The pro�le of the δ(η)

function can be viewed in Figure 6.8. During the start of the optimisa-
tion phase there will be an uniform of m . However as the optimisation
progresses the probability of m being large will reduces. Resulting in a
distribution as shown in �gure 6.9. This method reduces the problem
of access to the boundary and especially the boundary corners. In ad-
dition it has the advantage of having the capacity to explore the whole
solution space. However as can be seen in Figure 6.9, this operator is
biased towards the center of the domain and against the creation of
solutions close to the boundaries, because the probability of creation is
not dependent on the distance from the original point.

3. Finally a method was devised based on the idea number two, where
calculation of the magnitude m of V d does not result in a probability
of creation inversely proportional of the ∆max but with a probability

158

delta(r,n)

 0
 0.2

 0.4
 0.6

 0.8
 1

Rnadom Number r

 0
 0.2

 0.4
 0.6

 0.8
 1

Completion Ratio n

 0

 0.2

 0.4

 0.6

 0.8

 1

delta(n)

Figure 6.8: Plot of δ against r and η for γ = 0.8

Genes Boundaries

Possible Mutation
Maximum Zone of

And

Gene1 Value

Gene2 Value

Original Chromosome

Increasing Mutation
Ptobability

Figure 6.9: Vector Mutation in two dimensions using a probability based on
boundaries distance

159

inversely proportional to its magnitude m and bounded by the maxi-
mum allowable magnitude. The magnitude is calculated using equation
6.24.

m = a ∗ β(η) (6.24)
Were a is the multiplication factor constant. β was derived by modify-
ing Deb & Agrawal's SBX polynomial probability distribution [32], as
de�ned in equation 6.25.

β(η) =

(
1

1− αr

)(1−η)γ

(6.25)

In β the constant γ is called the iteration dependency factor and will
control the curvature of the function depending of η which is the com-
pletion ratio of the optimisation, α is de�ned in 6.26. The pro�le of β

depending on the random number value r and the completion ratio γ

can be seen in �gure 6.10. In addition the pro�le of β depending on the
random number value r and the maximum allowable magnitude ∆max

is shown in �gure 6.11.

α = 1− (a.∆Max + 1)−(1
1−n)γ (6.26)

4. This results in a distribution as shown in �gure 6.12. The probability of
creation will reduce with distance from the original point and the line of
iso-probability will be approximately circular, in two dimensions, and
approximate an hyper-sphere in n dimensions. It will not be an exact
circle or hyper-sphere due to the bounding technique which slightly
a�ects the probability distribution.

This new operator which is based on the third method, satis�es the following
requirements:

160

b(r,n)

 0
 0.2

 0.4
 0.6

 0.8
 1

Rnadom Number r

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Completion Ratio n

 0

 1

 2

 3

 4

 5

beta(n)

Figure 6.10: Plot of β against r and η for x = 1, γ = 0.5, a = 1.

b(x,r)

 0
 0.2

 0.4
 0.6

 0.8
 1

Rnadom Number r
 0

 2
 4

 6
 8

 10
Maximum Magnitude x

 0

 2

 4

 6

 8

 10

beta(x)

Figure 6.11: Plot of β against r and x for η = 0.3, γ = 0.5, a = 1.

161

Genes Boundaries

Maximum Zone of
Possible Mutation

and

Gene1 Value

Gene2 Value

Original Chromosome

Increasing Mutation
Ptobability

Figure 6.12: E�ect Of the Dynamic Vector Mutation using a probability of
creation depending of the magnitude m of the mutation vector, bounded by
the gene boundaries

✾ It gives a probability of creation inversely proportional to the magnitude
of the vector.

✾ The probability of creation of a point outside the gene boundary is null.

✾ It is able to reach the whole search space which satis�es Radcli�e [136]
ergodicity criterion.

✾ It is not biased.

6.8.2 Crossover Operators

The one-point and the n-point crossover operators are not the most adapted
for performing crossovers on real coded genes[140, 109]. In addition in [53],
Goldberg argues that real coded GA works by �rst converging to above aver-
age points referred to as virtual alphabets, but the convergence to the global
optimum gets blocked by the presence of two or more local optima. Since real

162

coded chromosome were selected as the default encoding for the optimisation,
some alternative crossover techniques alleviating the problem of convergence
to virtual alphabets and specialized for the use of real coded genes had to be
implemented.
One of the simplest method to improve the search power of the crossover
is to average or blend the two parents chromosomes to form o�springs,
di�erent variations of this blending / averaging idea have been proposed,
[27, 38, 190, 140]. Two crossover operators were implemented from this fam-
ily, in conjunction with a third more advanced crossover method still derived
from this family. There are as well other types of crossover that could be
implemented which possess di�erent features, some of which use more than
two parents to perform the crossover, For example the Unimodal Normal
Distribution Crossover (UNDX) [85], the Simplex Crossover (SPX) [66], or
the Parent Centric Recombination (PCX) [31].

6.8.2.1 Consanguinity Prevention

One feature that was implemented in all the crossover operators is consan-
guinity prevention. As it has been seen in section 6.7.3 it is necessary to
prevent the creation of duplicate chromosomes. Therefore each crossover op-
erator was modi�ed to prevent the crossover between two copies of the same
chromosome which would result in two copies of this chromosome being cre-
ated. In addition the capacity is there to prevent the recombination between
two chromosomes which share the same parents.

6.8.2.2 Weighted Averaging Crossover

For the Weighted Averaging crossover, which is an implementation similar to
what Davis proposed in [27], the children are taken as a weighted average of
the two parents points. The weighting is performed using random weights.

163

The production of two child solutions c1 and c2 from two parent chromosome
p1 = (vp1

1 , ..., vp1

i , ..., vp1
n) and p2 = (vp2

1 , ...vp2

i , ..., vp2
n) is done as follows .

vc1
i =

1

2
((1 + r) vp1

i + (1− r) vp2

i) (6.27)

vc2
i =

1

2
((1− r) vp1

i + (1 + r) vp2

i) (6.28)

The implementation of these methods considerably improves the search power
of the crossover. In addition since it adds diversity by creating children over a
continuous space rather than selecting parent points, it reduces the premature
convergence e�ect generated by the use of the n-point crossover applied to
real numbers. However it su�ers from contraction e�ects resulting from the
fact that the children will always be enclosed between the two parents, which
through succeeding generations means the region searched by the population
will reduce. To counter this contraction phenomenon an improved operator
was implemented, the BLX-α.

6.8.2.3 Blend Crossover BLX-α

The blend crossover BLX was developed by [38]. This operator can be seen
as an improved version of the weighted averaging crossover. The improve-
ment consisted in giving the operator some exploration capability through
the addition of an exploration factor α which de�nes the capacity of the
crossover to generate o�spring outside the line generated between the two
parents chromosomes. The crossover is performed as follow:

vc1
i =

1

2
(γvp1

i + (1− γ) vp2

i) (6.29)

vc2
i =

1

2
((1− γ) vp1

i + vp2

i) (6.30)

164

with
γ = (1 + 2α)r − α (6.31)

Where the exploration factor α is in the range [0 : 1] and is chosen to generate
the required amount of exploration. A careful selection of α compensate for
the contraction e�ect observed with the weighted averaging crossover. How-
ever a new di�culty appears with this crossover technique, the exploration
capacity means that this crossover has a probability to create chromosomes
outside the upper and lower boundaries of the gene. Therefore it is necessary
to test each gene generated for violation of the boundaries, repeating the
crossover when violation of the boundary occurs.

6.8.2.4 Simulated Binary Crossover SBX

Deb and Agrawal [32] developed a crossover operator that creates two children
from two parents with a probability distribution of the gene values similar
to the probability distribution generated by the binary crossover method.
It relies on the same basic principle of blending the characteristics of the
two parent chromosomes in a manner similar to the BLX-α or the weighted
linear averaging. However its uniqueness comes from the de�nition of a spread
factor β and the use of a polynomial distribution function β to perform the
blending between the two parent genes values.

β =

∣∣∣∣ vc1
i + vc2

i

vp1

i − vp2

i

∣∣∣∣ (6.32)

β =

 (2r)
1

η+1 if r ≤ 1
2(

1
2(1−r)

) 1
η+1 otherwise (6.33)

were η is the distribution index controlling the spread of the β function. The
child solution will be calculated in the following manner:

165

vc1
i =

1

2

(
(1 + β)vp1

i +
(
1− β

)
vp2

i

) (6.34)

vc2
i =

1

2

((
1− β

)
vp1

i + (1 + β)vp2

i

) (6.35)

One interesting feature of this operator is its capacity to to create solutions
within the whole search space. Thus the SBX always satis�es Radcli�e's
ergodicity criterion [136]. Also in the form presented in 6.33 it is not bounded
and the child gene values can occur in the range] − ∞ : +∞[. This wide
range capability can be a problem for engineering design where the search
space is usually bounded. Therefore the bounded version of β was used which
has a zero probability of creating a solution outside of the �xed boundaries.
β is then modi�ed as follows:

β =

{
(2α)

1
η+1 if r ≤ 1

α(
1

2−αr

) 1
η+1 otherwise (6.36)

α = 2− β−(η+1) (6.37)

β = 1 +
2

vp2

i − vp1

i

min
[(

vp1

i − vl
i

)
(vu

i − vp2

i)
] (6.38)

were vl
i represents the lower boundary of the gene range and vu

i the upper
boundary and it is assumed that vp2

i > vp1

i . This modi�ed β ensures that
all the genes of the child will be in the range [

vl
i : vu

i

]alleviating the need to
check range violations and regenerate child solutions.

The SBX operator was demonstrated to be more e�cient then the BLX-0.5
and the one point crossover on a range of test functions [32]. In addition it
is interesting to note that this operator demonstrated self adaptive behavior
[33].

166

6.8.3 Selection Operators

The selection operator plays a critical role during the search in a genetic
algorithm Goldberg in [52] has described several selection operators using
di�erent techniques. In addition Baker [6]has de�ned a range of criterion to
asses the quality of the di�erent selection techniques.

6.8.3.1 Modi�ed Roulette Wheel Selection

The Roulette-Wheel operator was described in section 5.4.5, it is one of the
most widely used selection operator. However it su�ers from one drawback, it
has a strong tendency to select numerous copies of the best chromosome. This
is emphasized in the presence of a super chromosome that can monopolize
the selection and create a loss of diversity. In addition it was highlighted
in section 6.7.3 that it is required to reduce or prevent the generation of
duplicate chromosomes to maximize the e�ciency of the algorithm. But
if the selected chromosomes for crossover contain a majority of duplicate
chromosomes it will be di�cult to prevent the creation of duplicate child.
The roulette wheel was modi�ed in order to limit the number of instances of
a chromosome that can be selected by removing the chromosome from the
wheel after their selection, therefore avoiding the creation of duplicates in the
selection process.

6.8.3.2 Stochastic Universal Sampling SUS

The SUS developed by Baker [6] was designed to satisfy the minimum bias
and spread criterion. It consists of a similar process to the roulette wheel
where each member of the population is represented on the wheel by an area
proportional to its relative �tness with the chromosomes randomly ordered
around the wheel. Then instead of repeating the process of spinning the
wheel and picking a chromosome, a number of pointers equal to the number

167

3

4

5 1

2

Rotation

Selection
Pointer

Figure 6.13: Stochastic Universal Sampling Wheel

of chromosomes to select are equally spaced around the wheel. The wheel
is spun and the chromosomes in front of the pointers are selected. This
minimizes the bias and drift connected with the repeated spinning of the
wheel. Figure 6.13 shows the SUS wheel.

6.8.4 Replacement Operators

The constraint handling of the the two traditional replacement operators, the
tournament replacement and the ranked replacement have been improved.
They have been modi�ed in order to support constraint based niching using
the following principles:

✾ A chromosome satisfying all the constraints should be preferred over
one not satisfying all of the constraints.

✾ Of two chromosomes not satisfying all the constraints the one that
satis�es the most the set of constraints should be preferred.

168

These operators use a constraints satisfaction factor that de�nes how well
the constraints are satis�ed. This factor is used for controlling the ranking
and the tournament. It takes the place of the �tness when the constraints
are not satis�ed.

6.9 Hybridation with other optimisation tech-

niques

Although genetic algorithm is an extremely e�cient optimisation technique
it is not the most e�cient in all the search phases. its performances may
therefore be improved by hybridizing it with other optimisation techniques
which performs better in a given search phase.

6.9.1 Random Search Phase

Goldberg stated that the quantity of good building blocks generated during
the initial generation of the population is critical for the performance of GA
[52]. Therefore as suggested by Davis [27] a random search phase was added
at the start of the optimisation. Looking at a large number of individuals
and only selecting the best to create the initial population will give a good
quality initial population. The population is therefore free of the failing
chromosomes which might arise during the early stages of the optimisation
due to the incapacity of the simulation tools to cope with certain combination
of inputs.

6.9.2 Hill Climbing

Researchers [27, 109, 52] have been showing the weakness of GA in re�ning
the position of the optimum point once the global optimum region has been

169

found. Therefore it becomes interesting to add a hill climbing phase at the
end of the optimisation in order to re�ne the quality of the optimum point.

6.10 Multi Processing

For engineering optimization such as combustor optimisation or wing pro�le
design the evaluation of the �tness function is costly in terms of CPU time
due to the high computational requirement of the simulation tools. Therefore
the optimisation can be signi�cantly shortened by using many processors in
parallel in order to evaluate all the chromosomes. Two ways of parallelizing
the evaluation have been implemented depending on the available hardware
as follows.

6.10.1 Parallel Processing

A very simple parallelization method was developed to run on multi processor
computers. This method consists of separating the evaluation sub processes
and letting the operating system of the computer run these sub processes
independently. This is a very simple and e�cient method of parallelizing
the evaluation, however the availability of these computers is relatively lim-
ited due to their high purchasing cost compared to the traditional desktop
workstations.

6.10.2 Heterogenous Distributed Processing

A very e�cient way to reduce the computational overhead of recurrent runs
of CPU intensive simulation software is to perform the execution of these
applications using Heterogeneous Distributed Computing [171]. This consists
of distributing the execution of processes over a network of computers which
might not all be of the same architecture. In the case of the distribution of the

170

multiple evaluation of the �tness function through the parallel execution of
multiple sequential analysis code, communication only takes place between
the GA and the analysis software. This was developed in a simpler form
in [151] and then improved for this problem. The technical details of the
implementation have been described section 3.8 of the toolbox modules.

Heterogenous Distributed evaluation of the chromosomes allows them to be
evaluated in parallel over a distributed network of computers such as a local
network, a computer Beowulf cluster, or even across the Internet. There is
no requirement for the computers to be symmetric (all the same) this can
even be performed on computers running di�erent operating systems.

6.11 Reduction of the Number of Exact Evalu-

ation

The last performance improvement technique that will be discussed here of-
fers an interesting possibility of reduction of the duration of an optimisation
however the techniques described in this section have not been implemented
contrary to the previous sections. This is due to the fact that these tech-
niques are suited for problems requiring highly computationally expensive
simulations such as FEM or CFD which is not yet the case for preliminary
design tools.

The idea common to these techniques is that a lot of the simulations per-
formed during the optimisation are not very useful, therefore the two tech-
niques that will be described next try to reduce the number of simulations
performed.

171

6.11.1 Screening

Screening consists of using a library of design points to assess the interest
of a newly created chromosome [140] by de�ning whether it lies in an area
of low performance in which case the chromosome will be discarded. The
library is composed of a large number of chromosomes representing the de-
sign points encountered up to now. When a new chromosome is created the
closest neighbors from the library are found and if their �tness is lower than
a de�ned value the chromosome will not be evaluated. The value could be
the �tness of the worst chromosome of the population or a prede�ned value.
This screening technique could save some time avoiding the evaluation of
chromosome from a very bad area of the search space. However it generates
a computational overhead by having to compare the new chromosome with
all the chromosomes in the database, although this is rather small for normal
conditions it becomes important for highly dimensional problems due to the
large number of dimensions to compare and the large number of samples that
the library must contain to represent the search space.

6.11.2 Neural Network Evaluation

Another technique which can dramatically reduce the number of exact eval-
uations, consists of using a neural network to perform an inexact evaluation
of the chromosomes [126]. The population is pre-evaluated using the neural
network. Then a small proportion of the population, the most promising
solutions, are evaluated through the normal (exact) evaluation method [50].
These exact evaluations are then used to retrain the NN to improve its ac-
curacy. This technique greatly reduces the number of exact evaluations.
However the reduction in the number of evaluation can be o�set by the cost
of training the neural network when the computational cost of the direct
evaluation is not very high.
In addition an interesting feature of the NN can be used to improve even

172

further the performance of the optimisation. Once trained the NN is a curve
�tting representation of the solution space. This might allow analytical opti-
misation techniques, based on derivatives to �nd the optimum of the neural
network [128].

6.12 Conclusions

Within this chapter the implementation of a robust and e�cient optimisa-
tion library was related . This implementation was performed through the
development of a Java based SGA library, the creation of novel techniques to
handle e�ciently a large number of objectives and constraints, and extensive
transformation of the SGA library in order to implement the state of the art
methods and operators and some novel ones speci�cally developed for this
application.
During the next chapter the techniques presented here and implemented in
the optimisation library will be tested against analytical problems of known
optimum and di�culty in order de�ne their e�ciency and tune their param-
eters.

173

174

Chapter 7

Testing of the Optimisation

Technique

7.1 Introduction

The aim of this Chapter is twofold, its primary purpose is to demonstrate the
optimisation performance of the optimisation library for di�erent analytical
problems with known optimal values. The secondary aim of this chapter is
to provide an insight into the behavior of these optimisation techniques for
the reader who wishes to use these techniques. The following sections will
describe the tests that have been performed in order to verify the performance
of the optimiser and provide some understanding on the behavior of the
di�erent operators and of the optimisation technique applied to a range of
di�erent problems.

7.2 Mutation Operators analysis

The aim of this section is to examine the behavior of the new mutation
operator proposed in section 6.8.1.3, the Dynamic Vector Mutation compared

175

Figure 7.1: Operator: Creep Mutate With Decay, (Creep Size = 30)

to the more conventional Creep Mutate With Decay operator section 6.8.1.2.
The test consists of mutating a population of individuals through the di�erent
mutation operators and observing the distribution of the newly generated
chromosomes. All the runs were performed using two dimensional genes, a
population composed of 2000 individuals and the boundaries of all the genes
were [0 : 10]. The position of the genes of the initial population is set to 5.

7.2.1 Creep Mutate With Decay

The �rst operator to be tested was the Creep Mutate With Decay. Figure 7.1
shows the new chromosomes generated by this operator for the start of an
optimisation (Progress Ratio = 0.0), where the creep size is 30% of the genes
range. Figure 7.2 shows the chromosomes generated with a Creep Size of 10%
which is typical from the middle of an optimisation run (Progress Ratio =
0.5). Finally �gure 7.3 shows the chromosomes generated with a Creep Size
of 1% which is typical from the end of an optimisation run (Progress Ratio
= 0.98).

176

Figure 7.2: Operator: Creep Mutate With Decay, (Creep Size = 10)

Figure 7.3: Operator: Creep Mutate With Decay, (Creep Size = 1)

177

From these three �gures (7.1, 7.2, 7.3) it can be observed that the new chro-
mosomes form a cross shape, this due to the fact that mutation traditionally
a�ects only one gene at a time. In addition it can be observed that the
distribution of the chromosomes on the axis is relatively uniform.

7.2.2 Dynamic Vector Mutate

The Dynamic Vector Mutate operator was tested for the same conditions.
However this operator is more complex and has two additional parameters:

✾ The Iteration Dependency Factor, which controls the compression rate
of the cloud of points as a function of the Progress Ratio of the optimi-
sation, increasing this value will increase the concentration rate. The
value of this parameter was set to 1.5.

✾ The Initial Distribution Factor, which controls the initial size of the
cloud of points, increasing this value increases the original concentration
of the points. The value of this parameter was set to 0.5.

Figure 7.4 shows the new chromosomes generated by this operator for the
start of an optimisation (Progress Ratio = 0.0). Figure 7.5 shows the chro-
mosomes generated during the middle of an optimisation run (Progress Ratio
= 0.5). Finally �gure 7.6 and 7.7 shows the chromosomes generated towards
from the end of an optimisation run with a Progress Ratio of respectively of
0.8 and 0.98.
From �gure 7.4 one could observe that the distribution of the points does
not follow the cross shape any more and forms a cloud covering the whole
range of the genes. The fact that the points cover the whole range of genes
con�rms that the The Dynamic Vector Mutate operator satis�es Radcli�e
[136] ergodicity criterion as described in section 6.8.1.3.

178

Figure 7.4: Operator: Dynamic Vector Mutate (Progress Ratio = 0.0)

Figure 7.5: Operator: Dynamic Vector Mutate (Progress Ratio = 0.5)

179

Figure 7.6: Operator: Dynamic Vector Mutate (Progress Ratio = 0.8)

Figure 7.7: Operator: Dynamic Vector Mutate (Progress Ratio = 0.98)

180

Figure 7.8: Operator: Dynamic Vector Mutate close to a boundary (Progress
Ratio = 0.0)

In addition it can be seen that the distribution of the points is not uniform and
that the probability appears to be inversely proportional to the distance of
the original chromosomes. As the optimisation approaches completion, from
�gure 7.5, 7.6 and 7.7 it can be seen that the cloud contracts to ultimately
form a point where only minimum variations occur.

It is also interesting to observe the behavior of this operator when the original
gene is close to the gene boundaries. Figures 7.8, 7.9 and 7.10, shows the
distribution of the points for the case where the original gene value is 2.

On �gure 7.8 it is possible to observe that the points are more concentrated in
the space close to the boundaries, this is due to the fact that the same number
of points need to be created in a smaller surface. However the distribution is
still dependent on the distance towards the original position. It is interesting
to note that the points are not attracted nor repulsed by the boundaries. The
absence of bias concerning the boundaries is as expected in section 6.8.1.3.

181

Figure 7.9: Operator: Dynamic Vector Mutate close to a boundary (Progress
Ratio = 0.5)

Figure 7.10: Operator: Dynamic Vector Mutate close to a boundary
(Progress Ratio = 0.8)

182

Figure 7.11: Simple Function in 2-dimensions

7.3 Optimisation of a Simple Function

The aim of this section is to test the capacity of the optimiser to �nd the
optimum of a simple function with no local optimum. This series of tests
veri�es the operation of the di�erent operators and their e�ciency for this
type of problem.
This simple function needs to have a single optimum, it was decided to max-
imise a sine wave in the range [0:π]. The function is expressed in 7.1 and can
be viewed in �gure 7.11, for two dimensions and an arbitrary range r.

f(x, y) = sin
(π

r
x
)
∗ sin

(π

r
x
)

(7.1)

This function gives a single optimum of value 1 located at the center of the

183

given range. It will be used to setup the optimal control parameters, to de�ne
the relative quality of the operators, and to test the capacity of the optimiser
to optimise high dimensional problems.

7.3.1 De�nition of the optimum control parameters

GA processes include a number of control parameters that can be tuned to
achieve optimal performance. Although genetic algorithms are quite sturdy
and are able to generate an optimised solution for a very wide range of pa-
rameter settings, tuning the parameters of the algorithm can allow dramatic
performance improvements.
There is no speci�c rule to de�ne the optimum parameters, these have to be
determined empirically. It is even possible to use a GA as a meta-algorithm
to derive the optimum control parameters, see Grefenstette [59]. Some guide-
lines for the values of the control parameters can be found in literature
[27, 35, 64, 54, 56], these suggest the following setup guidelines:

✾ Initial Population Ratio: This parameter controls the amount of ran-
dom search performed during the initial phase of the optimisation.
There are no guidelines for the setting of this parameter.

✾ Population Size (P): The population should increase with the complex-
ity of the problem. If the population is too small convergence to a local
optima may occur, if the population is too large loss of performance
may occur.

✾ Crossover Probability (CP): Values between 0.1 to 0.6 have been re-
ported to perform well

✾ Mutation Probability (MP): Values between 0.0 and 0.3 have been re-
ported to perform well, increasing the mutation probability may reduce
premature convergence problems.

184

✾ Selection Pressure (SP): The value of the selection pressure has to be
de�ned such that the GA stays within the failure boundaries de�ned
by Goldberg [56].

✾ SBX Distribution Index: This variable controls the spread of the SBX
crossover operator, Deb [32] suggested that the optimal value is 1.

✾ Initial Distribution Factor (IDF0): This parameter controls initial spread
of the DVM mutation operator. The allowable range for this operator
is [0 : 1].

✾ Iteration Dependency Factor (IDF1): This is a parameter of the DVM
mutation operator. It controls the contraction of the distribution cre-
ated by the DVM depending of the completion ration of the optimiser.
The allowable range for this operator is [0 : +∞] however expected
values would be between 0 and 3.

Tests were performed to de�ne the optimal value of the above parameters,
starting with IDF0 and IDF1. The tests consisted of determining the e�-
ciency of the optimisation algorithm depending on the value of the di�erent
parameters. Here the e�ciency was determined as the number of evaluations
required to obtain an optimal solution within 1% of the known optimal solu-
tion. Since GA optimisation is a stochastic process the number of evaluations
is averaged over a number of runs of the optimisation process (between 100
and 500 depending on the cases) . The plots in addition to the test points
show a curve �t to highlight the trends. The parameter tuning was �rst per-
formed on the parameters for which there was the highest uncertainty in the
initial estimate.

✾ Dynamic Vector Mutation Settings: For IDF0, �gure 7.12 shows that
the optimal setting is situated between 0.75-0.8, and for IDF1 �gure
7.13 shows that the optimal setting is situated around 1.6. Once the

185

Figure 7.12: E�ect of the Initial Distribution Factor (IDF0)

tuning of the mutation operator has been performed and its behavior
understood, the crossover and mutation probabilities can be tuned using
the same principle.

✾ Crossover Probability Setting: In �gure 7.14, it is interesting to note
that for the crossover probability the e�ciency becomes relatively con-
stant past 0.15 until 0.3. This is an interesting fact which means that
the CP can be freely selected between 0.15-0.3 depending on the con-
vergence characteristics of the problem.

✾ Mutation Probability Setting: Figure 7.15 shows the e�ect of the muta-
tion probability on the performance of the optimiser. The observation
of this graph shows that, as expected the low but non zero values of
mutation probability give the best performance. In addition in �gure
7.16, which represents a plot of the low values of the MP, it can be ob-

186

Figure 7.13: E�ect of the Iteration Dependency Factor (IDF1)

served, that for very low MP values the the spread of the optimisation
performance result is large and can be clearly seen in this graph even
though each point is the average of 250 optimisation runs. This can
be explained theoretically, the mutation operator is disruptive to the
formation of building blocks [54], however it is capable of providing new
building blocks which help to maintain the necessary diversity. With
these considerations in mind the mutation probability was chosen in
the highest value of the zone of optimal performance (0.005-0.01 see
�gure 7.16).

✾ Selection Pressure Setting: From the observation of the graph in �gure
7.17, the optimal selection pressure range appears to be from 3 to 10.
However since a high selection pressure has a tendency to favor pre-
mature convergence. The lower value of the range has been selected to
provide a more generic setting.

187

Figure 7.14: E�ect of the Crossover probability (CP)

✾ Population Size and Initial Population Setting: Last but not least the
optimal population size and the optimal initial population ratio have to
be determined. Figure 7.18 show a plot of the e�ect of the population
size on the the performance of the optimisation. It shows an optimal
some for population composed between 25 and 40 individuals, a popu-
lation size of 30 was selected. Concerning the ratio controlling the size
of the initial population, �gure 7.19, the optimal value range appears
to be between 1.3 and 2 times the nominal population size Even though
the data su�ers a large spread. However for this type of optimisation
the bene�ts from a large initial population are limited. Bene�t will
appear on more complicated problems where a good initial population
has a higher importance, and on problems were the evaluation method
might su�er from a high failure rate during the initial stages of the
optimisation.

188

Figure 7.15: E�ect of the Mutation Probability (MP)

The optimiser demonstrated reasonable performance, to achieve a solution
within 1% of the optimal solution of the simple function test problem in
5 dimensions, The average number of evaluations required to complete the
optimisation was close to 400 with a few of the best optimisations completing
in less than 200 evaluations. This series of tests has provided some insight
into the e�ect on each parameter on the performance of the optimiser. The
control parameter values de�ned in this section are summarised in Table
7.1. These give near optimal performance for this problem and are generic
enough to provide reasonable performance for other cases with a limited need
for re-tuning.

189

Figure 7.16: E�ect of the Mutation Probability (MP) in the low Values Range

Optimisation Parameter Value
Population Size 30

Initial Population Ratio 1.3
Crossover Probability 0.2
Mutation Probability 0.01
Selection Pressure 3

Distribution Index (SBX) 1
Initial Distribution Factor (DVM) 0.775

Iteration Dependency Factor 1.6

Table 7.1: Final setting of the optimiser for the optimisation of the Simple
Function in 5 Dimensions

190

Figure 7.17: E�ect of the Selection Pressure (SP)

7.3.2 Test of di�erent operators

The di�erent operators described in chapter 5 have been tested in order to
de�ne their relative qualities. The same test consisted of comparing the aver-
age number of evaluations to achieve 1% error towards the optimal solution
of the simple function problem in 10 dimensions. Results were averaged over
100 optimisations.
The e�ect of the di�erent Crossover operators on the performance of the
optimisation can be observed in table 7.2, there is a clear performance increase
between the Weighted Averaging Crossover and the BLX-α operators. Use
of the SBX operator allow a further reduction in the average number of
evaluations.
The result for the di�erent crossover operators can be found in table 7.3,
there the e�ect of the diverse improvements to the operator can be observed.

191

Figure 7.18: E�ect of the Population Size (PS)

Crossover Operator Number of Evaluation
WeightedAveragingCrossover 2552.41

WeightedLinearCrossover (BLX-α) 1556.46
BoundedSBXCrossover 1149.9

Table 7.2: Performance of the di�erent Crossover operators

192

Figure 7.19: E�ect of the initial Population Ratio

The proposed operator (DVM) comes out as the most e�cient one. However
the improvement of all the mutation operators is limited, this is mainly due
to the fact that in this simple problem the mutation probability is relatively
low.

Mutation Operator Number of Evaluation
RandomMutate 1366.32
CreepMutate 1225.56

CreepMutateWithDecay 1181.54
DynamicVectorMutate 1163.86

Table 7.3: Performance of the di�erent Crossover operators

193

7.3.3 Dimensionality e�ects

Combustor design has a lot of variables that need to be tuned, therefore it is
important to determine how the optimiser scales with the dimensionality of
the problem. Dimensionality increases cause serious di�culties mainly due
to the exponential increase of the search volume.
For problems like the simple function if a range of 1% is desired for a valid
solution, the ratio V/S of the valid volume V over the search space volume
S can be used to de�ne the di�culty of the problem. From equation 7.1
assuming a range [0 : π]. The valid range to achieve 99% of the optimal value
which is 1 can be expressed as follow

r =
π

2
− asin(0.99) (7.2)

Therefore the valid volume V can be expressed as V = 2r in one dimen-
sion,and the search space as S = π. For a n-dimension the valid space
becomes the volume of an hyper-sphere of radius r. In the case of an even
number of dimensions the volume of hyper-sphere containing the valid solu-
tion is given in 7.3 and the solution volume will be expressed as the volume
of an hypercube given in 7.4.

V =
π(n

2)(
n
2

)
!
rn (7.3)

S = πn (7.4)

From 7.2, 7.3 and 7.4, the ratio V/S can be calculated for di�erent dimen-
sions. It decreases exponentially as n increases. V/S = 0.09 in one dimension,
there is nearly one chance out of ten for a random individual to be valid. In
a 30-dimensional search space V/S = 8.9 ∗ 10−46 , the problem has become
exponentially harder.
Optimisation has been performed for the simple function in a number of

194

Number of Dimensions n 3 5 10 20 30
Number of Evaluations (Avg) 59.85 401.25 1131.91 2430.20 3909.9

Table 7.4: Scaling of the optimisation technique depending of the dimension-
ality of the problem

Figure 7.20: Dimensionality e�ect on the required number of evaluations

dimensions, with the same validity range. The optimisations used the settings
de�ned in 8.2.2 except for the population size which was varied depending
upon the dimensionality of the problem. Table 7.4 and �gure 7.20 presents
the scaling of the average number of evaluations required to achieve the valid
range depending on the number of dimensions.
In �gure 7.20 it can be observed that the required number of evaluations
increases linearly with respect to the number of dimensions and can be ap-
proximated for dimensions > 2, as N = a ∗ n + b where a = 140.447 and
b = −323.457. The fact that the optimiser scales linearly with the number

195

of dimensions (problem variables) is a very interesting advantage compared
to other optimisation methods.

7.4 Optimisation with Local Optima

The aim of this section is to test the capacity of the optimiser for problems
containing multiple local optimum. To de�ne its capacity to avoid the local
optimum and �nd the global optimum.

For this purpose a function was specially designed, the Hedgehog function,
which provides a single global optimum and a number of local optimum that
can be varied. This function may be used in any n-dimensions. In two
dimensions the Hedgehog function can be expressed as 7.5 which will give
the search space shown in �gure 7.21.

f(x, y) =
(
cos

(απ

r
(x− δ)

)
cos

(απ

r
(y − δ)

))2

∗ e(−s((x−δ)2+(y−δ)2)) (7.5)

Where δ represents the location of the global optimum in this case δ = 5, r

represent the gene range, α represents the number of optima in each direction,
and the factor s represents the steepness of the peaks.

196

Figure 7.21: Hedgehog function in two dimensions with δ = 5, α = 6, and
s = 0.07

The number ϕ of sub-optima generated by this function can be calculated as
shown in equation 7.6 in the case where α ∈ N.

ϕ =

{
(α + 1)n − 1 if α/2 ∈ N
αn − 1 otherwise (7.6)

Dimensionality has a large e�ect on the optimisation of problems with sub
optima, the di�culty of the problem increasing dramatically as the number
of dimensions increases due to both the decrease of the ratio V/S and the
increase of the number of local optima ϕ.
The following test consisted of setting the optimiser to optimise the Hedgehog
function in di�erent dimensions to test the scaling capacity of the optimiser

197

Number of Dimensions n 3 5 10 15 20
Number of Local Optima 26 242 5.9*104 1.4*107 3.4*109

Number of Evaluations (Avg) 220.60 622.90 1909.75 3765.80 6091.40

Table 7.5: Scaling of the optimisation technique depending of the dimension-
ality of the problem

in the presence of local optima. The same procedure was used as in section
7.3.3, the parameters for the Hedgehog function were set as follow, δ = 5,
α = 2, and s = 0.07. Table 7.5 present the scaling of the average number
of evaluations required to achieve the valid range and the number of local
optima depending of the number of dimensions.

In �gure 7.22 it can be observed that the increase in the number of evaluations
with regard to the number of dimensions dose not increase linearly anymore
although it still has a sub quadratic increase. It can be approximated for
dimensions > 2, as N = a ∗ n2 + b ∗ n + c where a = 10.247 b = 109.509 and
c = −194.195.

7.5 Constrained Problems

This section is concerned with the test to verify the capacity of the optimiser
to optimise problems with constraints. The problem chosen to highlight the
constraints handling capabilities of the optimiser is a constrained function
based on a welded beam design problem, the physical description of the
problem is outside the scope of this section. It is a relatively hard problem
but has been well published [142, 29, 30]. It consists in optimising a set of
four design variables −→x = (h, l, t, b)subjected to �ve inequalities constraints.

198

Figure 7.22: Dimensionality e�ect on oh the required number of evaluations
for the Hedgehog function and comparison with the simple function

199

fw (−→x) = 1.10471h2l + 0.04811tb(14.0 + l) To be minimized

subjected to

g1 (−→x) ≡ 13, 600− τ (−→x) ≥ 0

g2 (−→x) ≡ 30, 000− σ (−→x) ≥ 0 0.125 ≤ h ≤ 10

g3 (−→x) ≡ b− h ≥ 0 0.1 ≤ l, t, b ≤ 10

g4 (−→x) ≡ Pc (−→x)− 6, 000 ≥ 0

g5 (−→x) ≡ 0.25− δ (−→x) ≥ 0

(7.7)

Where the terms τ (−→x) , σ (−→x) , Pc (−→x) , and δ (−→x) are as follow:

τ (−→x) =

√√√√(τ ′ (−→x))2 + (τ ′′ (−→x))2 +
lτ ′ (−→x) τ ′′ (−→x)√

0.25
(
l2 + (h + t)2) (7.8)

σ (−→x) =
504, 000

t2b
(7.9)

Pc (−→x) = 64, 746.022 (1− 0.0282346t) tb3 (7.10)
δ (−→x) =

2.1952

t3b
(7.11)

And, where

τ ′ (−→x) =
6, 000√

2hl
(7.12)

τ ′′ (−→x) =
6, 000 (14 + 0.5l)

√
0.25

(
l2 + (h + t)2)

2
{
0.707hl

(
l2

12
+ 0.25 (h + t)2)} (7.13)

This results in a di�cult to optimise problem with a knife shaped optimal
region as shown in �gure 7.23 which represent a plot of the valid space in the
dimensions h and t.

200

Figure 7.23: Optimal zone of fw (−→x)in the dimensions h and t

The optimal solutions reported in the literature [142] is, fw = 2.38116 with
h = 2.444, l = 6.2187, t = 8.2915, and b = 0.2444. Using binary GA Deb
[29] managed to achieve fw = 2.43 and in a recent work [30] fw = 2.38119.
These results were obtained using between 40,000 and 320,000 evaluation of
the function.
The test of the constraint technique consisted of optimising equation 7.7
using only 5,000 evaluations since for the application of this software 40,000
to 320,000 evaluations would be totally unrealistic . Out of 10 simulations
the best optimisation achieved a value of 2.3906 which is within 99.6% of the
best known solution, 5 optimisation were within 1%, 20 optimisation were
within 10% and only 2 optimisation resulted in values below 75% of the best
known solution. This result clearly shows the capacity of performing quality

201

optimisation with a relatively small number of evaluations.

7.6 Conclusion

During this chapter the behavior of the optimiser has been observed and
described, in order to give a better insight for setting up and tuning the
optimisation library.
The capacity of the optimiser to optimise di�erent types of problems has been
demonstrated by successfully applying the optimisation technique, to a simple
problem with only a single optimum, to a problem composed of a number of
local optima, and �nally to a di�cult constrained problem. The optimiser
exhibited good performances in terms of the average number of evaluation
required to perform the optimisation. The variation of the dimensionality of
the problem exhibited a linear scaling of the evaluation requirement for the
simple problem and a sub quadratic scaling for the Hedgehog function test
problem containing a number of local optima.
This strong performance in term of the number of evaluations required to
perform an optimisation is crucial for the application of the optimiser to real
engineering problems where the number of optimisations will be limited due
to the cost of the simulation.

202

Chapter 8

Combustor Design Optimisation

8.1 Introduction

The aim of this chapter is to present the application of the optimisation Tool-
box to the preliminary design of a gas turbine combustor. For this purpose,
the Toolbox was interfaced with external simulation tools used to de�ne the
quality of the design. The optimisation Toolbox was tested for di�erent de-
sign conditions in order to experiment with di�erent design approaches. Some
possible ways of exploiting the problem knowledge generated during the opti-
misation will be explored. Finally, the application of the optimisation toolbox
to other design problems will be presented.

8.2 The Design Problem

The combustor design method has been described in chapter two, there a
set of parameters that can be used to de�ne the quality of a combustor have
been presented. These parameters will form the basis of the performance and
constraints de�nition of the combustor design.

203

To allow the calculation of these performance parameters, the simulation tool
Flownet presented in chapter four has been linked to the optimiser and its
output will provide the necessary information to calculate the values of most
of the performance parameters. In order to determine the level of pollutant
emissions of the design, the Toolbox was also linked to a method for pollutant
emissions prediction.

8.2.1 Selection of the Design Variables

There are a large number of variables that can be used to optimise a com-
bustor design. These can be classi�ed into three main sets of variables:

✾ Variables controlling the geometry of the combustor, such as size, shape,
volume, number and position of the di�erent features

✾ Variables controlling the features of the combustor, such as the cooling
method, type of injector...

✾ Variables controlling the setting of the di�erent features of the com-
bustor, size and number of holes of the di�erent ports on the �ame
tube.

The optimisation technique would be capable of optimising all these three
sets of parameters. However the available simulation software limits the
optimisation possibility for the two �rst parameter sets due to two following
factors. Firstly, the simulation tool uses a non parametric description of the
combustor geometry which is cumbersome and can not be modi�ed easily. In
addition, there are concerns about the capacity of the semi empirical tools to
give reliable simulation results for the non conventional designs that may be
generated by letting the geometry or the features of the combustor vary freely.
The �rst limiting factor can be overcome by the use of a preprocessor that
uses a parametric method to describe the combustor (such as the graphical

204

interface designed for Flownet). In order to overcome the second limiting
factor �ownet would need to be complemented by others tools capable of
describing the mixing in a more re�ned and physical way.
The optimisation will limit itself with the optimisation of the third type of
design variables, the settings of the di�erent features of the combustor. The
automation of the optimisation of those settings can be largely bene�cial for
the design project since a large part of the design time is spent on the tuning
of these feature settings, resulting in a potential reduction of the design time
and a �ne tuning of the designs.
The di�erent features of a combustor consist mainly in di�erent ways to
inject cold air in the combustion zone to control the combustion process and
to cool the �ametube walls. The setting of those features consists mainly
in the de�nition of the number and the size of the openings for the di�erent
features, cooling patches, dilution ports. The ratio of the number of holes and
the diameter of the hole de�ne the penetration of the jet generated by this
hole. The simple mixing relation used in Flownet dose not take into account
the variation of the jet penetration. Under these conditions it is preferable
to �x either the diameter or the number of holes and and use the other one
as a design variable to control the mass�ow delivered by these ports.
The design variables for the combustor design consists in the diameter of the
holes for the following features of the designs:

✾ The Injector(s)

✾ The di�erent cooling features of the baseplate

✾ The di�erent cooling features of the liner

✾ The di�erent dilution ori�ces

205

8.2.2 De�nition of the Objectives

The de�nition of the optimisation objectives is constrained by the available
simulation capability. As it has been highlighted in chapter two some of the
critical performance parameter of the combustor can not be directly simu-
lated. This require the use of a number of other parameters as constraints
in order to control them. The optimisations performed for the test cases will
use the following performances parameters as objectives and constraints:

✾ The overall combustor pressure drop
✾ The inner and outer �ame tube pressure drop
✾ The AFR for di�erent zones of the combustor
✾ The Mass Flow of cooling air for the base plate(s) and the �ametube

region(s)
✾ The maximum wall temperature for di�erent �ametube walls region(s)
✾ The average wall temperature for di�erent �ametube walls region(s)
✾ The amount of recirculating �ow in the primary zone(s)
✾ The overall S. I. Loading ΛSI

✾ The Relight Loading χSI

✾ The Pollutant emissions
✾ The cross-�ow Mach ratios

This set of objectives are used to de�ne the quality of a given combustor
design. One might notice that these performances parameters only are not
su�cient to perform a complete design of a combustor. However the optimi-
sation of these parameters allows the design process to be done faster, giving

206

more time for the designer to tackle other design problems like combustion
instabilities or exit temperature pro�le. This limitation could be partially
alleviated by the addition of simulation tools capable of tackling these miss-
ing performance parameters such as, a relight model, a model de�ning the
stability of the combustor, a proper mixing model or the use of simple CFD
to have information on the quality of th mixing that would allow to have a
temperature traverse model, better emissions model.
This set of objectives can be used in two ways, these can be either used as a set
of design targets that the optimiser have to reach within a constrained range,
or as the optimisation of one or more objective while the other performance
parameters are constrained to a speci�ed range.

8.3 Test Cases

8.3.1 Achievement of a set of design targets

The aim of this design exercise is to demonstrate the capacity of the optimizer
to generate a combustor design having the same performance parameter as
one designed using the traditional methods. In addition this will allow to
compare the automatically generated design with the original one.

8.3.1.1 Setting of the optimisation

For this optimisation the optimiser was con�gured to achieve as precisely as
possible a set of target de�ned as the performances of an existing combustor
designed using traditional techniques. The speci�c combustor is a single an-
nular military combustor that will be referred as generic-combustor-01 (�gure
8.1).
An acceptability criteria was introduced in order to de�ne if a proposed design
can be accepted. This acceptability criteria, impose arbitrarly that all the

207

Figure 8.1: A Network Model of the Generic-Combustor-01

performance parameters of a proposed design must be within ± 5% of the
desired target value. Using the method of �range error, target achievement
and optimisation factor� described in section 6.4.2. The �tness is de�ned as
a function of the distance between the actual design performance parameter
value and the acceptance criteria when the later is not satis�ed. In the other
case, when the criteria is satis�ed, the �tness is de�ned as a function of the
distance towards the desired performance target.
This represents a rather hard design problem since the allowable range for
each of the 23 design constraint is narrow and therefore limits the freedom
of the optimiser.

8.3.1.2 The Optimisation Process

The design optimisation was performed on a Linux workstation using a
650MHz Athlon Processor and 512Mb of RAM. The optimisation process
consisting of 10000 evaluations was completed in less than four hours (Figure
8.2).

208

Figure 8.2: Evolution Of the required time in function of the number of
evaluations

Figure 8.3 represent the evolution of the �tness as a function of the number of
evaluations. The three �tness curves present on the graph represents respec-
tively the best, the average, and the worst �tness present in the population
as a function of the number of evaluations.
On the �rst section of this graph the �tness increase relatively linearly how-
ever since the value of the �tness is small at this point it dose not appear on
this graph. This section represents the �rst phase of the optimisation process
which could be described as strongly explorative.
On a second section a strong discontinuity can be observed, it represents the
achievement of the acceptance criteria. This discontinuity in the �tness func-
tion would cause critical di�culties for analytical techniques and the sudden
large increase in �tness might even bring traditional genetic algorithms to
premature convergence. This is due to the sudden generation of elements
with a signi�cantly better �tness than the rest of the population generating
an excessive selection pressure which might bring the GA to premature con-

209

Figure 8.3: Evolution of the �tness as a function of the number of evaluations

vergence. This phenomenon has been strongly reduced thanks to the use of
�tness scaling and the combination of SUS sampling and duplicate prevention
techniques.
On the last section of the graph, it can be seen that the �tness continue
increase linearly until the end of the graph, where the di�erence between the
best and the worst �tness decrease demonstrating that the optimisation is
converging. This convergence phase is the �nal phase of the the optimisation
process and consists mostly of exploitation search.

8.3.1.3 The Designed Combustor

Figures 8.4 and 8.5 shows the evolution of two key design parameters the
Pressure drop and the zone cross�ow Mach ratio as they are reaching their
respective target these represent the value of the best element of the popu-
lation, it can be observed that the parameters tend to oscillate but are are

210

Figure 8.4: Evolution of the pressure drop as a function of the number of
evaluations

well directed towards the target value . Table 8.1 shows the �nal perfor-
mance parameters achieved by the optimisation. From this table it can be
observed that the Toolbox allowed the precise achievement of the targets, the
maximum target error being 3.33%.

211

Figure 8.5: Evolution of Mach ratio as a function of the number of evaluations

Target Desired Range Achieved Range
Combustor Pressure Drop ±5% 0.27%

Pressure drop wall 1 ±5% 0.43%
Pressure drop wall 2 ±5% 0.41%

AFR injector ±5% -2.82%
AFR 1 ±5% 0.56%
AFR 2 ±5% 0.90%

Flametube cooling ±5% -1.90%
Base Plate Cool ±5% 1.42%

Max Temp Combustor ±5% -0.02%
Max Temp Zone 1 ±5% -3.00%
Max Temp Zone 2 ±5% -0.02%

Avg Temp Combustor ±5% 0.15%
Avg Temp Zone 1 ±5% -0.54%
Avg Temp Zone 2 ±5% 0.75%
Recirculating �ow ±5% 0.31%

SI Loading ±5% 0.03%
Relight loading factor ±5% 0.29%

NOx ±5% -1.21%
Mach ratio Outer Ports 1 ±5% -1.89%
Mach ratio Inner Ports 1 ±5% 0.73%
Mach ratio Outer Ports 2 ±5% -0.93%
Mach ratio Inner Ports 2 ±5% 3.33%

Table 8.1: Achievement of a set of 22 design parameters targets

212

8.3.2 Minimization of the Wall Cooling Flow

The previous section allowed to demonstrate the capacity of the optimiser
to generate a design satisfying the same performance criteria as an existing
combustor. The aim of this new design task is to demonstrate the capacity
of the optimiser to go beyond the performance targets achieved by existing
combustors and further push the objectives.
To demonstrate this capacity it was decided to use the optimiser to minimise
the air �ow required for the cooling of the �ametube walls while constraining
the others performance parameters to be within the design criteria of the
original project. The reduction of cooling �ow requirement is a very interest-
ing exercise since it permits to reduce the pollutant formation zone generated
by the cold cooling gases, and it as well allows to bene�t of more air to be
used to control �ow properties such as AFR and combustor exit temperature
pro�le.

8.3.2.1 Setting of the Optimisation

For this task the optimiser used the same performance parameters from
generic-combustor-01 as in the previous section. However this time the value
of the �ame tube cooling �ow is set as an optimisation parameter and its value
will be minimised. In addition The target constraints and range were de�ned
based on the original project targets which, provide a larger range for the
constraints values. The range on wall temperatures was reduced to zero the
wall temperature should never exceed the maximum prescribed temperature.

8.3.2.2 The Optimisation Process

The optimisation was performed in 4h 30min using a single workstation for
10000 evaluation, all the targets were within the allowable range after 2500

213

Figure 8.6: Evolution of the �tness as a function of the number of evaluations

evaluations. As in the previous section the optimisation process can be ob-
served in �gure 8.6 and shows the same phases.

8.3.2.3 The Designed Combustor

Figure 8.7 shows the evolution of the total cooling �ow which is to be min-
imised, it can bee seen on this �gure that no optimisation is performed on
the cooling �ow until all the targets are within their allowable range. It need
to be noted that the cooling �ow from the base plate which is to be �rmly
constrained since heat transfer is not modeled on the baseplate. From this
graph a consequent reduction in the combustor cooling �ow can be clearly
observed. Table 8.2 shows the �nal performance parameters achieved dur-
ing this optimisation. From this table it can be observed that the Toolbox
allowed a 23.28% reduction of the �ametube cooling �ow.
It is now interesting to examine the di�erences between the original and the

214

Target Desired Range Achieved Range
Combustor Pressure Drop ±5% -0.49%

Pressure drop wall 1 ±5% -0.80%
Pressure drop wall 2 ±5% -0.75%

AFR injector ±5% 3.69%
AFR 1 ±5% 0.67%
AFR 2 ±5% 2.00%

Flametube cooling NA -23.28%
Base Plate Cool ±5% -4.97

Max Temp Combustor +0% -0.70%
Max Temp Zone 1 +0% -0.89%
Max Temp Zone 2 +0% -0.70%

Avg Temp Combustor +5% 1.22%
Avg Temp Zone 1 +5% -0.73%
Avg Temp Zone 2 +5% 2.34%
Recirculating �ow ±5% 1.84%

SI Loading ±5% -0.05%
Relight loading factor ±5% 1.82%

NOx +0% -5.97%
Mach ratio Outer Ports 1 ±10% -5.36%
Mach ratio Inner Ports 1 ±10% -0.17%
Mach ratio Outer Ports 2 ±10% 1.17%
Mach ratio Inner Ports 2 ±10% -2.02%

Table 8.2: Achievement of a set of 22 design parameters targets

215

Figure 8.7: Evolution of the �ame tube cooling �ow as a function of the
number of evaluations

optimised design. Figure 8.8 and 8.9 represents the amount of cooling �ow
injected in the �ametube through the cooling ori�ces for both the original
and the optimised design. Figure 8.10 and 8.11 shows the �ametube wall
temperature as well for both the original and the optimised design. From
this set of graph it can be observed that the optimiser manage to reduce
the cooling �ow requirements by un-constraining the wall temperature and
preventing unnecessary overcooling of certain parts of the combustor. It is
as well interesting to note that the original design has a section of its outer
wall over the maximum temperature limit, and that this was corrected in the
optimised section thanks to a small increase of the fourth Z-ring of the outer
wall. A careful observer might note the fact that the �fth Z-ring of the outer
�ametube wall is positioned towards the exit of the combustor and do not
seems to have a strong participation in the cooling of the �ametube, this was
detected by the optimiser which severely reduced its mass�ow. However this
Z-ring might be used to improve the exit temperature pro�le and its reduction

216

Figure 8.8: Evolution of the cooling �ow entering the �ametube outer wall
along the combustor

might adversely a�ect this parameter therefore for further optimisation this
value should be constrained. It is reassuring to observe that the results from
the optimisation are logical and can be simply explained.

8.3.3 Minimisation of the NOx Emissions

The successful application of the Toolbox for the optimisation of the �ame
tube cooling �ow gave con�dence in the optimisation technique and the ro-
bustness of the simulation code, therefore it was decided to apply the opti-
misation Toolbox to the more delicate problem of the reduction of NOx.

8.3.3.1 Setting of the Optimisation

The optimisation toolbox was set similarly as for the previous experiments,
using the same performance parameters from generic-combustor-01 as in the

217

Figure 8.9: Evolution of the cooling �ow entering the �ametube inner wall
along the combustor

Figure 8.10: Evolution of the �ametube outer wall temperature along the
combustor

218

Figure 8.11: Evolution of the �ametube Inner
wall temperature along the combustor

previous section. However this time the value of the predicted NO emissions
is set as an optimisation parameter and its value will be minimised. The
target constraints and range were de�ned similarly to the previous section,
but with removing the range constraint for the AFR values.

8.3.3.2 The Optimisation Process

The optimisation was performed in 36 minutes using 10 networked worksta-
tions for 10000 evaluation. All the targets were within the allowable range
after 2000 evaluations . The optimiser managed to reduce the value of the
predicted emission by 18.6%. As in the previous sections the optimisation
process can be observed in �gure 8.12 and shows the same phases.

219

Figure 8.12: Evolution of the �tness as a function of the number of evaluations

8.3.3.3 The Designed Combustor

The results of the optimisation are shown in table 8.3. As before it can be
seen that all the parameter were achieved within their allowable range of
error.
Figure 8.13 shows the evolution of the NOx emissions along the optimisation,
and Figure shows the relight-loading factor for the combustor. From those
two graphs it is interesting to note that the reduction of NOx is stopped
when the relight-loading factor hits the limit of its range. This shows that
the relight loading, which is dependent on the combustor mass �ow, seems
to be a limiting factor for NOx Reduction. This behavior can be explained
by the fact that NOx emission are reduced by a leaner and therefore colder
primary zone, in order to make this zone leaner the optimiser increase the
amount of mass �ow in this zone, this has for e�ect to increase the amount
of recirculating mass �ow (equation 2.7), which in turns brings the relight

220

Target Desired Range Achieved Range
Combustor Pressure Drop ±5% -0.39%

Pressure drop wall 1 ±5% -0.63%
Pressure drop wall 2 ±5% -0.60%

AFR injector NA 12.80%
AFR 1 NA 4.82%
AFR 2 NA 4.16%

Flametube cooling ±10% -1.67%
Base Plate Cool ±5% 4.69%

Max Temp Combustor +0% -0.10%
Max Temp Zone 1 +0% -1.95%
Max Temp Zone 2 +0% -0.10%

Avg Temp Combustor +5% 1.08%
Avg Temp Zone 1 +5% -1.21%
Avg Temp Zone 2 +5% 2.39%
Recirculating �ow ±5% 4.97%

SI Loading ±5% -0.04%
Relight loading factor ±5% 4.99%

NOx +0% -18.59%
Mach ratio Outer Ports 1 ±10% -1.06%
Mach ratio Inner Ports 1 ±10% 8.10%
Mach ratio Outer Ports 2 ±10% 3.91%
Mach ratio Inner Ports 2 ±10% 7.21%

Table 8.3: Achievement of a set of 22 design parameters targets

221

Figure 8.13: Evolution of the predicted NOx emissions as a function of the
number of evaluations

loading factor (equation 2.12) towards it's upper limit. The satisfaction of
the constraint having a prime importance over the optimisation, the relight
loading is stabilised on the edge of it's upper limit.
Figure 8.15 and 8.16 shows the AFR along the �ame-path for the manual
design and the optimised design respectively as a comparison, and as a dif-
ference. From these �gures it can be seen that the optimiser went for a
slightly leaner primary zone.
In order to highlight this fact Figures 8.17, 8.18, and 8.19 shows the evolution
of the AFR of respectively, the injectors, the zone 1 and 2 of the combustor.
From those graphs it is interesting to note that the optimiser chooses to go
as lean as the relight loading factor allows to reduce the average temperature
and therefore the NOx emissions.
In this case as well the design generated by the optimiser seems logical and
an explanation of the improvement can be provided.

222

Figure 8.14: Evolution of the Relight Loading factor as a function of the
number of evaluations

Figure 8.15: Evolution of the AFR along the �ametube

223

Figure 8.16: Evolution of the AFR di�erence along the �ametube

Figure 8.17: Evolution of the Injector AFR as a function of the number of
the evaluations

224

Figure 8.18: Evolution of the zone 1 AFR as a function of the number of
evaluations.

Figure 8.19: Evolution of the zone 2 AFR as a function of the number of
evaluations.

225

8.4 Other applications

The robustness and �exibility of genetic algorithms have allowed to apply this
Optimisation Toolbox other design problems. These are brie�y described in
order to demonstrate the Toolbox capability to be used in a wide range of
engineering domains.

8.4.1 Biomass Gasi�er

Alcides Codciera-Neto [20] used the Toolbox to optimise the performance of
combined cycle power-plant using biomass fuel with a gasi�er system. The
optimisation was performed on the gasi�cation process order to de�ne the
optimum air, steam, and fuel temperature, as well as the steam molar number
and the equivalence ratio in order to maximise the fuel Low Calori�c Value
(LCV) while constraining the ratio of energy losses in the process. Even-
though this work took place during the early stage of the development of the
design optimisation Toolbox it provided very encouraging results by allowing
optimum input parameters to be de�ned while satisfying the constraint.

8.4.2 Airfoil design

Dimitris Pantazis [125] used the tool box in conjunction with an airfoil simu-
lation tool 'xfoil' to optimise the wing pro�le of an unmanned air vehicle. The
optimisation has been performed by modifying the control point of a spline
de�ning the wing pro�le. The simulation tool is based on the panel method
and allowed to rapidly determine the Cl and Cd of the wing at di�erent angles
of attack. Two optimisation approach were tested, the maximisation of Cl
over a range of angle of attack while minimizing drag at zero incidence., for
the second one the the simulation constrained the achievement of a Cl = 0.35

at 0 angle of attack and the minimisation of drag.

226

This study gave very promising results by generating high performance air-
foils that can be adapted to their speci�c mission.

8.5 Conclusion

This chapter presented the application of the optimisation Toolbox to real
life combustor design problems. The use of the Toolbox allowed the rela-
tively precise achievement of the design parameters of an existing combustor
designed using traditional methods, demonstrating the capacity of automatic
design for targets. The second and the third optimisation exercises allowed
the demonstration of the capacity of the optimiser to achieve the performance
targets and range desired for the design project while optimising a given per-
formance parameter, leading to better combustor design eliminating some
problems present on the existing design and allowing in one case a 22.3%
reduction in the cooling �ow requirements and in the other cases a 18% re-
duction in NOx emissions. In addition, the analysis of the design allowed the
alleviation of some concerns about the capacity of the optimiser to produce
sensible designs.
Finally, the application of the optimisation Toolbox to two others engineering
design problems allowed the demonstration of the robustness of the method
and its wide range of possible applications.

227

228

Chapter 9

Conclusion and Future Work

9.1 Conclusion

This work concerned the development of a novel preliminary design method-
ology for gas turbine combustor. This method takes advantage of design
optimisation techniques to partially automate the preliminary design pro-
cess, allowing the generation of fully optimised combustor designs in a short
time scale.
The initial task consisted of analyzing the combustor preliminary design pro-
cess, its requirements, its features, and most importantly the identi�cation
of the key parameters which de�ne the performance of a combustor these are
crucial for any optimisation technique in order to de�ne the quality of the
proposed design.
This led to the development of a genetic algorithm based optimisation Tool-
box which regroup a Genetic Algorithm based optimisation library and a set
of tools to ease its integration within an engineering design environment.
A suitable simulation technique was selected to be interfaced with the Tool-
box. Flownet, a semi empirical simulation tool based on network algorithms

229

was selected for its good compromise between computational requirements
and physical representation. However the simulation capability had to be
increased to model NOx emission. For this purpose a simple NOx model was
implemented.
In order to provide background on Genetic Algorithms, their principles have
been presented with some examples of their use in the engineering domain.
This was followed by a detailed description of the simple genetic algorithm
techniques, and the identi�cation of the shortcomings of these techniques.
The background on genetic algorithms �rmly in place, a Java based SGA
library was developed A novel constraint handling technique was developed
in order to handle e�ciently the large number of objectives and constraints
present in engineering design problems. In order to tackle the shortcomings
of the SGA techniques, an extensive transformation of the SGA library were
performed, by implementing the state of the art methods and operators, and
developing some novel ones speci�cally designed for engineering application.
To check the e�ectiveness of this newly designed GA library, it had to be
validated against analytical problems. The validation of the optimisation ca-
pability of the Toolbox was performed by applying the optimisation technique
to three di�erent types of analytical optimisation problem with known solu-
tions: a simple problem with only a single optimum, a problem composed
of a number of local optima, and a di�cult constrained problem. These
optimisation tests were performed for di�erent number of input variables
(dimensionality of the problem)
These test problems were �rst used to de�ne the most appropriate settings
for the optimisation method. The variation of the dimensionality of the prob-
lem exhibited a linear scaling of the evaluation requirement for the simple
problem and a sub quadratic scaling for the Hedgehog function test problem
containing a number of local optima. These results demonstrate the excel-
lent performance of the optimisation method for high-dimensional problems,
showing that it is capable of optimising problems with 20 to 30 dimensions

230

in less than 10 000 evaluations. This strong performance in terms of the
number of evaluations required to perform an optimisation is crucial for the
application of the optimiser to real engineering problems where the number
of optimisations are limited due to the cost of the simulation.
Finally, the the optimisation Toolbox was applied to real life combustor de-
sign problems, in order to verify its capacity to partially automate the design
process. The three optimisation exercises were performed on a single annular
combustor: achievement of an existing design, minimisation of cooling �ow
under constraints, and minimisation of NOx emissions under constraints.
These optimisation task were successfully performed. The �rst one allowed
the precise achievement of the 23 performance targets; the the second one
allowed a 22.3% reduction of the �ametube cooling �ow; and the third op-
timisation provided an 18% reduction in NOx emissions for the combustor.
For these applications the optimisation time was relatively short; it took an
average of 50 minutes on a Linux workstation.
Has it as been hi-lighted by the attempt made to use empirical NOx correla-
tions (section 4.4.1) the GA will use any �aw in the model in order to improve
the performance of the �nal design. Care need to be taken to analyse the
optimised design and make sure it is correct, and if it is not add some con-
straints to prevent the optimiser to use the breach in the model. It should be
remembered that: �The quality of an optimised design is only as good as the

model used to asses it.�. The analysis of the design allowed the alleviation
these concerns by demonstrating that the combustor designs generated by
the optimiser were correct and logical.
These test cases allowed to validate the optimiser's capacity to provide a
valuable contribution to the combustor preliminary design process by allowing
to dramatically reduce the time required to tune a combustor design to a given
set of performance parameters.
Finally, the application of the optimisation toolbox to two others engineering
design problems allowed the demonstrate of the robustness of the method

231

and its wide range of possible applications.

9.2 Recommendations for future work

Although the design methodology presented in this work through the opti-
misation Toolbox represent a complete and fully functional design tool it is
possible to identify three main directions for further work, as follow:

✾ Improvement of the simulation capabilities.
✾ Further development of the optimisation capability.
✾ Extension of the optimisation process.

The following sections will present these three possible ways of improving the
usefulness of the Toolbox.

9.2.1 Simulation Capability Extension

It has been mentioned in the previous chapters that the information provided
by Flownet are not su�cient to allow the complete preliminary design pro-
cess to be optimised, in addition the quality of the simulation has a critical
e�ect on the quality of the optimisation. Therefore a more complete and
reliable model of the combustor would allow the removal of a number of con-
straints which currently reduces the optimisation capability, and increase the
con�dence in the optimised design.
The key design parameters that should modeled are as follow:

✾ Exhaust temperature pro�le. This is a critical constraint for the tur-
bine operation. It could be modeled through the inclusion of a rela-
tively crude non reacting CFD model capable of giving information on

232

trends in the mixing quality, allowing a better calculation of pollutant
emissions formation, and to predict an exit temperature pro�le. Using
screening and neural network evaluation (section 6.11) to reduce the
number of calls to the CFD simulation, the optimiser will cope with
simulations costing up to an hour of CPU time. The use of the power
of modern computers coupled to a pre initialised grid that is deformed
to match the evaluated design should allow to use a grid �ne enough
to capture the global trends in the distribution of mixture fraction.

✾ CO, UHC, and Soot emissions. The emission of pollutant is a criti-
cal parameter of modern combustor designs. These could be modeled
through the implementation of a chemical kinetics scheme to the exist-
ing NOx emission model.

✾ Combustion instabilities. These are becoming an important design issue
for modern �clean� combustors like LPP, which tends to su�ers from
instability or noise. The availability of simple models to account of
such problems is still limited, but would form a valuable contributing
to the description of the quality of a design.

✾ Prediction of Hot Spots. Combustor tend to su�ers from of hot spots
on the liner walls which can not be simulated by the 1D simulation
techniques. It would require the integration of a full CFD model of the
combustor.

✾ Structural analysis and weight. Weight is a critical parameter of any
aeronautical equipment, a thermo structural analysis of the combustor
design would provide valuable information on lifetime and weight of a
speci�c design.

Some other key parameter are modeled using relatively crude methods and
would bene�t of some improvement of the model

233

✾ NOx model. The NOx model could bene�t from the inclusion of mixing
information and more detailed chemistry.

✾ Ignition and relight. The ignition and relight is modeled through an
empirical correlation. The optimisation quality would bene�t from a
better modeling of this critical parameter.

✾ Mixing model. The actual mixing model is extremely coarse however
mixing a�ects a large number of key parameters, such as, temperature
pro�le, pollutant emissions, amount of recirculating �ow, wall cooling,
fuel evaporation and distribution. The mixing model should take ac-
count of the swirler e�ect and the liner pressure drop. Ultimately a
computational �ow-�eld could be used to de�ne the mixing. The inclu-
sion of a proper mixing model would allow to remove a large number
of constraint that are imposed to try to control the mixing to a �xed
level. These constraints are for example, the �ame tube pressure drop,
the cross�ow Mach ratio, the amount of recirculating �ow in the pre-
liminary zone. All these could be removed giving more freedom to
the optimiser, to re�ne the tuning of the combustor design, giving the
opportunity for further improvements in the optimisation capability.

9.2.2 Optimisation Capability Development

In addition to the simulation capabilities, the optimisation performances and
capabilities have the potential to be improved in order to reduce the number
of design evaluations, therefore allowing faster optimisation or more complex
simulation tools to be used.

✾ Neural Networks could be trained with each simulated points and used
to provide an approximate evaluation of the designs. This technique
has the potential to dramatically reduce the number of calls to the
simulation tool.

234

✾ The inclusion of auto adaptive parameters for the optimisation tech-
nique would allow a simpli�cation of the use of the optimisation tool
while ensuring that all the parameters are optimally set.

✾ The inclusion of Multi-Objective techniques supporting preferences would
be a valuable tool for the design engineer by allowing online interaction
between the designer and the optimisation process.

9.2.3 Extension of the optimisation process.

This third way of improvement is probably the most novel and promising in
terms of the potential gains for the industry. In section 3.3.1 it has been
mentioned that the optimisation process is ultimately the maximisation of
the pro�ts that the designed product is capable of generating. Therefore
this section will relate research directions that could be taken to bring real
optimisation problems to this theoretical goal.

✾ Simulation of manufacturing cost and life cycle cost of the design. This
is an obvious direction which has the potential of providing signi�cant
savings by allowing to optimise the performance / cost tradeo�.

✾ Simulation of manufacturability issues. These are responsible for extra
manufacturing costs and quality problems and should be taken into
account for a proper estimation of the design quality [157].

✾ Simulation of the customer behavior. This is the key element that would
ultimately allow to relate a design with potential pro�ts, however there
is a lack of existing model in this domain.

✾ Optimisation of the operating envelope. A design should really be op-
timised over its complete operation envelope to guarantee optimum
performance in all operating conditions instead of a single design point.

235

This route has been successfully attempted for the design of an UAV
wing [125] and for the design optimisation of gas turbine design [126].

236

Bibliography

[1] Adkins R. C. & Gueroui D. (1986), An Improved Method For Accu-
rate Prediction of Mass Flows Through Combustor Liner Holes. ASME
Paper, ASME-86-GT-149.

[2] Anand M. S. & Priddin C. H. (2001) Combustion CFD - A Key Driver
to Reducing Development Cost and Time, Fifteenth International Sym-
posium on Air Breathing Engines. Bangalore, India. ISABE-2001-1087.

[3] Anderson M. B. (1995), The potential of Genetic Algorithms for Sub-
sonic Wing Design. American Institute of aeronautics and Astronautics
paper ref.: AIAA-95-3925.

[4] Andersson J. (2001), Multi Objective Optimisation in Design. PhD
Thesis, Institute of Technology Linköping University, Sweden.

[5] Antonisse J. (1989), A New interpretation of Schema Notation that
Overturns the Binary Encoding Constraint. proceedings of the Third
International Conference on Genetic Algorithms. Cited in [77].

[6] Baker J. E. (1987). Reducing Bias And Ine�ciency in the Selection Al-
gorithm. Proceedings of the second international Conference on Genetic
Algorithms. Hillsdale, NJ: Lawrence Erlbaum Associates. p 14-21.

[7] Ballal D. R. & Lefebvre A. H. (1973), Film Cooling E�ectiveness in the
Near Soot Region. Journal of Heat Transfer, pp265-266.

237

[8] Baukal C. E., Gershtein V. Y., and Li X. (2001), Computational �uid
dynamics in industrial combustion,CRC Press, ISBN 0-8493-2000-3.

[9] Beck M. A. & Parmee L. C. (1998), conceptual Design Exploration
Using Evolutionary and Adaptive Strategies. Proceedings of ACDM'98,
PEDC, University of Plymouth.

[10] Becker T. & Perkavec M. A. (1994), The capability of di�erent semi-
analytical equations for estimation of NOx emissions of gas turbines.
ASME Paper 94-GT-282, International Gas Turbine and Aero-engine
Congress and Exposition, The Hague, Netherlands.

[11] Bethke A. D. (1981), Genetic Algorithms as Function Optimizers, Doc-
toral Dissertation, University of Michigan. Cited in: Goldberg D. E.
[54].

[12] Borman G. L. & Ragland K. W., Combustion Engineering, McGraw-
Hill, 1998, ISBN 0-07-006567-5

[13] Bos A. H. W. (1998), Aircraft Conceptual Design by Genetic /
Gradient-Guided Optimisation. Engineering Application of Arti�cial
Intelligence Vol. 11, pp377-382.

[14] Bouvier D. (2001), LOWNOX - A European Low Emission Engine Ini-
tiative, Air & Space Europe, Vol3, No1/2, pp96-100.

[15] Bowman C. T., Control of combustion-generated Nitrogen Oxide Emis-
sions: Technology driven by regulation. Proceedings of the 24th Inter-
national Symposium on Combustion, The Combustion Institute, Pitts-
burgh, 1992.

[16] Bramelette M. F. & Bouchard E. E. (1991), Genetic Algorithms in
Parametric Design of Aircraft. In Handbook of Genetic Algorithms [27]
pp109-123.

238

[17] Bullock G. N. et al. (1995), Developments in the use of genetic algo-
rithm in engineering design, Design studies Vol. 16, pp507-524.

[18] Cantu-Paz E. (2002), On random numbers and the performance of ge-
netic algorithms, Proceedings of the Genetic and Evolutionary Compu-
tation Conference, GECCO-2002 San Francisco, Morgan Kaufmann.

[19] Chankong V. & Haimes Y. Y. (1983), Multi Objective Decision Making
Theory and Methodology. North-Holland

[20] Codciera Neto A. (1999), Assessment of Novel Power Generation Sys-
tems for the Biomass Industry. PhD Thesis, Cran�eld University.

[21] Coello Coello C. A. (1999), A survey of Constraint Handling Tech-
niques used with Evolutionary Algorithms. Technical Report Lania-
RI-99-04, Laboratorio Nacional de Informatica Avanzada, Xalapa, Ve-
racruz, Mexico.

[22] Coverstone-Caroll V., Hartmann J. W., Mason W. J. (2000), Optimal
Multi-Objective Low-Thrust Spacecraft Trajectories. Computer Meth-
ods in Applied Mechanics and Engineering, V186, pp387-402.

[23] Croome J. E. (1995), The application of a Genetic Algorithm Optimi-
sation Technique to Axial Compressor Design. MSc Thesis, School Of
Mechanical Engineering, Cran�eld University, UK.

[24] Crossley W. A. (1996), Genetic Algorithm Approaches for Multiobjec-
tive Design of Rotor Systems. American Institute of aeronautics and
Astronautics paper ref: AIAA-96-4025-CP.

[25] Curnock B. (1993), Engine Starting And Stopping, Von Karman Insti-
tute Lecture Series on Gas Turbine Engine Transient Behavior. docu-
ment Ref VKI/LS-1993-06.

[26] Davis L. (1987), Genetic Algorithms And simulated annealing. Pitman,
London 1987.

239

[27] Davis L. (1991), Handbook of Genetic Algorithms, International Thom-
son Computer Press, ISBN 1-85032-825-0.

[28] Deb K. (1990), Optimal Design of a class of Welded Structures via
genetic Algorithms. 31th Conference on Structural Dynamics and Ma-
terial, pp444-453.

[29] Deb K. (1991), Optimal Design of a Welded Beam Structure Via Ge-
netic Algorithms, AIAA Journal, Vol29, pp2013-2015.

[30] Deb K. (2000), An E�cient Constraint Handling Method for Genetic
Algorithms, Computer Methods in Applied Mechanics and Engineering.
pp311-338.

[31] Deb K., Anand A. and Joshi D. (2002), A Computationally E�cient
Evolutionary Algorithm for Real-Parameter Optimisation. KanGAL re-
port Number 2002003, Kanpur Genetic Algorithms Laboratory, Indian
Institute of Technology Kanpur.

[32] Deb K. & Agrawal R. (1995), Simulated Binary Crossover for Contin-
uous Search Space. Complex Systems, 9, pp115-148.

[33] Deb K. & Beyer H. G. (1999), Self Adaptive Genetic Algorithms with
Simulated Binary Crossover. University of Dortmund Technical Report
Number CI-61/99.

[34] Deb K. & Goyal M.(1997), Optimizing Engineering Designs Using a
Combined Genetic Search. in Back T. (Ed.), Proceedings of the Sev-
enth International Conference on Genetic Algorithms. Morgan Kauf-
man, San Francisco. pp521-528.

[35] Dejong K. (1975), An analysis of the behavior of a class of a class of
genetic adaptive systems. PhD Thesis, University of Michigan.

240

[36] Despierre A., Stuttaford P. J., and Rubini P. A. (1997), Preliminary
gas turbine combustor design using a genetic algorithm. ASME paper
97-GT-72.

[37] Doorly D. J. & Peiro J. (1997), Supervised Parallel Genetic Algorithms
in Aerodynamic Optimisation. American Institute of aeronautics and
Astronautics paper ref: AIAA-97-1852.

[38] Eshelman L. J. and Scha�er J. D. (1993), Real coded genetic algorithms
and interval schemata. in Foundation of Genetic Algorithms II, Whitley
D. (ed). pp 187-202. Cited in [34].

[39] Esping B. (1995), Design Optimisation as an engineering tool. Struc-
tural Optimisation Vol. 10, Springer-Verlag, pp. 137-152.

[40] Esquivel S. et All (2002), Enhanced Evolutionary Algorithms for Single
and Multiobjective Optimisation in the Job Shop Scheduling Problem.
Knowledge-Based Systems, V15, pp13-25.

[41] Fenimore C. P., Formation of Nitric Oxide in Premixed Hydrocarbon
Flames. Proceedings of the 13th International Symposium on Combus-
tion, The Combustion Institute, Pittsburgh, 1970.

[42] Fisher P. A. (1930), The Genetical Theory of Natural Selection. Oxford
Charendon Press.

[43] Fletcher R. S. & Heywood J. B. (1971), A Model For Nitric Oxide
Emissions From Aircraft Gas Turbine Engines. AIAA paper, AIAA-71-
123.

[44] Fogarty T. C. (1997), Genetic Algorithms for the Optimization of Com-
bustion in Multiple-Burner Furnances and Boiler Plants. In Handbook
of Evolunary Computation, Oxford University Press, Section G3.2.

[45] Fogel D. B. (1988), An evolutionary approach to the traveling salesman
problem. Biological Cybernetics, 60, pp138-144.

241

[46] Fogel D. B. (2000), Evolutionary Computation: Towards a New Phi-
losophy of Machine Intelligence, Second Edition, IEEE Press, ISBN
0-7803-5379-X.

[47] Fonseca C. M. & Fleming P. J. (1993), Genetic Algorithms for Mul-
tiobjective Optimisation: Formulation, Discussion and Generalization.
Fifth International Conference on Genetic Algorithms, Morgan Kauf-
man.

[48] Frankenberger E. & Blake-Schaub P. (1998), Modeling design process
in industry - Empirical investigations of design work in practice. Au-
tomation In Construction, Vol 7, pp139-155.

[49] Morley C. GasEq V0.71, http://www.c.morley.ukgateway.net/gseqmain.htm,
2001.

[50] Ginnakoglou K. C. (2000), Acceleration of genetic Algorithms Using
Arti�cial Neural Networks - Theoretical Background, Von Karman In-
stitute for �uid Dynamics Lectures Series 2000-07.

[51] Giannakoglou K. C. & Giotis A. P. (2000), Acceleration of Genetic Al-
gorithms Using Arti�cial Neural Networks Application of the Method.
Von Karman Institute for Fluid Dynamics Lectures Series 2000-07.

[52] Goldberg D. E. (1980), Adaptive control of gas pipeline systems. Uni-
versity of Michigan, Ann Arbor.

[53] Goldberg D. E. (1987), Simple Genetic Algorithms and the Minimal
Deceptive Problem. Genetic Algorithms and Simulated Annealing, L.
Davis (Ed.), pp 74-78.

[54] Goldberg D. E. (1989), Genetic Algorithms, In search, Optimisation &
Machine Learning. Addison-Wesley, ISBN 0-2011-5767-5.

242

[55] Goldberg D. E. (1990). Real Coded Genetic algorithms, Virtual Alpha-
bets, and Blocking. ILLIGAL Report No. 90003, University of Illinois
.

[56] Goldberg D. E. Deb K. Thierens D. (1993), Toward a Better under-
standing of mixing in genetic algorithms. Society of Instrument and
Control Engineers Journal Vol 32, pp10-16.

[57] Greenhough V. W. & Lefebvre A. H. (1957), Some Application of Com-
bustion Theory to Gas Turbine Development, Sixth International Sym-
posium on Combustion, pp858-869. Cited in [95].

[58] Grefenstette J. J. (1983), Incorporating Problem speci�c Knowledge
into Genetic Algorithms. Genetic Algorithms and Simulated Annealing:
An Overview, Davis L (Ed), Hyperion Books, pp-42-60. ISBN 0-2730-
8771-1

[59] Grefenstette J. J. (1986). Optimisation of Control Parameters for Ge-
netic Algorithms, IEEE Transactions on Systems, Man, and Cybernet-
ics, Vol 16, pp122-128.

[60] Grefenstette J. J. (1993), Deception Considered Harmful, Foundation
of Algorithms, 2, L. Darrell Whitley (Ed.) pp75-91.

[61] Grefenstette J. J. & Baker J. (1989), How Genetic Algorithms Work:
a Critical-look at Implicit Parallelism. Third Conference on Genetic
Algorithm.

[62] Greyvenstein G. P. & Laurie D. P. (1994), A Segreated CFD Approach
to Pipe Network Analysis. International Journal for Numerical Methods
in Engineering.

[63] Gupta A. K. (1997), Gas Turbine Combustion: Prospects and Chal-
lenges, Energy Conversion Management Vol38, No10-13, pp1311-1318.

243

[64] Harik G. et all, (1997), The Gamblers Ruin Problem, Genetic Algo-
rithms and the Sizing of Populations. IEEE Conference. on Evolution-
ary Computation, pp7-12.

[65] Hartley S. J. (1998), Concurrent Programming The Java Programming
Language, Oxford University Press USA.

[66] Higuchi T, Tsutsui S and Yamamura M. (2000), Theoretical Analysis of
Simplex Crossover for real Coded Genetic Algorithms. Parallel Problem
Solving From Nature VI, pp365-374.

[67] Heywood J. B., Internal Combustion Engine Fundamentals,McGraw-
Hill, 1988, ISBN 0-07-100499-8

[68] Hollstein R. B. (1971), Arti�cial Genetic Adaptation in Computer Con-
trol Systems. PhD Thesis University Of Michigan, USA. cited in [124]

[69] Holland J. H. (1975), Adaptation in Natural and Arti�cial Systems: An
Introductory Analysis with Applications to Biology, Control, and Ar-
ti�cial Intelligence, Reprint edition (April 29, 1992), MIT Press, ISBN
0-2625-8111-6.

[70] Homaifar A., Lai S. H. Y., Qi X. (1994), Constrained optimisation via
Genetic Algorithms, Simulation, Vol62, No4, pp242-254. Cited in [109].

[71] Homaifar A., Lai S. H. Y., McCormick E. (1994), System Optimisation
of Turbofan Engines Using Genetic Algorithms, Applied Mathematical
Modelling, Vol18, pp72-83.

[72] Hunter A. (1995), SUGAL User Manual, University of Sunderland, UK

[73] Iacopino G. (2002), Low Emissions Gas Turbine. MSc Thesis, Cran�eld
University.

244

[74] ICAO (1999), ICAO Adopts New Aircraft Engine Emissions and Noise
Standards, Council of the International Civil Aviation Organization
(ICAO), 1 March 1999 document ref: PIO 02/99.

[75] Ilwecicz et all (1996), Cost Optimization Software for Transport Air-
craft Design Evaluation (COSTADE) Design Cost Methods. NASA re-
port ref: NASA-96-cr4737.

[76] Jakob W., Gorges-Schleuter M., and Blume C. (1992), Application of
Genetic Algorithms to Task Planning and Learning. Parallel Problem
Solving from Nature PPSN2, pp291-310.

[77] Janikow C. Z. & Michalewicz Z. (1991), An Experimental Comparison
of Binary and Floating Point Representation in Genetic Algorithms.
fourth Conference on Genetic Algorithms.

[78] Jasuja A. K. (1982), Plain-Jet Airblast Atomization of Alternative Liq-
uid Petroleum Fuels. ASME Paper, ASME-82-GT-32.

[79] Jaszkiewicz A. (2000), On The Computational E�ectiveness of Multiple
Objectives Metaheuristics. Fourth International Conference on Multi-
Objective and Goal Programming, MOPGP-00.

[80] Joines J. A. & Houck C. R. (1994), On the use of Non-Stationary
Penalty Functions to Solve Nonlinear Constrained Optimisation Prob-
lems with GA's, Proceedings of the �rst IEEE Conference on Evolu-
tionary Computation, IEEE Press, pp579-584

[81] Johnson W. M. (1991), Superscalar Microprocessor Design, Prentice-
Hall, Englewood Cli�s, NJ.

[82] Jones B. (1999), Aircraft Gas Turbine Emissions: Legislation and Con-
trol Technology, IMechE Seminar on Gas Turbine Pollutant Emissions:
Technology advances and Update, Cran�eld University Ref S697.

245

[83] Jones M., Curnock P., Bradbrook S. J., and Brich N. (2001) Evolu-
tions in Aircraft Engine Design and Vision for the Future, Fifteenth
International Symposium on Air Breathing Engines. Bangalore, India.

[84] Kirkpatrick S., Gelatt C. D., Vecchi M. P. (1983), Optimization by
Simulated Annealing, Science 220 (4598), pp671-680.

[85] Kita H., Ono I. and Kobayashi S. (1999), Multi Parental extension
of the unimodal normal distribution crossover for real coded genetic
algorithms. proceedings of the Congress on Evolutionary Computation.
pp1581-1587

[86] Knuth D. E. (1973), The art of computer programming, fundamental
Algorithms, 2nd ed. , Vol1, Addison-Wesley.

[87] Knuth D. (1981), Seminumerical Algorithms,2nd Edition, The Art of
Computer Programming, Addison Wesley, Vol 2, Section 3.2.1.

[88] Koza J. R. (1989), Hierarchical Genetic Algorithms operating on popu-
lations of computer programs. 11th Conference on arti�cial Intelligence,
pp687�774.

[89] Kumar K. K. (1992), Genetic Algorithms: An Introduction and
Overview of their Capabilities. American Institute of aeronautics and
Astronautics paper ref: AIAA-92-4462-CP

[90] Lefebvre A. H. (1966), Theoretical Aspects of Gas Turbine Combustion
Performance, CoA Note Aero No. 163, Cran�eld University. Cited in
[95].

[91] Lefebvre A. H. (1983), Gas turbine combustion �rst edition. Mc Graw
Hill.

[92] Lefebvre A. H. (1984), Fuel e�ects on gas turbine combustion - Linear
temperature, pattern factor and Pollutant Emissions. AIAA-84-1491,
also Journal Of Aircraft Vol.21, No.11, 1984.

246

[93] Lefebvre A. H. (1985), Fuel E�ects on Gas Turbine Combustion - Igni-
tion, Stability, and Combustion E�ciency. Journal of Engineering for
Gas Turbine and Power, Vol107, pp24-37.

[94] Lefebvre A. H. (1989), Atomization and Sprays. Hemisphere Publish-
ing.

[95] Lefebvre A. H. (1999), Gas turbine combustion second edition. Taylor
& Francis, ISBN 1-56032-673-5.

[96] Levine D. (1996), Users Guide to the PGAPack Parallel Genetic Algo-
rithms Library. Argonne National Laboratory, USA, doc ANL-95/18.

[97] Louis S. G. (1993), Syntactic Analysis of Convergence in Genetic Al-
gorithms, Foundations of genetic algorithms 2, Morgan Kaufman, San
Mateo, CA, pp141�151

[98] Lowe D. (1998), Design Parameters, Private Communication.

[99] Lowe D. (1999), Altitude Relight Methodology, Private Communica-
tion.

[100] Michielssen E. Ranjithan S. and Mittra R. (1992), Optimal Multi Layer
Filter Design Using Real Coded Genetic Algorithms. IEEE Proceedings
journal Vol 139, No 6, pp413-420.

[101] Min S., Nishiwaki S., Kikuchi N. (2000), Uni�ed Topology Design of
Static and Vibrating Structures Using Multiobjective Optimisation.
Computers & Structures, V75, pp93-116.

[102] Malecki R. E., Rhie C. M., Colket M. B., Mababushi R. K. (2001), Ap-
plication of an Advanced CFD-Based Analysis System to The PW6000
Combustor to Optimize Exit Temperature Distribution - Part1: De-
scription and Validation of the Analysis Tool. Proceedings of the ASME
Turboexpo 2001, Paper 2001-GT-0062.

247

[103] Man K.F. Tang K. S. and Kwong S. (1999), Genetic Algorithms: Con-
cepts and Designs, Springer-Verlag, ISBN 1-85233-072-4.

[104] Mandavilli S. & Patnaik L. M. (1997), On Exact populationnary Model
of Genetic Algorithms, Information Sciences, pp37-67.

[105] MasonW. J. Optimal Earth Orbiting Satellite Constellations via Pareto
Genetic Algorithm. AIAA-98-4381.

[106] Mari C. (2001), Trends in the Technological Development of Are-
oEngines: an Overview. Fifteenth International Symposium on Air
Breathing Engines, Bengalore, India. ISABE-2001-1012.

[107] Meysenburg M. M. and Foster J. A. (1997), The quality of pseudo-
random number generators and simple genetic algorithm performances.
Proceedings of the Seventh international conference on genetic algo-
rithms. Morgan Kaufman, pp. 521-528.

[108] Michalewicz Z. (1995), Genetic Algorithms, Numerical Optimization
and Constraints, Proceedings of the 6th International Conference on
Genetic Algorithms, Pittsburgh, pp151-158.

[109] Michalewicz Z. (1996), Genetic Algorithms + Data Structure = Evo-
lution Programs, Third edition, Springer-Verlag, ISBN 3-540-60676-9.

[110] Michalewicz Z. & Attia N. (1994), Evolutionary Optimization of Con-
strained Problems, Proceedings of the Third Conference on Evolution-
ary Programming.

[111] Michalewicz Z., Nazhiyath G. (1995), GENOCOP III: A Co-
Evolutionary Algorithm for Numerical Optimization Problems With
Nonlinear Constraints. International Conference on Evolutionary Com-
putation, IEEE, Vol2, pp647-651.

248

[112] Michalewicz Z., & Schoenauer, M. (1996), Evolutionary Algorithms for
Constrained Parameter Optimization Problems, Evolutionary Compu-
tation, Vol.4, No.1, pp.1-32.

[113] Mongia H. (2001), A synopsis of gas turbine combustor design method-
ology evolution of last 25 years. Fifteenth International Symposium on
Air Breathing Engines, Bangalore, India. ISABE-2001-1086.

[114] Murthy J. N. Gas Turbine Combustor Modeling For Design. PhD The-
sis, Cran�eld University, UK.

[115] Murthy J. N. Gas Turbine Combustor Modeling For Design. PhD The-
sis, Cran�eld University, UK.

[116] Nadon L. J. J., Kramer S. C., and King P. I. (1998), Multi Objective
Optimization of Mixed-Stream Turbofan Engines.

[117] Nicol D., Malte P. C., Lai J., Marinov N. N., and Pratt O. T. (1992),
NOx Sensitivities for gas turbine engines Operated on lean Premixed
Combustion and Conventional Di�usion Flame. ASME Paper, ref: 92-
GT-115

[118] Nightingale P. (2000), The Product-Process-Organization Relationship
in Complex Development Projects. Research Policy, Elsevier, Vol29,
pp913-930.

[119] Nomura T. (1997), An Analysis on Linear Crossover for Real Number
Chromosomes in an In�nite Population Size. ICEC 97 (IEEE), pp111-
114.

[120] Obayashi S. (2000), Multi Objective Evolutionary Computation For
Supersonic Wing Design. Von Karman Institute for �uid Dynamics Lec-
tures Series 2000-07.

249

[121] Oyama A. Obayashi S. and Nakamura T. (2000), Real coded Adaptive
Range Genetic Algorithm Applied to Transonic Wing Optimisation,
6th International conference on Parallel Problem Solving From Nature,
Paris, Springer pp712-721. ISBN 3-540-41056-2.

[122] Pardalos P. M. et al (2000), Recent developments and trends in global
optimisation, Journal of computational and applied Mathematics, Vol.
124, pp209-228.

[123] Parmee L. C. (1997), Evolutionary and adaptive strategies for engi-
neering design. Seventh Conference on Genetic Algorithms. Morgan
Kaufman, pp373-378.

[124] Parmee L. C. (2001), Evolutionary and Adaptive Computing in Engi-
neering Design, Springer-Verlag.

[125] Pantazis D. (2002), Two Dimensional Airfoil Aerodynamics Optimisa-
tion with the Use Of Genetic Algorithms. MsC Thesis, Cran�eld Uni-
versity, UK.

[126] Patnaik S. N., Guptill J. D., Hopkins D. A., and Lavelle T. M. (2001),
Optimization for Aircraft Engines with Regression and Neiral-Network
Analysis Approximators. Journal of Propulsion and Power, Vol17, No1,
pp85-91.

[127] Periaux J. & Winter G. (1995), Genetic Algorithms In Engineering And
Computer Science, John Wiley & Sons.

[128] Pierret S., Deumeulenaere A., Gouberneur B, and Hirch C. (2001), A
Flexible and Automatic Design Environment Applied to the Optimisa-
tion of Turbomachinery Blades. Fifteenth International Symposium on
Air Breathing Engines. Bangalore, India. ISABE-2001-1054.

[129] Powell D. & Skolnick M. M. (1993), Using Genetic Algorithms in En-
gineering and Design Optimisation with Non-Linear Constraints. Pro-

250

ceedings of the Fifth International Conference on Genetic Algorithms,
Morgan Kaufman, pp424-430.

[130] Pratchet T. Stewart I. and Cohen J. (2002), The Science of the
Diskworld, second edition, Ebury Press, London. ISBN 0-09-188657-
0.

[131] Press W. H. Teukolsky S. A. Wetterling W. T. Flannerey B. P. (1992),
Numerical Recipes in C: The Art of Scienti�c Computing second Edi-
tion, Cambridge University Press, Chapter 7, pp274-316, ISBN-0-521-
43108-5.

[132] Quagliarella D & Vinci A. (2000), GAs For Aerodynamic Shape De-
sign II: Multi Objective Optimisation and Multi Criteria Design. Von
Karman Institute for Fluid Dynamics Lectures Series 2000-07.

[133] Radcli�e A. (1960), Fuel Injection. in High Speed Aerodynamics and
Jet Propulsion, Hawthorne W. R., Princeton University Press.

[134] Rogero J. M. (2002), Development of Emission Prediction Methods
for whole Engine Performance and Engine Control Studies - EmisCalc
V1.0, Cran�eld University UTC Report, No.PE051.

[135] Roy G. D., Propulsion Combustion: Fuels to Emissions, Taylor & Fran-
cis, 1998, ISBN 1-56032-431-7

[136] Radcli�e N. J. (1991), Forma Analysis and Random Respectful Re-
combination, Proceedings of the Fourth International Conference on
Genetic Algorithms.

[137] Radcli�e N. J. (1992), Non-Linear Genetic Representations, in Parallel
Problem Solving from Nature II, Elsevier Science.

[138] Radcli�e N. J. & Surry P. D. (1995), Fundamental Limitations on
Search Algorithms: Evolutionary Computing in Perspective, Lecture
Notes in Computer Science, Vol. 1000, Springer Verlag, pp275-291.

251

[139] Radding C. (1982), Homologous Pairing and Strand Exchange in Ge-
netic Recombination. Annual Review of Genetics, pp405-437.

[140] Rasheed K. Hirsh H. and Gelsey A. (1997), A genetic algorithm for
continuous design space search. Arti�cial Intelligence in Engineering
Vol 11, pp295-305.

[141] Rdolph G. (1994), Convergence Analysis of Canonical Genetic Algo-
rithms. IEEE Transactions on Neural Networks, pp96-101.

[142] Reklaitis G. V., Ravindran A., and Ragsdell K. M. (1983), Engineering
Optimization: Methods and Applications, Wiley.

[143] Rehman S. & Guenov M. D. (1998), A methodology for modeling man-
ufacturing costs at conceptual design. Computers Ind. Engng, Elsevier,
Vol35, No3-4, pp623-626.

[144] Reynolds D. & Gomatan J. (1996), Stochastic Modeling of Genetic
Algorithms, Arti�cial Intelligence, pp303-330.

[145] Richardson J. T. et all (1989), Some Guidelines for Genetic Algorithms
with Penalty Functions. Proceedings of the Third International Con-
ference on Genetic Algorithms, pp191-197.

[146] Rizk N. K. & Mongia H. C. (1991), Gas Turbine Combustor Perfor-
mance Evaluation, AIAA Paper, AIAA-91-0640.

[147] Rizk N. K. & Mongia H. (1992), NOx Model for lean Combustion Con-
cept, AIAA paper AIAA-92-3314.

[148] Rizk N. K. & Mongia H. C. (1993), Semianalytical Correlations for
NOx, CO and UHC Emissions, Journal of Engineering for Gas Turbine
and Power, Vol115, No3, pp612-619.

[149] Rizk N. K. & Mongia H. (1994), Emissions Predictions of di�erent Gas
Turbine Combustors, AIAA paper AIAA-94-0118.

252

[150] Robins Sir. R. (1996), The Trent Program, a further step in engineering
evolution. The 1996 Christopher Hilton Lecture at the Royal Institute
Of Engineers, 1st October 1996. Cited in: [118]

[151] Rogero J. M. (1998), Study of a Mach 2 Cold Flow Spike Nozzle and use
of Arti�cial Intelligence Techniques in the Aim of Shape Optimisation.
Master Thesis, University of Strathclyde, Glasgow, UK.

[152] Rogero J. M. & Rubini P. A. (2001), Optimisation of Combustor Wall
Heat Transfer and Pollutant Emissions for Preliminary Design Using
Evolutionary Techniques. Fifteenth International Symposium on Air
Breathing Engines, Bengalore, India. ISABE-2001-1122.

[153] Rogero J. M., Tiwari A., Muneaux O., Rubini P. A., Roy R., and Jared
G. (2000) Application of Evolutionary Algorithms for Solving Real Life
Design Optimisation Problems. Parallel Problem Solving From Nature
(PPSNVI) Workshop. Paris.

[154] Roozenburg N. and Eekels J. (1995), Product Design: Fundamentals
and Methods, John Wiley & Sons. ISBN 0-471-94351-7.

[155] Roy R. Parmee I. C. and Purchase G. (1996) Integrating the genetic Al-
gorithms with the Preliminary Design of Gas Turbine Cooling Systems.
second International Conference on Adaptive Computing in Engineer-
ing Design and Control, University of Plymouth.

[156] Roy R., Jared G., Tiwari A., and Muneaux O. (2000), Real Life Design
Optimisation Features And Techniques. IEEE Proceedings of the Fifth
Online World Conference on Soft Computing in Industrial Applications
(WSC5) Finland.

[157] Roy R., Jared G., Tiwari A., and Muneaux O. (2000), Design Optimi-
sation: A Survey of British industries. Flexo Report 5, SIMS, Cran�eld
University.

253

[158] Russell, S. & Norvig, P. (1995), Arti�cial Intelligence A Modern Ap-
proach. Prentice-Hall, ISBN 0-1310-380-52.

[159] Saenger W. (1984), Principle of Nucleic Acid Structure, Springer-
Verlag, ISBN 0-3879-0761-0.

[160] Schipper Y. & Rietveld P. (1997), Economics and Environmental Ef-
fects of Airline Deregulation, Tinbergen Institute Discussion Papers
No:97-031/3.

[161] Schmitt L. M. (2001), Fundamental Study: Theory of Genetic Algo-
rithms, Theoretical Computer Science 259, pp1-61.

[162] Schmitt L. M. Nhaniv C. L. and Fujii R. H. (1998), Fundamental Study:
Linear Analysis of Genetic Algorithms, Theoretical Computer Science
200, pp101-134.

[163] Schwefel H. P. (1977), Numerische optimerung von computer-modelen
mittels der evolution strategie. Interdisziplinare Systemforschung, Basel
and Stuttgart (Ed), Birkhauser Verlag, pp-5-8. Cited in [124].

[164] Schwefel H. P. (1981), Numerical Optimization of Computer Models,
John Wiley & Sons, GB.

[165] Schoenauer M. & Xanthakis S. (1993), Constrained GA Optimisation,
Proceedings of the Fifth International Conference on Genetic Algo-
rithms.

[166] Simon H. (1969), The Science of the Arti�cial, MIT Press. Cited in [4]

[167] Sobieszczanski-Sobieski J. & Haftka R. T. (1997), Multidisciplinary
aerospace design optimization: survey of recent developments, Struc-
tural Optimization, Springer-Verlag, Vol14, pp1-23.

254

[168] Stollery J. L. & El Ehwany A. A. M. (1965), A Note on the Use of
a Boundary Layer Model for Correlating Film-Cooling Data. Interna-
tional Journal of Heat and Mass Transfer, Vol8 pp55-65.

[169] Stuttaford P. J.(1997), Preliminary gas turbine combustor design using
a network approach. PhD Thesis School Of Mechanical Engineering
Cran�eld University, UK.

[170] Stuttaford P. J. & Rubini. P. A. (1996), Preliminary gas turbine com-
bustor design using a network approach. ASME paper 96-GT-135.

[171] Sunderam V. S. & Geist G. A. (1999), Heterogenous parallel and dis-
tributed computing. Parallel Computing� Elsevier Vol25, pp1699-1721.

[172] Svirezhev Y. M. & Passekov V. P. (1989), Fundamentals of Mathemat-
ical Evolutionary Genetics, Mathematics and its Applications, Vol 22,
Kluwer Academic Publishers. London.

[173] Syed K, (2001), Private Communication, Alstom Power Industrial Gas
Turbines.

[174] Thierens D. & Goldberg D. E. (1993), Mixing in Genetic Algorithms,
Proceedings of the Fifth International Conference on Genetic Algo-
rithms, pp38-45.

[175] To�olo A. & Lazzaretto A. (2002) Evolutionary Algorithms for Multi-
Objective Energetic and Economic Optimization in Thermal System
Design. Energy, V27, pp549-567.

[176] Tokumasu Y., Miazawa K., and Fujitsuna Y. (2001), Overview of �Re-
search and Development of Environmentally Compatible Propulsion
System for Next-Generation Supersonic Transport (ESPR Project)�,
Fifteenth International Symposium on Air Breathing Engines, Benga-
lore, India. ISABE-2001-1179.

255

[177] Tonouchi J. H., Held T. J., and Mongia H. C. (1998), A Semi-Analytical
Finite Rate Two Reactor Model forGas Turbine Combustors. Journal
of Engineering For Gas Turbine and Power,Vol120, pp495-501.

[178] Truelove A. M. & Whitaker K. W. (1993), Rocket Stage Optimisation
Using A simple Genetic Algorithms. 29th joint propulsion Conference,
Monterey, AIAA-93-1778.

[179] Odgers J. & Carrier C. (1973): Modeling of Gas Turbine Combus-
tors;Consideration of Combustion E�ciency and Stability, ASME pa-
per, ASME-72-WA/GT-1

[180] Odgers J. & Kretschmer D. (1985), The Prediction of Thermal NOx in
Gas Turbines, ASME paper, ASME-85-GT-126.

[181] Uelschen M. & Lawrenz M. (2000), Design of Axial Compressor Air-
foils with Arti�cial Neural Networks and Genetic Algorithms. Ameri-
can Institute of aeronautics and Astronautics paper, Fluids 2000, ref:
AIAA-2000-2546.

[182] Ulizar L. (2000), Customer oriented design. presented at Cran�eld Uni-
versity.

[183] Vavak F. Jukes K. and Fogarty T. C. (1997). Adaptive Combustion Bal-
ancing in Multiple Burner Boiler Using a Genetic Algorithm with Vari-
able Range of Local Search. Proceedings of the Seventh International
Conference on Genetic Algorithms, Morgan Kaufman, San Francisco.
pp719-726.

[184] Vose M. D. & Rowe J. E. (2000), Random Heuristic Search: Applica-
tions to GAs and Functions of Unitation. Computer Methods in Applied
Mechanics and Engineering, pp195-220.

256

[185] Wellens M. & Sing R. (2002), Propulsion System Optimisation for Min-
imal Global Warming Potential. Proceedings of the ICAS Congress,
ICAS-2002-7112.

[186] Wellens M. & Sing R. (2003), Genetic algorithms Based Optimisation
of Cooled Recuperated Turbofan Design. To be publisshed AIAA-2003-
1210.

[187] Westerberg J. (2000), Air Transport System Sensibilities. Air & Space
Europe, Vol 2, No 3, pp38-40.

[188] Whitley D. (1989), The GENITOR Algorithm and Selection Pressure:
Why Rank-Based Allocation of Reproductive Trials is Best, Proceed-
ings of the Third International Conference on Genetic Algorithms.

[189] Wienke D., Lucasius C., and Kateman G. (1992), Multicriteria tar-
get vector optimisation of analytical Procedures Using a Genetic Algo-
rithm. Acta Analytica Chimica, V265/2, pp211-225.

[190] Wright A. H. (1991), Genetic Algorithms for real parameter optimisa-
tion. in Foundation of Genetic Algorithms, Rawlins G. J. E. (ed). pp
205-222. Cited in [34].

[191] Zedda M. & Singh R. (1999), Gas Turbine Engine and Sensor Fault
Diagnosis Using Optimisation Techniques. American Institute of aero-
nautics and Astronautics paper ref: AIAA-99-2530.

[192] Zeldovich Y. B., Sadovnikov P. Y., Frank-Kamenetskii, Oxidation of
Nitrogen in Combustion, Academy of Science of USSR, Moscow,1947.

257

258

Appendix A

Documentation of the JGA

Toolbox V1.0

259

JGA Optimisation Toolbox Documentation

Jean-Michel Rogero (j.m.rogero@free.fr)

22nd April 2003

2

Contents

1 Introduction 5
1.1 Description . 5
1.2 Aim of this program . 5
1.3 The optimisation toolbox design 6
1.4 Toolbox architecture . 6

2 Installation 9

3 Usage & Example 11
3.1 The Generic Combustor 01 Example 11

4 Description of the Settings & Parameters 19
4.1 The jga Object . 19
4.2 The jgaClient Object . 22
4.3 The Optimiser Object . 23
4.4 The RandOptimiser and the GAOptimiser Objects 24
4.5 RandomSelection Object . 29
4.6 RoluetteSelection Object . 29
4.7 RandomReplacement and RankedReplacement Objects 30
4.8 General Crossover and Mutation Operators Objects 31
4.9 OnePointCrossover Object . 31
4.10 NPointCrossover Object . 31
4.11 UniformCrossover Object . 32
4.12 WeightedAveragingCrossover Object 32

3

4.13 WeightedLinearCrossover Object (BLX-α) 32
4.14 BoundedSBXCrossover Object 33
4.15 Mutation Operators Objects 33
4.16 The random mutate object . 33
4.17 The creep mutate with decay object 34
4.18 The Dynamic Vectored Mutation Object 34
4.19 Evaluation Objects . 35
4.20 Generic Chromosome Objects 36
4.21 Generic Flownet Chromosome Object 37
4.22 Gene Writing Interface Object 44
4.23 Parameter Reading Interface Object 46

5 Toolbox Con�guration �le example 49
5.1 An example of the toolbox con�guration �le �AED-Test.cfg�

for the optimisation of the �generic combustor 01� 49
5.2 The network �le of the �generic combustor 01� 56
5.3 The result �le of the �generic combustor 01� 66

4

Chapter 1

Introduction

1.1 Description

This is version 1.0 of the documentation for the JGA optimisation toolbox
version 1.0.x. This documentation intends to describe the usage and the
setting of the JGA optimisation toolbox in order to perform optimisation
with a special emphasis for optimisation on gas turbine combustor.

1.2 Aim of this program

The JGA Optimiser code is an optimisation toolbox that has been design
to perform optimisation of engineering problems, with a special emphasis
on the gas turbine combustor preliminary design. It allows to simulate any
problems as long as some way of evaluating the performances of the designs
is provided. In addition some special features have been added for the use of
this optimiser fro combustor preliminary design, It is able to run the network
simulator Flownet as well as emissions and relight models.
The aim of this tool in it's use for preliminary design is to perform local
re�nements and tuning for a combustor design by modifying some design
parameters. It is not intended as a complete design tool starting from a
blank sheet and giving an optimised combustor as an output. It should be
use to reduce the design time by performing the optimisation and tweaking
that are normally performed manually.
The JGA optimiser is based on genetic algorithms or more generally evolu-
tionary optimisation, some basic knowledge of these techniques are required
to take full advantage of the optimisation features. The genetic algorithms

5

powering the optimisation code have been extensively been adapted to engi-
neering design. More details about genetic algorithms can be found in the
�rst and second year review of the project and in the thesis.

1.3 The optimisation toolbox design

The aim of the toolbox is to provide a set of methods and tools suitable
for engineering design. Which will allow the designer to optimise numerous
parameters of a complex problem using the designer's traditional simulation
software to evaluate the solutions. To be useful the tool needs to be as
e�cient as possible and achieve results in a reasonable amount of time. It
also needs to be �exible to permit improvements of existing methods and
the addition of new tools. Finally to be used in real life it needs to be user
friendly and allows the designer to interact with the optimisation process
without requiring heavy training in the optimisation domain.
In order to achieve these objectives it will be needed to use a modular object
oriented architecture that will permit tools to be added thereby enhancing
the versatility and the performance. As well, to allow the engineer to use his
traditional analysis software. An interfacing tool able to communicate with a
wide range of third-party software will need to be developed. In order to be
applied to engineering problems the optimisation tools will need to be very
robust, and e�cient on a wide range of problems.
Genetic algorithms are used for the main optimisation tool because of their
robustness. But these need to be adapted to their use in engineering de-
sign to maximise the performance of the optimiser. As well, to reduce the
computational overhead of simulation it was found necessary to design a tool
distributing the evaluation of the analysis code over a network of heteroge-
nous computers.
The last part of the tool box concerns the program / user interaction, the
addition of a user friendly graphical interface where the designer can follow
the evolution of all the problem parameters during the optimisation allows
the user to get a 'feeling' of the optimisation process with out requiring a
high knowledge of optimisation.

1.4 Toolbox architecture

A high degree of modularity was required in order to achieve the desired
aims of versatility and expendability of the tool box. This was performed

6

by the use of Java as the main programming language, being object oriented
it readily allows development of this type of modular architecture. As well
it's platform independence avoids the burden of porting the code and eases
the problems associated with working on a heterogenous set of computers.
Another useful feature of Java is it's advanced support for networking and
graphics. However this language su�ers from being relatively slow compared
to C/C++ and as well it is not memory e�cient. The tool box is to be used
for engineering design where simulation is performed by external analysis
codes typically written in C / Fortran. Since the simulation process takes a
very high proportion of the computational time the relative slowness of Java
will not be a handicap as well the capacity of modern computer systems do
not put heavy constraints on memory usage.
The object oriented design allows modules to be loaded at runtime depending
on the toolbox requirements, it even permits new modules to be added with-
out recompilation of the code. These modular tools are organised to support
the interchangeable optimisation modules, by providing functionalities like
interfacing with other software, distributing the evaluation over a network.
The optimisation modules are themselves composed of interchangeable sub-
modules. These implement the basic functions of the optimiser. Figure 3
shows an example of the toolbox modular organisation.

7

Module
Crossover

Module

Mutation

Module

Selection

GA optimisation Module

Distributed Evaluation

Module

In
te

rf
ac

in
g

M
od

ul
e

GUI Module
Optimisation ToolBox

Designer

Analysis

Program A

Client

CClient

B

Client

A

Program B

Analysis

Figure 1.1: Example of the organisation of the modules.

8

Chapter 2

Installation

The installation is rather straight forward, the JGA Directory simply needs
to be copied on the host machine, no further settings are required to run
the code. In or der to compile it, the Make�le needs to be adapted to the
environment.-

✾ Flownet should be compiled on each of the di�erent system that com-
pose the network (the make �le will automatically create a di�erent �le
extension. for each system)

✾ Update the version of Flownet compiled for your environment in the �
directory.

✾ Set up the runclient.sh script to suit your network (if distributed eval-
uation is required)

✾ The JGA Toolbox can be compiled by typing make in this directory.

9

10

Chapter 3

Usage & Example

The aim of this chapter is to describe the use of the optimisation toolbox
through a worked example. For that we will take a combustor that will be
named �GenericCombustor01�.

3.1 The Generic Combustor 01 Example

3.1.1 Flownet Model

The �rst thing needed to perform an optimisation on a combustor is a Flownet
model of this combustor. For the optimisation to be performed correctly the
Flownet model should be complete and include wall heat transfer. No speci�c
modi�cations are required on the Flownet model, however making sure that
warnings are disabled increase the speed of execution.

3.1.2 JGA Con�guration File

The second step consists in creating the con�guration �le for the optimisation
tool box. This is the place where all the settings for the optimiser will be
concentrated, the JGA toolbox parameters as well as the settings describing
what to read and write in the Flownet input and output �les.
No order is required for the setting of the di�erent variables and data of
the con�guration �le. however to allow easy understanding of this �le it is
important to stick to a way of describing the optimisation problem in this
con�guration �le. That is why the setting of the �le is separated in 3 section.

✾ The �rst one dedicated to set the optimisation toolbox for the problem.

11

✾ The second section is used to link the genes to features on the network
input �le.

✾ The third one is used to link the result of Flownet (the network �le) to
the parameters used for the calculation of the constraints.

3.1.2.1 Setting the optimiser

This is where the setting of the optimisation toolbox is performed. All the set-
tings are described in the next chapter so this section will simply go through
the input �le and comment out on some settings.

// object JGA

variable chromosomeType = GenericFlownetChrom

variable initialPopulationRatio = 1.5

variable populationSize = 100

variable debugLevel = 0

variable optimisationMethod = GAOptimizer

variable randomSeed = 151324

The chromosome to use to perform optimisation on a combustor is the generic
Flownet chromosome. The debug level is normally set to zero. The random
seed should be changed between two similar optimisation to use a di�erent
random sequence.

// Object JgaClient

variable serverName = osiris

// object DistributedEvaluation

variable JGAPath = jga/

variable ServerPort = 5000

These setting are only needed when running the evaluation distributed.

// object Optimiser

variable maxNumberOfGenerations = 0

variable maxNumberOfEvaluations = 10000

variable maxFitness = 1

variable finalPrintPopulation = false

variable printPopInReport = false

variable reportInterval = 1

variable OutputFilesName = OptimisationOutput

12

The zero value for the maximum �tness means that the optimiser will not
stop depending of the �tness. It is not advised to print the population when
it has a large size.

// object GAOptimiser

variable objPopInitialiser = RandomInitialisation

variable objCrossoverSelector = StochasticUniversalSampling

variable objMutationSelector = RandomSelection

variable objReplacementOperator = TournamentReplacement

variable objCrossoverOperator = BoundedSBXCrossover

variable objMutationOperator = DynamicVectorMutate

variable objEvaluationOperator = SerialEvaluation

// variable objEvaluationOperator = DistributedEvaluation

The settings can be toggled using the comment symbol //

// object chromosomeModifier/Selector

variable storeChromosomes = true

variable keepTrackOfId = true

Use the store chromosome feature only when the evaluation take a relatively
long time (more than a second).
Keeping track of ID allows to keep track of the ID of the parents of a chro-
mosome

// Parameters fixed to 500 for genericflownet chromosome

// Constraints fixed to 49 for genericflownet chromosome

variable selectionPressure = 2

variable printEvaluationResults = false

variable chromosomeLength = 25

variable numberOfParameters = 500

variable numberOfConstraints = 49

// object sons of Chromosome

variable networkPath = /tmp/fl/

variable originalFileName = network1b.net

Putting the Flownet code and network in the temporary directory increase the
speed dramatically compared than running through the network �le system.
The when using the generic Flownet chromosome the number of parameters
should be set to 500 and the number of constraints should be set to 49.

13

// object StochasticUniversalSampling

variable SUSRate = 0.20

// object RouletteSelection

variable rouletteSelectionRate = 0.20

//object BoundedSBXCrossover 0 = max exploration + -> decrease

explo

variable distibutionIndex = 1.0

// object RandomSelection

variable randomSelectionRate = 0.05

// object DynamicVectorMutate

variable initialDistribFact = 0.775

variable iterDependancyFactor = 1.6

// object ReplacementOP

variable elitism = true

Those are the value that works well on this case, elitism works generally well
in all cases.

3.1.2.2 Setting The Constraints

When using the generic Flownet chromosome there is 31 constraints listed
and described individually in chapter 4.17.8, these constraints might not all
be useful to the particular case.
These constraints might be used for di�erent purpose:

✾ converging a constraint towards a target value.
✾ constraining a constraint to a range.
✾ optimising a constraint by maximising or minimising it.

So these constraints can be switched on or o� for each of these uses in the
input �le.
// Constraints |---------- pressure drops ----------|--------------- AFRs ---------------... -----|

// 1 2 3 4 5 6 7 8 9 10 11 12 ... 31

data targetConstraintFlag = { true false false false false false true true true false false false ... false }

data rangeConstraintFlag = { true false false false false false true true true false false false ... false }

data optimiseConstraintFlag = { false false false false false false false false false false false false ... false }

data maxOptimiseConstFlag = { false false false false false false false false false false false false ... false }

data constraintsTarget = { 0.056 0 0 0 0 0 6.357 24.03 25.94 0 0 0 ... 0 }

data constraintsLowerRange = { 0.950 0 0 0 0 0 0.950 0.950 0.950 0 0 0 ... 0 }

data constraintsUpperRange = { 1.050 0 0 0 0 0 1.050 1.050 1.050 0 0 0 ... 0)

.

The settings are only shown partially due to space problems.When the target
constraint �ag is set to true or when the optimise constraint �ag is set to
true the target for this constraint should be set. As well when the range �ag
is set at least one of the range for this constraint should be set.

14

3.1.2.3 Setting the genes to be written in the Flownet input �le

The setting of the genes allows the toolbox to interact with Flownet through
the �.net� input �le. This is done through the �generic text �le interface�
which is able to process a text �le and modify a number of key parameters.
This �le interface search a �le (normally the Flownet input �le) for a given
text string either in the whole �le or in a designated column or in the desig-
nates line.
Please refer to section 4.18 for more detailed informations on the syntax.
For example we are looking to modify the diameter of outer primary dilution
port (OPDP) labelled as element �20� in a Flownet input �le. This element
is located in the Cooling/Dilution Holes (HO) section of the input �le, so a
lock will be made on the �HO� string which de�nes the start of this section.
We know that element numbers are located in the �rst column. As well we
know that the diameter of the holes is speci�ed in the 5th column
The con�guration line link the gene 1 to the element 20 will be the following:

vect key {type name string line column linoffset coloffset geneNo}

vect i1 {lock �HO� 0 1 0 0 }

vect i2 {gene PDP �20� 0 1 0 4 1 }

The search is done sequentially in the �le so the values searched have to be
in the same order as in the �le.
Here is a complete linking of genes to the input �le:
// finding the cooling /dilution holes section.

vect i1 { lock HO 0 1 0 0 }

// Baseplate Cooling

vect i2 { gene IBPC1 "34" 0 1 0 4 18 }

vect i3 { gene OBPC3 "11" 0 1 0 4 21 }

vect i4 { gene OBPC4 "8" 0 1 0 4 23 }

vect i5 { gene OBPC2 "16" 0 1 0 4 20 }

vect i6 { gene IBPC3 "12" 0 1 0 4 22 }

vect i7 { gene OBPC1 "17" 0 1 0 4 17 }

vect i8 { gene IBPC2 "33" 0 1 0 4 19 }

// Fuel Injector

vect i9 { gene FI "13" 0 1 0 4 16 }

vect i10 { gene OBPC5 "28" 0 1 0 4 25 }

15

vect i11 { gene IBPC4 "9" 0 1 0 4 24 }

// Outer primary and secondary dilution port

vect i12 { gene OPDP "20" 0 1 0 4 1 }

vect i13 { gene OIDP "38" 0 1 0 4 3 }

// Inner Primary and secondary dilution port

vect i14 { gene IPDP "43" 0 1 0 4 2 }

vect i15 { gene IIDP "42" 0 1 0 4 4 }

// Inner and Outer primary effusion cooling

vect i16 { gene OPEC "23" 0 1 0 4 5 }

vect i17 { gene IPEC "48" 0 1 0 4 6 }

// Outer Zrings

vect i18 { gene OZR1 "19" 0 1 0 4 7 }

vect i19 { gene OZR2 "29" 0 1 0 4 9 }

vect i20 { gene OZR3 "30" 0 1 0 4 11 }

vect i21 { gene OZR4 "37" 0 1 0 4 13 }

vect i22 { gene OZR5 "3" 0 1 0 4 15 }

// Inner Zrings

vect i23 { gene IZR1 "44" 0 1 0 4 8 }

vect i24 { gene IZR2 "45" 0 1 0 4 10 }

vect i25 { gene IZR3 "46" 0 1 0 4 12 }

vect i26 { gene IZR4 "47" 0 1 0 4 14 }

3.1.2.4 Setting the parameters to be read in the �ownet output
�le

The parameters are read in much the same way as the genes are written,
There the parameter number replace the gene number and values are read
and not written.

3.1.3 Performing the Optimisation

The optimisation toolbox can be run using two di�erent modes. The text
mode or the graphic mode

16

3.1.3.1 The text mode

To launch the optimisation using the text mode the command is �jga name-
OfCon�gurationFile�
The text mode is very basic, all the data about the optimisation followed the
display of the progress of the optimisation
will scroll on the terminal. The optimiser will exit automatically when the
stopping conditions will be reached. In order to kill the optimisation while
it is ongoing use the �control C� combination.

3.1.3.2 The graphic mode

To launch the optimisation using the graphic mode the command is �jgat
nameOfCon�gurationFile�
The graphic mode allows to visualise the progress of the optimisation by
displaying onto one graph the best, average and worst �tness,
and onto an other graph one of he followings, the value of the genes, the target
or range error, the optimisation bonus, the value of each of the constraints
or the value of each of the parameters.
Once the optimisation toolbox is launched the optimisation can be started
using the start button and can be stopped using the stop button. The list in
the middle allows th chose the data that will displayed on the left graph.

17

18

Chapter 4

Description of the Settings &

Parameters

This chapter aims to describe in details each parameters and settings for all
of the implemented modules. It is intended to be a quick reference when
building a new input �le, or developing an existing one.
For each objects (modules) their functionalities are described and their pa-
rameters are listed and explained in details with when possible the range of
acceptable values and the usual settings.

4.1 The jga Object

This is the main object of the optimiser, it is where the optimisation technique
is set and lunched and where the system is set up.

4.1.1 Debug Level �variable debugLevel (Integer)�

The debug level is used to setup the amount of information displayed in the
console:

✾ 0 -> No debug information printed.
✾ 1 -> Minimal debug informations displayed.
✾ 2 -> Extended debug informations.
✾ 3 -> Very speci�c debug informations.

19

4.1.2 Random Seed �variable randomSeed (Long Inte-
ger)�

The setting of the random seed allow to reproduce optimisation:

✾ Two optimisation performed with the same Random Seed and exactly the same parameters
will give the same results.

✾ Two optimisation performed with a di�erent Random Seed and exactly
the same parameters will give di�erent results.

✾ Two optimisation performed with the same Random Seed and di�erent
parameters will give di�erent results. Due to the fact that even a slight
change in the parameter will a�ect the pseudo random number suite
changing totally the suite.

The available range for the Random seed variable is a long integer from: 1
to 1E+19.

4.1.3 Statistics analysis �variable numberOfTrials (Inte-
ger)�

This variable is set when performing statistical analysis of the optimisation,
it allows to run the optimiser a given number of times with a di�erent random
seed.

4.1.4 Store Chromosome �variable storeChromosome (Boolean)�

This setting allow to store all generated chromosomes in a database usable
by the optimiser to improve the e�ciency of the optimisation.

✾ �true� to store the chromosomes. Recommended when the evaluation
of the chromosome is time consuming.

✾ �false� not to store the chromosomes. Recommended when evaluation
is short or the number of evaluation is high.

20

4.1.5 Initial Population Size �variable initialPopulation-
Ratio (Double)�

De�nes the Initial size of the population as a ratio of the population size.
The initial population being randomly generated an initial size of the popu-
lation larger than the population size can improve the performances. As well
the evaluation by �ownet of combustors with random parameters results in
�ownet failing to give a result for a high proportion of the chromosomes (ie,
combustor designs). Increasing the size of the initial population allows to
compensate for the �ownet failures.

4.1.6 Population Size �variable populationSize (Integer)�

The population size de�nes the number of chromosomes (ie, combustor de-
signs) in the population at the end of each generation. There are no strict
rules de�ning the size of the population for a problems. Usually it has been
found that the size of the population should increase with the number of
genes. a problem with 10 genes (variables) should have a population around
50 to 200 chromosomes and a problem with 20 genes should have a popula-
tion between 150 and 500 chromosomes. These numbers will varies as well
depending of the capacity of the GA operators to maintain diversity.

4.1.7 Optimisation Method �variable optinisationMethod
(String)�

This is where the type of optimisation is selected by choosing the appro-
priate optimisation object. At the time of writing this documentation two
optimisation objects exist:

✾ �RandOptimiser� The Random Optimisation object performs optimisa-
tion using the random search method. This method is very ine�cient
and therefore it is only intended to be used for comparison purpose.

✾ �GAOptimiser� The Genetic Algorithm Optimiser is the main Optimi-
sation method, This methods is based on the genetic algorithms �rst
developed by John Holland. However it has been extensively modi�ed
and the name of Evolutionary Strategies would be more appropriate.
for more information on this object please refer to the 1st and 2nd year
review and the thesis to be published. GAOptimiser is the preferred
optimisation method for the time being.

21

✾ �HybridOptimizer� This is a test optimiser using GAOptimiser as the
main optimiser and a hill climbing type technique towards the end.

✾ �OperatorTester� The operator tester is used to test new operators in
known conditions.

New optimisation objects can be added by the users.

4.1.8 Chromosome Type �variable chromosomeType (string)�

This is where the type of chromosome is selected. The chromosome is the
place where the design variables of the combustor to be optimised are stored
as well as the methods for evaluating the quality of the designs. At the time
being it is necessary to create a new chromosome object for each type of
optimisation job. The objects available for the time being are:

✾ �FunctionChromosome� This a test chromosome where the optimisa-
tion consist in maximising one of three prede�ned functions of known
optimum.

✾ �GenericFlownetChrom� This is the chromosome chromosome used to
perform optimisation on any �ownet combustor network.

This list might increase as new object needs to be created for new type of
optimisations.

4.2 The jgaClient Object

This object is the client object that is run on remote computers when running
with distributed evaluation. The setting of theses variables is only necessary
when running distributed evaluations.

4.2.1 Server Name �variable serverName (string)�

This variable stores the name of the computer running the server of the
optimisation.

4.2.2 Server Port �variable serverPort (Integer)�

This variable stores the port number where the server and the clients will be
communicating.

22

4.3 The Optimiser Object

The Optimiser object is the parent object of all the optimisation methods. it
is where the general settings used by all the optimisation methods are made.

4.3.1 MaximumNumber of Generations �variable maxNum-
berOfGenerations (Integer)�

This variable allows to de�ne the maximum number of generation to be pro-
cessed. The optimiser will stop when the set number of generation have been
performed. If the set number of generation is 0 the optimiser will not take
into account the maximum number of generation.

4.3.2 MaximumNumber of Evaluations �variable maxNum-
berOfEvaluations (Integer)�

This variable allows to de�ne the maximum number of evaluations to be
processed. The optimiser will stop when the set number of evaluation have
been performed. If the set number of evaluation is 0 the optimiser will not
take into account the maximum number of generation. Using the maximum
number of evaluations as a stopping parameter is interesting because it allows
to compare the performance of di�erent settings, and as well it is proportional
to the CPU time requirement.

4.3.3 Maximum Fitness �variable maxFitness (Double)�

This variable allows to de�ne the maximum �tness of an optimisation to be
performed. The optimiser will stop when the set �tness has been achieved. if
the set �tness value is 0 the optimiser will not take into account the maximum
�tness. This is useful on optimisations where the desired �tness is known.

4.3.4 Final Printing of the Population �variable �nal-
PrintPopulation (Boolean)�

This setting allow the display in the console of the entire population at the
end of the optimisation.

✾ �true� prints the �nal population.
✾ �false� do not print the population.

23

4.3.5 Print the Population In the Report �variable print-
PopInReport (Boolean)�

This setting allow the display in the console of the entire population during
the report.

✾ �true� prints the population in the report.
✾ �false� do not print the population in the report. (the best member of

the population will still be printed)

4.3.6 Reporting Interval �variable reportInterval (Inte-
ger)�

De�ne the interval between each reports in terms of number of generations.

4.3.7 Output Files Base Name �variable OutputFilesName
(String)�

This de�nes the base name of your output �les. For example If the base name
is �combustorTest�

✾ The optimisation log will be �combustorTestOutput.out�
✾ The Population File will be �combustorTestPop.out�

4.4 The RandOptimiser and the GAOptimiser

Objects

These objects are implementations of the optimisation methods.
The random optimisation object performs optimisation using the random
search method. This method is very ine�cient and therefore it is only in-
tended to be used for comparison purpose.
The Genetic Algorithm Optimiser is the main Optimisation method, This
methods is based on the genetic algorithms �rst developed by John Hol-
land. However it has been extensively modi�ed and the name of Evolutionary
Strategies would be more appropriate. for more information on this object

24

please refer to the 1st and 2nd year review and the thesis to be published.
GAOptimiser is the preferred optimisation method for the time being.
They share some common parameters settings that is why they are regrouped
under a same section.

4.4.1 Evaluation Method Selection �variable objEvalu-
ationOperator (String)�

This setting is common for the RandOptimiser and the GAOptimiser. The
selection of the evaluation method allows tree settings:

✾ �SerialEvaluation� To evaluate all the chromosomes serially on a single
computer

✾ �ParallelEvaluation� To evaluate the chromosomes in parallel on a multi
CPU workstations when the operating system allows it.

✾ �DistributedEvaluation� To evaluate the chromosomes in parallel over
a distributed network, the most e�cient method for big optimisation
jobs.

4.4.2 Population Initialiser Method �variable objPopIni-
tialiser (String)�

This setting is common for the RandOptimiser and the GAOptimiser. It
allows to select the method used to initialise the initial population. For
the time being the only setting available is �RandomInitialisation� which
randomly initialise the initial population within the genes upper and lower
bounds.

4.4.3 Replacement Operator Selection �variable objRe-
placementOperator (String)�

This setting is common for the RandOptimiser and the GAOptimiser. It
allows to select the method used at the end of a generation to replace some
of the old members of the population by some of the newly generated chro-
mosome.

25

✾ �TournamentReplacement� This method repeatedly create a tourna-
ment between some randomly picked chromosomes among the newly
generated chromosomes and the old chromosomes, the chromosome
with the best �tness will be kept and the other one will be discarded.
This method might be a bit less e�cient than the ranked replacement
but allows to maintain diversity in the population,

✾ �RankedReplacement� This method creates a table including the new
and the old chromosomes where the chromosomes are ordered depend-
ing of their �tness. The chromosomes with the best �tness are then
integrated back in the population. This method is a bit more e�cient
than the Tournament Replacement but can su�er from premature con-
vergence due to the reduction of diversity.

4.4.4 Crossover Selection Method �variable objCrosso-
verSelector (String)�

This setting is particular to the GAOptimiser. It allows to de�ne the way the
chromosomes are selected for the crossover operator. At the time of writing
this documentation only two selection objects have been implemented:

✾ �RouletteSelection� This method consists in a�ecting to each chromo-
some an area proportional to their relative �tness on a virtual roulette
wheel, this wheel is then spun repeatedly to select the chromosomes for
the crossover. This method allows to give a chromosome a chance to
be picked proportional to it's relative �tness.

✾ �StochasticUniversalSampling� This method is similar to the Roulette-
Selection method except that the wheel is spun only once and chromo-
somes are picked from pointers around the wheel. This method allows
to reduce bias in the selection, this is the preferred selection method
for crossover.

✾ �RandomSelection� This method consists in randomly picking chromo-
somes in the population for crossover. This method is not very suitable
for crossover since it is not biased towards the �ttest members.

4.4.5 Mutation Selection Method�variable objMutation-
Selector (String)�

This setting is particular to the GAOptimiser. It allows to de�ne the way the
chromosomes are selected for the mutation operator. At the time of writing

26

this documentation only two selection objects have been implemented:
✾ �RouletteSelection� This method consists in a�ecting to each chromo-

some an area proportional to their relative �tness on a virtual roulette
wheel, this wheel is then spun repeatedly to select the chromosomes for
the mutation. This method allows to give a chromosome a chance to
be picked proportional to it's relative �tness. This method is not very
suitable for mutation since it is biased towards the �ttest members.

✾ �RandomSelection� This method consists in randomly picking chromo-
somes in the population for crossover. This is the preferred selection
method for mutation.

4.4.6 Crossover Operator Object �variable objCrossover-
Operator (String)�

This setting is particular to the GAOptimiser. It allows to de�ne the operator
used to perform the crossover. At the time of writing this documentation �ve
crossover methods have been implemented:

✾ �OnePointCrossover� For this method a point of section of the chromo-
some is randomly selected then the �rst part of the �rst chromosome is
paired with the second part of the second chromosome. This method
is most suited for binary type chromosomes.

✾ �NPointCrossover� For this method a number N of section points of
the chromosome are randomly selected then the parts of each chromo-
some are paired together. This method is most suited for binary type
chromosomes.

✾ �UniformCrossover� For this method each gene is randomly selected
from one or an other of the parents and included in the new chromo-
some. this method is suited for both binary or real type encoding.

✾ �WeightedAveragingCrossover� For this method a randomly weighted
average between the two parents genes is performed. this is repeated
for all the genes. This is the most e�cient method for real number
coded chromosomes like the chromosomes encoding the combustors.

✾ �WeightedLinearCrossover� sometimes referred as BLX-α, This is a
method where a randomly weighted point is selected on a virtual line
linking the two parents genes. The new point is selected on a range
de�ned by the two parents genes and an exploration factor. this is
repeated for all the genes.

27

✾ �BoundedSBXCrossover� This is the bounded Simulated Binary Crossover,
which is based on the BLX-α crossover where a spread factor and a
polynomial distribution function are used to perform the blending be-
tween the two parent genes values. This is the most e�cient method
for real number coded chromosomes like the chromosomes encoding the
combustors.

4.4.7 Mutation Operator Object �objMutationOperator
(String)�

This setting is particular to the GAOptimiser. It allows to de�ne the operator
used to perform the mutation. At the time of writing this documentation
three mutation methods have been implemented:

✾ �RandomMutate� This operator randomly mutate a random gene over
it's all range. It is the most basic form of nutation, it's explorative
properties are quite good however it has been found to be disruptive
for genes that have very sensitive settings like ports diameters and etc..

✾ �CreepMutate� This operator randomly mutate a random gene over
a given portion of it's range. It's e�ect is close to hill climbing, it's
explorative properties are limited in range than pure random mutation
but it is much less disruptive.

✾ �CreepMutateWithDecay� This operator randomly mutate a random
gene over a given portion of it's range with the portion of this range
reducing with the number of evaluations. It's e�ect is close to hill
climbing with annealing, it's explorative properties are less limited in
range than the creep mutation due to a larger range at the beginning of
the optimisation and it is much less disruptive due to the reduction of
this range when the optimisation tend towards the end and some genes
becomes critical.

✾ �DynamicVectorMutate� This operator use a vector of random direction
and magnitude to mutate a chromosome. The magnitude is de�ned
using a bounded polynomial spread function to reduce the range of
mutation as the optimisation progresses. This is the preferred mutation
operator for real number optimisation.

28

4.5 RandomSelection Object

The random selection operator contains the methods to randomly select chro-
mosomes from a population. It is mainly used to select chromosomes to be
mutated

4.5.1 Random Selection Rate �variable randomSelection-
Rate (Double)�

This variable allows to set the desired random selection rate, which is the
average fraction of the population that will be selected. The range of this
value is between 0 and 1. When used to pick chromosomes for the mutation
operator the optimum values are usually between 0.05 and 0.20, so only a
small fraction of the population is picked up for the mutation.

4.6 RoluetteSelection Object

The roulette selection operator contains the methods to select chromosomes
from a population using the roulette wheel technique, which consists in af-
fecting to each chromosome an area proportional to their relative �tness on
a virtual roulette wheel, this wheel is then spun repeatedly to select the
chromosomes for the mutation. This method allows to give a chromosome a
chance to be picked proportional to it's relative �tness. This method is nor-
mally used to select chromosomes for crossover because it is biased towards
the �ttest chromosomes.

4.6.1 Roulette Selection Rate �variable rouletteSelec-
tionRate (Double)�

This variable allows to set the desired roulette selection rate, which is the
average fraction of the population that will be selected. The range of this
value is between 0 and 1. When used to pick chromosomes for the crossover
operator the optimum values are usually between 0.15 and 0.40, so a relatively
large fraction of the population is picked up for crossover.

29

4.6.2 Stochastic Universal Sampling Rate �variable SUS-
Rate (Double)�

This variable allows to set the desired SUS selection rate, which is the average
fraction of the population that will be selected. The range of this value is
between 0 and 1. When used to pick chromosomes for the crossover operator
the optimum values are usually between 0.10 and 0.30, so a relatively large
fraction of the population is picked up for crossover.

4.7 RandomReplacement and RankedReplace-

ment Objects

The RandomReplacement and the RankedReplacement objects contains the
methods used at the end of a generation to replace some of the old members
of the population by some of the newly generated chromosome.
The tournament replacement method repeatedly create a tournament be-
tween some randomly picked chromosomes among the newly generated chro-
mosomes and the old chromosomes, the chromosome with the best �tness
will be kept and the other one will be discarded. This method might be a bit
less e�cient than the ranked replacement but allows to maintain diversity in
the population,
The ranked replacement method creates a table including the new and the
old chromosomes where the chromosomes are ordered depending of their �t-
ness. The chromosomes with the best �tness are then integrated back in the
population. This method is a bit more e�cient than the Tournament Re-
placement but can su�er from premature convergence due to the reduction
of diversity.

4.7.1 Elitism �variable elitism (Boolean)�

This variable apply to both RandomReplacement and RankedReplacement,
it allows to enable or disable the elitism in the replacement method. The
elitism means that the best member of the old population is always kept
ant brought back in the new population. Enabling elitism often improve the
performances of the optimiser.

✾ �true� elitism enabled
✾ �false� elitism disabled

30

4.8 General Crossover and Mutation Operators

Objects

4.8.1 Keep Track Of ID �variable keepTrackOfId (Boolean)�

This setting is common for all crossover and mutation operators, it allows to
keep track of the parents ID of a chromosome.
�true� enable the tracking of ID
�false� disable the tracking of ID
The crossover operators objects contains the methods allowing the genetic
algorithms to perform recombination of some of the �ttest members of the
population. This means that the crossover operators take a minimum of
two chromosomes, and recombines theirs genes using di�erent techniques.
At the time of writing this documentation �ve crossover methods have been
implemented

4.9 OnePointCrossover Object

The one point crossover method consists in randomly selecting a point on the
chromosomes gene string then the �rst part of the �rst chromosome is paired
with the second part of the second chromosome. This method is most suited
for binary type chromosomes.
No settings are associated with this method.

4.10 NPointCrossover Object

The N point crossover is a method where a number N of section points of the
chromosome are randomly selected then the parts of each chromosome are
paired together. This method is most suited for binary type chromosomes.

4.10.1 Number of Crossover Points �variable numXover-
Points (Integer)�

This setting de�nes the number of points used for the crossover. The value
is an Integer from 0 to the number of genes.

31

4.11 UniformCrossover Object

The uniform crossover is a method where each gene is randomly selected
from one or an other of the parents and included in the new chromosome.
this method is suited for both binary or real type encoding.
No settings are associated with this method.

4.12 WeightedAveragingCrossover Object

The weighted averaging crossover is a method where a randomly weighted
average between the two parents genes is performed. this is repeated for all
the genes. This is an e�cient method for real number coded chromosomes
like the chromosomes encoding the combustors.
No settings are associated with this method.

4.13 WeightedLinearCrossover Object (BLX-α)

The BLX-α crossover is a method where a randomly weighted point is selected
on a virtual line linking the two parents genes. The new point is selected on
a range de�ned by the two parents genes and an exploration factor. this is
repeated for all the genes. This is the most e�cient method for real number
coded chromosomes like the chromosomes encoding the combustors.

4.13.1 Exploration Factor �variable explorationFactor (Dou-
ble)�

This variable allows to set the exploration factor of the weighted linear
crossover. the value to give is a double number superior to 0.

✾ A value of the factor < 1 will have a tendency to collapse the population
around a particular point (reduce diversity)

✾ A value of the factor = 1 will keep the spreading of the population
constant. (still a small reduction of diversity)

✾ A value of the factor > 1 will have a tendency to expand the population.
(increasing the diversity)

The usual range of the exploration factor is from 0.8 to 1.5 low values tends
to converge the population prematurely.

32

4.14 BoundedSBXCrossover Object

This is a crossover operator that creates two children from two parents with
a probability distribution of the gene values similar to the probability distri-
bution generated by the binary crossover method. It relies on the same basic
principle of blending the characteristics of the two parent chromosomes in a
manner similar to the BLX-α or the weighted linear averaging. However its
uniqueness comes from the de�nition of a spread factor β and the use of a
polynomial distribution function β to perform the blending between the two
parent genes values.
//object BoundedSBXCrossover 0 = max exploration + -> decrease explo

4.14.1 Exploration Factor �variable distibutionIndex (Dou-
ble)�

This variable allows to set the exploration factor of the weighted linear
crossover. the value to give is a double number superior to 0.

✾ A value of the Index < 1 will have a tendency to expand the population.
(increasing the diversity)

✾ A value of the Index = 1 will keep the spreading of the population
constant. (still a small reduction of diversity)

✾ A value of the Index > 1 will have a tendency to decrease the exploration

An Index value of 1 have been reported to give the best results.

4.15 Mutation Operators Objects

The mutation operator objects are used to perform mutation of one gene some
selected chromosomes. The mutation correspond to one random change to
one random chromosome

4.16 The random mutate object

Is an operator that randomly mutates a random gene over it's all range. It
is the most basic form of nutation, it's explorative properties are quite good

33

however it has been found to be disruptive for genes that have very sensitive
settings like ports diameters and etc.. No settings are associated with this
object.
The creep mutate object, is an operator that randomly mutates a random
gene over a given portion of it's range. It's e�ect is close to hill climbing, it's
explorative properties are limited in range than pure random mutation but
it is much less disruptive.

4.17 The creep mutate with decay object

Is an operator that randomly mutates a random gene over a given portion
of it's range with the portion of this range reducing with the number of
evaluations. It's e�ect is close to hill climbing with annealing, it's explorative
properties are less limited in range than the creep mutation due to a larger
range at the beginning of the optimisation and it is much less disruptive due
to the reduction of this range when the optimisation tend towards the end
and some genes becomes critical.

4.17.1 Creep Size �variable creepSize (Double)�

The creepSize variable is associated with the creep mutate object and the
creep mutate with decay object. This variable de�nes the initial variation
range of the mutation in percent. The allowable range for this variable is
from 0 to 100. The usual range of this variable varies from 10 to 20 for the
creep mutate operator and 20 to 40 for the creep mutate with decay operator.

4.17.2 Creep Decay �variable creepDecay (Double)�

The creepDecay variable is associated with the creep mutate with decay ob-
ject. This variable de�nes the reduction of range that takes place at the end
of each generation. It is expressed in terms of the percentage reduction of
the range. The allowable range for this variable is from 0 to 100. The usual
range of this variable is between 0.1 to 5, this decay should be reduces as the
number of generation planed for the optimisation increase.

4.18 The Dynamic Vectored Mutation Object

This operator use a vector of random direction and magnitude to mutate a
chromosome. The magnitude is de�ned using a bounded polynomial spread

34

function to reduce the range of mutation as the optimisation progresses. This
is the preferred mutation operator for real number optimisation.
This object has two settings

4.18.1 Initial Distribution Factor �variable initialDistrib-
Fact (Double)�

This variable de�ne the initial spread of the mutation, optimum values are
around 0.6 to 0.9.

4.18.2 Iteration Dependency Factor �variable iterDepen-
dancyFactor(Double)�

This factor de�ne the spread reduction in function of the completion of the
optimisation, optimal values are around 1.1 to 2.0.

4.19 Evaluation Objects

The evaluation objects allows di�erent methods for the evaluation of the
chromosomes depending on the computer resources available and the problem
type.
The serial evaluation object allows to evaluate all the chromosomes serially
on a single computer this is the most suited technique for the evaluation of
small chromosomes (chromosomes that are not linked with �ownet or any
other programs). No settings are associated with this object.
The parallel evaluation object allows to evaluate the chromosomes in paral-
lel on a multi CPU workstations when the operating system allows it. No
settings are associated with this object.
The distributed evaluation object allows to evaluate the chromosomes in par-
allel over a distributed network, the most e�cient method for big optimisa-
tion jobs (ie when the chromosomes are linked to �ownet or authors external
programs).

4.19.1 Server Name �variable serverName (string)�

The serverName variable is associated with the distributed evaluation object.
This variable stores the name of the computer running the server of the
optimisation.

35

4.19.2 Server Port �variable serverPort (Integer)�

The serverPort variable is associated with the distributed evaluation object.
This variable stores the port number where the server and the clients will be
communicating.

4.19.3 JGA Path �variable JGAPath (String)�

The JGAPath variable is associated with the distributed evaluation object.
This variable stores the local path to the jga code.

4.20 Generic Chromosome Objects

An object based on the generic chromosome type is the place where the design
variables of the problem to be optimised are stored as well as the methods
for evaluating the quality of the designs. At the time being it is necessary
to create a new chromosome object for each type of optimisation job. All
objects derived from the generic chromosome (ie, all combustor chromosomes
and normally all other chromosome type) share the following settings.

4.20.1 Chromosome Length �variable chromosomeLength
(Integer)�

This variable de�nes the number of genes that are contained in the chromo-
some (ie, the number of variables allowed to change for the optimisation).
It's value is a positive integer superior to 0. The maximum number of vari-
ables depends only on the capacity of the computer used and the time you
are ready to wait for. an optimisation with 25 genes (ie, 25 variables) will
take around 4 hours on a 600Mhz Athlon Linux machine.

4.20.2 Number Of Parameters �variable numberOfParam-
etters (Integer)�

This variable de�nes the number of parameters that will be read from an
external �le, like a �ownet output �le. Theses parameters will then be used
to calculate the performance parameters used for the di�erent constraints
and optimised values to de�ne the �tness of the chromosome. There is no
upper limit to the number of parameters.

36

4.20.3 Number Of Constraints �variable numberOfCon-
straints (Integer)�

This variable de�nes the number of constraints constraining the problem. A
constraint allows to de�ne a target and a validity range for a performance
parameter. For example a pressure drop constraint of 5% with an allowable
range of ±5% will constraint the allowable pressure drop between 4.75% and
5.25%.

4.20.4 Number Of Optimised Value �variable numberO-
fOptimisedValue (Integer)�

This variable de�nes the number of values that will be optimised (ie, the
optimiser will try to maximise or minimise these values).

4.21 Generic Flownet Chromosome Object

This is the general chromosome to be used for optimisations of combustors
using �ownet. This chromosome should allow to optimise any kind of com-
bustors.
For that purpose it uses 31 constraints that can be switched individually to
be range constrained, target constrained, optimised or can be switched o�.
To calculate the constraints a large list of 500 parameters need to be used.
The di�erent constraints and the parameters will be described in details.
For the parameters only the parameters actually used for the calculation
of the active constraints needs to be set. As well when the calculation are
performed on a large list of parameters like averaging of temperatures or
summation of cooling mass �ow the number of parameters to be set will
depends of the number of elements describing the feature on the model.

4.21.1 Target Constraint Flag list �data targetConstraint-
Flag (list of Booleans)�

This parameter is a list of booleans of the size of the number of constraints
where for each constraint the value true de�nes that it will be used as a target
for the optimisation and the value false means it will not be used as a target.

37

4.21.2 Range Constraint Flag list �data rangeConstraint-
Flag (list of Booleans)�

This parameter is a list of booleans of the size of the number of constraints
where for each constraint the value true de�nes that it will be used as a range
constraint for the optimisation and the value false means it will not be used
as a range constraint.

4.21.3 Optimisation Constraint Flag list �data optimiseC-
onstraintFlag (list of Booleans)�

This parameter is a list of booleans of the size of the number of constraints
where for each constraint the value true de�nes that it will be used as a
value to be optimised for the optimisation and the value false means it will
not be used as a value to optimise. The optimiseConstraintFlag and the
targetConstraintFlag of a constraint should not be set to true together it is
either one or the other.

4.21.4 Maximise Optimised Constraint Flag List �data
maxOptimiseConstFlag(list of Booleans)�

This parameter is a list of booleans of the size of the number of constraints
where for each constraint the value true de�nes that the constraint to be
optimised need to be maximised and the value false means it will need to be
minimised.

4.21.5 Constraints Target �data ConstraintsTarget (list
of Double)�

This parameter is a list of Doubles of the size of the number of constraints
where for each constraint the value de�nes the target to be that the optimiser
try to reach. when the targetConstraintFlag is set the optimiser will try
to reach this value exactly or when the optimiseConstraintFlag is set the
optimiser will try to reach this value and improve it if it can.

38

4.21.6 Constraints Lower Range �data ConstraintsLow-
erRange (list of Double)�

This parameter is a list of Doubles of the size of the number of constraints
where for each constraint the value de�nes the lower allowable range for the
value as a fraction of the ConstraintsTarget value. A zero for a value means
no check for the lower range.

4.21.7 Constraints Upper Range �data ConstraintsUp-
perRange (list of Double)�

This parameter is a list of Doubles of the size of the number of constraints
where for each constraint the value de�nes the Upper allowable range for the
value as a fraction of the ConstraintsTarget value. A zero for a value means
no check for the Upper range.

4.21.8 The generic performances constraints

✾ Constraint 1 -> Combustor overall pressure drop. Calculation: (P3
-Pcombustor exit)/P3 uses parameters 1 and 2

✾ Constraint 2 -> Generic pressure drop 1. Calculation: PA−PB

PA
uses

parameters 10 and 11
✾ Constraint 3 -> Generic pressure drop 2. Calculation: PA−PB

PA
uses

parameters 12 and 13
✾ Constraint 4 -> Generic pressure drop 3. Calculation: PA−PB

PA
uses

parameters 14 and 15
✾ Constraint 5 -> Generic pressure drop 4. Calculation: PA−PB

PA
uses

parameters 16 and 17
✾ Constraint 6 -> Generic pressure drop 5. Calculation: PA−PB

PA
uses

parameters 18 and 19
✾ Constraint 7 -> Calculate the Injector 1 AFR (Air Fuel Ratio). Calcu-

lation: M�owOfAirInjector / M�owFuel uses parameters 20 and 22
✾ Constraint 8 -> Calculate the Injector 2 (pilot) AFR. Calculation:

M�owOfAirPilotInjector / M�owPilotFuel uses parameters 21 and 23

39

✾ Constraint 9 -> Calculate the zone 1 AFR. Calculation: M�owOfAir-
Zone1 / M�owFuel uses parameters 20 and 24

✾ Constraint 10 -> Calculate the pilot zone 1 AFR. Calculation: M�owOfAir-
PilotZone1 / M�owPilotFuel uses parameters 21 and 25

✾ Constraint 11 -> Calculate the zone 2 AFR. Calculation: M�owOfAir-
Zone2 / TotalM�owFuel uses parameters 20,21 and 26

✾ Constraint 12 -> Calculate the zone 3 AFR. Calculation: M�owOfAir-
Zone3 / TotalM�owFuel uses parameters 20,21 and 27

✾ Constraint 13 -> Calculate the zone 4 AFR. Calculation: M�owOfAir-
Zone4 / TotalM�owFuel uses parameters 20,21 and 28

✾ Constraint 14 -> Calculate the zone 5 AFR. Calculation: M�owOfAir-
Zone5 / TotalM�owFuel uses parameters 20,21 and 29

✾ Constraint 15 -> Calculate the Combustor Cooling Mass Flow. Calcu-
lation: ∑ M�owCooling uses parameters 100 to 199

✾ Constraint 16 -> Calculate the ratio of Wall 1 Cooling Mass Flow.
Calculation: ∑ M�owW1cooling / TotalM�ow uses parameters 100 to
119 and 5

✾ Constraint 17 -> Calculate the ratio of Wall 2 Cooling Mass Flow.
Calculation: ∑ M�owW2cooling / TotalM�ow uses parameters 120 to
139 and 5

✾ Constraint 18 -> Calculate the ratio of Wall 3 Cooling Mass Flow.
Calculation: ∑ M�owW3cooling / TotalM�ow uses parameters 140 to
159 and 5

✾ Constraint 19 -> Calculate the ratio of Wall 4 Cooling Mass Flow.
Calculation: ∑ M�owW4cooling / TotalM�ow uses parameters 160 to
179 and 5

✾ Constraint 20 -> Calculate the ratio of Wall 5 Cooling Mass Flow.
Calculation: ∑ M�owW5cooling / TotalM�ow uses parameters 180 to
199 and 5

✾ Constraint 21-> Calculate the Maximum Combustor wall temperature.
Calculation: max WallTemp uses parameters 200 to 199

✾ Constraint 22-> Calculate the Maximum Wall 1 temperature. Calcu-
lation: max Wall1Temp uses parameters 200 to 219

40

✾ Constraint 23 -> Calculate the Maximum Wall 2 temperature. Calcu-
lation: max Wall2Temp uses parameters 220 to 239

✾ Constraint 24 -> Calculate the Maximum Wall 3 temperature. Calcu-
lation: max Wall3Temp uses parameters 240 to 259

✾ Constraint 25 -> Calculate the Maximum Wall 4 temperature. Calcu-
lation: max Wall4Temp uses parameters 260 to 279

✾ Constraint 26 -> Calculate the Maximum Wall 5 temperature. Calcu-
lation: max Wall5Temp uses parameters 280 to 299

✾ Constraint 27 -> Calculate the Average Combustor wall temperature.
Calculation: ∑ WallTemp / NumberOfTemp uses parameters 200 to
299

✾ Constraint 28 -> Calculate the Average Wall 1 temperature. Calcula-
tion: ∑ Wal1lTemp / NumberOfTemp uses parameters 200 to 219

✾ Constraint 29 -> Calculate the Average Wall 2 temperature. Calcula-
tion: ∑ Wall2Temp / NumberOfTemp uses parameters 220 to 239

✾ Constraint 30 -> Calculate the AverageWall 3 temperature. Calcula-
tion: ∑ Wall3Temp / NumberOfTemp uses parameters 240 to 259

✾ Constraint 31 -> Calculate the AverageWall 4 temperature. Calcula-
tion: ∑ Wall4Temp / NumberOfTemp uses parameters 260 to 279

✾ Constraint 32 -> Calculate the AverageWall 5 temperature. Calcula-
tion: ∑ Wall5Temp / NumberOfTemp uses parameters 280 to 299

✾ Constraint 33 -> Calculate the The mass �ow of air recirculating in
zone 1 (WP/Z.RECIRC

). Calculation: ∑ M�owBPPorts + 1
2

∑ M�ow-
PrimPorts + 1

3

∑ M�owZ1cooling uses parameters 40 to 44, 100 to 139
✾ Constraint 34 -> Calculate the The mass �ow of air recirculating in pilot

zone 1 (WPilotPZ.RECIRC
). Calculation: ∑ M�owPilotBPPorts + 1

2

∑
M�owPilotPrimPorts + 1

3

∑ M�owPilotZ1cooling uses parameters 45
to 49, 160 to 199

✾ Constraint 35 -> Calculate the overall SI loading. Calculation: ΛSI =
W3∗109

(P 1.8
3 ∗VComb)eT3/300 uses parameters 2,5,6 and 9

✾ Constraint 36 -> Calculate the Relight loading. Calculation: χSI =
WP/Z.RECIRC∗106

(P 1.3
3wm∗VPZ)eT3wm/300 uses constraint 33 and parameters 30,31and 7. To

41

calculate this constraint the constraint 33 will be automatically cal-
culated so, the parameters required for the constraint 33 needs to be
set.

✾ Constraint 37 -> Calculate the Relight loading. Calculation: χSI =
WPilotPZ.RECIRC∗106

(P 1.3
3wm∗VPilotPZ)eT3wm/300 uses constraint 34 and parameters 30,31 and 7.

To calculate this constraint the constraint 34 will be automatically cal-
culated so, the parameters required for the constraint 34 needs to be
set.

✾ Constraint 38 -> Calculate the NOx emissions. Calculation from tables
of creation rate uses parameters 300 to 449 and 3

✾ Constraint 39 -> Calculate the CO emissions. Calculation from tables
of creation rate uses parameters 300 to 449 and 3

✾ Constraint 40 -> Calculate the UHC emissions. Calculation from tables
of rates uses parameters 300 to 449 and 3

✾ Constraint 41 -> Calculate the Soot emissions. Calculation from tables
of creation rate uses parameters 300 to 449 and 3

4.21.9 The parameters list

✾ Parameter 1 -> Total Pressure at compressor delivery P3.
✾ Parameter 2 -> Total Pressure at combustor exit.
✾ Parameter 3 -> Mass �ow of fuel.
✾ Parameter 4 -> Mass �ow of air through injector.
✾ Parameter 5 -> Mass �ow of air at combustor inlet (usually element 1).
✾ Parameter 6 -> Volume of combustor (combustion zone) VComb.
✾ Parameter 7 -> Volume of Zone 1 (Recirculation Volume) VPZ .
✾ Parameter 8 -> Volume of Zone 1 (Recirculation Volume) VPilotPZ .
✾ Parameter 9 -> Compressor Delivery Temperature T3.
✾ Parameter 10 -> PA for generic pressure drop calculation 1.
✾ Parameter 11 -> PB for generic pressure drop calculation 1.
✾ Parameter 12 -> PA for generic pressure drop calculation 2.

42

✾ Parameter 13 -> PB for generic pressure drop calculation 2.
✾ Parameter 14 -> PA for generic pressure drop calculation 3.
✾ Parameter 15 -> PB for generic pressure drop calculation 3.
✾ Parameter 16 -> PA for generic pressure drop calculation 4.
✾ Parameter 17 -> PB for generic pressure drop calculation 4.
✾ Parameter 18 -> PA for generic pressure drop calculation 5.
✾ Parameter 19 -> PB for generic pressure drop calculation 5.
✾ Parameter 20 -> Fuel Mass Flow from injector 1.
✾ Parameter 21 -> Fuel Mass Flow from injector 2 (pilot).
✾ Parameter 22 -> Mass �ow of air through injector 1.
✾ Parameter 23 -> Mass �ow of air through injector 2 (pilot).
✾ Parameter 24 -> Mass �ow of air at end of zone 1.
✾ Parameter 25 -> Mass �ow of air at end of pilot zone 1.
✾ Parameter 26 -> Mass �ow of air at end of zone 2.
✾ Parameter 27 -> Mass �ow of air at end of zone 3.
✾ Parameter 28 -> Mass �ow of air at end of zone 4.
✾ Parameter 29 -> Mass �ow of air at end of zone 5.
✾ Parameter 30 -> Total Pressure at compressor delivery P3 for Wind

Milling conditions.
✾ Parametter 31 -> Compressor Delivery Temperature T3 for Wind Milling

conditions.
✾ Parameter 40 -> Mass �ow of air through primary port 1.
✾ Parameter 41 -> Mass �ow of air through primary port 2.
✾ Parameter 42 -> Mass �ow of air through primary port 3.
✾ Parameter 43 -> Mass �ow of air through primary port 4.
✾ Parameter 44 -> Mass �ow of air through primary port 5.

43

✾ Parameter 45 -> Mass �ow of air through pilot primary port 1.
✾ Parameter 46 -> Mass �ow of air through pilot primary port 2.
✾ Parameter 47 -> Mass �ow of air through pilot primary port 3.
✾ Parameter 48 -> Mass �ow of air through pilot primary port 4.
✾ Parameter 49 -> Mass �ow of air through pilot primary port 5.
✾ Parameter 100 to 119 -> Wall 1 cooling mass �ow (Base Plate).
✾ Parameter 120 to 139 -> Wall 2 cooling mass �ow (Zone1 Walls).
✾ Parameter 140 to 159 -> Wall 3 cooling mass �ow.
✾ Parameter 160 to 179 -> Wall 4 cooling mass �ow (Pilot Base Plate if

double annular).
✾ Parameter 180 to 199 -> Wall 5 cooling mass �ow (Pilot Zone1 wall if

double annular).
✾ Parameter 200 to 219 -> Wall 1 temperature (Base Plate).
✾ Parameter 220 to 239 -> Wall 2 temperature (Zone1 Walls).
✾ Parameter 240 to 259 -> Wall 3 temperature.
✾ Parameter 260 to 279 -> Wall 4 temperature (Pilot Base Plate if double

annular).
✾ Parameter 280 to 299 -> Wall 5 temperature (Pilot Zone1 wall if double

annular).
✾ Parameter 300 to 249 -> Flame Path mixed mass �ow.
✾ Parameter 350 to 399 -> Flame Path element Length.
✾ Parameter 400 to 449 -> Flame Path velocity.

4.22 Gene Writing Interface Object

The setting of the genes allows the toolbox to interact with �ownet through
the �.net� input �le. This is done through the �generic text �le interface�
which is able to process a text �le and modify a number of key parameters.

44

This �le interface search a �le (normally the �ownet input �le) for a given text
string either in the whole �le or in a designated column or in the designates
line.
The general syntax in the con�guration �le will be:

vect key {type name string line column linOffset colOffset geneNo}

The locking syntax is:

vect key {lock string line column linOffset colOffset}

The gene linking syntax is:

vect key {gene name string line column linOffset colOffset geneNo}

where:

✾ key - is of the form ix where i means input and x is the number of this
input, for the �rst gene con�guration the key will be i1 for the second
it will be i2 etc...

✾ type - de�nes the type of command to be done lock means to lock on a
speci�ed string to go in a speci�ed part of the �le and gene means that
it will go and modify the speci�ed gene.

✾ string - is the searched string, either a section when locking on a spec-
i�ed section or an element number when a�ection a gene to a �ownet
element.

✾ line - search for the string in the speci�ed line if line is 0 don't specify
line.

✾ column - search for the string in the speci�ed column if column is 0
don't specify column. practice to search for �ownet element numbers
which are in column 1.

✾ linO�set - once the string has been found move line by the speci�ed
o�set.

✾ colO�set - once the string has been found move column by the speci�ed
o�set.

✾ geneNo - the number of the gene to be a�ected to this position.

45

For example we are looking to modify the diameter of outer primary dilution
port (OPDP) labelled as element �20� in a �ownet input �le. This element
is located in the Cooling/Dilution Holes (HO) section of the input �le, so a
lock will be made on the �HO� string which de�nes the start of this section.
We know that element numbers are located in the �rst column. As well we
know that the diameter of the holes is speci�ed in the 5th column
The con�guration line link the gene 1 to the element 20 will be the following:

vect key {type name string line column linoffset coloffset geneNo}

vect i1 {lock HO 0 1 0 0 }

vect i2 {gene PDP �20� 0 1 0 4 1 }

The search is done sequentially in the �le so the values searched have to be
in the same order as in the �le.

4.23 Parameter Reading Interface Object

The setting of the parameters allows the toolbox to interact with �ownet
through the �.res� output �le. This is performed through the �generic text
�le interface� which is able to process a text �le and read a number of key
parameters.
This �le interface search a �le (normally the �ownet output �le) for a given
text string either in the whole �le or in a designated column or in the desig-
nates line.
The general syntax in the con�guration �le will be:

vect key {type name string line column linOffset colOffset paramNo}

The locking syntax is:

vect key {lock string line column linOffset colOffset}

The parameter reading syntax is:

vect key {param name string line column linOffset colOffset paramNo}

The parameter setting syntax is:

vect key {parset name value paramNo}

46

The parameter linking to an other parameter syntax is:

vect key {parlink name sourceParamNo paramNo}

where:

✾ key - is of the form rx where r means result and x is the number of this
read, for the �rst read con�guration the key will be r1 for the second it
will be r2 etc...

✾ type - de�nes the type of command to be done lock means to lock on a
speci�ed string to go in a speci�ed part of the �le, param means that it
will go and read in the result �le the value of the speci�ed parameter,
parset means it will set the speci�ed parameter with the given value,
and �nally parlink means that the speci�ed parameter will be linked
with a source parameter.

✾ name - is the name given to this parameter.
✾ string - is the searched string, either a section when locking on a spec-

i�ed section or an element number when the result of an element is
a�ected to a parameter.

✾ line - search for the string in the speci�ed line if line is 0 don't specify
line.

✾ column - search for the string in the speci�ed column if column is 0
don't specify column. practice to search for �ownet element numbers
which are in column 1.

✾ linO�set - once the string has been found move line by the speci�ed
o�set.

✾ colO�set - once the string has been found move column by the speci�ed
o�set.

✾ value - the value to store in the parameter when type of command is
�parset�.

✾ sourceParamNo - the number of the source parameter to be linked with
the speci�ed parameter when type of command is �parlink�.

✾ paramNo - the number of the parameter where the value read at this
position is to be stored.

47

For example we are looking to read the mass �ow of fuel stored in element
�7� in a �ownet output �le and store it in the parameter 3. This element
is located in the elements results section of the result �le, so a lock will be
made on the �ELEMENT_RESULTS� string which de�nes the start of this
section. We know that element numbers are located in the �rst column. As
well we know that the temperature is speci�ed in the 4th column
The con�guration line to store the mass �ow of fuel from the element 7 to
the parameter 3 will be the following:

vect key {type name string line column linoffset coloffset

paramNo}

vect r1 {lock NODE_RESULTS 0 2 0 0 }

vect r2 {param Mfuel �7� 0 1 0 4

3 }

The search is done sequentially in the �le so the values searched have to be
in the same order as in the �le.

48

Chapter 5

Toolbox Con�guration �le

example

5.1 An example of the toolbox con�guration

�le �AED-Test.cfg� for the optimisation of

the �generic combustor 01�

// JGA Con�guration �le

// reading is case sensitive

// comments symbol is -> //

// strings needs the ""

// boolean variable are true or false

// object jga

variable chromosomeType = GenericFlownetChrom

variable initialPopulationRatio = 1.5

variable populationSize = 100

variable optimisationMethod = GAOptimizer

variable debugLevel = 0

// variable randomSeed = 1436134

variable numberOfTrials = 5

// Object JgaClient

variable serverName = osiris

// object Optimizer

variable maxNumberOfGenerations = 0

variable maxNumberOfEvaluations = 10000

variable maxFitness = 1

variable �nalPrintPopulation = false

49

variable printPopInReport = false

variable reportInterval = 1

// variable OutputFilesName = AED-SBX-1000K

// object GAOptimiser

variable objPopInitialiser = RandomInitialisation

variable objCrossoverSelector = StochasticUniversalSampling

variable objMutationSelector = RandomSelection

variable objReplacementOperator = RankedReplacement

variable objCrossoverOperator = BoundedSBXCrossover

variable objMutationOperator = DynamicVectorMutate

variable objEvaluationOperator = SerialEvaluation

// variable objReplacementOperator = TournamentReplacement

// variable objCrossoverSelector = RouletteSelection

// variable objEvaluationOperator = DistributedEvaluation

// variable objCrossoverOperator = WeightedLinearCrossover

// variable objMutationOperator = CreepMutateWithDecay

// object chromosomeModi�er/Selector

variable storeChromosomes = true

variable keepTrackOfId = true

// object DistributedEvaluation

variable JGAPath = jga/

variable ServerPort = 5000

// object sons of Chromosome

// Parameters �xed to 500 for generic�ownet chromosome

// Constraints �xed to 49 for generic�ownet chromosome

variable selectionPressure = 2

variable printEvaluationResults = false

variable chromosomeLength = 25

variable numberOfParameters = 500

variable numberOfConstraints = 49

variable networkPath = /tmp/�/

variable originalFileName = network1b.net

// object StochasticUniversalSampling

variable SUSRate = 0.20

// object RouletteSelection

variable rouletteSelectionRate = 0.20

//object BoundedSBXCrossover 0 = max exploration + -> decrease explo

variable distibutionIndex = 1.0

// object RandomSelection

variable randomSelectionRate = 0.05

50

// object DynamicVectorMutate

variable initialDistribFact = 0.775

variable iterDependancyFactor = 1.6

// object ReplacementOP

variable elitism = true

// Constraints |���- pressure drops �������|��������� AFRs ���������
�|�����- Cooling Mass�ow ����-|����Maximum wall temperature ���-|���� Average
Wall Temperature ���-|�- WPZRE �-|- DSI -|�� XSI ��|�� Emissions Modelling ��|�����
��� Mach number ratio �������-|

// 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
38 39 40 41 42 43 44 45 46 47 48 49

data targetConstraintFlag = { true false true true false false true false true false true false false true true
true false false false false false false false false false false true false true true false false true false true true
false false false false false true true true true false false false false }

data rangeConstraintFlag = { true false true true false false true false true false true false false true true
true false false false false true false true true false false true false true true false false true false true true
false true false false false true true true true false false false false }

data optimiseConstraintFlag = { false false false false false false false false false false false false false false
false false false false false false false false false false false false false false false false false false false false
false false false false false false false false false false false false false false false }

data maxOptimiseConstFlag = { false false false false false false false false false false false false false false
false false false false false false false false false false false false false false false false false false false false
false true false false false false false false false false false false false false false }

data constraintsTarget = { 0.0564 0 0.0358 0.0376 0 0 6.358 0 24.877 0 25.951 0 0 38.306 0.430 0.1951
0.0482 0.1864 0 0 850.00 0 850.00 850.00 0 0 788.00 0 788.0 788.0 0 0 9.578 0 1.007 10.363 0 25.910 0 0 0
2.274 2.555 3.204 3.846 0 0 0 0 }

data constraintsLowerRange = { 0.950 0 0.900 0.900 0 0 0.950 0 0.950 0 0.950 0 0 0.900 0.900 0.900 0.900
0.900 0 0 0.100 0 0.100 0.100 0 0 0.800 0 0.800 0.800 0 0 0.900 0 0.900 0.950 0 0.100 0 0 0 0.800 0.800 0.800
0.800 0 0 0 0 }

data constraintsUpperRange = { 1.050 0 1.100 1.100 0 0 1.050 0 1.050 0 1.050 0 0 1.100 1.100 1.000 1.100
1.100 0 0 1.000 0 1.000 1.000 0 0 1.050 0 1.050 1.050 0 0 1.100 0 1.100 1.050 0 1.000 0 0 0 1.200 1.200 1.200
1.200 0 0 0 0 }

// 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

// 25 genes boundaries OPDP IPDP OIDP IIDP OEC IEC OZR1 IZR1 OZR2 IZR2 OZR3 IZR3 OZR4
IZR4 OZR5 FI OBPC1 IBPC1 IBPC2 OBPC2 OBPC3 IBPC3 OBPC4 IBPC4 OBPC5

data geneLowerBound = { 0.0
0.0 0.0 0.0 0.0 }

//data geneLowerBound = { 1.0e-5 1.0e-5 1.0e-5 1.0e-5 7.0e-8 7.0e-8 1.1e-7 1.1e-7 1.1e-7 1.1e-7 1.1e-7
1.1e-7 1.1e-7 1.1e-7 2.0e-7 9.7e-5 1.5e-6 2.2e-6 1.1e-6 2.4e-6 3.0e-6 2.5e-6 3.2e-7 3.6e-7 1.5e-5 }

data geneUpperBound = { 8.0e-4 8.0e-4 8.0e-4 8.0e-4 7.9e-7 7.9e-7 3.0e-7 3.0e-7 3.0e-7 3.0e-7 3.0e-7 3.0e-7
3.0e-7 3.0e-7 2.5e-6 3.0e-4 5.0e-6 7.0e-6 3.5e-6 1.4e-5 8.0e-6 1.6e-5 8.0e-7 8.0e-7 4.0e-5 }

// original gene values

// data geneLowerBound = { 2.75e-4 2.85e-4 7.60E-5 1.10e-4 1.98E-7 1.96E-7 2.21E-7 2.21E-7 2.19E-7
2.21E-7 2.20E-7 2.22E-7 2.20E-7 2.21E-7 1.06E-6 1.98e-4 3.25E-6 4.57E-6 2.36E-6 5.02E-6 6.23E-6 5.24E-6
6.56E-7 7.38E-7 3.11E-5 }

// data geneLowerBound = { 0.00027521 0.000285088 7.60E-05 0.000110036 1.98E-07 1.96E-07 2.21E-07
2.21E-07 2.19E-07 2.21E-07 2.20E-07 2.22E-07 2.20E-07 2.21E-07 1.06E-06 0.000198098 3.25E-06 4.57E-06
2.36E-06 5.02E-06 6.23E-06 5.24E-06 6.56E-07 7.38E-07 3.11E-05 }

// data geneUpperBound = { 0.00027521 0.000285088 7.60E-05 0.000110036 1.98E-07 1.96E-07 2.21E-07
2.21E-07 2.19E-07 2.21E-07 2.20E-07 2.22E-07 2.20E-07 2.21E-07 1.06E-06 0.000198098 3.25E-06 4.57E-06
2.36E-06 5.02E-06 6.23E-06 5.24E-06 6.56E-07 7.38E-07 3.11E-05 }

51

// max zr5 <= 8.929e-5 oderwise �ownet will crash

// �ownet generic chromosome

// 0 -> search on all line/column

// vector i1,i2,i3,...,ix

// Input File Writing

// lock -> input �le locator

// gene -> position for writing the gene there must be as many genes as

// speci�ed in chromosomeLength.

// key Str Str Str Int Int Int Int Int

// vect i1 { lock position line column linOfset colOfset }

// vect i2 { gene name position line column linOfset colOfset geneNo}

vect i1 { lock HO 0 1 0 0 }

// Baseplate Cooling

vect i2 { gene IBPC1 "34" 0 1 0 4 18 }

vect i3 { gene OBPC3 "11" 0 1 0 4 21 }

vect i4 { gene OBPC4 "8" 0 1 0 4 23 }

vect i5 { gene OBPC2 "16" 0 1 0 4 20 }

vect i6 { gene IBPC3 "12" 0 1 0 4 22 }

vect i7 { gene OBPC1 "17" 0 1 0 4 17 }

vect i8 { gene IBPC2 "33" 0 1 0 4 19 }

// Fuel Injector

vect i9 { gene FI "13" 0 1 0 4 16 }

vect i10 { gene OBPC5 "28" 0 1 0 4 25 }

vect i11 { gene IBPC4 "9" 0 1 0 4 24 }

// Outer primary and secondary dilution port

vect i12 { gene OPDP "20" 0 1 0 4 1 }

vect i13 { gene OIDP "38" 0 1 0 4 3 }

// Inner Primary and secondary dilution port

vect i14 { gene IPDP "43" 0 1 0 4 2 }

vect i15 { gene IIDP "42" 0 1 0 4 4 }

// Inner and Outer primary e�usion cooling

vect i16 { gene OPEC "23" 0 1 0 4 5 }

vect i17 { gene IPEC "48" 0 1 0 4 6 }

// Outer Zrings

vect i18 { gene OZR1 "19" 0 1 0 4 7 }

vect i19 { gene OZR2 "29" 0 1 0 4 9 }

vect i20 { gene OZR3 "30" 0 1 0 4 11 }

vect i21 { gene OZR4 "37" 0 1 0 4 13 }

vect i22 { gene OZR5 "3" 0 1 0 4 15 }

// Inner Zrings

52

vect i23 { gene IZR1 "44" 0 1 0 4 8 }

vect i24 { gene IZR2 "45" 0 1 0 4 10 }

vect i25 { gene IZR3 "46" 0 1 0 4 12 }

vect i26 { gene IZR4 "47" 0 1 0 4 14 }

// Output Fle Reading

// Rlock1 -> output �le locator

// param1 -> position for reading the param

// key Str Str Str Int Int Int Int Int

// vect r1 { lock position line column linOfset colOfset }

// vect r2 { param name position line column linOfset colOfset paramNo}

// combustor and Primary Zone volume calculated

// vect r1 { parset Vcomb 0.02747 6 }

// vect r2 { parset VPZ 0.01009 7 }

// combustor and Primary Zone volume RR data

vect r1 { parset Vcomb 0.03848 6 }

vect r2 { parset VPZ 0.02329 7 }

// pressure and temperature fot wind milling conditions P3(Psi) T3(K)

vect r3 { parset P3wind 700000 30 }

vect r4 { parset T3wind 400 31 }

// length of �ame path elements

vect r4 { parset LPZ1 0.01318 400 }

vect r5 { parset LPZ2 0.01318 401 }

vect r6 { parset LPZ3 0.04215 402 }

vect r7 { parset LPZ4 0.01608 403 }

vect r8 { parset LPZ5 0.03179 404 }

vect r9 { parset LIZ1 0.01545 405 }

vect r10 { parset LIZ2 0.00001 406 }

vect r11 { parset LDZ1 0.03562 407 }

vect r12 { parset LDZ2 0.02481 408 }

vect r13 { parset LDZ3 0.01445 409 }

// Volume of �ame path elements

vect r14 { parset VPZ1 0.00003124 450 }

vect r15 { parset VPZ2 0.00002059 451 }

vect r16 { parset VPZ3 0.00715707 452 }

vect r17 { parset VPZ4 0.00288877 453 }

vect r18 { parset VPZ5 0.00586843 454 }

vect r19 { parset VIZ1 0.00283199 455 }

vect r20 { parset VIZ2 0.00000172 456 }

vect r21 { parset VDZ1 0.00522367 457 }

vect r22 { parset VDZ2 0.00260195 458 }

53

vect r23 { parset VDZ3 0.00103643 459 }

vect r24 { lock ELEMENT_RESULTS 0 2 5 0 }

// compressor delivery temperature

vect r25 { param T3 "1" 0 1 0 11 9 }

// Outer casing temperature

vect r26 { param OCT1 "77" 0 1 0 8 220 }

vect r27 { param OCT2 "78" 0 1 0 8 221 }

vect r28 { param OCT3 "80" 0 1 0 8 240 }

vect r29 { param OCT4 "81" 0 1 0 8 241 }

vect r30 { param OCT5 "83" 0 1 0 8 242 }

vect r31 { param OCT6 "84" 0 1 0 8 243 }

// Inner casing temperature

vect r32 { param ICT1 "85" 0 1 0 8 222 }

vect r33 { param ICT2 "86" 0 1 0 8 223 }

vect r34 { param ICT3 "88" 0 1 0 8 244 }

vect r35 { param ICT4 "89" 0 1 0 8 245 }

vect r36 { param ICT5 "91" 0 1 0 8 246 }

vect r37 { param ICT6 "92" 0 1 0 8 247 }

// lock the second part of the elements results

vect r38 { lock ELEM 0 1 0 0 }

//�ame path �ow velocity

vect r39 { param VDZ3 "6" 0 1 0 5 359 }

//outer pp Mratio

vect r40 { param MOPP "20" 0 1 0 8 60 }

vect r41 { param MOPPL "22" 0 1 0 9 70 }

vect r42 { param VPZ4 "26" 0 1 0 5 353 }

vect r43 { param VPZ3 "31" 0 1 0 5 352 }

// M ratio

vect r44 { param MOIP "38" 0 1 0 8 62 }

vect r45 { param MIIP "42" 0 1 0 8 63 }

vect r46 { param MIPP "43" 0 1 0 8 61 }

vect r47 { param MOIPL "49" 0 1 0 9 72 }

vect r48 { param MIPPL "54" 0 1 0 9 71 }

vect r49 { param MIIPL "57" 0 1 0 9 73 }

vect r50 { param VPZ5 "65" 0 1 0 5 354 }

vect r51 { param VIZ1 "66" 0 1 0 5 355 }

vect r52 { param VIZ2 "67" 0 1 0 5 356 }

vect r53 { param VDZ1 "68" 0 1 0 5 357 }

vect r54 { param VDZ2 "69" 0 1 0 5 358 }

vect r55 { param VPZ2 "109" 0 1 0 5 351 }

54

vect r56 { param VPZ1 "110" 0 1 0 5 350 }

// jump to the node result part

vect r57 { lock NODE_RESULTS 0 2 0 0 }

// input total pressure

vect r58 { param P0in "1" 0 1 0 1 1 }

vect r59 { param Pa1 "6" 0 1 0 1 12 }

// fuel mass source

vect r60 { param Mfuel "7" 0 1 0 4 20 }

vect r61 { param Pa2 "14" 0 1 0 1 14 }

vect r62 { param Pb1 "28" 0 1 0 1 2 }

// jump to the summary table_1

vect r63 { lock SUMMARY_TABLE_1 0 2 0 0 }

// total mass�ow through combustor

vect r64 { param Mftot "1" 0 1 0 1 5 }

// base plate cooling air mass �ow

vect r65 { param MfIBPC1 "34" 0 1 0 1 100 }

vect r66 { param MfOBPC3 "11" 0 1 0 1 101 }

vect r67 { param MfOBPC4 "8" 0 1 0 1 102 }

vect r68 { param MfOBPC2 "16" 0 1 0 1 103 }

vect r69 { param MfIBPC3 "12" 0 1 0 1 104 }

vect r70 { param MfOBPC1 "17" 0 1 0 1 105 }

vect r71 { param MfIBPC2 "33" 0 1 0 1 106 }

// injector air mass �ow

vect r72 { param MfInj "13" 0 1 0 1 22 }

vect r73 { param MfOBPC5 "28" 0 1 0 1 107 }

vect r74 { param MfIBPC4 "9" 0 1 0 1 108 }

// Outer Ports

vect r75 { param MfOPEC "20" 0 1 0 1 40 }

vect r76 { param MfOPEC "38" 0 1 0 1 50 }

// �ame tube cooling air mass �ow M�ow

vect r77 { param MfOPEC "23" 0 1 0 1 140 }

vect r78 { param MfOZR1 "19" 0 1 0 1 120 }

vect r79 { param MfOZR2 "29" 0 1 0 1 141 }

vect r80 { param MfOZR3 "30" 0 1 0 1 142 }

vect r81 { param MfOZR4 "37" 0 1 0 1 143 }

vect r82 { param MfOZR5 "3" 0 1 0 1 144 }

// Inner Ports

vect r83 { param MfIPEC "43" 0 1 0 1 41 }

vect r84 { param MfIPEC "42" 0 1 0 1 51 }

vect r85 { param MfIPEC "48" 0 1 0 1 145 }

55

vect r86 { param MfIZR1 "44" 0 1 0 1 121 }

vect r87 { param MfIZR2 "45" 0 1 0 1 146 }

vect r88 { param MfIZR3 "46" 0 1 0 1 147 }

vect r89 { param MfIZR4 "47" 0 1 0 1 148 }

//�ame path mixed �ow

vect r90 { param MfPZ1 "110" 0 1 0 2 300 }

vect r91 { param MfPZ2 "109" 0 1 0 2 301 }

vect r92 { param MfPZ3 "31" 0 1 0 2 302 }

vect r93 { param MfPZ4 "26" 0 1 0 2 303 }

vect r94 { param MfPZ5 "65" 0 1 0 2 304 }

vect r95 { param MfIZ1 "66" 0 1 0 2 305 }

vect r96 { param MfIZ2 "67" 0 1 0 2 306 }

vect r97 { param MfDZ1 "68" 0 1 0 2 307 }

vect r98 { param MfDZ2 "69" 0 1 0 2 308 }

vect r99 { param MfDZ3 "6" 0 1 0 2 309 }

// generic pressure drop b 1

vect r100 { parlink pb2 62 13 }

// generic pressure drop b 2

vect r101 { parlink pb2 62 15 }

// primary zone exit mass�ow elem 65

vect r102 { parlink MfPZ 94 24 }

// intermeditezone exit mass�ow elem 67

vect r103 { parlink MfIZ 96 26 }

// total mass �ow out of combustor M�ow elem 6

vect r104 { parlink Mfout 99 29 }

5.2 The network �le of the �generic combustor

01�

Flownet Input File

============================== GENERAL DATA ==

Tamb InitPres InitTemp Elevation CalcAmbTemp

[K] [Pa] [K] [m] (y/n)

0 1E+06 674 0 y

VarGasProp Rgas Density Mu Cp Prandtl ThermConduc

(y/n) [J/kg/K] [kg/m^3] [kg/m/s] [J/kg/K] number [W/m/K]

y 288.21 1 0 0 0 0

Compflow SolveTemp NumIterMain NumIterPres NumIterTemp FlowConverge TempConverge

y y 100 50 3 1E-07 1E-07

56

RelaxPres RelaxRHO RelaxMass RelaxOR RelaxmDG RelaxCAU RelaxEnergy

0.4 0.4 0.4 0.4 0.4 0.8 0.4

DiamFact RoughFact Nx C/H_Ratio Flame_wall_emis Annuli_wall_emis Case_emis

1 1 28 6.21 0.7 0.7 0.7

WarningMes CalcOrifice RefNode

n n 28

RecircEntr Swirl SwirlerDiam HubDiameter

(y/n) number [m] [m]

y 1.0 0.07 0.04

NumComAirSt(0,1,2) Mixing(y/n) EquilibriumCalc(y/n) FracTempFile1 FracTempFile2

1 y y ./data/fuelfrac1.dat

============================== CLASS DEFINITION ==

Class Name {up to 100 classes allowed

1 Diffuser section

2 Baseplate

3 Outer flametube

4 Outer annulus

5 Inner flametube

6 Inner annulus

7 Combustion zone

8 NGV

9 Inner annulus liner cooling slots

10 Baseplate cooling slots

11 HP Turbine Bleed

12 Outer FHT

13 Outer CD

14 Outer AHT

15 Inner FHT

16 Inner CD

17 Inner AHT

18 **** No Description ****

19 **** No Description ****

20 **** No Description ****

0

============================== ELEMENT DATA ==

DW ------------------------------ Darcy-Weisbach Pipes (Type 1) --------------------------------

Elem Class N1 N2 Length Diam Rough SigK OrRat Flag

- - - - [m] [m] [m^-6] - - 1 Heat[kW]

- - - - - - - - - 2 WallTh InsTh Ho Kpipe Kins To

- - - - - - - - - [m] [m] [W/m^2.K] [W/m.K] [W/m.K] [K]

57

- - - - - - - - - 3 Texit[K]

0

HW ------------------------------ Hazen-Williams Pipes (Type 12) -------------------------------

Elem Class N1 N2 Length Diam Rough SigK OrRat Flag

- - - - [m] [m] Coeff - - 1 Heat[kW]

- - - - - - - - - 2 WallTh InsTh Ho Kpipe Kins To

- - - - - - - - - [m] [m] [W/m^2.K] [W/m.K] [W/m.K] [K]

- - - - - - - - - 3 Texit[K]

0

DG ------------------------------ Duct with area change (Type 3) -------------------------------

Elem Class N1 N2 Length InA/D InP OutA/D OutP Rough SigK Flag Mix

- - - - [m] [m^2] [m] [m^2] [m] [m] - 1 Heat[kW] 0-n

- - - - - - - - - - - 2 - -

1 1 1 2 0.006595 0.03059 2.653 0.03059 2.653 1E-26 0 1 0 0

2 1 2 3 0.03696 0.03059 2.653 0.04065 2.654 1E-26 0 1 0 0

21 4 6 15 0.02798 0.03367 3.587 0.03508 3.621 1E-26 0 1 0 0

22 4 15 16 0.01634 0.02506 3.653 0.02296 3.66 1E-26 0 1 0 0

70 4 16 23 0.029118 0.02296 3.66 0.0198 3.673 1E-26 0 1 0 0

49 4 23 24 0.02043 0.0198 3.673 0.01625 3.686 1E-26 0 1 0 0

50 4 24 25 0.01836 0.01625 3.686 0.02262 3.663 1E-26 0 1 0 0

51 4 25 26 0.03607 0.02262 3.663 0.02916 3.641 1E-26 0 1 0 0

52 4 26 27 0.02734 0.02916 3.641 0.04073 3.603 1E-26 0 1 0 0

53 6 14 29 0.03757 0.02714 1.729 0.02831 1.735 1E-26 0 1 0 0

54 6 29 30 0.02689 0.02831 1.735 0.02526 1.714 1E-26 0 1 0 0

56 6 30 32 0.03469 0.02526 1.714 0.02349 1.758 1E-26 0 1 0 0

57 6 32 33 0.02221 0.02349 1.758 0.01987 1.895 1E-26 0 1 0 0

58 6 33 34 0.02367 0.01987 1.895 0.01933 2.071 1E-26 0 1 0 0

59 6 34 35 0.02688 0.01933 2.071 0.01799 2.257 1E-26 0 1 0 0

60 6 35 36 0.01604 0.01799 2.257 0.02184 2.395 1E-26 0 1 0 0

61 6 36 37 0.02842 0.02184 2.395 0.0261 2.626 1E-26 0 1 0 0

63 6 37 44 0.02507 0.0261 2.626 0.04008 2.724 1E-26 0 1 0 0

110 7 70 7 0.01318 0.00237008 3.4 0.00237008 3.4 1E-26 0 2 0

109 7 71 7 0.01318 0.00156202 1.987 0.00156202 1.987 1E-26 0 2 0

31 7 7 18 0.04215 0.1603 2.694 0.1793 2.728 1E-26 0 2 0

26 7 18 19 0.01608 0.1793 2.728 0.18 2.746 1E-26 0 2 0

65 7 19 38 0.03179 0.18 2.746 0.1892 2.806 1E-26 0 2 0

66 7 38 39 0.01545 0.1892 2.806 0.1774 2.83 1E-26 0 2 0

67 7 39 40 1E-05 0.1774 2.83 0.1658 2.907 1E-26 0 2 0

68 7 40 41 0.03562 0.1658 2.907 0.1275 3.038 1E-26 0 2 0

69 7 41 42 0.02481 0.1275 3.038 0.08225 0.08141 1E-26 0 2 0

58

6 7 42 28 0.01445 0.08225 0.08141 0.0612 3.144 1E-26 0 2 0

7 8 27 5 0.02331 0.04073 3.603 0.04659 3.531 1E-26 0 1 0 0

10 8 44 9 0.02151 0.04008 2.724 0.04811 2.973 1E-26 0 1 0 0

0

GE ------------------------------ General Empirical Relationship (Type 10) ---------------------

Elem Class N1 N2 Ck Beta Alpha Heat[kW] {delp0 = ck * (rho^beta)

* (q^alpha)}

0

RD ------------------------------ Restrictor with discharge coefficient (Type 15) --------------

Elem Class N1 N2 Cd Area[m^2] Number

- - - - - -Diam[m] -

0

RL ------------------------------ Restrictor with loss coefficient (Type 16) -------------------

Elem Class N1 N2 Cc Cl Area[m^2] Number

- - - - - - -Diam[m] -

0

OR ------------------------------ British Standard Orifice (Type 17) ---------------------------

Elem Class N1 N2 D[m] d[m] Number Flag

- - - - - - - 1 Corner tappings

- - - - - - - 2 D & D/2 tappings

- - - - - - - 3 Flange tappings

0

PD ------------------------------ Pressure drop with loss coefficient (Type 26) ----------------

Elem Class N1 N2 Cl Area[m^2] J1 InitMass InitPres PresProf PresData TempProf TempData ProfPos InnRad[m] OutRad[m]

- - - - - -Diam[m] - [kg/s] [pa] (0-3) - (0-3) - (1-n)

5 1 3 13 0.2 0.06904 2 0 0 0 0 0 0 0 0 0

18 1 3 14 0.41 0.03048 1 0 0 0 0 0 0 0 0 0

4 1 3 6 0.45 0.03367 1 0 0 0 0 0 0 0 0 0

0

HO ------------------------------ Cooling/Dilution Holes (Type 20) -----------------------------

Elem Class N1 N2 Area[m^2] Num Mix Pres Cond Flag1

- - - - -Diam[m] - flag Op Node 1(Cd) Cd Length PlunRad J1

J2 J3 J4

- - - - - - 0-def 0-Tot - 2(Lucas) Flag2 [m] [m]

- - - - - - 1-ph 1-St (0-def) 1 Length PlunRad

Z/W Alpha MchCrss If PresOp=2,3: J1 J2 J3 J4

- - - - - - prmix 2-RTot - 2 Length PlunRad

Z/W J1 J2 J3 J4

- - - - - - 2-oh 3-RSt - 3(NASA1) Flag2

- - - - - - 3-slot - - 1 Length PlunRad

MchCrss If PresOp=2,3: J1 J2 J3 J4

59

- - - - - - dpth - - 2 Length PlunRad J1

J2 J3 J4

- - - - - - 4-ptch - - 4(NASA2) Flag2

- - - - - - lgth - - 1 Length PlunRad

MchCrss If PresOp=2,3: J1 J2 J3 J4

- - - - - - 5-rev - - 2 Length PlunRad J1

J2 J3 J4

- - - - - - - - - 5(PrkSdII) Flag2

- - - - - - - - - 1 Length PlunRad

MchCrss If PresOp=2,3: J1 J2 J3 J4

- - - - - - - - - 2 Length PlunRad J1

J2 J3 J4

- - - - - - - - - 6(B.E.D.) Flag2

- - - - - - - - - 1 Length PlunRad

MchCrss If PresOp=2,3: J1 J2 J3 J4

- - - - - - - - - 2 Length PlunRad J1

J2 J3 J4

- - - - - - - - - 7(Tr1-4/1) J1

J2 J3 J4

- - - - - - - - - 8(Tr1-2/5) J1

J2 J3 J4

- - - - - - - - - 9(Tr1-2/6) J1

J2 J3 J4

- - - - - - - - - 10(AngEffu) Length J1

J2 J3 J4

34 2 13 7 4.5743E-06 108 0 2 0 2 2 0.0018 0 0.0104 5 5

110 31

11 2 13 70 6.23193E-06 162 0 2 0 2 2 0.0018 0 0.00993 5 5

31 31

8 2 13 70 6.56092E-07 972 0 2 0 2 2 0.002682

0 0.00172 5 5 31 31

16 2 13 70 5.01939E-06 144 0 2 0 2 2 0.0018 0 0.01101 5 5

31 31

12 2 13 71 5.23861E-06 144 0 2 0 2 2 0.0018 0 0.0073 5 5

31 31

17 2 13 7 3.24566E-06 144 0 2 0 2 2 0.0018 0 0.011 5 5

110 31

33 2 13 71 2.35991E-06 162 0 2 0 2 2 0.0018 0 0.00696 5 5

31 31

13 2 13 7 0.000198098 18 0 2 0 1 1 0.02 0 5 5

110 31

28 2 13 7 3.11327E-05 40 0 2 0 1 0.75 0.00802 0 5 5

110 31

9 2 13 71 7.3846E-07 576 0 2 0 2 2 0.0018 0 0.00177 5 5

31 31

20 3 16 19 0.00027521 18 1 0.5 2 0 2 2 0.00312 0.00312 0.09827 22

70 26 65

38 3 24 39 7.60248E-05 36 2 2 0 2 2 0.0016 0 0.04956 49

50 66 67

60

43 5 30 19 0.000285088 18 1 0.5 2 0 2 2 0.003175

0.003175 0.0522 54 56 26 65

42 5 33 39 0.000110036 36 2 2 0 2 2 0.0016 0 0.02901 57

58 66 67

14 11 29 4 0.000490874 18 2 2 0 2 2 0.0025 0 0.0424 53

54 31 31

23 3 16 19 1.97524E-07 3200 4 0.008518 2 0 10 0.002485 22

70 26 65

48 5 30 19 1.96462E-07 1276 4 0.0085 2 0 10 0.0025 54

56 26 65

19 3 15 18 2.20527E-07 4850 3 0.005009 2 0 1 0.8 0.0025885

0 21 22 31 26

29 3 23 38 2.19175E-07 4850 3 0.00536 2 0 1 0.8 0.002363

0 70 49 65 66

30 3 25 40 2.20475E-07 4750 3 0.00594 2 0 1 0.8 0.002516

0 50 51 67 68

37 3 26 41 2.20475E-07 4750 3 0.00583 2 0 1 0.8 0.00248

0 51 52 68 69

3 3 27 42 1.06062E-06 600 3 0.0045 2 0 1 0.8 0.0048 0 52 7

69 6

44 5 29 18 2.21143E-07 3400 3 0.005417 2 0 1 0.8 0.002912

0 53 54 31 26

45 5 32 38 2.20544E-07 3240 3 0.011011 2 0 1 0.8 0.004024

0 56 57 65 66

46 5 34 40 2.22326E-07 3400 3 0.005819 2 0 1 0.8 0.002445

0 58 59 67 68

47 5 36 41 2.20566E-07 3570 3 0.007343 2 0 1 0.8 0.002498

0 60 61 68 69

0

FA ------------------------------ Fan (Type 2) and special pressure drop (Type 4) element data

-

Elem Class Type N1 N2 Flow P1 P2 P3 P4 P5 P6 Q1 Q2 Q3 Q4 Q5 Q6 Refdens Heat

- - 2/4 - - [m^3/s] <-----------Pa-----------><---------m^3/s-----------> [kg/m^3] [kW]

0

CA ------------------------------ CAU data ---

CompElem Class N1 N2 TurbElem N1 N2 LeakElem N1 N2 CompFile TurbFile LeakFile MatchFile Speed[revs/sec]

0

HX ------------------------------ Heat exchanger element data (Type 7) -------------------------

Elem1 Class N1 N2 Elem2 N1 N2 Effop Flag

- - - - - - - (1/2) 1 HeatFile

- - - - - - - 2 Eff Ck Beta Alpha Ck Beta Alpha

- - - - - - - - <--- Elem1 ---> <--- Elem2 --->

0

EV ------------------------------ Evapourator element data (Type 8) ----------------------------

Elem Class N1 N2 Flag

- - - - 1 EvapFile

61

- - - - 2 Eff Ck Beta Alpha

0

PR ------------------------------ Pressure relief valve data (Type 13) -------------------------

Elem Class N1 N2 ReliefFile

0

PG ------------------------------ Pressure regulating valve data (Type 14) ---------------------

Elem Class N1 N2 InitMass[kg/s] InitPres[Pa] ReguFile

0

CM ------------------------------ Compressor (Type 5) --

Elem Class N1 N2 Speed[revs/sec] CompFile

0

TU ------------------------------ Turbine (Type 5) ---

Elem Class N1 N2 Speed[revs/sec] TurbFile

0

US ------------------------------ User specified flow characteristic element (Type 19) ---------

Elem Class N1 N2 Flag

- - - - 1 UspesFile

- - - - 2 Factor . Next line : Row of m*sqrt[T0]/P0 values followed by

row of corresponding P01/P02 values. Row entries end with -1.

0

CP ------------------------------ Compressible Pipes (Type 21) ---------------------------------

Elem Class N1 N2 Length Diam Rough NumInc Flag

- - - - [m] [m] [m^-6] - 1 Heat[kW]

- - - - - - - - 2 WallTh InsTh Ho Kpipe Kins To

- - - - - - - - [m] [m] [W/m^2.K] [W/m.K] [W/m.K] [K]

- - - - - - - - 3 Texit[K]

- - - - - - - - 4 -

0

SW ------------------------------ Swirler (Type 22) --

Elem Class N1 N2 vane vane swirler flametube Number

- - - - const angle area area -

- - - - - [deg] [m^2] [m^2] -

0

FHT ------------------------------ Flametube Heat Transfer (Type 23) ----------------------------

Elem Class N1 N2 h/sl Gas Film Out/ ConvectFlag (** all dimensions metres

**) RadFlag

- - - - elem elem elem Inn 1 WallHeat[W] 1 RadHeat[W]

- - - - 0-Def 0-Def 0-Def 0-Def 2(L) (*

No film cooling *) 2(L)

- - - - - - - 1-Out 3(Pt) xdist (*

No film cooling *) 3(RR) -

62

- - - - - - - 2-Inn 4(L) lgth depth skthk (*

Slot films *) - -

- - - - - - - - 5(RR) etaflag (*

Film cooling *) - -

- - - - - - - - - 1 data lgth depth beta bloc sklgth

hp hd ha hta - -

- - - - - - - - - 2 lgth depth beta hp htd hsd skthk

sklgth - -

- - - - - - - - - 3 lgth depth beta bloc sklgth hp htd ha hta - -

- - - - - - - - - 4 lgth depth hradptch hcirptch - -

- - - - - - - - 6(RR) data distance (*

Transply films *) - -

- - - - - - - - 7(RR) data distance (*

Effusion films *) - -

15 12 18 8 110 31 0 1 4 0.02798 0.005818 0.001723 3

25 12 19 11 19 26 0 1 5 4 0.01634 0.005009 0.009491 0.0011 3

35 12 38 43 23 65 25 1 7 125 0.014559 3

36 12 39 46 29 66 0 1 5 4 0.02043 0.00536 0.009865 0.00115 3

40 12 41 50 30 68 0 1 5 4 0.03607 0.00594 0.009925 0.00115 3

41 12 42 52 37 69 0 1 5 4 0.02734 0.00583 0.009926 0.00115 3

62 15 18 54 109 31 0 2 4 0.03757 0.005818 0.001723 3

64 15 19 56 44 26 0 2 5 4 0.02689 0.005417 0.0086 0.001 3

72 15 38 60 48 65 64 2 7 125 0.017345 3

73 15 39 62 45 66 72 2 5 4 0.02221 0.011011 0.00921 0.00105 3

75 15 41 66 46 68 0 2 5 4 0.02688 0.005819 0.00912 0.00105 3

76 15 42 68 47 69 0 2 5 4 0.02842 0.007343 0.0091 0.00105 3

0

-------------------- If the DT calculation is invoked the following data must be specified ---------------------------

Num_reg Num_theta Num_phi Maxpts1 Maxpts2 Maxpts3 Maxpts4 Maxpts5

1 8 16 22 - - - -

Tempin Emissin Tempout Emissout (specify for each flow region, starting with

1st, default = 0)

0 0 1000 0

Geometry file: TempFlag Gas_temp file: Abs/SootFlag Abs_Coef/Soot file: GasAbsProp SourceCalc ConvProf

geomtl71.dat 2 trtem7av.dat 4 trsoi7av.dat 0 0 0

CD ------------------------------ Conductive Heat Transfer (Type 24) ---------------------------

Elem Class N1 N2 segment material geometry flag

- - - - thickness flag 1 (use computed surface areas)

- - - - [m] (1-7) 2 surf_area[m^2]

77 13 8 10 0.0015 1 1

78 13 11 12 0.00105 1 1

80 13 43 45 0.00105 1 1

81 13 46 47 0.00105 1 1

63

83 13 50 51 0.00105 1 1

84 13 52 53 0.00105 1 1

85 16 54 55 0.0015 1 1

86 16 56 57 0.00105 1 1

88 16 60 61 0.00105 1 1

89 16 62 63 0.00105 1 1

91 16 66 67 0.00105 1 1

92 16 68 69 0.00105 1 1

0

AHT ------------------------------ Annulus Heat Transfer (Type 25) ------------------------------

Elem Class N1 N2 annulus Out/ ConvectFlag RadFlag

- - - - elem Inn 1 WallHeat[W] 1 RadHeat

- - - - 0-Def 0-Def 2(L) 2(L) [W]

- - - - - 1-Out 3(RR) xdist[m] (def=0) 3(RR) -

- - - - - 2-Inn 4(Pt) xdist[m] (def=0) - -

93 14 10 15 21 2 3 0.01399 3

94 14 12 16 22 2 3 0.00817 3

96 14 45 23 70 2 3 0.004829 3

97 14 47 24 49 2 3 0.010215 3

99 14 51 26 51 2 3 0.018035 3

100 14 53 27 52 2 3 0.01367 3

101 17 55 29 53 1 3 0.018785 3

102 17 57 30 54 1 3 0.013445 3

104 17 61 32 56 1 3 0.00911 3

105 17 63 33 57 1 3 0.011105 3

107 17 67 36 60 1 3 0.02146 3

108 17 69 37 61 1 3 0.01421 3

0

PED ------------------------------ Pedestals and pin fins (Type 27) -----------------------------

Elem Class N1 N2 x-area perim height maxpwdth width stpitch trpitch radfil theta ns nx flag

- - - - [m^2] [m] [m] [m] [m] [m] [m] [m] [deg] - - 0

stag

- - - - - - - - - - - - - - - 1

in-line

0

============================== MOMENTUM ADDITION DATA ==

Elem Inject E1 Theta1 E2 Theta2 ... {Up to 20 pairs}

- 0/1 - [rad] - [rad] {End list with 0}

26 0 19 0 44 0 0

65 1 23 0 48 0 0

66 0 29 0 45 0 0

64

67 1 42 0 38 0 0

68 0 30 0 46 0 0

69 0 37 0 47 0 0

0

============================== RADIAL PRESSURE GRADIENT DATA ===================================

Node EM1 EM2 R H E1 E2 E3 ... {List up to 20 elements}

- - - [m] [m] - - - {End list with 0}

0

============================== FIXED ELEMENT FLOW DATA ===

Elem Flow[kg/s] FixFlow(y/n)

6 19.268 y

7 0.756 y

10 0.964 y

0

============================== CHECK VALVE DATA ==

Elem CheckValve(y/n)

0

============================== FIXED NODE PRESSURE DATA ==

Node Pressure[Pa]

1 1.0185E+06

0

============================== FIXED NODE MASS SOURCE DATA =====================================

Node Massource[kg/s] {inflow positive}

4 -0.658

7 0.503

0

============================== NODE HEIGHT DATA ==

Node Height[m]

0

============================== FIXED NODE TEMPERATURE DATA =====================================

Node Temperature[K]

1 677.457

0

============================== SCALAR BOUNDARY CONDITIONS (for combustion model) ===============

Node Scalar(1,2) Concentration

1 1 1

0

============================== EQUILIBRIUM CALCULATION DATA (for combustion model) =============

Fuel data file Chemical data file GP data directory

./data/fuel.dat ./data/chem.dat ./GPdata/gpandytest.dat

Class gp- load- spec_ineff[%] fuel_temp pz-length flairflow stfar combustor-volume

- elem flag(1-5) (if flag = 1) - [m] [Kg/s] - [m^3]

7 7 5 288 0.0852 18.769 0.0682 0.02747

65

5.3 The result �le of the �generic combustor 01�

RESULTS OF NETWORK FILE : networks/ network2.net

CLASS **** NAME ****

0 Generic

1 Diffuser section

2 Baseplate

3 Outer flametube

4 Outer annulus

5 Inner flametube

6 Inner annulus

7 Combustion zone

8 NGV

9 Inner annulus liner cooling slots

10 Baseplate cooling slots

11 HP Turbine Bleed

12 Outer FHT

13 Outer CD

14 Outer AHT

15 Inner FHT

16 Inner CD

17 Inner AHT

18 **** No Description ****

19 **** No Description ****

20 **** No Description ****

=========================== ELEMENT_RESULTS ===

LEGEND:

1 = Refers to side of Node N1

2 = Refers to side of Node N2

0 = Refers to total conditions

s = Refers to static conditions

N = Node

P = Pressure

T = Temperature

M = Mach number

VEL = Velocity

AREA = Effective area i.e. (area per element)x(number)x(discharge coefficient)

MFLOW = Mass flow

66

ELEM CLASS N1 N2 P01 P02 Ps1 Ps2 T01 T02 Ts1 Ts2

NO NO NO NO [kPa] [kPa] [kPa] [kPa] [K] [K] [K] [K]

1 1 1 2 1018.50 1018.42 970.20 970.12 677.46 677.46 668.63 668.63

2 1 2 3 1018.42 1018.13 970.12 991.42 677.46 677.46 668.63 672.61

3 3 27 42 996.48 963.13 951.18 916.07 685.56 685.56 677.04 676.39

4 1 3 6 1018.13 996.70 1014.52 993.01 677.46 677.46 676.81 676.78

5 1 3 13 1018.13 1012.79 1017.14 1011.79 677.46 677.46 677.28 677.28

6 7 42 28 963.13 963.98 950.89 942.82 1469.03 1391.62 1464.68 1384.47

7 8 27 5 996.48 996.48 996.45 996.46 685.56 685.56 685.56 685.56

8 2 13 70 1012.79 966.36 966.36 917.43 677.46 677.46 668.94 668.04

9 2 13 71 1012.79 966.96 966.96 918.70 677.46 677.46 669.06 668.17

10 8 44 9 998.50 998.50 998.44 998.46 683.70 683.70 683.69 683.69

11 2 13 70 1012.79 966.36 966.36 917.43 677.46 677.46 668.94 668.04

12 2 13 71 1012.79 966.96 966.96 918.70 677.46 677.46 669.06 668.17

13 2 13 7 1012.79 962.30 926.14 869.95 677.46 677.46 661.33 659.29

14 11 29 4 998.57 988.96 988.96 979.25 677.79 677.79 676.02 675.99

15 12 18 8 961.97 961.97 961.97 961.97 1669.41 701.70 1669.41 701.70

16 2 13 70 1012.79 966.36 966.36 917.43 677.46 677.46 668.94 668.04

17 2 13 7 1012.79 962.30 926.14 869.95 677.46 677.46 661.33 659.29

18 1 3 14 1018.13 998.63 1012.10 992.48 677.46 677.46 676.37 676.33

19 3 15 18 996.66 961.97 961.51 925.45 677.68 677.68 671.16 670.65

20 3 16 19 996.60 962.40 961.83 926.29 678.73 678.73 672.27 671.78

21 4 6 15 996.70 996.66 993.01 993.26 677.46 677.46 676.78 676.83

22 4 15 16 996.66 996.60 991.08 989.94 677.68 677.68 676.66 676.46

23 3 16 19 996.60 962.40 961.83 926.29 678.73 678.73 672.27 671.78

25 12 19 11 962.40 962.40 962.40 962.40 1301.43 785.79 1301.43 785.79

26 7 18 19 961.97 962.40 961.43 961.83 1669.41 1754.89 1669.20 1754.66

28 2 13 7 1012.79 962.30 926.14 869.95 677.46 677.46 661.33 659.29

29 3 23 38 996.55 962.15 960.48 924.68 679.99 679.99 673.27 672.75

30 3 25 40 996.49 962.36 959.87 924.31 681.84 681.84 675.00 674.47

31 7 7 18 962.30 961.97 962.09 961.51 648.40 1761.58 648.37 1761.40

33 2 13 71 1012.79 966.96 966.96 918.70 677.46 677.46 669.06 668.17

34 2 13 7 1012.79 962.30 926.14 869.95 677.46 677.46 661.33 659.29

35 12 38 43 962.15 962.15 962.15 962.15 1549.45 720.74 1549.45 720.74

36 12 39 46 962.46 962.46 962.46 962.46 1529.04 812.64 1529.04 812.64

37 3 26 41 996.48 962.81 958.33 923.19 683.75 683.75 676.60 676.06

38 3 24 39 996.52 962.46 960.43 924.98 681.84 681.84 675.10 674.58

40 12 41 50 962.81 962.81 962.81 962.81 1459.77 803.87 1459.77 803.87

41 12 42 52 963.13 963.13 963.13 963.13 1469.03 808.51 1469.03 808.51

42 5 33 39 998.52 962.46 960.43 922.80 680.93 680.93 673.83 673.25

67

43 5 30 19 998.53 962.40 961.83 924.19 678.68 678.68 671.86 671.31

44 5 29 18 998.57 961.97 961.51 923.37 677.79 677.79 670.92 670.35

45 5 32 38 998.53 962.15 960.48 922.54 679.39 679.39 672.32 671.74

46 5 34 40 998.51 962.36 959.87 922.12 680.93 680.93 673.73 673.14

47 5 36 41 998.50 962.81 958.33 921.00 681.72 681.72 674.23 673.62

48 5 30 19 998.53 962.40 961.83 924.19 678.68 678.68 671.86 671.31

49 4 23 24 996.55 996.52 994.98 994.17 679.99 679.99 679.70 679.56

50 4 24 25 996.52 996.49 994.64 995.53 681.84 681.84 681.49 681.66

51 4 25 26 996.49 996.48 995.96 996.16 681.84 681.84 681.74 681.78

52 4 26 27 996.48 996.48 996.36 996.42 683.75 683.75 683.72 683.73

53 6 14 29 998.63 998.57 990.86 991.44 677.46 677.46 676.03 676.15

54 6 29 30 998.57 998.53 993.13 991.69 677.79 677.79 676.79 676.53

56 6 30 32 998.53 998.53 997.84 997.72 678.68 678.68 678.55 678.53

57 6 32 33 998.53 998.52 997.89 997.62 679.39 679.39 679.27 679.22

58 6 33 34 998.52 998.51 997.83 997.79 680.93 680.93 680.80 680.79

59 6 34 35 998.51 998.51 998.04 997.96 680.93 680.93 680.84 680.83

60 6 35 36 998.51 998.50 997.96 998.13 680.93 680.93 680.83 680.86

61 6 36 37 998.50 998.50 998.31 998.36 681.72 681.72 681.69 681.70

62 15 18 54 961.97 961.97 961.97 961.97 1669.41 715.28 1669.41 715.28

63 6 37 44 998.50 998.50 998.36 998.44 683.70 683.70 683.67 683.69

64 15 19 56 962.40 962.40 962.40 962.40 1301.43 785.22 1301.43 785.22

65 7 19 38 962.40 962.15 960.88 960.48 1301.43 1582.81 1300.97 1582.19

66 7 38 39 962.15 962.46 960.37 960.43 1549.45 1550.98 1548.80 1550.24

67 7 39 40 962.46 962.36 960.33 959.87 1529.04 1556.58 1528.27 1555.67

68 7 40 41 962.36 962.81 959.67 958.33 1519.50 1496.14 1518.54 1494.55

69 7 41 42 962.81 963.13 957.94 951.18 1459.77 1479.32 1458.08 1475.10

70 4 16 23 996.60 996.55 994.92 994.30 678.73 678.73 678.42 678.32

72 15 38 60 962.15 962.15 962.15 962.15 1549.45 723.46 1549.45 723.46

73 15 39 62 962.46 962.46 962.46 962.46 1529.04 803.66 1529.04 803.66

75 15 41 66 962.81 962.81 962.81 962.81 1459.77 812.20 1459.77 812.20

76 15 42 68 963.13 963.13 963.13 963.13 1469.03 813.49 1469.03 813.49

77 13 8 10 961.97 996.66 961.97 996.66 701.70 699.61 701.70 699.61

78 13 11 12 962.40 996.60 962.40 996.60 785.79 775.99 785.79 775.99

80 13 43 45 962.15 996.55 962.15 996.55 720.74 717.28 720.74 717.28

81 13 46 47 962.46 996.52 962.46 996.52 812.64 807.02 812.64 807.02

83 13 50 51 962.81 996.48 962.81 996.48 803.87 801.64 803.87 801.64

84 13 52 53 963.13 996.48 963.13 996.48 808.51 806.72 808.51 806.72

85 16 54 55 961.97 998.57 961.97 998.57 715.28 710.52 715.28 710.52

86 16 56 57 962.40 998.53 962.40 998.53 785.22 774.75 785.22 774.75

88 16 60 61 962.15 998.53 962.15 998.53 723.46 721.27 723.46 721.27

68

89 16 62 63 962.46 998.52 962.46 998.52 803.66 797.66 803.66 797.66

91 16 66 67 962.81 998.50 962.81 998.50 812.20 809.75 812.20 809.75

92 16 68 69 963.13 998.50 963.13 998.50 813.49 811.20 813.49 811.20

93 14 10 15 996.66 996.66 996.66 996.66 699.61 677.68 699.61 677.68

94 14 12 16 996.60 996.60 996.60 996.60 775.99 678.73 775.99 678.73

96 14 45 23 996.55 996.55 996.55 996.55 717.28 679.99 717.28 679.99

97 14 47 24 996.52 996.52 996.52 996.52 807.02 681.84 807.02 681.84

99 14 51 26 996.48 996.48 996.48 996.48 801.64 683.75 801.64 683.75

100 14 53 27 996.48 996.48 996.48 996.48 806.72 685.56 806.72 685.56

101 17 55 29 998.57 998.57 998.57 998.57 710.52 677.79 710.52 677.79

102 17 57 30 998.53 998.53 998.53 998.53 774.75 678.68 774.75 678.68

104 17 61 32 998.53 998.53 998.53 998.53 721.27 679.39 721.27 679.39

105 17 63 33 998.52 998.52 998.52 998.52 797.66 680.93 797.66 680.93

107 17 67 36 998.50 998.50 998.50 998.50 809.75 681.72 809.75 681.72

108 17 69 37 998.50 998.50 998.50 998.50 811.20 683.70 811.20 683.70

109 7 71 7 966.96 962.30 919.65 914.13 677.46 685.56 668.37 676.15

110 7 70 7 966.36 962.30 930.81 926.14 677.46 685.56 670.66 678.53

ELEM CLASS N1 N2 MFLOW VEL1 VEL2 VELi M1 M2 AREA1 AREA2

NO NO NO NO [kg/s] [m/s] [m/s] [m/s] [] [] [m^2] [m^2]

1 1 1 2 21.14 137.28 137.30 137.29 0.2672 0.2672 0.0305900 0.0305900

2 1 2 3 21.14 137.30 101.70 116.77 0.2672 0.1974 0.0305900 0.0406500

3 3 27 42 0.29 135.18 140.22 135.18 0.2616 0.2715 0.0004427 0.0004427

4 1 3 6 6.52 37.21 38.01 0.00 0.0720 0.0736 0.0336700 0.0336700

5 1 3 13 7.01 19.49 19.59 0.00 0.0377 0.0379 0.0690400 0.0690400

6 7 42 28 19.27 104.00 133.24 116.39 0.1403 0.1848 0.0822500 0.0612000

7 8 27 5 0.76 3.68 3.22 3.43 0.0071 0.0062 0.0407300 0.0465900

8 2 13 70 0.34 134.94 141.94 134.94 0.2627 0.2765 0.0005016 0.0005016

9 2 13 71 0.19 134.05 140.91 134.05 0.2609 0.2745 0.0002891 0.0002891

10 8 44 9 0.96 4.75 3.95 4.31 0.0091 0.0076 0.0400800 0.0481100

11 2 13 70 0.40 134.94 141.94 134.94 0.2627 0.2765 0.0005880 0.0005880

12 2 13 71 0.66 134.05 140.91 134.05 0.2609 0.2745 0.0009797 0.0009797

13 2 13 7 3.20 185.76 197.15 185.76 0.3637 0.3866 0.0035492 0.0035492

14 11 29 4 0.66 61.43 62.04 61.43 0.1190 0.1201 0.0021101 0.0021101

15 12 18 8 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000000 0.0000000

16 2 13 70 0.64 134.94 141.94 134.94 0.2627 0.2765 0.0009467 0.0009467

17 2 13 7 0.25 185.76 197.15 185.76 0.3637 0.3866 0.0002717 0.0002717

18 1 3 14 7.61 48.12 49.07 0.00 0.0931 0.0950 0.0304800 0.0304800

19 3 15 18 0.55 118.14 122.65 118.14 0.2296 0.2384 0.0009442 0.0009442

20 3 16 19 2.85 117.58 122.01 117.58 0.2283 0.2370 0.0048794 0.0048794

69

21 4 6 15 6.52 38.01 36.48 37.23 0.0736 0.0706 0.0336700 0.0350800

22 4 15 16 5.96 46.81 51.14 48.88 0.0906 0.0990 0.0250600 0.0229600

23 3 16 19 0.12 117.58 122.01 117.58 0.2283 0.2370 0.0001980 0.0001980

25 12 19 11 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000000 0.0000000

26 7 18 19 8.37 23.36 24.45 23.91 0.0298 0.0304 0.1793000 0.1800000

28 2 13 7 0.80 185.76 197.15 185.76 0.3637 0.3866 0.0008913 0.0008913

29 3 23 38 0.49 119.91 124.46 119.91 0.2327 0.2416 0.0008299 0.0008299

30 3 25 40 0.57 121.01 125.56 121.01 0.2345 0.2435 0.0009601 0.0009601

31 7 7 18 7.52 9.11 22.13 15.98 0.0186 0.0275 0.1603000 0.1793000

33 2 13 71 0.19 134.05 140.91 134.05 0.2609 0.2745 0.0002785 0.0002785

34 2 13 7 0.34 185.76 197.15 185.76 0.3637 0.3866 0.0003781 0.0003781

35 12 38 43 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000000 0.0000000

36 12 39 46 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000000 0.0000000

37 3 26 41 0.62 123.72 128.33 123.72 0.2395 0.2485 0.0010141 0.0010141

38 3 24 39 0.27 120.11 124.61 120.11 0.2328 0.2416 0.0004512 0.0004512

40 12 41 50 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000000 0.0000000

41 12 42 52 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000000 0.0000000

42 5 33 39 0.24 123.24 128.15 123.24 0.2391 0.2487 0.0003889 0.0003889

43 5 30 19 4.48 120.74 125.55 120.74 0.2345 0.2440 0.0074760 0.0074760

44 5 29 18 0.30 121.25 126.15 121.25 0.2357 0.2453 0.0005003 0.0005003

45 5 32 38 0.23 123.01 127.96 123.01 0.2389 0.2486 0.0003778 0.0003778

46 5 34 40 0.33 124.13 129.10 124.13 0.2408 0.2506 0.0005334 0.0005334

47 5 36 41 0.37 126.68 131.70 126.68 0.2457 0.2555 0.0005921 0.0005921

48 5 30 19 0.04 120.74 125.55 120.74 0.2345 0.2440 0.0000722 0.0000722

49 4 23 24 2.51 24.91 30.37 27.37 0.0481 0.0587 0.0198000 0.0162500

50 4 24 25 2.24 27.19 19.52 22.73 0.0524 0.0377 0.0162500 0.0226200

51 4 25 26 1.66 14.52 11.26 12.68 0.0280 0.0217 0.0226200 0.0291600

52 4 26 27 1.05 7.11 5.09 5.93 0.0137 0.0098 0.0291600 0.0407300

53 6 14 29 7.61 55.17 52.87 54.00 0.1068 0.1024 0.0271400 0.0283100

54 6 29 30 6.66 46.17 51.80 48.83 0.0894 0.1003 0.0283100 0.0252600

56 6 30 32 2.13 16.52 17.76 17.12 0.0319 0.0343 0.0252600 0.0234900

57 6 32 33 1.90 15.85 18.75 17.18 0.0306 0.0362 0.0234900 0.0198700

58 6 33 34 1.66 16.44 16.90 16.67 0.0317 0.0326 0.0198700 0.0193300

59 6 34 35 1.33 13.57 14.58 14.06 0.0262 0.0281 0.0193300 0.0179900

60 6 35 36 1.33 14.58 12.01 13.17 0.0281 0.0232 0.0179900 0.0218400

61 6 36 37 0.96 8.69 7.27 7.91 0.0168 0.0140 0.0218400 0.0261000

62 15 18 54 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000000 0.0000000

63 6 37 44 0.96 7.29 4.75 5.75 0.0140 0.0091 0.0261000 0.0400800

64 15 19 56 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000000 0.0000000

65 7 19 38 15.86 34.39 39.80 37.16 0.0494 0.0519 0.1800000 0.1892000

70

66 7 38 39 16.58 40.74 43.49 42.07 0.0536 0.0572 0.1892000 0.1774000

67 7 39 40 17.09 44.18 48.14 46.10 0.0586 0.0633 0.1774000 0.1658000

68 7 40 41 17.99 49.48 63.42 55.53 0.0657 0.0849 0.1658000 0.1275000

69 7 41 42 18.98 65.29 103.12 80.05 0.0884 0.1389 0.1275000 0.0822500

70 4 16 23 3.00 25.66 29.77 27.56 0.0496 0.0575 0.0229600 0.0198000

72 15 38 60 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000000 0.0000000

73 15 39 62 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000000 0.0000000

75 15 41 66 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000000 0.0000000

76 15 42 68 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000000 0.0000000

77 13 8 10 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000000 0.0000000

78 13 11 12 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000000 0.0000000

80 13 43 45 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000000 0.0000000

81 13 46 47 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000000 0.0000000

83 13 50 51 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000000 0.0000000

84 13 52 53 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000000 0.0000000

85 16 54 55 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000000 0.0000000

86 16 56 57 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000000 0.0000000

88 16 60 61 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000000 0.0000000

89 16 62 63 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000000 0.0000000

91 16 66 67 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000000 0.0000000

92 16 68 69 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000000 0.0000000

93 14 10 15 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000000 0.0000000

94 14 12 16 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000000 0.0000000

96 14 45 23 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000000 0.0000000

97 14 47 24 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000000 0.0000000

99 14 51 26 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000000 0.0000000

100 14 53 27 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000000 0.0000000

101 17 55 29 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000000 0.0000000

102 17 57 30 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000000 0.0000000

104 17 61 32 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000000 0.0000000

105 17 63 33 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000000 0.0000000

107 17 67 36 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000000 0.0000000

108 17 69 37 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000000 0.0000000

109 7 71 7 1.04 139.48 141.96 140.72 0.2717 0.2749 0.0015620 0.0015620

110 7 70 7 1.38 120.67 122.70 121.69 0.2346 0.2372 0.0023701 0.0023701

============================ NODE_RESULTS ===

NODE P0 T0 SCALAR[1] MASSOURCE MASSERR Flametube_heat_loss

NO [kPa] [K] [kg/s] [kg/s] [kW]

1 1018.500 677.46 1.00000 21.1430 0.000000e+00 0.0000

71

2 1018.417 677.46 1.00000 0.0000 -1.232483e-09 0.0000

3 1018.128 677.46 1.00000 0.0000 -8.252659e-08 0.0000

4 988.957 677.79 0.00000 -0.6580 3.896583e-10 0.0000

5 996.482 685.56 1.00000 -0.7560 0.000000e+00 0.0000

6 996.696 677.46 1.00000 -0.0000 0.000000e+00 0.0000

7 962.300 648.40 0.96612 0.5030 -8.562195e-08 0.0000

8 961.973 701.70 0.00000 0.0000 0.000000e+00 0.0000

9 998.497 683.70 1.00000 -0.9640 0.000000e+00 0.0000

10 996.656 699.61 0.00000 0.0000 0.000000e+00 0.0000

11 962.399 785.79 0.00000 0.0000 0.000000e+00 0.0000

12 996.597 775.99 0.00000 0.0000 0.000000e+00 0.0000

13 1012.789 677.46 1.00000 0.0000 0.000000e+00 0.0000

14 998.626 677.46 1.00000 -0.0000 0.000000e+00 0.0000

15 996.656 677.68 1.00000 0.0000 -1.964090e-09 0.0000

16 996.597 678.73 1.00000 0.0000 -1.068430e-09 0.0000

18 961.973 1669.41 0.96639 0.0000 -4.467246e-09 0.0000

19 962.399 1301.43 0.97296 0.0000 -8.674604e-08 0.0000

23 996.553 679.99 1.00000 0.0000 -5.857697e-10 0.0000

24 996.516 681.84 1.00000 0.0000 -5.514841e-10 0.0000

25 996.495 681.84 1.00000 0.0000 -1.708637e-10 0.0000

26 996.484 683.75 1.00000 0.0000 -9.376511e-10 0.0000

27 996.483 685.56 1.00000 0.0000 2.158945e-10 0.0000

28 963.976 1391.62 0.98034 -19.2680 0.000000e+00 0.0000

29 998.569 677.79 1.00000 0.0000 -3.344067e-09 0.0000

30 998.534 678.68 1.00000 0.0000 -1.901100e-09 0.0000

32 998.526 679.39 1.00000 0.0000 -2.419468e-10 0.0000

33 998.520 680.93 1.00000 0.0000 -3.718483e-10 0.0000

34 998.513 680.93 1.00000 0.0000 -6.505763e-11 0.0000

35 998.505 680.93 1.00000 0.0000 5.714140e-11 0.0000

36 998.501 681.72 1.00000 0.0000 -2.930554e-10 0.0000

37 998.499 683.70 1.00000 0.0000 -2.674073e-10 0.0000

38 962.154 1549.45 0.97503 0.0000 -1.611504e-08 0.0000

39 962.462 1529.04 0.97503 0.0000 -5.008132e-08 0.0000

40 962.356 1519.50 0.97695 0.0000 -1.186553e-08 0.0000

41 962.811 1459.77 0.97761 0.0000 3.242723e-08 0.0000

42 963.131 1469.03 0.98034 0.0000 2.579003e-07 0.0000

43 962.154 720.74 0.00000 0.0000 0.000000e+00 0.0000

44 998.498 683.70 1.00000 0.0000 7.803127e-10 0.0000

45 996.553 717.28 0.00000 0.0000 0.000000e+00 0.0000

46 962.462 812.64 0.00000 0.0000 0.000000e+00 0.0000

72

47 996.516 807.02 0.00000 0.0000 0.000000e+00 0.0000

50 962.811 803.87 0.00000 0.0000 0.000000e+00 0.0000

51 996.484 801.64 0.00000 0.0000 0.000000e+00 0.0000

52 963.131 808.51 0.00000 0.0000 0.000000e+00 0.0000

53 996.483 806.72 0.00000 0.0000 0.000000e+00 0.0000

54 961.973 715.28 0.00000 0.0000 0.000000e+00 0.0000

55 998.569 710.52 0.00000 0.0000 0.000000e+00 0.0000

56 962.399 785.22 0.00000 0.0000 0.000000e+00 0.0000

57 998.534 774.75 0.00000 0.0000 0.000000e+00 0.0000

60 962.154 723.46 0.00000 0.0000 0.000000e+00 0.0000

61 998.526 721.27 0.00000 0.0000 0.000000e+00 0.0000

62 962.462 803.66 0.00000 0.0000 0.000000e+00 0.0000

63 998.520 797.66 0.00000 0.0000 0.000000e+00 0.0000

66 962.811 812.20 0.00000 0.0000 0.000000e+00 0.0000

67 998.501 809.75 0.00000 0.0000 0.000000e+00 0.0000

68 963.131 813.49 0.00000 0.0000 0.000000e+00 0.0000

69 998.499 811.20 0.00000 0.0000 0.000000e+00 0.0000

70 966.362 677.46 1.00000 0.0000 -1.407131e-08 0.0000

71 966.959 677.46 1.00000 0.0000 -2.756186e-08 0.0000

=========================== SUMMARY_TABLE_1 =====================================

ELEM MFLOW MIXEDFLOW PRESS_ELEM DELTA_P0 PRESS_ERR

NO [kg/s] [kg/s] [kPa] [kPa] [kPa]

Diffuser section

1 21.14300 21.14300 9.70160e+02 8.31752e-02 1.91738e-10

2 21.14300 21.14300 9.83169e+02 2.88654e-01 6.93772e-10

5 7.01210 7.01210 1.01714e+03 5.33868e+00 -1.22064e-08

18 7.61499 7.61499 1.01210e+03 1.95024e+01 -4.68558e-08

4 6.51591 6.51591 1.01452e+03 2.14324e+01 -5.14253e-08

Baseplate

34 0.34124 0.34124 1.01279e+03 5.04893e+01 -3.51469e-09

11 0.39772 0.39772 1.01279e+03 4.64278e+01 8.41916e-07

8 0.33925 0.33925 1.01279e+03 4.64278e+01 8.41916e-07

16 0.64032 0.64032 1.01279e+03 4.64278e+01 8.41916e-07

12 0.65860 0.65860 1.01279e+03 4.58302e+01 3.56330e-06

17 0.24525 0.24525 1.01279e+03 5.04893e+01 -3.51469e-09

33 0.18721 0.18721 1.01279e+03 4.58302e+01 3.56330e-06

13 3.20362 3.20362 1.01279e+03 5.04893e+01 -3.51469e-09

28 0.80453 0.80453 1.01279e+03 5.04893e+01 -3.51469e-09

9 0.19436 0.19436 1.01279e+03 4.58302e+01 3.56330e-06

73

Outer flametube

20 2.84813 2.84813 9.96597e+02 3.41981e+01 -1.18717e-07

38 0.26751 0.26751 9.96516e+02 3.40541e+01 -1.03743e-07

23 0.11559 0.11559 9.96597e+02 3.41981e+01 -1.18717e-07

19 0.55449 0.55449 9.96656e+02 3.46835e+01 -1.27245e-07

29 0.49259 0.49259 9.96553e+02 3.43992e+01 -1.23151e-07

30 0.57325 0.57325 9.96495e+02 3.41386e+01 -9.28548e-08

37 0.61662 0.61662 9.96484e+02 3.36728e+01 -5.62696e-08

3 0.29174 0.29174 9.96483e+02 3.33520e+01 2.13040e-09

Outer annulus

21 6.51591 6.51591 9.93143e+02 3.97037e-02 -2.15254e-07

22 5.96142 5.96142 9.90545e+02 5.92407e-02 -2.85093e-10

70 2.99770 2.99770 9.94642e+02 4.33568e-02 -1.97638e-10

49 2.50511 2.50511 9.94632e+02 3.70593e-02 -1.57085e-10

50 2.23760 2.23760 9.95197e+02 2.17283e-02 -8.69827e-11

51 1.66436 1.66436 9.96082e+02 1.05657e-02 -3.64686e-11

52 1.04774 1.04774 9.96394e+02 1.42431e-03 -2.45062e-12

Inner flametube

43 4.48344 4.48344 9.98534e+02 3.61352e+01 -1.07691e-07

42 0.23699 0.23699 9.98520e+02 3.60580e+01 -9.28870e-08

48 0.04331 0.04331 9.98534e+02 3.61352e+01 -1.07691e-07

44 0.30162 0.30162 9.98569e+02 3.65965e+01 -1.16147e-07

45 0.23036 0.23036 9.98526e+02 3.63721e+01 -1.12212e-07

46 0.32733 0.32733 9.98513e+02 3.61566e+01 -8.20433e-08

47 0.36993 0.36993 9.98501e+02 3.56900e+01 -4.54639e-08

Inner annulus

53 7.61499 7.61499 9.91162e+02 5.68293e-02 -1.96184e-07

54 6.65536 6.65536 9.92472e+02 3.50565e-02 -1.21425e-10

56 2.12861 2.12861 9.97783e+02 7.62668e-03 -2.10103e-11

57 1.89826 1.89826 9.97771e+02 6.01165e-03 -1.48505e-11

58 1.66127 1.66127 9.97810e+02 7.55705e-03 -1.58976e-11

59 1.33393 1.33393 9.98007e+02 7.46598e-03 -1.09614e-11

60 1.33393 1.33393 9.98062e+02 4.00092e-03 -5.98359e-12

61 0.96400 0.96400 9.98341e+02 2.50773e-03 1.09099e-12

63 0.96400 0.96400 9.98415e+02 9.11956e-04 4.50263e-13

Combustion zone

110 1.37728 5.04307 9.28480e+02 4.06144e+00 1.32225e-06

109 1.04017 4.70595 9.16896e+02 4.65905e+00 6.01088e-06

31 7.51510 11.18088 9.61783e+02 3.27702e-01 -3.49513e-10

26 8.37121 11.27006 9.61628e+02 -4.26180e-01 -1.53529e-08

74

65 15.86169 14.00959 9.60679e+02 2.44516e-01 -1.13288e-09

66 16.58463 15.16890 9.60403e+02 -3.08089e-01 -2.55839e-08

67 17.08913 15.16968 9.60112e+02 1.06197e-01 -2.06009e-08

68 17.98971 16.43232 9.59173e+02 -4.55194e-01 -8.30695e-08

69 18.97626 16.91868 9.55708e+02 -3.19420e-01 -6.12337e-08

6 19.26800 19.26800 9.47820e+02 -8.44904e-01 -1.11876e-09

NGV

7 0.75600 0.75600 9.96453e+02 3.44980e-04 3.96341e-14

10 0.96400 0.96400 9.98451e+02 3.57212e-04 -1.80657e-14

HP Turbine Bleed

14 0.65800 0.65800 9.98569e+02 9.61245e+00 1.17149e-07

Outer FHT

15 0.00000 0.00000 9.61973e+02 0.00000e+00 0.00000e+00

25 0.00000 0.00000 9.62399e+02 0.00000e+00 0.00000e+00

35 0.00000 0.00000 9.62154e+02 0.00000e+00 0.00000e+00

36 0.00000 0.00000 9.62462e+02 0.00000e+00 0.00000e+00

40 0.00000 0.00000 9.62811e+02 0.00000e+00 0.00000e+00

41 0.00000 0.00000 9.63131e+02 0.00000e+00 0.00000e+00

Outer CD

77 0.00000 0.00000 9.61973e+02 -3.46835e+01 -3.46835e+01

78 0.00000 0.00000 9.62399e+02 -3.41981e+01 -3.41981e+01

80 0.00000 0.00000 9.62154e+02 -3.43992e+01 -3.43992e+01

81 0.00000 0.00000 9.62462e+02 -3.40541e+01 -3.40541e+01

83 0.00000 0.00000 9.62811e+02 -3.36728e+01 -3.36728e+01

84 0.00000 0.00000 9.63131e+02 -3.33520e+01 -3.33520e+01

Outer AHT

93 0.00000 0.00000 9.96656e+02 0.00000e+00 0.00000e+00

94 0.00000 0.00000 9.96597e+02 0.00000e+00 0.00000e+00

96 0.00000 0.00000 9.96553e+02 0.00000e+00 0.00000e+00

97 0.00000 0.00000 9.96516e+02 0.00000e+00 0.00000e+00

99 0.00000 0.00000 9.96484e+02 0.00000e+00 0.00000e+00

100 0.00000 0.00000 9.96483e+02 0.00000e+00 0.00000e+00

Inner FHT

62 0.00000 0.00000 9.61973e+02 0.00000e+00 0.00000e+00

64 0.00000 0.00000 9.62399e+02 0.00000e+00 0.00000e+00

72 0.00000 0.00000 9.62154e+02 0.00000e+00 0.00000e+00

73 0.00000 0.00000 9.62462e+02 0.00000e+00 0.00000e+00

75 0.00000 0.00000 9.62811e+02 0.00000e+00 0.00000e+00

76 0.00000 0.00000 9.63131e+02 0.00000e+00 0.00000e+00

Inner CD

75

85 0.00000 0.00000 9.61973e+02 -3.65965e+01 -3.65965e+01

86 0.00000 0.00000 9.62399e+02 -3.61352e+01 -3.61352e+01

88 0.00000 0.00000 9.62154e+02 -3.63721e+01 -3.63721e+01

89 0.00000 0.00000 9.62462e+02 -3.60580e+01 -3.60580e+01

91 0.00000 0.00000 9.62811e+02 -3.56900e+01 -3.56900e+01

92 0.00000 0.00000 9.63131e+02 -3.53681e+01 -3.53681e+01

Inner AHT

101 0.00000 0.00000 9.98569e+02 0.00000e+00 0.00000e+00

102 0.00000 0.00000 9.98534e+02 0.00000e+00 0.00000e+00

104 0.00000 0.00000 9.98526e+02 0.00000e+00 0.00000e+00

105 0.00000 0.00000 9.98520e+02 0.00000e+00 0.00000e+00

107 0.00000 0.00000 9.98501e+02 0.00000e+00 0.00000e+00

108 0.00000 0.00000 9.98499e+02 0.00000e+00 0.00000e+00

====================== DUCT_WITH_AREA_CHANGE_AXIAL_PATH_RESULTS ===

ELEM PATH MIDPT MFLOW MIXEDFLOW MACH NO. P TOTAL P STATIC T TOTAL T STATIC F.A.R. EFFIC

na [m] [m] [kg/s] [kg/s] [kPa] [kPa] [K] [K]

Diffuser section

1 0.0000 0.0033 21.143 21.143 0.26720 1.01850e+06 9.70203e+05 677.457 668.629 0.00000 0.000

2 0.0066 0.0251 21.143 21.143 0.26725 1.01842e+06 9.70115e+05 677.457 668.632 0.00000 0.000

Outer annulus

21 0.0000 0.0140 6.516 6.516 0.07356 9.96696e+05 9.93013e+05 677.457 676.781 0.00000 0.000

22 0.0280 0.0362 5.961 5.961 0.09060 9.96656e+05 9.91077e+05 677.681 676.657 0.00000 0.000

70 0.0443 0.0589 2.998 2.998 0.04960 9.96597e+05 9.94921e+05 678.732 678.424 0.00000 0.000

49 0.0734 0.0837 2.505 2.505 0.04811 9.96553e+05 9.94977e+05 679.987 679.697 0.00000 0.000

50 0.0939 0.1030 2.238 2.238 0.05245 9.96516e+05 9.94643e+05 681.836 681.491 0.00000 0.000

51 0.1122 0.1303 1.664 1.664 0.02799 9.96495e+05 9.95961e+05 681.836 681.738 0.00000 0.000

52 0.1483 0.1620 1.048 1.048 0.01369 9.96484e+05 9.96356e+05 683.747 683.723 0.00000 0.000

Inner annulus

53 0.0000 0.0188 7.615 7.615 0.10683 9.98626e+05 9.90864e+05 677.457 676.034 0.00000 0.000

54 0.0376 0.0510 6.655 6.655 0.08935 9.98569e+05 9.93131e+05 677.787 676.790 0.00000 0.000

56 0.0645 0.0818 2.129 2.129 0.03192 9.98534e+05 9.97838e+05 678.675 678.548 0.00000 0.000

57 0.0992 0.1103 1.898 1.898 0.03063 9.98526e+05 9.97886e+05 679.387 679.270 0.00000 0.000

58 0.1214 0.1332 1.661 1.661 0.03173 9.98520e+05 9.97833e+05 680.925 680.799 0.00000 0.000

59 0.1450 0.1585 1.334 1.334 0.02618 9.98513e+05 9.98045e+05 680.925 680.839 0.00000 0.000

60 0.1719 0.1799 1.334 1.334 0.02813 9.98505e+05 9.97965e+05 680.925 680.826 0.00000 0.000

61 0.1880 0.2022 0.964 0.964 0.01675 9.98501e+05 9.98310e+05 681.723 681.688 0.00000 0.000

63 0.2164 0.2289 0.964 0.964 0.01404 9.98499e+05 9.98364e+05 683.698 683.673 0.00000 0.000

Combustion zone

110 0.0000 0.0066 1.377 5.043 0.23465 9.66362e+05 9.30814e+05 685.559 678.678 0.00000 96.400

76

109 0.0132 0.0198 1.040 4.706 0.27169 9.66959e+05 9.19654e+05 685.559 676.366 0.00000 96.400

31 0.0264 0.0474 7.515 11.181 0.01862 9.62300e+05 9.62087e+05 1761.584 1761.499 0.03507 93.608

26 0.0685 0.0766 8.371 11.270 0.02977 9.61973e+05 9.61427e+05 1754.886 1754.668 0.03478 93.672

65 0.0846 0.1005 15.862 14.010 0.04945 9.62399e+05 9.60883e+05 1582.806 1582.246 0.02779 95.217

66 0.1164 0.1241 16.585 15.169 0.05364 9.62154e+05 9.60367e+05 1550.980 1550.328 0.02561 98.627

67 0.1318 0.1318 17.089 15.170 0.05857 9.62462e+05 9.60332e+05 1556.583 1555.804 0.02561 99.281

68 0.1318 0.1497 17.990 16.432 0.06571 9.62356e+05 9.59669e+05 1496.138 1495.184 0.02360 99.281

69 0.1675 0.1799 18.976 16.919 0.08845 9.62811e+05 9.57943e+05 1479.318 1477.603 0.02290 99.824

6 0.1923 0.1995 19.268 19.268 0.14027 9.63131e+05 9.50889e+05 1391.621 1387.496 0.02005 99.946

NGV

7 0.0000 0.0117 0.756 0.756 0.00708 9.96483e+05 9.96449e+05 685.562 685.556 0.00000 0.000

10 0.0233 0.0341 0.964 0.964 0.00914 9.98498e+05 9.98441e+05 683.698 683.688 0.00000 0.000

77

